1 //===-- NullabilityChecker.cpp - Nullability checker ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This checker tries to find nullability violations. There are several kinds of 10 // possible violations: 11 // * Null pointer is passed to a pointer which has a _Nonnull type. 12 // * Null pointer is returned from a function which has a _Nonnull return type. 13 // * Nullable pointer is passed to a pointer which has a _Nonnull type. 14 // * Nullable pointer is returned from a function which has a _Nonnull return 15 // type. 16 // * Nullable pointer is dereferenced. 17 // 18 // This checker propagates the nullability information of the pointers and looks 19 // for the patterns that are described above. Explicit casts are trusted and are 20 // considered a way to suppress false positives for this checker. The other way 21 // to suppress warnings would be to add asserts or guarding if statements to the 22 // code. In addition to the nullability propagation this checker also uses some 23 // heuristics to suppress potential false positives. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 28 29 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 30 #include "clang/StaticAnalyzer/Core/Checker.h" 31 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 32 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" 33 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 34 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 35 36 #include "llvm/ADT/StringExtras.h" 37 #include "llvm/Support/Path.h" 38 39 using namespace clang; 40 using namespace ento; 41 42 namespace { 43 44 /// Returns the most nullable nullability. This is used for message expressions 45 /// like [receiver method], where the nullability of this expression is either 46 /// the nullability of the receiver or the nullability of the return type of the 47 /// method, depending on which is more nullable. Contradicted is considered to 48 /// be the most nullable, to avoid false positive results. 49 Nullability getMostNullable(Nullability Lhs, Nullability Rhs) { 50 return static_cast<Nullability>( 51 std::min(static_cast<char>(Lhs), static_cast<char>(Rhs))); 52 } 53 54 const char *getNullabilityString(Nullability Nullab) { 55 switch (Nullab) { 56 case Nullability::Contradicted: 57 return "contradicted"; 58 case Nullability::Nullable: 59 return "nullable"; 60 case Nullability::Unspecified: 61 return "unspecified"; 62 case Nullability::Nonnull: 63 return "nonnull"; 64 } 65 llvm_unreachable("Unexpected enumeration."); 66 return ""; 67 } 68 69 // These enums are used as an index to ErrorMessages array. 70 enum class ErrorKind : int { 71 NilAssignedToNonnull, 72 NilPassedToNonnull, 73 NilReturnedToNonnull, 74 NullableAssignedToNonnull, 75 NullableReturnedToNonnull, 76 NullableDereferenced, 77 NullablePassedToNonnull 78 }; 79 80 class NullabilityChecker 81 : public Checker<check::Bind, check::PreCall, check::PreStmt<ReturnStmt>, 82 check::PostCall, check::PostStmt<ExplicitCastExpr>, 83 check::PostObjCMessage, check::DeadSymbols, eval::Assume, 84 check::Location, check::Event<ImplicitNullDerefEvent>> { 85 86 public: 87 // If true, the checker will not diagnose nullabilility issues for calls 88 // to system headers. This option is motivated by the observation that large 89 // projects may have many nullability warnings. These projects may 90 // find warnings about nullability annotations that they have explicitly 91 // added themselves higher priority to fix than warnings on calls to system 92 // libraries. 