1 //===-- sanitizer_fuchsia.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is shared between AddressSanitizer and other sanitizer 10 // run-time libraries and implements Fuchsia-specific functions from 11 // sanitizer_common.h. 12 //===----------------------------------------------------------------------===// 13 14 #include "sanitizer_fuchsia.h" 15 #if SANITIZER_FUCHSIA 16 17 #include <limits.h> 18 #include <pthread.h> 19 #include <stdlib.h> 20 #include <unistd.h> 21 #include <zircon/errors.h> 22 #include <zircon/process.h> 23 #include <zircon/syscalls.h> 24 #include <zircon/utc.h> 25 26 #include "sanitizer_common.h" 27 #include "sanitizer_libc.h" 28 #include "sanitizer_mutex.h" 29 30 namespace __sanitizer { 31 32 void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); } 33 34 uptr internal_sched_yield() { 35 zx_status_t status = _zx_nanosleep(0); 36 CHECK_EQ(status, ZX_OK); 37 return 0; // Why doesn't this return void? 38 } 39 40 static void internal_nanosleep(zx_time_t ns) { 41 zx_status_t status = _zx_nanosleep(_zx_deadline_after(ns)); 42 CHECK_EQ(status, ZX_OK); 43 } 44 45 unsigned int internal_sleep(unsigned int seconds) { 46 internal_nanosleep(ZX_SEC(seconds)); 47 return 0; 48 } 49 50 u64 NanoTime() { 51 zx_handle_t utc_clock = _zx_utc_reference_get(); 52 CHECK_NE(utc_clock, ZX_HANDLE_INVALID); 53 zx_time_t time; 54 zx_status_t status = _zx_clock_read(utc_clock, &time); 55 CHECK_EQ(status, ZX_OK); 56 return time; 57 } 58 59 u64 MonotonicNanoTime() { return _zx_clock_get_monotonic(); } 60 61 uptr internal_getpid() { 62 zx_info_handle_basic_t info; 63 zx_status_t status = 64 _zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info, 65 sizeof(info), NULL, NULL); 66 CHECK_EQ(status, ZX_OK); 67 uptr pid = static_cast<uptr>(info.koid); 68 CHECK_EQ(pid, info.koid); 69 return pid; 70 } 71 72 int internal_dlinfo(void *handle, int request, void *p) { 73 UNIMPLEMENTED(); 74 } 75 76 uptr GetThreadSelf() { return reinterpret_cast<uptr>(thrd_current()); } 77 78 tid_t GetTid() { return GetThreadSelf(); } 79 80 void Abort() { abort(); } 81 82 int Atexit(void (*function)(void)) { return atexit(function); } 83 84 void SleepForSeconds(int seconds) { internal_sleep(seconds); } 85 86 void SleepForMillis(int millis) { internal_nanosleep(ZX_MSEC(millis)); } 87 88 void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) { 89 pthread_attr_t attr; 90 CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0); 91 void *base; 92 size_t size; 93 CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0); 94 CHECK_EQ(pthread_attr_destroy(&attr), 0); 95 96 *stack_bottom = reinterpret_cast<uptr>(base); 97 *stack_top = *stack_bottom + size; 98 } 99 100 void InitializePlatformEarly() {} 101 void MaybeReexec() {} 102 void CheckASLR() {} 103 void CheckMPROTECT() {} 104 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {} 105 void DisableCoreDumperIfNecessary() {} 106 void InstallDeadlySignalHandlers(SignalHandlerType handler) {} 107 void SetAlternateSignalStack() {} 108 void UnsetAlternateSignalStack() {} 109 void InitTlsSize() {} 110 111 bool SignalContext::IsStackOverflow() const { return false; } 112 void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); } 113 const char *SignalContext::Describe() const { UNIMPLEMENTED(); } 114 115 enum MutexState : int { MtxUnlocked = 0, MtxLocked = 1, MtxSleeping = 2 }; 116 117 BlockingMutex::BlockingMutex() { 118 // NOTE! It's important that this use internal_memset, because plain 119 // memset might be intercepted (e.g., actually be __asan_memset). 