1 //===-- sanitizer_fuchsia.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is shared between AddressSanitizer and other sanitizer 10 // run-time libraries and implements Fuchsia-specific functions from 11 // sanitizer_common.h. 12 //===----------------------------------------------------------------------===// 13 14 #include "sanitizer_fuchsia.h" 15 #if SANITIZER_FUCHSIA 16 17 # include <pthread.h> 18 # include <stdlib.h> 19 # include <unistd.h> 20 # include <zircon/errors.h> 21 # include <zircon/process.h> 22 # include <zircon/syscalls.h> 23 # include <zircon/utc.h> 24 25 # include "sanitizer_common.h" 26 # include "sanitizer_interface_internal.h" 27 # include "sanitizer_libc.h" 28 # include "sanitizer_mutex.h" 29 30 namespace __sanitizer { 31 32 void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); } 33 34 uptr internal_sched_yield() { 35 zx_status_t status = _zx_thread_legacy_yield(0u); 36 CHECK_EQ(status, ZX_OK); 37 return 0; // Why doesn't this return void? 38 } 39 40 void internal_usleep(u64 useconds) { 41 zx_status_t status = _zx_nanosleep(_zx_deadline_after(ZX_USEC(useconds))); 42 CHECK_EQ(status, ZX_OK); 43 } 44 45 u64 NanoTime() { 46 zx_handle_t utc_clock = _zx_utc_reference_get(); 47 CHECK_NE(utc_clock, ZX_HANDLE_INVALID); 48 zx_time_t time; 49 zx_status_t status = _zx_clock_read(utc_clock, &time); 50 CHECK_EQ(status, ZX_OK); 51 return time; 52 } 53 54 u64 MonotonicNanoTime() { return _zx_clock_get_monotonic(); } 55 56 uptr internal_getpid() { 57 zx_info_handle_basic_t info; 58 zx_status_t status = 59 _zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info, 60 sizeof(info), NULL, NULL); 61 CHECK_EQ(status, ZX_OK); 62 uptr pid = static_cast<uptr>(info.koid); 63 CHECK_EQ(pid, info.koid); 64 return pid; 65 } 66 67 int internal_dlinfo(void *handle, int request, void *p) { UNIMPLEMENTED(); } 68 69 uptr GetThreadSelf() { return reinterpret_cast<uptr>(thrd_current()); } 70 71 tid_t GetTid() { return GetThreadSelf(); } 72 73 void Abort() { abort(); } 74 75 int Atexit(void (*function)(void)) { return atexit(function); } 76 77 void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) { 78 pthread_attr_t attr; 79 CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0); 80 void *base; 81 size_t size; 82 CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0); 83 CHECK_EQ(pthread_attr_destroy(&attr), 0); 84 85 *stack_bottom = reinterpret_cast<uptr>(base); 86 *stack_top = *stack_bottom + size; 87 } 88 89 void InitializePlatformEarly() {} 90 void CheckASLR() {} 91 void CheckMPROTECT() {} 92 void PlatformPrepareForSandboxing(void *args) {} 93 void DisableCoreDumperIfNecessary() {} 94 void InstallDeadlySignalHandlers(SignalHandlerType handler) {} 95 void SetAlternateSignalStack() {} 96 void UnsetAlternateSignalStack() {} 97 void InitTlsSize() {} 98 99 bool SignalContext::IsStackOverflow() const { return false; } 100 void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); } 101 const char *SignalContext::Describe() const { UNIMPLEMENTED(); } 102 103 void FutexWait(atomic_uint32_t *p, u32 cmp) { 104 zx_status_t status = _zx_futex_wait(reinterpret_cast<zx_futex_t *>(p), cmp, 105 ZX_HANDLE_INVALID, ZX_TIME_INFINITE); 106 if (status != ZX_ERR_BAD_STATE) // Normal race. 107 CHECK_EQ(status, ZX_OK); 108 } 109 110 void FutexWake(atomic_uint32_t *p, u32 count) { 111 zx_status_t status = _zx_futex_wake(reinterpret_cast<zx_futex_t *>(p), count); 112 CHECK_EQ(status, ZX_OK); 113 } 114 115 uptr GetPageSize() { return _zx_system_get_page_size(); } 116 117 uptr GetMmapGranularity() { return _zx_system_get_page_size(); } 118 119 sanitizer_shadow_bounds_t ShadowBounds; 120 121 void InitShadowBounds() { ShadowBounds = __sanitizer_shadow_bounds(); } 122 123 uptr GetMaxUserVirtualAddress() { 124 InitShadowBounds(); 125 return ShadowBounds.memory_limit - 1; 126 } 127 128 uptr GetMaxVirtualAddress() { return GetMaxUserVirtualAddress(); } 129 130 bool ErrorIsOOM(error_t err) { return err == ZX_ERR_NO_MEMORY; } 131 132 // For any sanitizer internal that needs to map something which can be unmapped 133 // later, first attempt to map to a pre-allocated VMAR. This helps reduce 134 // fragmentation from many small anonymous mmap calls. A good value for this 135 // VMAR size would be the total size of your typical sanitizer internal objects 136 // allocated in an "average" process lifetime. Examples of this include: 137 // FakeStack, LowLevelAllocator mappings, TwoLevelMap, InternalMmapVector, 138 // StackStore, CreateAsanThread, etc. 139 // 140 // This is roughly equal to the total sum of sanitizer internal mappings for a 141 // large test case. 142 constexpr size_t kSanitizerHeapVmarSize = 13ULL << 20; 143 static zx_handle_t gSanitizerHeapVmar = ZX_HANDLE_INVALID; 144 145 static zx_status_t GetSanitizerHeapVmar(zx_handle_t *vmar) { 146 zx_status_t status = ZX_OK; 147 if (gSanitizerHeapVmar == ZX_HANDLE_INVALID) { 148 CHECK_EQ(kSanitizerHeapVmarSize % GetPageSizeCached(), 0); 149 uintptr_t base; 150 status = _zx_vmar_allocate( 151 _zx_vmar_root_self(), 152 ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC, 0, 153 kSanitizerHeapVmarSize, &gSanitizerHeapVmar, &base); 154 } 155 *vmar = gSanitizerHeapVmar; 156 if (status == ZX_OK) 157 CHECK_NE(gSanitizerHeapVmar, ZX_HANDLE_INVALID); 158 return status; 159 } 160 161 static zx_status_t TryVmoMapSanitizerVmar(zx_vm_option_t options, 162 size_t vmar_offset, zx_handle_t vmo, 163 size_t size, uintptr_t *addr, 164 zx_handle_t *vmar_used = nullptr) { 165 zx_handle_t vmar; 166 zx_status_t status = GetSanitizerHeapVmar(&vmar); 167 if (status != ZX_OK) 168 return status; 169 170 status = _zx_vmar_map(gSanitizerHeapVmar, options, vmar_offset, vmo, 171 /*vmo_offset=*/0, size, addr); 172 if (vmar_used) 173 *vmar_used = gSanitizerHeapVmar; 174 if (status == ZX_ERR_NO_RESOURCES || status == ZX_ERR_INVALID_ARGS) { 175 // This means there's no space in the heap VMAR, so fallback to the root 176 // VMAR. 177 status = _zx_vmar_map(_zx_vmar_root_self(), options, vmar_offset, vmo, 178 /*vmo_offset=*/0, size, addr); 179 if (vmar_used) 180 *vmar_used = _zx_vmar_root_self(); 181 } 182 183 return status; 184 } 185 186 static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type, 187 bool raw_report, bool die_for_nomem) { 188 size = RoundUpTo(size, GetPageSize()); 189 190 zx_handle_t vmo; 191 zx_status_t status = _zx_vmo_create(size, 0, &vmo); 192 if (status != ZX_OK) { 193 if (status != ZX_ERR_NO_MEMORY || die_for_nomem) 194 ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, 195 raw_report); 196 return nullptr; 197 } 198 _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type, 199 internal_strlen(mem_type)); 200 201 uintptr_t addr; 202 status = TryVmoMapSanitizerVmar(ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 203 /*vmar_offset=*/0, vmo, size, &addr); 204 _zx_handle_close(vmo); 205 206 if (status != ZX_OK) { 207 if (status != ZX_ERR_NO_MEMORY || die_for_nomem) 208 ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, 209 raw_report); 210 return nullptr; 211 } 212 213 IncreaseTotalMmap(size); 214 215 return reinterpret_cast<void *>(addr); 216 } 217 218 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) { 219 return DoAnonymousMmapOrDie(size, mem_type, raw_report, true); 220 } 221 222 void *MmapNoReserveOrDie(uptr size, const char *mem_type) { 223 return MmapOrDie(size, mem_type); 