xref: /freebsd/contrib/llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_fuchsia.cpp (revision 99282790b7d01ec3c4072621d46a0d7302517ad4)
1 //===-- sanitizer_fuchsia.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between AddressSanitizer and other sanitizer
10 // run-time libraries and implements Fuchsia-specific functions from
11 // sanitizer_common.h.
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_fuchsia.h"
15 #if SANITIZER_FUCHSIA
16 
17 #include "sanitizer_common.h"
18 #include "sanitizer_libc.h"
19 #include "sanitizer_mutex.h"
20 
21 #include <limits.h>
22 #include <pthread.h>
23 #include <stdlib.h>
24 #include <unistd.h>
25 #include <zircon/errors.h>
26 #include <zircon/process.h>
27 #include <zircon/syscalls.h>
28 
29 namespace __sanitizer {
30 
31 void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); }
32 
33 uptr internal_sched_yield() {
34   zx_status_t status = _zx_nanosleep(0);
35   CHECK_EQ(status, ZX_OK);
36   return 0;  // Why doesn't this return void?
37 }
38 
39 static void internal_nanosleep(zx_time_t ns) {
40   zx_status_t status = _zx_nanosleep(_zx_deadline_after(ns));
41   CHECK_EQ(status, ZX_OK);
42 }
43 
44 unsigned int internal_sleep(unsigned int seconds) {
45   internal_nanosleep(ZX_SEC(seconds));
46   return 0;
47 }
48 
49 u64 NanoTime() {
50   zx_time_t time;
51   zx_status_t status = _zx_clock_get(ZX_CLOCK_UTC, &time);
52   CHECK_EQ(status, ZX_OK);
53   return time;
54 }
55 
56 u64 MonotonicNanoTime() { return _zx_clock_get_monotonic(); }
57 
58 uptr internal_getpid() {
59   zx_info_handle_basic_t info;
60   zx_status_t status =
61       _zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info,
62                           sizeof(info), NULL, NULL);
63   CHECK_EQ(status, ZX_OK);
64   uptr pid = static_cast<uptr>(info.koid);
65   CHECK_EQ(pid, info.koid);
66   return pid;
67 }
68 
69 uptr GetThreadSelf() { return reinterpret_cast<uptr>(thrd_current()); }
70 
71 tid_t GetTid() { return GetThreadSelf(); }
72 
73 void Abort() { abort(); }
74 
75 int Atexit(void (*function)(void)) { return atexit(function); }
76 
77 void SleepForSeconds(int seconds) { internal_sleep(seconds); }
78 
79 void SleepForMillis(int millis) { internal_nanosleep(ZX_MSEC(millis)); }
80 
81 void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) {
82   pthread_attr_t attr;
83   CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0);
84   void *base;
85   size_t size;
86   CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0);
87   CHECK_EQ(pthread_attr_destroy(&attr), 0);
88 
89   *stack_bottom = reinterpret_cast<uptr>(base);
90   *stack_top = *stack_bottom + size;
91 }
92 
93 void InitializePlatformEarly() {}
94 void MaybeReexec() {}
95 void CheckASLR() {}
96 void CheckMPROTECT() {}
97 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}
98 void DisableCoreDumperIfNecessary() {}
99 void InstallDeadlySignalHandlers(SignalHandlerType handler) {}
100 void SetAlternateSignalStack() {}
101 void UnsetAlternateSignalStack() {}
102 void InitTlsSize() {}
103 
104 void PrintModuleMap() {}
105 
106 bool SignalContext::IsStackOverflow() const { return false; }
107 void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); }
108 const char *SignalContext::Describe() const { UNIMPLEMENTED(); }
109 
110 enum MutexState : int { MtxUnlocked = 0, MtxLocked = 1, MtxSleeping = 2 };
111 
112 BlockingMutex::BlockingMutex() {
113   // NOTE!  It's important that this use internal_memset, because plain
114   // memset might be intercepted (e.g., actually be __asan_memset).
115   // Defining this so the compiler initializes each field, e.g.:
116   //   BlockingMutex::BlockingMutex() : BlockingMutex(LINKER_INITIALIZED) {}
117   // might result in the compiler generating a call to memset, which would
118   // have the same problem.
119   internal_memset(this, 0, sizeof(*this));
120 }
121 
122 void BlockingMutex::Lock() {
123   CHECK_EQ(owner_, 0);
124   atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
125   if (atomic_exchange(m, MtxLocked, memory_order_acquire) == MtxUnlocked)
126     return;
127   while (atomic_exchange(m, MtxSleeping, memory_order_acquire) != MtxUnlocked) {
128     zx_status_t status =
129         _zx_futex_wait(reinterpret_cast<zx_futex_t *>(m), MtxSleeping,
130                        ZX_HANDLE_INVALID, ZX_TIME_INFINITE);
131     if (status != ZX_ERR_BAD_STATE)  // Normal race.