120 // Defining this so the compiler initializes each field, e.g.: 121 // BlockingMutex::BlockingMutex() : BlockingMutex(LINKER_INITIALIZED) {} 122 // might result in the compiler generating a call to memset, which would 123 // have the same problem. 124 internal_memset(this, 0, sizeof(*this)); 125 } 126 127 void BlockingMutex::Lock() { 128 CHECK_EQ(owner_, 0); 129 atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_); 130 if (atomic_exchange(m, MtxLocked, memory_order_acquire) == MtxUnlocked) 131 return; 132 while (atomic_exchange(m, MtxSleeping, memory_order_acquire) != MtxUnlocked) { 133 zx_status_t status = 134 _zx_futex_wait(reinterpret_cast<zx_futex_t *>(m), MtxSleeping, 135 ZX_HANDLE_INVALID, ZX_TIME_INFINITE); 136 if (status != ZX_ERR_BAD_STATE) // Normal race. 137 CHECK_EQ(status, ZX_OK); 138 } 139 } 140 141 void BlockingMutex::Unlock() { 142 atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_); 143 u32 v = atomic_exchange(m, MtxUnlocked, memory_order_release); 144 CHECK_NE(v, MtxUnlocked); 145 if (v == MtxSleeping) { 146 zx_status_t status = _zx_futex_wake(reinterpret_cast<zx_futex_t *>(m), 1); 147 CHECK_EQ(status, ZX_OK); 148 } 149 } 150 151 void BlockingMutex::CheckLocked() { 152 atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_); 153 CHECK_NE(MtxUnlocked, atomic_load(m, memory_order_relaxed)); 154 } 155 156 uptr GetPageSize() { return PAGE_SIZE; } 157 158 uptr GetMmapGranularity() { return PAGE_SIZE; } 159 160 sanitizer_shadow_bounds_t ShadowBounds; 161 162 uptr GetMaxUserVirtualAddress() { 163 ShadowBounds = __sanitizer_shadow_bounds(); 164 return ShadowBounds.memory_limit - 1; 165 } 166 167 uptr GetMaxVirtualAddress() { return GetMaxUserVirtualAddress(); } 168 169 static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type, 170 bool raw_report, bool die_for_nomem) { 171 size = RoundUpTo(size, PAGE_SIZE); 172 173 zx_handle_t vmo; 174 zx_status_t status = _zx_vmo_create(size, 0, &vmo); 175 if (status != ZX_OK) { 176 if (status != ZX_ERR_NO_MEMORY || die_for_nomem) 177 ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, 178 raw_report); 179 return nullptr; 180 } 181 _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type, 182 internal_strlen(mem_type)); 183 184 // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that? 185 uintptr_t addr; 186 status = 187 _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0, 188 vmo, 0, size, &addr); 189 _zx_handle_close(vmo); 190 191 if (status != ZX_OK) { 192 if (status != ZX_ERR_NO_MEMORY || die_for_nomem) 193 ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, 194 raw_report); 195 return nullptr; 196 } 197 198 IncreaseTotalMmap(size); 199 200 return reinterpret_cast<void *>(addr); 201 } 202 203 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) { 204 return DoAnonymousMmapOrDie(size, mem_type, raw_report, true); 205 } 206 207 void *MmapNoReserveOrDie(uptr size, const char *mem_type) { 208 return MmapOrDie(size, mem_type); 209 } 210 211 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) { 212 return DoAnonymousMmapOrDie(size, mem_type, false, false); 213 } 214 215 uptr ReservedAddressRange::Init(uptr init_size, const char *name, 216 uptr fixed_addr) { 217 init_size = RoundUpTo(init_size, PAGE_SIZE); 218 