xref: /freebsd/contrib/llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_fuchsia.cpp (revision 6be3386466ab79a84b48429ae66244f21526d3df)
1 //===-- sanitizer_fuchsia.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between AddressSanitizer and other sanitizer
10 // run-time libraries and implements Fuchsia-specific functions from
11 // sanitizer_common.h.
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_fuchsia.h"
15 #if SANITIZER_FUCHSIA
16 
17 #include "sanitizer_common.h"
18 #include "sanitizer_libc.h"
19 #include "sanitizer_mutex.h"
20 
21 #include <limits.h>
22 #include <pthread.h>
23 #include <stdlib.h>
24 #include <unistd.h>
25 #include <zircon/errors.h>
26 #include <zircon/process.h>
27 #include <zircon/syscalls.h>
28 
29 namespace __sanitizer {
30 
31 void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); }
32 
33 uptr internal_sched_yield() {
34   zx_status_t status = _zx_nanosleep(0);
35   CHECK_EQ(status, ZX_OK);
36   return 0;  // Why doesn't this return void?
37 }
38 
39 static void internal_nanosleep(zx_time_t ns) {
40   zx_status_t status = _zx_nanosleep(_zx_deadline_after(ns));
41   CHECK_EQ(status, ZX_OK);
42 }
43 
44 unsigned int internal_sleep(unsigned int seconds) {
45   internal_nanosleep(ZX_SEC(seconds));
46   return 0;
47 }
48 
49 u64 NanoTime() {
50   zx_time_t time;
51   zx_status_t status = _zx_clock_get(ZX_CLOCK_UTC, &time);
52   CHECK_EQ(status, ZX_OK);
53   return time;
54 }
55 
56 u64 MonotonicNanoTime() { return _zx_clock_get_monotonic(); }
57 
58 uptr internal_getpid() {
59   zx_info_handle_basic_t info;
60   zx_status_t status =
61       _zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info,
62                           sizeof(info), NULL, NULL);
63   CHECK_EQ(status, ZX_OK);
64   uptr pid = static_cast<uptr>(info.koid);
65   CHECK_EQ(pid, info.koid);
66   return pid;
67 }
68 
69 int internal_dlinfo(void *handle, int request, void *p) {
70   UNIMPLEMENTED();
71 }
72 
73 uptr GetThreadSelf() { return reinterpret_cast<uptr>(thrd_current()); }
74 
75 tid_t GetTid() { return GetThreadSelf(); }
76 
77 void Abort() { abort(); }
78 
79 int Atexit(void (*function)(void)) { return atexit(function); }
80 
81 void SleepForSeconds(int seconds) { internal_sleep(seconds); }
82 
83 void SleepForMillis(int millis) { internal_nanosleep(ZX_MSEC(millis)); }
84 
85 void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) {
86   pthread_attr_t attr;
87   CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0);
88   void *base;
89   size_t size;
90   CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0);
91   CHECK_EQ(pthread_attr_destroy(&attr), 0);
92 
93   *stack_bottom = reinterpret_cast<uptr>(base);
94   *stack_top = *stack_bottom + size;
95 }
96 
97 void InitializePlatformEarly() {}
98 void MaybeReexec() {}
99 void CheckASLR() {}
100 void CheckMPROTECT() {}
101 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}
102 void DisableCoreDumperIfNecessary() {}
103 void InstallDeadlySignalHandlers(SignalHandlerType handler) {}
104 void SetAlternateSignalStack() {}
105 void UnsetAlternateSignalStack() {}
106 void InitTlsSize() {}
107 
108 void PrintModuleMap() {}
109 
110 bool SignalContext::IsStackOverflow() const { return false; }
111 void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); }
112 const char *SignalContext::Describe() const { UNIMPLEMENTED(); }
113 
114 enum MutexState : int { MtxUnlocked = 0, MtxLocked = 1, MtxSleeping = 2 };
115 
116 BlockingMutex::BlockingMutex() {
117   // NOTE!  It's important that this use internal_memset, because plain
118   // memset might be intercepted (e.g., actually be __asan_memset).
119   // Defining this so the compiler initializes each field, e.g.:
120   //   BlockingMutex::BlockingMutex() : BlockingMutex(LINKER_INITIALIZED) {}
121   // might result in the compiler generating a call to memset, which would
122   // have the same problem.
123   internal_memset(this, 0, sizeof(*this));
124 }
125 
126 void BlockingMutex::Lock() {
127   CHECK_EQ(owner_, 0);
128   atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
129   if (atomic_exchange(m, MtxLocked, memory_order_acquire) == MtxUnlocked)
130     return;
131   while (atomic_exchange(m, MtxSleeping, memory_order_acquire) != MtxUnlocked) {
132     zx_status_t status =
133         _zx_futex_wait(reinterpret_cast<zx_futex_t *>(m), MtxSleeping,
134                        ZX_HANDLE_INVALID, ZX_TIME_INFINITE);
135     if (status != ZX_ERR_BAD_STATE)  // Normal race.