132       CHECK_EQ(status, ZX_OK);
133   }
134 }
135 
136 void BlockingMutex::Unlock() {
137   atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
138   u32 v = atomic_exchange(m, MtxUnlocked, memory_order_release);
139   CHECK_NE(v, MtxUnlocked);
140   if (v == MtxSleeping) {
141     zx_status_t status = _zx_futex_wake(reinterpret_cast<zx_futex_t *>(m), 1);
142     CHECK_EQ(status, ZX_OK);
143   }
144 }
145 
146 void BlockingMutex::CheckLocked() {
147   atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
148   CHECK_NE(MtxUnlocked, atomic_load(m, memory_order_relaxed));
149 }
150 
151 uptr GetPageSize() { return PAGE_SIZE; }
152 
153 uptr GetMmapGranularity() { return PAGE_SIZE; }
154 
155 sanitizer_shadow_bounds_t ShadowBounds;
156 
157 uptr GetMaxUserVirtualAddress() {
158   ShadowBounds = __sanitizer_shadow_bounds();
159   return ShadowBounds.memory_limit - 1;
160 }
161 
162 uptr GetMaxVirtualAddress() { return GetMaxUserVirtualAddress(); }
163 
164 static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type,
165                                   bool raw_report, bool die_for_nomem) {
166   size = RoundUpTo(size, PAGE_SIZE);
167 
168   zx_handle_t vmo;
169   zx_status_t status = _zx_vmo_create(size, 0, &vmo);
170   if (status != ZX_OK) {
171     if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
172       ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status,
173                               raw_report);
174     return nullptr;
175   }
176   _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
177                           internal_strlen(mem_type));
178 
179   // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that?
180   uintptr_t addr;
181   status =
182       _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
183                    vmo, 0, size, &addr);
184   _zx_handle_close(vmo);
185 
186   if (status != ZX_OK) {
187     if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
188       ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status,
189                               raw_report);
190     return nullptr;
191   }
192 
193   IncreaseTotalMmap(size);
194 
195   return reinterpret_cast<void *>(addr);
196 }
197 
198 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
199   return DoAnonymousMmapOrDie(size, mem_type, raw_report, true);
200 }
201 
202 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
203   return MmapOrDie(size, mem_type);
204 }
205 
206 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
207   return DoAnonymousMmapOrDie(size, mem_type, false, false);
208 }
209 
210 uptr ReservedAddressRange::Init(uptr init_size, const char *name,
211                                 uptr fixed_addr) {
212   init_size = RoundUpTo(init_size, PAGE_SIZE);
213   DCHECK_EQ(os_handle_, ZX_HANDLE_INVALID);
214   uintptr_t base;
215   zx_handle_t vmar;
216   zx_status_t status =
217       _zx_vmar_allocate(
218           _zx_vmar_root_self(),
219           ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC,
220           0, init_size, &vmar, &base);
221   if (status != ZX_OK)
222     ReportMmapFailureAndDie(init_size, name, "zx_vmar_allocate", status);
223   base_ = reinterpret_cast<void *>(base);
224   size_ = init_size;
225   name_ = name;
226   os_handle_ = vmar;
227 
228   return reinterpret_cast<uptr>(base_);
229 }
230 
231 static uptr DoMmapFixedOrDie(zx_handle_t vmar, uptr fixed_addr, uptr map_size,
232                              void *base, const char *name, bool die_for_nomem) {
233   uptr offset = fixed_addr - reinterpret_cast<uptr>(base);
234   map_size = RoundUpTo(map_size, PAGE_SIZE);
235   zx_handle_t vmo;
236   zx_status_t status = _zx_vmo_create(map_size, 0, &vmo);
237   if (status != ZX_OK) {
238     if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
239       ReportMmapFailureAndDie(map_size, name, "zx_vmo_create", status);
240     return 0;
241   }
242   _zx_object_set_property(vmo, ZX_PROP_NAME, name, internal_strlen(name));
243   DCHECK_GE(base + size_, map_size + offset);
244   uintptr_t addr;
245 
246   status =
247       _zx_vmar_map(vmar, ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC,
248                    offset, vmo, 0, map_size, &addr);
249   _zx_handle_close(vmo);
250   if (status != ZX_OK) {
251     if (status != ZX_ERR_NO_MEMORY || die_for_nomem) {
252       ReportMmapFailureAndDie(map_size, name, "zx_vmar_map", status);
253     }
254     return 0;
255   }
256   IncreaseTotalMmap(map_size);
257   return addr;
258 }
259 
260 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr map_size,
261                                const char *name) {
262   return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
263                           name_, false);
264 }
265 
266 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr map_size,
267                                     const char *name) {
268   return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
269                           name_, true);
270 }
271 
272 void UnmapOrDieVmar(void *addr, uptr size, zx_handle_t target_vmar) {
273   if (!addr || !size) return;
274   size = RoundUpTo(size, PAGE_SIZE);
275 
276   zx_status_t status =
277       _zx_vmar_unmap(target_vmar, reinterpret_cast<uintptr_t>(addr), size);
278   if (status != ZX_OK) {
279     Report("ERROR: %s failed to deallocate 0x%zx (%zd) bytes at address %p\n",
280            SanitizerToolName, size, size, addr);
281     CHECK("unable to unmap" && 0);
282   }
283 
284   DecreaseTotalMmap(size);
285 }
286 
287 void ReservedAddressRange::Unmap(uptr addr, uptr size) {
288   CHECK_LE(size, size_);
289   const zx_handle_t vmar = static_cast<zx_handle_t>(os_handle_);
290   if (addr == reinterpret_cast<uptr>(base_)) {
291     if (size == size_) {
292       // Destroying the vmar effectively unmaps the whole mapping.