DCHECK_EQ(os_handle_, ZX_HANDLE_INVALID); 219 uintptr_t base; 220 zx_handle_t vmar; 221 zx_status_t status = 222 _zx_vmar_allocate( 223 _zx_vmar_root_self(), 224 ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC, 225 0, init_size, &vmar, &base); 226 if (status != ZX_OK) 227 ReportMmapFailureAndDie(init_size, name, "zx_vmar_allocate", status); 228 base_ = reinterpret_cast<void *>(base); 229 size_ = init_size; 230 name_ = name; 231 os_handle_ = vmar; 232 233 return reinterpret_cast<uptr>(base_); 234 } 235 236 static uptr DoMmapFixedOrDie(zx_handle_t vmar, uptr fixed_addr, uptr map_size, 237 void *base, const char *name, bool die_for_nomem) { 238 uptr offset = fixed_addr - reinterpret_cast<uptr>(base); 239 map_size = RoundUpTo(map_size, PAGE_SIZE); 240 zx_handle_t vmo; 241 zx_status_t status = _zx_vmo_create(map_size, 0, &vmo); 242 if (status != ZX_OK) { 243 if (status != ZX_ERR_NO_MEMORY || die_for_nomem) 244 ReportMmapFailureAndDie(map_size, name, "zx_vmo_create", status); 245 return 0; 246 } 247 _zx_object_set_property(vmo, ZX_PROP_NAME, name, internal_strlen(name)); 248 DCHECK_GE(base + size_, map_size + offset); 249 uintptr_t addr; 250 251 status = 252 _zx_vmar_map(vmar, ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC, 253 offset, vmo, 0, map_size, &addr); 254 _zx_handle_close(vmo); 255 if (status != ZX_OK) { 256 if (status != ZX_ERR_NO_MEMORY || die_for_nomem) { 257 ReportMmapFailureAndDie(map_size, name, "zx_vmar_map", status); 258 } 259 return 0; 260 } 261 IncreaseTotalMmap(map_size); 262 return addr; 263 } 264 265 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr map_size, 266 const char *name) { 267 return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_, 268 name_, false); 269 } 270 271 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr map_size, 272 const char *name) { 273 return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_, 274 name_, true); 275 } 276 277 void UnmapOrDieVmar(void *addr, uptr size, zx_handle_t target_vmar) { 278 if (!addr || !size) return; 279 size = RoundUpTo(size, PAGE_SIZE); 280 281 zx_status_t status = 282 _zx_vmar_unmap(target_vmar, reinterpret_cast<uintptr_t>(addr), size); 283 if (status != ZX_OK) { 284 Report("ERROR: %s failed to deallocate 0x%zx (%zd) bytes at address %p\n", 285 SanitizerToolName, size, size, addr); 286 CHECK("unable to unmap" && 0); 287 } 288 289 DecreaseTotalMmap(size); 290 } 291 292 void ReservedAddressRange::Unmap(uptr addr, uptr size) { 293 CHECK_LE(size, size_); 294 const zx_handle_t vmar = static_cast<zx_handle_t>(os_handle_); 295 if (addr == reinterpret_cast<uptr>(base_)) { 296 if (size == size_) { 297 // Destroying the vmar effectively unmaps the whole mapping. 298 _zx_vmar_destroy(vmar); 299 _zx_handle_close(vmar); 300 os_handle_ = static_cast<uptr>(ZX_HANDLE_INVALID); 301 DecreaseTotalMmap(size); 302 return; 303 } 304 } else { 305 CHECK_EQ(addr + size, reinterpret_cast<uptr>(base_) + size_); 306 } 307 // Partial unmapping does not affect the fact that the initial range is still 308 // reserved, and the resulting unmapped memory can't be reused. 309 UnmapOrDieVmar(reinterpret_cast<void *>(addr), size, vmar); 310 } 311 312 // This should never be called. 