136       CHECK_EQ(status, ZX_OK);
137   }
138 }
139 
140 void BlockingMutex::Unlock() {
141   atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
142   u32 v = atomic_exchange(m, MtxUnlocked, memory_order_release);
143   CHECK_NE(v, MtxUnlocked);
144   if (v == MtxSleeping) {
145     zx_status_t status = _zx_futex_wake(reinterpret_cast<zx_futex_t *>(m), 1);
146     CHECK_EQ(status, ZX_OK);
147   }
148 }
149 
150 void BlockingMutex::CheckLocked() {
151   atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
152   CHECK_NE(MtxUnlocked, atomic_load(m, memory_order_relaxed));
153 }
154 
155 uptr GetPageSize() { return PAGE_SIZE; }
156 
157 uptr GetMmapGranularity() { return PAGE_SIZE; }
158 
159 sanitizer_shadow_bounds_t ShadowBounds;
160 
161 uptr GetMaxUserVirtualAddress() {
162   ShadowBounds = __sanitizer_shadow_bounds();
163   return ShadowBounds.memory_limit - 1;
164 }
165 
166 uptr GetMaxVirtualAddress() { return GetMaxUserVirtualAddress(); }
167 
168 static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type,
169                                   bool raw_report, bool die_for_nomem) {
170   size = RoundUpTo(size, PAGE_SIZE);
171 
172   zx_handle_t vmo;
173   zx_status_t status = _zx_vmo_create(size, 0, &vmo);
174   if (status != ZX_OK) {
175     if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
176       ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status,
177                               raw_report);
178     return nullptr;
179   }
180   _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
181                           internal_strlen(mem_type));
182 
183   // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that?
184   uintptr_t addr;
185   status =
186       _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
187                    vmo, 0, size, &addr);
188   _zx_handle_close(vmo);
189 
190   if (status != ZX_OK) {
191     if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
192       ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status,
193                               raw_report);
194     return nullptr;
195   }
196 
197   IncreaseTotalMmap(size);
198 
199   return reinterpret_cast<void *>(addr);
200 }
201 
202 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
203   return DoAnonymousMmapOrDie(size, mem_type, raw_report, true);
204 }
205 
206 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
207   return MmapOrDie(size, mem_type);
208 }
209 
210 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
211   return DoAnonymousMmapOrDie(size, mem_type, false, false);
212 }
213 
214 uptr ReservedAddressRange::Init(uptr init_size, const char *name,
215                                 uptr fixed_addr) {
216   init_size = RoundUpTo(init_size, PAGE_SIZE);
217   DCHECK_EQ(os_handle_, ZX_HANDLE_INVALID);
218   uintptr_t base;
219   zx_handle_t vmar;
220   zx_status_t status =
221       _zx_vmar_allocate(
222           _zx_vmar_root_self(),
223           ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC,
224           0, init_size, &vmar, &base);
225   if (status != ZX_OK)
226     ReportMmapFailureAndDie(init_size, name, "zx_vmar_allocate", status);
227   base_ = reinterpret_cast<void *>(base);
228   size_ = init_size;
229   name_ = name;
230   os_handle_ = vmar;
231 
232   return reinterpret_cast<uptr>(base_);
233 }
234 
235 static uptr DoMmapFixedOrDie(zx_handle_t vmar, uptr fixed_addr, uptr map_size,
236                              void *base, const char *name, bool die_for_nomem) {
237   uptr offset = fixed_addr - reinterpret_cast<uptr>(base);
238   map_size = RoundUpTo(map_size, PAGE_SIZE);
239   zx_handle_t vmo;
240   zx_status_t status = _zx_vmo_create(map_size, 0, &vmo);
241   if (status != ZX_OK) {
242     if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
243       ReportMmapFailureAndDie(map_size, name, "zx_vmo_create", status);
244     return 0;
245   }
246   _zx_object_set_property(vmo, ZX_PROP_NAME, name, internal_strlen(name));
247   DCHECK_GE(base + size_, map_size + offset);
248   uintptr_t addr;
249 
250   status =
251       _zx_vmar_map(vmar, ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC,
252                    offset, vmo, 0, map_size, &addr);
253   _zx_handle_close(vmo);
254   if (status != ZX_OK) {
255     if (status != ZX_ERR_NO_MEMORY || die_for_nomem) {
256       ReportMmapFailureAndDie(map_size, name, "zx_vmar_map", status);
257     }
258     return 0;
259   }
260   IncreaseTotalMmap(map_size);
261   return addr;
262 }
263 
264 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr map_size,
265                                const char *name) {
266   return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
267                           name_, false);
268 }
269 
270 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr map_size,
271                                     const char *name) {
272   return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
273                           name_, true);
274 }
275 
276 void UnmapOrDieVmar(void *addr, uptr size, zx_handle_t target_vmar) {
277   if (!addr || !size) return;
278   size = RoundUpTo(size, PAGE_SIZE);
279 
280   zx_status_t status =
281       _zx_vmar_unmap(target_vmar, reinterpret_cast<uintptr_t>(addr), size);
282   if (status != ZX_OK) {
283     Report("ERROR: %s failed to deallocate 0x%zx (%zd) bytes at address %p\n",
284            SanitizerToolName, size, size, addr);
285     CHECK("unable to unmap" && 0);
286   }
287 
288   DecreaseTotalMmap(size);
289 }
290 
291 void ReservedAddressRange::Unmap(uptr addr, uptr size) {
292   CHECK_LE(size, size_);
293   const zx_handle_t vmar = static_cast<zx_handle_t>(os_handle_);
294   if (addr == reinterpret_cast<uptr>(base_)) {
295     if (size == size_) {
296       // Destroying the vmar effectively unmaps the whole mapping.