93 bool NoDiagnoseCallsToSystemHeaders = false; 94 95 void checkBind(SVal L, SVal V, const Stmt *S, CheckerContext &C) const; 96 void checkPostStmt(const ExplicitCastExpr *CE, CheckerContext &C) const; 97 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 98 void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const; 99 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 100 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 101 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 102 void checkEvent(ImplicitNullDerefEvent Event) const; 103 void checkLocation(SVal Location, bool IsLoad, const Stmt *S, 104 CheckerContext &C) const; 105 ProgramStateRef evalAssume(ProgramStateRef State, SVal Cond, 106 bool Assumption) const; 107 108 void printState(raw_ostream &Out, ProgramStateRef State, const char *NL, 109 const char *Sep) const override; 110 111 enum CheckKind { 112 CK_NullPassedToNonnull, 113 CK_NullReturnedFromNonnull, 114 CK_NullableDereferenced, 115 CK_NullablePassedToNonnull, 116 CK_NullableReturnedFromNonnull, 117 CK_NumCheckKinds 118 }; 119 120 bool ChecksEnabled[CK_NumCheckKinds] = {false}; 121 CheckerNameRef CheckNames[CK_NumCheckKinds]; 122 mutable std::unique_ptr<BugType> BTs[CK_NumCheckKinds]; 123 124 const std::unique_ptr<BugType> &getBugType(CheckKind Kind) const { 125 if (!BTs[Kind]) 126 BTs[Kind].reset(new BugType(CheckNames[Kind], "Nullability", 127 categories::MemoryError)); 128 return BTs[Kind]; 129 } 130 131 // When set to false no nullability information will be tracked in 132 // NullabilityMap. It is possible to catch errors like passing a null pointer 133 // to a callee that expects nonnull argument without the information that is 134 // stored in the NullabilityMap. This is an optimization. 135 bool NeedTracking = false; 136 137 private: 138 class NullabilityBugVisitor : public BugReporterVisitor { 139 public: 140 NullabilityBugVisitor(const MemRegion *M) : Region(M) {} 141 142 void Profile(llvm::FoldingSetNodeID &ID) const override { 143 static int X = 0; 144 ID.AddPointer(&X); 145 ID.AddPointer(Region); 146 } 147 148 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, 149 BugReporterContext &BRC, 150 PathSensitiveBugReport &BR) override; 151 152 private: 153 // The tracked region. 154 const MemRegion *Region; 155 }; 156 157 /// When any of the nonnull arguments of the analyzed function is null, do not 158 /// report anything and turn off the check. 159 /// 160 /// When \p SuppressPath is set to true, no more bugs will be reported on this 161 /// path by this checker. 162 void reportBugIfInvariantHolds(StringRef Msg, ErrorKind Error, CheckKind CK, 163 ExplodedNode *N, const MemRegion *Region, 164 CheckerContext &C, 165 const Stmt *ValueExpr = nullptr, 166 bool SuppressPath = false) const; 167 168 void reportBug(StringRef Msg, ErrorKind Error, CheckKind CK, ExplodedNode *N, 169 const MemRegion *Region, BugReporter &BR, 170 const Stmt *ValueExpr = nullptr) const { 171 const std::unique_ptr<BugType> &BT = getBugType(CK); 172 auto R = std::make_unique<PathSensitiveBugReport>(*BT, Msg, N); 173 if (Region) { 174 R->markInteresting(Region); 175 R->addVisitor<NullabilityBugVisitor>(Region); 176 } 177 if (ValueExpr) { 178 R->addRange(ValueExpr->getSourceRange()); 179 if (Error == ErrorKind::NilAssignedToNonnull || 180 Error == ErrorKind::NilPassedToNonnull || 181 Error == ErrorKind::NilReturnedToNonnull) 182 if (const auto *Ex = dyn_cast<Expr>(ValueExpr)) 183 bugreporter::trackExpressionValue(N, Ex, *R); 184 } 185 BR.emitReport(std::move(R)); 186 } 187 188 /// If an SVal wraps a region that should be tracked, it will return a pointer 189 /// to the wrapped region. Otherwise it will return a nullptr. 190 const SymbolicRegion *getTrackRegion(SVal Val, 191 bool CheckSuperRegion = false) const; 192 193 /// Returns true if the call is diagnosable in the current analyzer 194 /// configuration. 