293       _zx_vmar_destroy(vmar);
294       _zx_handle_close(vmar);
295       os_handle_ = static_cast<uptr>(ZX_HANDLE_INVALID);
296       DecreaseTotalMmap(size);
297       return;
298     }
299   } else {
300     CHECK_EQ(addr + size, reinterpret_cast<uptr>(base_) + size_);
301   }
302   // Partial unmapping does not affect the fact that the initial range is still
303   // reserved, and the resulting unmapped memory can't be reused.
304   UnmapOrDieVmar(reinterpret_cast<void *>(addr), size, vmar);
305 }
306 
307 // This should never be called.
308 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
309   UNIMPLEMENTED();
310 }
311 
312 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
313                                    const char *mem_type) {
314   CHECK_GE(size, PAGE_SIZE);
315   CHECK(IsPowerOfTwo(size));
316   CHECK(IsPowerOfTwo(alignment));
317 
318   zx_handle_t vmo;
319   zx_status_t status = _zx_vmo_create(size, 0, &vmo);
320   if (status != ZX_OK) {
321     if (status != ZX_ERR_NO_MEMORY)
322       ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false);
323     return nullptr;
324   }
325   _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
326                           internal_strlen(mem_type));
327 
328   // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that?
329 
330   // Map a larger size to get a chunk of address space big enough that
331   // it surely contains an aligned region of the requested size.  Then
332   // overwrite the aligned middle portion with a mapping from the
333   // beginning of the VMO, and unmap the excess before and after.
334   size_t map_size = size + alignment;
335   uintptr_t addr;
336   status =
337       _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
338                    vmo, 0, map_size, &addr);
339   if (status == ZX_OK) {
340     uintptr_t map_addr = addr;
341     uintptr_t map_end = map_addr + map_size;
342     addr = RoundUpTo(map_addr, alignment);
343     uintptr_t end = addr + size;
344     if (addr != map_addr) {
345       zx_info_vmar_t info;
346       status = _zx_object_get_info(_zx_vmar_root_self(), ZX_INFO_VMAR, &info,
347                                    sizeof(info), NULL, NULL);
348       if (status == ZX_OK) {
349         uintptr_t new_addr;
350         status = _zx_vmar_map(
351             _zx_vmar_root_self(),
352             ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC_OVERWRITE,
353             addr - info.base, vmo, 0, size, &new_addr);
354         if (status == ZX_OK) CHECK_EQ(new_addr, addr);
355       }
356     }
357     if (status == ZX_OK && addr != map_addr)
358       status = _zx_vmar_unmap(_zx_vmar_root_self(), map_addr, addr - map_addr);
359     if (status == ZX_OK && end != map_end)
360       status = _zx_vmar_unmap(_zx_vmar_root_self(), end, map_end - end);
361   }
362   _zx_handle_close(vmo);
363 
364   if (status != ZX_OK) {
365     if (status != ZX_ERR_NO_MEMORY)
366       ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false);
367     return nullptr;
368   }
369 
370   IncreaseTotalMmap(size);
371 
372   return reinterpret_cast<void *>(addr);
373 }
374 
375 void UnmapOrDie(void *addr, uptr size) {
376   UnmapOrDieVmar(addr, size, _zx_vmar_root_self());
377 }
378 
379 // This is used on the shadow mapping, which cannot be changed.
380 // Zircon doesn't have anything like MADV_DONTNEED.
381 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {}
382 
383 void DumpProcessMap() {
384   // TODO(mcgrathr): write it
385   return;
386 }
387 
388 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
389   // TODO(mcgrathr): Figure out a better way.