313 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) { 314 UNIMPLEMENTED(); 315 } 316 317 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment, 318 const char *mem_type) { 319 CHECK_GE(size, PAGE_SIZE); 320 CHECK(IsPowerOfTwo(size)); 321 CHECK(IsPowerOfTwo(alignment)); 322 323 zx_handle_t vmo; 324 zx_status_t status = _zx_vmo_create(size, 0, &vmo); 325 if (status != ZX_OK) { 326 if (status != ZX_ERR_NO_MEMORY) 327 ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false); 328 return nullptr; 329 } 330 _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type, 331 internal_strlen(mem_type)); 332 333 // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that? 334 335 // Map a larger size to get a chunk of address space big enough that 336 // it surely contains an aligned region of the requested size. Then 337 // overwrite the aligned middle portion with a mapping from the 338 // beginning of the VMO, and unmap the excess before and after. 339 size_t map_size = size + alignment; 340 uintptr_t addr; 341 status = 342 _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0, 343 vmo, 0, map_size, &addr); 344 if (status == ZX_OK) { 345 uintptr_t map_addr = addr; 346 uintptr_t map_end = map_addr + map_size; 347 addr = RoundUpTo(map_addr, alignment); 348 uintptr_t end = addr + size; 349 if (addr != map_addr) { 350 zx_info_vmar_t info; 351 status = _zx_object_get_info(_zx_vmar_root_self(), ZX_INFO_VMAR, &info, 352 sizeof(info), NULL, NULL); 353 if (status == ZX_OK) { 354 uintptr_t new_addr; 355 status = _zx_vmar_map( 356 _zx_vmar_root_self(), 357 ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC_OVERWRITE, 358 addr - info.base, vmo, 0, size, &new_addr); 359 if (status == ZX_OK) CHECK_EQ(new_addr, addr); 360 } 361 } 362 if (status == ZX_OK && addr != map_addr) 363 status = _zx_vmar_unmap(_zx_vmar_root_self(), map_addr, addr - map_addr); 364 if (status == ZX_OK && end != map_end) 365 status = _zx_vmar_unmap(_zx_vmar_root_self(), end, map_end - end); 366 } 367 _zx_handle_close(vmo); 368 369 if (status != ZX_OK) { 370 if (status != ZX_ERR_NO_MEMORY) 371 ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false); 372 return nullptr; 373 } 374 375 IncreaseTotalMmap(size); 376 377 return reinterpret_cast<void *>(addr); 378 } 379 380 void UnmapOrDie(void *addr, uptr size) { 381 UnmapOrDieVmar(addr, size, _zx_vmar_root_self()); 382 } 383 384 // This is used on the shadow mapping, which cannot be changed. 385 // Zircon doesn't have anything like MADV_DONTNEED. 386 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {} 387 388 void DumpProcessMap() { 389 // TODO(mcgrathr): write it 390 return; 391 } 392 393 bool IsAccessibleMemoryRange(uptr beg, uptr size) { 394 // TODO(mcgrathr): Figure out a better way. 395 zx_handle_t vmo; 396 zx_status_t status = _zx_vmo_create(size, 0, &vmo); 397 if (status == ZX_OK) { 398 status = _zx_vmo_write(vmo, reinterpret_cast<const void *>(beg), 0, size); 399 _zx_handle_close(vmo); 400 } 401 return status == ZX_OK; 402 } 403 404 // FIXME implement on this platform. 405 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) {} 406 407 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size, 408 uptr *read_len, uptr max_len, error_t *errno_p) { 409 zx_handle_t vmo; 410 zx_status_t status = __sanitizer_get_configuration(file_name, &vmo); 411 if (status == ZX_OK) { 412 uint64_t vmo_size; 413 status = _zx_vmo_get_size(vmo, &vmo_size); 414 if (status == ZX_OK) { 415 if (vmo_size < max_len) max_len = vmo_size; 416 size_t map_size = RoundUpTo(max_len, PAGE_SIZE); 417 uintptr_t addr; 418 status = _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ, 