195 bool isDiagnosableCall(const CallEvent &Call) const { 196 if (NoDiagnoseCallsToSystemHeaders && Call.isInSystemHeader()) 197 return false; 198 199 return true; 200 } 201 }; 202 203 class NullabilityState { 204 public: 205 NullabilityState(Nullability Nullab, const Stmt *Source = nullptr) 206 : Nullab(Nullab), Source(Source) {} 207 208 const Stmt *getNullabilitySource() const { return Source; } 209 210 Nullability getValue() const { return Nullab; } 211 212 void Profile(llvm::FoldingSetNodeID &ID) const { 213 ID.AddInteger(static_cast<char>(Nullab)); 214 ID.AddPointer(Source); 215 } 216 217 void print(raw_ostream &Out) const { 218 Out << getNullabilityString(Nullab) << "\n"; 219 } 220 221 private: 222 Nullability Nullab; 223 // Source is the expression which determined the nullability. For example in a 224 // message like [nullable nonnull_returning] has nullable nullability, because 225 // the receiver is nullable. Here the receiver will be the source of the 226 // nullability. This is useful information when the diagnostics are generated. 227 const Stmt *Source; 228 }; 229 230 bool operator==(NullabilityState Lhs, NullabilityState Rhs) { 231 return Lhs.getValue() == Rhs.getValue() && 232 Lhs.getNullabilitySource() == Rhs.getNullabilitySource(); 233 } 234 235 // For the purpose of tracking historical property accesses, the key for lookup 236 // is an object pointer (could be an instance or a class) paired with the unique 237 // identifier for the property being invoked on that object. 238 using ObjectPropPair = std::pair<const MemRegion *, const IdentifierInfo *>; 239 240 // Metadata associated with the return value from a recorded property access. 241 struct ConstrainedPropertyVal { 242 // This will reference the conjured return SVal for some call 243 // of the form [object property] 244 DefinedOrUnknownSVal Value; 245 246 // If the SVal has been determined to be nonnull, that is recorded here 247 bool isConstrainedNonnull; 248 249 ConstrainedPropertyVal(DefinedOrUnknownSVal SV) 250 : Value(SV), isConstrainedNonnull(false) {} 251 252 void Profile(llvm::FoldingSetNodeID &ID) const { 253 Value.Profile(ID); 254 ID.AddInteger(isConstrainedNonnull ? 1 : 0); 255 } 256 }; 257 258 bool operator==(const ConstrainedPropertyVal &Lhs, 259 const ConstrainedPropertyVal &Rhs) { 260 return Lhs.Value == Rhs.Value && 261 Lhs.isConstrainedNonnull == Rhs.isConstrainedNonnull; 262 } 263 264 } // end anonymous namespace 265 266 REGISTER_MAP_WITH_PROGRAMSTATE(NullabilityMap, const MemRegion *, 267 NullabilityState) 268 REGISTER_MAP_WITH_PROGRAMSTATE(PropertyAccessesMap, ObjectPropPair, 269 ConstrainedPropertyVal) 270 271 // We say "the nullability type invariant is violated" when a location with a 272 // non-null type contains NULL or a function with a non-null return type returns 273 // NULL. Violations of the nullability type invariant can be detected either 274 // directly (for example, when NULL is passed as an argument to a nonnull 275 // parameter) or indirectly (for example, when, inside a function, the 276 // programmer defensively checks whether a nonnull parameter contains NULL and 277 // finds that it does). 278 // 279 // As a matter of policy, the nullability checker typically warns on direct 280 // violations of the nullability invariant (although it uses various 281 // heuristics to suppress warnings in some cases) but will not warn if the 282 // invariant has already been violated along the path (either directly or 283 // indirectly). As a practical matter, this prevents the analyzer from 284 // (1) warning on defensive code paths where a nullability precondition is 285 // determined to have been violated, (2) warning additional times after an 286 // initial direct violation has been discovered, and (3) warning after a direct 287 // violation that has been implicitly or explicitly suppressed (for 288 // example, with a cast of NULL to _Nonnull). In essence, once an invariant 289 // violation is detected on a path, this checker will be essentially turned off 290 // for the rest of the analysis 291 // 292 // The analyzer takes this approach (rather than generating a sink node) to 293 // ensure coverage of defensive paths, which may be important for backwards 294 // compatibility in codebases that were developed without nullability in mind. 295 REGISTER_TRAIT_WITH_PROGRAMSTATE(InvariantViolated, bool) 296 297 enum class NullConstraint { IsNull, IsNotNull, Unknown }; 298 299 static NullConstraint getNullConstraint(DefinedOrUnknownSVal Val, 300 ProgramStateRef State) { 301 ConditionTruthVal Nullness = State->isNull(Val); 302 if (Nullness.isConstrainedFalse()) 303 return NullConstraint::IsNotNull; 304 if (Nullness.isConstrainedTrue()) 305 return NullConstraint::IsNull; 306 return NullConstraint::Unknown; 307 } 308 309 const SymbolicRegion * 310 NullabilityChecker::getTrackRegion(SVal Val, bool CheckSuperRegion) const { 311 if (!NeedTracking) 312 return nullptr; 313 314 auto RegionSVal = Val.getAs<loc::MemRegionVal>(); 315 if (!RegionSVal) 316 return nullptr; 317 318 const MemRegion *Region = RegionSVal->getRegion(); 319 320 if (CheckSuperRegion) { 321 if (const SubRegion *FieldReg = Region->getAs<FieldRegion>()) { 322 if (const auto *ER = dyn_cast<ElementRegion>(FieldReg->getSuperRegion())) 323 FieldReg = ER; 324 return dyn_cast<SymbolicRegion>(FieldReg->getSuperRegion()); 325 } 326 if (auto ElementReg = Region->getAs<ElementRegion>()) 327 return dyn_cast<SymbolicRegion>(ElementReg->getSuperRegion()); 328 } 329 330 return dyn_cast<SymbolicRegion>(Region); 331 } 332 333 PathDiagnosticPieceRef NullabilityChecker::NullabilityBugVisitor::VisitNode( 334 const ExplodedNode *N, BugReporterContext &BRC, 335 PathSensitiveBugReport &BR) { 336 ProgramStateRef State = N->getState(); 337 ProgramStateRef StatePrev = N->getFirstPred()->getState(); 338 339 const NullabilityState *TrackedNullab = State->get<NullabilityMap>(Region); 340 const NullabilityState *TrackedNullabPrev = 341 StatePrev->get<NullabilityMap>(Region); 342 if (!TrackedNullab) 343 return nullptr; 344 345 if (TrackedNullabPrev && 346 TrackedNullabPrev->getValue() == TrackedNullab->getValue()) 347 return nullptr; 348 349 // Retrieve the associated statement. 350 const Stmt *S = TrackedNullab->getNullabilitySource(); 351 if (!S || S->getBeginLoc().isInvalid()) { 352 S = N->getStmtForDiagnostics(); 353 } 354 355 if (!S) 356 return nullptr; 357 358 std::string InfoText = 359 (llvm::Twine("Nullability '") + 360 getNullabilityString(TrackedNullab->getValue()) + "' is inferred") 361 .str(); 362 363 // Generate the extra diagnostic. 364 PathDiagnosticLocation Pos(S, BRC.getSourceManager(), 365 N->getLocationContext()); 366 return std::make_shared<PathDiagnosticEventPiece>(Pos, InfoText, true); 367 } 368 369 /// Returns true when the value stored at the given location has been 370 /// constrained to null after being passed through an object of nonnnull type. 371 static bool checkValueAtLValForInvariantViolation(ProgramStateRef State, 372 SVal LV, QualType T) { 373 if (getNullabilityAnnotation(T) != Nullability::Nonnull) 374 return false; 375 376 auto RegionVal = LV.getAs<loc::MemRegionVal>(); 377 if (!RegionVal) 378 return false; 379 380 // If the value was constrained to null *after* it was passed through that 381 // location, it could not have been a concrete pointer *when* it was passed. 382 // In that case we would have handled the situation when the value was 383 // bound to that location, by emitting (or not emitting) a report. 384 // Therefore we are only interested in symbolic regions that can be either 385 // null or non-null depending on the value of their respective symbol. 