297       _zx_vmar_destroy(vmar);
298       _zx_handle_close(vmar);
299       os_handle_ = static_cast<uptr>(ZX_HANDLE_INVALID);
300       DecreaseTotalMmap(size);
301       return;
302     }
303   } else {
304     CHECK_EQ(addr + size, reinterpret_cast<uptr>(base_) + size_);
305   }
306   // Partial unmapping does not affect the fact that the initial range is still
307   // reserved, and the resulting unmapped memory can't be reused.
308   UnmapOrDieVmar(reinterpret_cast<void *>(addr), size, vmar);
309 }
310 
311 // This should never be called.
312 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
313   UNIMPLEMENTED();
314 }
315 
316 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
317                                    const char *mem_type) {
318   CHECK_GE(size, PAGE_SIZE);
319   CHECK(IsPowerOfTwo(size));
320   CHECK(IsPowerOfTwo(alignment));
321 
322   zx_handle_t vmo;
323   zx_status_t status = _zx_vmo_create(size, 0, &vmo);
324   if (status != ZX_OK) {
325     if (status != ZX_ERR_NO_MEMORY)
326       ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false);
327     return nullptr;
328   }
329   _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
330                           internal_strlen(mem_type));
331 
332   // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that?
333 
334   // Map a larger size to get a chunk of address space big enough that
335   // it surely contains an aligned region of the requested size.  Then
336   // overwrite the aligned middle portion with a mapping from the
337   // beginning of the VMO, and unmap the excess before and after.
338   size_t map_size = size + alignment;
339   uintptr_t addr;
340   status =
341       _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
342                    vmo, 0, map_size, &addr);
343   if (status == ZX_OK) {
344     uintptr_t map_addr = addr;
345     uintptr_t map_end = map_addr + map_size;
346     addr = RoundUpTo(map_addr, alignment);
347     uintptr_t end = addr + size;
348     if (addr != map_addr) {
349       zx_info_vmar_t info;
350       status = _zx_object_get_info(_zx_vmar_root_self(), ZX_INFO_VMAR, &info,
351                                    sizeof(info), NULL, NULL);
352       if (status == ZX_OK) {
353         uintptr_t new_addr;
354         status = _zx_vmar_map(
355             _zx_vmar_root_self(),
356             ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC_OVERWRITE,
357             addr - info.base, vmo, 0, size, &new_addr);
358         if (status == ZX_OK) CHECK_EQ(new_addr, addr);
359       }
360     }
361     if (status == ZX_OK && addr != map_addr)
362       status = _zx_vmar_unmap(_zx_vmar_root_self(), map_addr, addr - map_addr);
363     if (status == ZX_OK && end != map_end)
364       status = _zx_vmar_unmap(_zx_vmar_root_self(), end, map_end - end);
365   }
366   _zx_handle_close(vmo);
367 
368   if (status != ZX_OK) {
369     if (status != ZX_ERR_NO_MEMORY)
370       ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false);
371     return nullptr;
372   }
373 
374   IncreaseTotalMmap(size);
375 
376   return reinterpret_cast<void *>(addr);
377 }
378 
379 void UnmapOrDie(void *addr, uptr size) {
380   UnmapOrDieVmar(addr, size, _zx_vmar_root_self());
381 }
382 
383 // This is used on the shadow mapping, which cannot be changed.
384 // Zircon doesn't have anything like MADV_DONTNEED.
385 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {}
386 
387 void DumpProcessMap() {
388   // TODO(mcgrathr): write it
389   return;
390 }
391 
392 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
393   // TODO(mcgrathr): Figure out a better way.