224 } 225 226 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) { 227 return DoAnonymousMmapOrDie(size, mem_type, false, false); 228 } 229 230 uptr ReservedAddressRange::Init(uptr init_size, const char *name, 231 uptr fixed_addr) { 232 init_size = RoundUpTo(init_size, GetPageSize()); 233 DCHECK_EQ(os_handle_, ZX_HANDLE_INVALID); 234 uintptr_t base; 235 zx_handle_t vmar; 236 zx_status_t status = _zx_vmar_allocate( 237 _zx_vmar_root_self(), 238 ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC, 0, 239 init_size, &vmar, &base); 240 if (status != ZX_OK) 241 ReportMmapFailureAndDie(init_size, name, "zx_vmar_allocate", status); 242 base_ = reinterpret_cast<void *>(base); 243 size_ = init_size; 244 name_ = name; 245 os_handle_ = vmar; 246 247 return reinterpret_cast<uptr>(base_); 248 } 249 250 static uptr DoMmapFixedOrDie(zx_handle_t vmar, uptr fixed_addr, uptr map_size, 251 void *base, const char *name, bool die_for_nomem) { 252 uptr offset = fixed_addr - reinterpret_cast<uptr>(base); 253 map_size = RoundUpTo(map_size, GetPageSize()); 254 zx_handle_t vmo; 255 zx_status_t status = _zx_vmo_create(map_size, 0, &vmo); 256 if (status != ZX_OK) { 257 if (status != ZX_ERR_NO_MEMORY || die_for_nomem) 258 ReportMmapFailureAndDie(map_size, name, "zx_vmo_create", status); 259 return 0; 260 } 261 _zx_object_set_property(vmo, ZX_PROP_NAME, name, internal_strlen(name)); 262 DCHECK_GE(base + size_, map_size + offset); 263 uintptr_t addr; 264 265 status = 266 _zx_vmar_map(vmar, ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC, 267 offset, vmo, 0, map_size, &addr); 268 _zx_handle_close(vmo); 269 if (status != ZX_OK) { 270 if (status != ZX_ERR_NO_MEMORY || die_for_nomem) { 271 ReportMmapFailureAndDie(map_size, name, "zx_vmar_map", status); 272 } 273 return 0; 274 } 275 IncreaseTotalMmap(map_size); 276 return addr; 277 } 278 279 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr map_size, 280 const char *name) { 281 return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_, 282 name ? name : name_, false); 283 } 284 285 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr map_size, 286 const char *name) { 287 return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_, 288 name ? name : name_, true); 289 } 290 291 void UnmapOrDieVmar(void *addr, uptr size, zx_handle_t target_vmar, 292 bool raw_report) { 293 if (!addr || !size) 294 return; 295 size = RoundUpTo(size, GetPageSize()); 296 297 zx_status_t status = 298 _zx_vmar_unmap(target_vmar, reinterpret_cast<uintptr_t>(addr), size); 299 if (status == ZX_ERR_INVALID_ARGS && target_vmar == gSanitizerHeapVmar) { 300 // If there wasn't any space in the heap vmar, the fallback was the root 301 // vmar. 302 status = _zx_vmar_unmap(_zx_vmar_root_self(), 303 reinterpret_cast<uintptr_t>(addr), size); 304 } 305 if (status != ZX_OK) 306 ReportMunmapFailureAndDie(addr, size, status, raw_report); 307 308 DecreaseTotalMmap(size); 309 } 310 311 void ReservedAddressRange::Unmap(uptr addr, uptr size) { 312 CHECK_LE(size, size_); 313 const zx_handle_t vmar = static_cast<zx_handle_t>(os_handle_); 314 if (addr == reinterpret_cast<uptr>(base_)) { 315 if (size == size_) { 316 // Destroying the vmar effectively unmaps the whole mapping. 317 _zx_vmar_destroy(vmar); 318 _zx_handle_close(vmar); 319 os_handle_ = static_cast<uptr>(ZX_HANDLE_INVALID); 320 DecreaseTotalMmap(size); 321 return; 322 } 323 } else { 324 CHECK_EQ(addr + size, reinterpret_cast<uptr>(base_) + size_); 325 } 326 // Partial unmapping does not affect the fact that the initial range is still 327 // reserved, and the resulting unmapped memory can't be reused. 