390   zx_handle_t vmo;
391   zx_status_t status = _zx_vmo_create(size, 0, &vmo);
392   if (status == ZX_OK) {
393     status = _zx_vmo_write(vmo, reinterpret_cast<const void *>(beg), 0, size);
394     _zx_handle_close(vmo);
395   }
396   return status == ZX_OK;
397 }
398 
399 // FIXME implement on this platform.
400 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) {}
401 
402 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
403                       uptr *read_len, uptr max_len, error_t *errno_p) {
404   zx_handle_t vmo;
405   zx_status_t status = __sanitizer_get_configuration(file_name, &vmo);
406   if (status == ZX_OK) {
407     uint64_t vmo_size;
408     status = _zx_vmo_get_size(vmo, &vmo_size);
409     if (status == ZX_OK) {
410       if (vmo_size < max_len) max_len = vmo_size;
411       size_t map_size = RoundUpTo(max_len, PAGE_SIZE);
412       uintptr_t addr;
413       status = _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ, 0, vmo, 0,
414                             map_size, &addr);
415       if (status == ZX_OK) {
416         *buff = reinterpret_cast<char *>(addr);
417         *buff_size = map_size;
418         *read_len = max_len;
419       }
420     }
421     _zx_handle_close(vmo);
422   }
423   if (status != ZX_OK && errno_p) *errno_p = status;
424   return status == ZX_OK;
425 }
426 
427 void RawWrite(const char *buffer) {
428   constexpr size_t size = 128;
429   static _Thread_local char line[size];
430   static _Thread_local size_t lastLineEnd = 0;
431   static _Thread_local size_t cur = 0;
432 
433   while (*buffer) {
434     if (cur >= size) {
435       if (lastLineEnd == 0)
436         lastLineEnd = size;
437       __sanitizer_log_write(line, lastLineEnd);
438       internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
439       cur = cur - lastLineEnd;
440       lastLineEnd = 0;
441     }
442     if (*buffer == '\n')
443       lastLineEnd = cur + 1;
444     line[cur++] = *buffer++;
445   }
446   // Flush all complete lines before returning.
447   if (lastLineEnd != 0) {
448     __sanitizer_log_write(line, lastLineEnd);
449     internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
450     cur = cur - lastLineEnd;
451     lastLineEnd = 0;
452   }
453 }
454 
455 void CatastrophicErrorWrite(const char *buffer, uptr length) {
456   __sanitizer_log_write(buffer, length);
457 }
458 
459 char **StoredArgv;
460 char **StoredEnviron;
461 
462 char **GetArgv() { return StoredArgv; }
463 char **GetEnviron() { return StoredEnviron; }
464 
465 const char *GetEnv(const char *name) {
466   if (StoredEnviron) {
467     uptr NameLen = internal_strlen(name);
468     for (char **Env = StoredEnviron; *Env != 0; Env++) {
469       if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=')
470         return (*Env) + NameLen + 1;
471     }
472   }
473   return nullptr;
474 }
475 
476 uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) {
477   const char *argv0 = "<UNKNOWN>";
478   if (StoredArgv && StoredArgv[0]) {
479     argv0 = StoredArgv[0];
480   }
481   internal_strncpy(buf, argv0, buf_len);
482   return internal_strlen(buf);
483 }
484 
485 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) {
486   return ReadBinaryName(buf, buf_len);
487 }
488 
489 uptr MainThreadStackBase, MainThreadStackSize;
490 
491 bool GetRandom(void *buffer, uptr length, bool blocking) {
492   CHECK_LE(length, ZX_CPRNG_DRAW_MAX_LEN);
493   _zx_cprng_draw(buffer, length);
494   return true;
495 }
496 
497 u32 GetNumberOfCPUs() {
498   return zx_system_get_num_cpus();
499 }
500 
501 uptr GetRSS() { UNIMPLEMENTED(); }
502 
503 }  // namespace __sanitizer
504 
505 using namespace __sanitizer;
506 
507 extern "C" {
508 void __sanitizer_startup_hook(int argc, char **argv, char **envp,
509                               void *stack_base, size_t stack_size) {
510   __sanitizer::StoredArgv = argv;
511   __sanitizer::StoredEnviron = envp;
512   __sanitizer::MainThreadStackBase = reinterpret_cast<uintptr_t>(stack_base);
513   __sanitizer::MainThreadStackSize = stack_size;
514 }
515 
516 void __sanitizer_set_report_path(const char *path) {
517   // Handle the initialization code in each sanitizer, but no other calls.
518   // This setting is never consulted on Fuchsia.
519   DCHECK_EQ(path, common_flags()->log_path);
520 }
521 
522 void __sanitizer_set_report_fd(void *fd) {
523   UNREACHABLE("not available on Fuchsia");
524 }
525 }  // extern "C"
526 
527 #endif  // SANITIZER_FUCHSIA
528