0, vmo, 0, 419 map_size, &addr); 420 if (status == ZX_OK) { 421 *buff = reinterpret_cast<char *>(addr); 422 *buff_size = map_size; 423 *read_len = max_len; 424 } 425 } 426 _zx_handle_close(vmo); 427 } 428 if (status != ZX_OK && errno_p) *errno_p = status; 429 return status == ZX_OK; 430 } 431 432 void RawWrite(const char *buffer) { 433 constexpr size_t size = 128; 434 static _Thread_local char line[size]; 435 static _Thread_local size_t lastLineEnd = 0; 436 static _Thread_local size_t cur = 0; 437 438 while (*buffer) { 439 if (cur >= size) { 440 if (lastLineEnd == 0) 441 lastLineEnd = size; 442 __sanitizer_log_write(line, lastLineEnd); 443 internal_memmove(line, line + lastLineEnd, cur - lastLineEnd); 444 cur = cur - lastLineEnd; 445 lastLineEnd = 0; 446 } 447 if (*buffer == '\n') 448 lastLineEnd = cur + 1; 449 line[cur++] = *buffer++; 450 } 451 // Flush all complete lines before returning. 452 if (lastLineEnd != 0) { 453 __sanitizer_log_write(line, lastLineEnd); 454 internal_memmove(line, line + lastLineEnd, cur - lastLineEnd); 455 cur = cur - lastLineEnd; 456 lastLineEnd = 0; 457 } 458 } 459 460 void CatastrophicErrorWrite(const char *buffer, uptr length) { 461 __sanitizer_log_write(buffer, length); 462 } 463 464 char **StoredArgv; 465 char **StoredEnviron; 466 467 char **GetArgv() { return StoredArgv; } 468 char **GetEnviron() { return StoredEnviron; } 469 470 const char *GetEnv(const char *name) { 471 if (StoredEnviron) { 472 uptr NameLen = internal_strlen(name); 473 for (char **Env = StoredEnviron; *Env != 0; Env++) { 474 if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=') 475 return (*Env) + NameLen + 1; 476 } 477 } 478 return nullptr; 479 } 480 481 uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) { 482 const char *argv0 = "<UNKNOWN>"; 483 if (StoredArgv && StoredArgv[0]) { 484 argv0 = StoredArgv[0]; 485 } 486 internal_strncpy(buf, argv0, buf_len); 487 return internal_strlen(buf); 488 } 489 490 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) { 491 return ReadBinaryName(buf, buf_len); 492 } 493 494 uptr MainThreadStackBase, MainThreadStackSize; 495 496 bool GetRandom(void *buffer, uptr length, bool blocking) { 497 CHECK_LE(length, ZX_CPRNG_DRAW_MAX_LEN); 498 _zx_cprng_draw(buffer, length); 499 return true; 500 } 501 502 u32 GetNumberOfCPUs() { 503 return zx_system_get_num_cpus(); 504 } 505 506 uptr GetRSS() { UNIMPLEMENTED(); } 507 508 void InitializePlatformCommonFlags(CommonFlags *cf) {} 509 510 } // namespace __sanitizer 511 512 using namespace __sanitizer; 513 514 extern "C" { 515 void __sanitizer_startup_hook(int argc, char **argv, char **envp, 516 void *stack_base, size_t stack_size) { 517 __sanitizer::StoredArgv = argv; 518 __sanitizer::StoredEnviron = envp; 519 __sanitizer::MainThreadStackBase = reinterpret_cast<uintptr_t>(stack_base); 520 __sanitizer::MainThreadStackSize = stack_size; 521 } 522 523 void __sanitizer_set_report_path(const char *path) { 524 // Handle the initialization code in each sanitizer, but no other calls. 525 // This setting is never consulted on Fuchsia. 526 DCHECK_EQ(path, common_flags()->log_path); 527 } 528 529 void __sanitizer_set_report_fd(void *fd) { 530 UNREACHABLE("not available on Fuchsia"); 531 } 532 533 const char *__sanitizer_get_report_path() { 534 UNREACHABLE("not available on Fuchsia"); 535 } 536 } // extern "C" 537 538 #endif // SANITIZER_FUCHSIA 539