328 UnmapOrDieVmar(reinterpret_cast<void *>(addr), size, vmar, 329 /*raw_report=*/false); 330 } 331 332 // This should never be called. 333 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) { 334 UNIMPLEMENTED(); 335 } 336 337 bool MprotectNoAccess(uptr addr, uptr size) { 338 return _zx_vmar_protect(_zx_vmar_root_self(), 0, addr, size) == ZX_OK; 339 } 340 341 bool MprotectReadOnly(uptr addr, uptr size) { 342 return _zx_vmar_protect(_zx_vmar_root_self(), ZX_VM_PERM_READ, addr, size) == 343 ZX_OK; 344 } 345 346 bool MprotectReadWrite(uptr addr, uptr size) { 347 return _zx_vmar_protect(_zx_vmar_root_self(), 348 ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, addr, 349 size) == ZX_OK; 350 } 351 352 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment, 353 const char *mem_type) { 354 CHECK_GE(size, GetPageSize()); 355 CHECK(IsPowerOfTwo(size)); 356 CHECK(IsPowerOfTwo(alignment)); 357 358 zx_handle_t vmo; 359 zx_status_t status = _zx_vmo_create(size, 0, &vmo); 360 if (status != ZX_OK) { 361 if (status != ZX_ERR_NO_MEMORY) 362 ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false); 363 return nullptr; 364 } 365 _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type, 366 internal_strlen(mem_type)); 367 368 // Map a larger size to get a chunk of address space big enough that 369 // it surely contains an aligned region of the requested size. Then 370 // overwrite the aligned middle portion with a mapping from the 371 // beginning of the VMO, and unmap the excess before and after. 372 size_t map_size = size + alignment; 373 uintptr_t addr; 374 zx_handle_t vmar_used; 375 status = TryVmoMapSanitizerVmar(ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 376 /*vmar_offset=*/0, vmo, map_size, &addr, 377 &vmar_used); 378 if (status == ZX_OK) { 379 uintptr_t map_addr = addr; 380 uintptr_t map_end = map_addr + map_size; 381 addr = RoundUpTo(map_addr, alignment); 382 uintptr_t end = addr + size; 383 if (addr != map_addr) { 384 zx_info_vmar_t info; 385 status = _zx_object_get_info(vmar_used, ZX_INFO_VMAR, &info, sizeof(info), 386 NULL, NULL); 387 if (status == ZX_OK) { 388 uintptr_t new_addr; 389 status = _zx_vmar_map( 390 vmar_used, 391 ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC_OVERWRITE, 392 addr - info.base, vmo, 0, size, &new_addr); 393 if (status == ZX_OK) 394 CHECK_EQ(new_addr, addr); 395 } 396 } 397 if (status == ZX_OK && addr != map_addr) 398 status = _zx_vmar_unmap(vmar_used, map_addr, addr - map_addr); 399 if (status == ZX_OK && end != map_end) 400 status = _zx_vmar_unmap(vmar_used, end, map_end - end); 401 } 402 _zx_handle_close(vmo); 403 404 if (status != ZX_OK) { 405 if (status != ZX_ERR_NO_MEMORY) 406 ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false); 407 return nullptr; 408 } 409 410 IncreaseTotalMmap(size); 411 412 return reinterpret_cast<void *>(addr); 413 } 414 415 void UnmapOrDie(void *addr, uptr size, bool raw_report) { 416 UnmapOrDieVmar(addr, size, gSanitizerHeapVmar, raw_report); 417 } 418 419 void ReleaseMemoryPagesToOS(uptr beg, uptr end) { 420 uptr beg_aligned = RoundUpTo(beg, GetPageSize()); 421 uptr end_aligned = RoundDownTo(end, GetPageSize()); 422 if (beg_aligned < end_aligned) { 423 zx_handle_t root_vmar = _zx_vmar_root_self(); 424 CHECK_NE(root_vmar, ZX_HANDLE_INVALID); 425 zx_status_t status = 426 _zx_vmar_op_range(root_vmar, ZX_VMAR_OP_DECOMMIT, beg_aligned, 427 end_aligned - beg_aligned, nullptr, 0); 428 CHECK_EQ(status, ZX_OK); 429 } 430 } 431 432 void DumpProcessMap() { 433 // TODO(mcgrathr): write it 434 return; 435 } 436 437 bool IsAccessibleMemoryRange(uptr beg, uptr size) { 438 // TODO(mcgrathr): Figure out a better way. 439 zx_handle_t vmo; 440 zx_status_t status = _zx_vmo_create(size, 0, &vmo); 441 if (status == ZX_OK) { 442 status = _zx_vmo_write(vmo, reinterpret_cast<const void *>(beg), 0, size); 443 _zx_handle_close(vmo); 444 } 445 return status == ZX_OK; 446 } 447 448 // FIXME implement on this platform. 