394   zx_handle_t vmo;
395   zx_status_t status = _zx_vmo_create(size, 0, &vmo);
396   if (status == ZX_OK) {
397     status = _zx_vmo_write(vmo, reinterpret_cast<const void *>(beg), 0, size);
398     _zx_handle_close(vmo);
399   }
400   return status == ZX_OK;
401 }
402 
403 // FIXME implement on this platform.
404 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) {}
405 
406 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
407                       uptr *read_len, uptr max_len, error_t *errno_p) {
408   zx_handle_t vmo;
409   zx_status_t status = __sanitizer_get_configuration(file_name, &vmo);
410   if (status == ZX_OK) {
411     uint64_t vmo_size;
412     status = _zx_vmo_get_size(vmo, &vmo_size);
413     if (status == ZX_OK) {
414       if (vmo_size < max_len) max_len = vmo_size;
415       size_t map_size = RoundUpTo(max_len, PAGE_SIZE);
416       uintptr_t addr;
417       status = _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ, 0, vmo, 0,
418                             map_size, &addr);
419       if (status == ZX_OK) {
420         *buff = reinterpret_cast<char *>(addr);
421         *buff_size = map_size;
422         *read_len = max_len;
423       }
424     }
425     _zx_handle_close(vmo);
426   }
427   if (status != ZX_OK && errno_p) *errno_p = status;
428   return status == ZX_OK;
429 }
430 
431 void RawWrite(const char *buffer) {
432   constexpr size_t size = 128;
433   static _Thread_local char line[size];
434   static _Thread_local size_t lastLineEnd = 0;
435   static _Thread_local size_t cur = 0;
436 
437   while (*buffer) {
438     if (cur >= size) {
439       if (lastLineEnd == 0)
440         lastLineEnd = size;
441       __sanitizer_log_write(line, lastLineEnd);
442       internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
443       cur = cur - lastLineEnd;
444       lastLineEnd = 0;
445     }
446     if (*buffer == '\n')
447       lastLineEnd = cur + 1;
448     line[cur++] = *buffer++;
449   }
450   // Flush all complete lines before returning.
451   if (lastLineEnd != 0) {
452     __sanitizer_log_write(line, lastLineEnd);
453     internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
454     cur = cur - lastLineEnd;
455     lastLineEnd = 0;
456   }
457 }
458 
459 void CatastrophicErrorWrite(const char *buffer, uptr length) {
460   __sanitizer_log_write(buffer, length);
461 }
462 
463 char **StoredArgv;
464 char **StoredEnviron;
465 
466 char **GetArgv() { return StoredArgv; }
467 char **GetEnviron() { return StoredEnviron; }
468 
469 const char *GetEnv(const char *name) {
470   if (StoredEnviron) {
471     uptr NameLen = internal_strlen(name);
472     for (char **Env = StoredEnviron; *Env != 0; Env++) {
473       if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=')
474         return (*Env) + NameLen + 1;
475     }
476   }
477   return nullptr;
478 }
479 
480 uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) {
481   const char *argv0 = "<UNKNOWN>";
482   if (StoredArgv && StoredArgv[0]) {
483     argv0 = StoredArgv[0];
484   }
485   internal_strncpy(buf, argv0, buf_len);
486   return internal_strlen(buf);
487 }
488 
489 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) {
490   return ReadBinaryName(buf, buf_len);
491 }
492 
493 uptr MainThreadStackBase, MainThreadStackSize;
494 
495 bool GetRandom(void *buffer, uptr length, bool blocking) {
496   CHECK_LE(length, ZX_CPRNG_DRAW_MAX_LEN);
497   _zx_cprng_draw(buffer, length);
498   return true;
499 }
500 
501 u32 GetNumberOfCPUs() {
502   return zx_system_get_num_cpus();
503 }
504 
505 uptr GetRSS() { UNIMPLEMENTED(); }
506 
507 }  // namespace __sanitizer
508 
509 using namespace __sanitizer;
510 
511 extern "C" {
512 void __sanitizer_startup_hook(int argc, char **argv, char **envp,
513                               void *stack_base, size_t stack_size) {
514   __sanitizer::StoredArgv = argv;
515   __sanitizer::StoredEnviron = envp;
516   __sanitizer::MainThreadStackBase = reinterpret_cast<uintptr_t>(stack_base);
517   __sanitizer::MainThreadStackSize = stack_size;
518 }
519 
520 void __sanitizer_set_report_path(const char *path) {
521   // Handle the initialization code in each sanitizer, but no other calls.
522   // This setting is never consulted on Fuchsia.
523   DCHECK_EQ(path, common_flags()->log_path);
524 }
525 
526 void __sanitizer_set_report_fd(void *fd) {
527   UNREACHABLE("not available on Fuchsia");
528 }
529 }  // extern "C"
530 
531 #endif  // SANITIZER_FUCHSIA
532