449 void GetMemoryProfile(fill_profile_f cb, uptr *stats) {} 450 451 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size, 452 uptr *read_len, uptr max_len, error_t *errno_p) { 453 *errno_p = ZX_ERR_NOT_SUPPORTED; 454 return false; 455 } 456 457 void RawWrite(const char *buffer) { 458 constexpr size_t size = 128; 459 static _Thread_local char line[size]; 460 static _Thread_local size_t lastLineEnd = 0; 461 static _Thread_local size_t cur = 0; 462 463 while (*buffer) { 464 if (cur >= size) { 465 if (lastLineEnd == 0) 466 lastLineEnd = size; 467 __sanitizer_log_write(line, lastLineEnd); 468 internal_memmove(line, line + lastLineEnd, cur - lastLineEnd); 469 cur = cur - lastLineEnd; 470 lastLineEnd = 0; 471 } 472 if (*buffer == '\n') 473 lastLineEnd = cur + 1; 474 line[cur++] = *buffer++; 475 } 476 // Flush all complete lines before returning. 477 if (lastLineEnd != 0) { 478 __sanitizer_log_write(line, lastLineEnd); 479 internal_memmove(line, line + lastLineEnd, cur - lastLineEnd); 480 cur = cur - lastLineEnd; 481 lastLineEnd = 0; 482 } 483 } 484 485 void CatastrophicErrorWrite(const char *buffer, uptr length) { 486 __sanitizer_log_write(buffer, length); 487 } 488 489 char **StoredArgv; 490 char **StoredEnviron; 491 492 char **GetArgv() { return StoredArgv; } 493 char **GetEnviron() { return StoredEnviron; } 494 495 const char *GetEnv(const char *name) { 496 if (StoredEnviron) { 497 uptr NameLen = internal_strlen(name); 498 for (char **Env = StoredEnviron; *Env != 0; Env++) { 499 if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=') 500 return (*Env) + NameLen + 1; 501 } 502 } 503 return nullptr; 504 } 505 506 uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) { 507 const char *argv0 = "<UNKNOWN>"; 508 if (StoredArgv && StoredArgv[0]) { 509 argv0 = StoredArgv[0]; 510 } 511 internal_strncpy(buf, argv0, buf_len); 512 return internal_strlen(buf); 513 } 514 515 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) { 516 return ReadBinaryName(buf, buf_len); 517 } 518 519 uptr MainThreadStackBase, MainThreadStackSize; 520 521 bool GetRandom(void *buffer, uptr length, bool blocking) { 522 CHECK_LE(length, ZX_CPRNG_DRAW_MAX_LEN); 523 _zx_cprng_draw(buffer, length); 524 return true; 525 } 526 527 u32 GetNumberOfCPUs() { return zx_system_get_num_cpus(); } 528 529 uptr GetRSS() { UNIMPLEMENTED(); } 530 531 void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; } 532 void internal_join_thread(void *th) {} 533 534 void InitializePlatformCommonFlags(CommonFlags *cf) {} 535 536 } // namespace __sanitizer 537 538 using namespace __sanitizer; 539 540 extern "C" { 541 void __sanitizer_startup_hook(int argc, char **argv, char **envp, 542 void *stack_base, size_t stack_size) { 543 __sanitizer::StoredArgv = argv; 544 __sanitizer::StoredEnviron = envp; 545 __sanitizer::MainThreadStackBase = reinterpret_cast<uintptr_t>(stack_base); 546 __sanitizer::MainThreadStackSize = stack_size; 547 } 548 549 void __sanitizer_set_report_path(const char *path) { 550 // Handle the initialization code in each sanitizer, but no other calls. 551 // This setting is never consulted on Fuchsia. 552 DCHECK_EQ(path, common_flags()->log_path); 553 } 554 555 void __sanitizer_set_report_fd(void *fd) { 556 UNREACHABLE("not available on Fuchsia"); 557 } 558 559 const char *__sanitizer_get_report_path() { 560 UNREACHABLE("not available on Fuchsia"); 561 } 562 } // extern "C" 563 564 #endif // SANITIZER_FUCHSIA 565