386 auto StoredVal = State->getSVal(*RegionVal).getAs<loc::MemRegionVal>(); 387 if (!StoredVal || !isa<SymbolicRegion>(StoredVal->getRegion())) 388 return false; 389 390 if (getNullConstraint(*StoredVal, State) == NullConstraint::IsNull) 391 return true; 392 393 return false; 394 } 395 396 static bool 397 checkParamsForPreconditionViolation(ArrayRef<ParmVarDecl *> Params, 398 ProgramStateRef State, 399 const LocationContext *LocCtxt) { 400 for (const auto *ParamDecl : Params) { 401 if (ParamDecl->isParameterPack()) 402 break; 403 404 SVal LV = State->getLValue(ParamDecl, LocCtxt); 405 if (checkValueAtLValForInvariantViolation(State, LV, 406 ParamDecl->getType())) { 407 return true; 408 } 409 } 410 return false; 411 } 412 413 static bool 414 checkSelfIvarsForInvariantViolation(ProgramStateRef State, 415 const LocationContext *LocCtxt) { 416 auto *MD = dyn_cast<ObjCMethodDecl>(LocCtxt->getDecl()); 417 if (!MD || !MD->isInstanceMethod()) 418 return false; 419 420 const ImplicitParamDecl *SelfDecl = LocCtxt->getSelfDecl(); 421 if (!SelfDecl) 422 return false; 423 424 SVal SelfVal = State->getSVal(State->getRegion(SelfDecl, LocCtxt)); 425 426 const ObjCObjectPointerType *SelfType = 427 dyn_cast<ObjCObjectPointerType>(SelfDecl->getType()); 428 if (!SelfType) 429 return false; 430 431 const ObjCInterfaceDecl *ID = SelfType->getInterfaceDecl(); 432 if (!ID) 433 return false; 434 435 for (const auto *IvarDecl : ID->ivars()) { 436 SVal LV = State->getLValue(IvarDecl, SelfVal); 437 if (checkValueAtLValForInvariantViolation(State, LV, IvarDecl->getType())) { 438 return true; 439 } 440 } 441 return false; 442 } 443 444 static bool checkInvariantViolation(ProgramStateRef State, ExplodedNode *N, 445 CheckerContext &C) { 446 if (State->get<InvariantViolated>()) 447 return true; 448 449 const LocationContext *LocCtxt = C.getLocationContext(); 450 const Decl *D = LocCtxt->getDecl(); 451 if (!D) 452 return false; 453 454 ArrayRef<ParmVarDecl*> Params; 455 if (const auto *BD = dyn_cast<BlockDecl>(D)) 456 Params = BD->parameters(); 457 else if (const auto *FD = dyn_cast<FunctionDecl>(D)) 458 Params = FD->parameters(); 459 else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 460 Params = MD->parameters(); 461 else 462 return false; 463 464 if (checkParamsForPreconditionViolation(Params, State, LocCtxt) || 465 checkSelfIvarsForInvariantViolation(State, LocCtxt)) { 466 if (!N->isSink()) 467 C.addTransition(State->set<InvariantViolated>(true), N); 468 return true; 469 } 470 return false; 471 } 472 473 void NullabilityChecker::reportBugIfInvariantHolds( 474 StringRef Msg, ErrorKind Error, CheckKind CK, ExplodedNode *N, 475 const MemRegion *Region, CheckerContext &C, const Stmt *ValueExpr, 476 bool SuppressPath) const { 477 ProgramStateRef OriginalState = N->getState(); 478 479 if (checkInvariantViolation(OriginalState, N, C)) 480 return; 481 if (SuppressPath) { 482 OriginalState = OriginalState->set<InvariantViolated>(true); 483 N = C.addTransition(OriginalState, N); 484 } 485 486 reportBug(Msg, Error, CK, N, Region, C.getBugReporter(), ValueExpr); 487 } 488 489 /// Cleaning up the program state. 490 void NullabilityChecker::checkDeadSymbols(SymbolReaper &SR, 491 CheckerContext &C) const { 492 ProgramStateRef State = C.getState(); 493 NullabilityMapTy Nullabilities = State->get<NullabilityMap>(); 494 for (NullabilityMapTy::iterator I = Nullabilities.begin(), 495 E = Nullabilities.end(); 496 I != E; ++I) { 497 const auto *Region = I->first->getAs<SymbolicRegion>(); 498 assert(Region && "Non-symbolic region is tracked."); 499 if (SR.isDead(Region->getSymbol())) { 500 State = State->remove<NullabilityMap>(I->first); 501 } 502 } 503 504 // When an object goes out of scope, we can free the history associated 505 // with any property accesses on that object 506 PropertyAccessesMapTy PropertyAccesses = State->get<PropertyAccessesMap>(); 507 for (PropertyAccessesMapTy::iterator I = PropertyAccesses.begin(), 508 E = PropertyAccesses.end(); 509 I != E; ++I) { 510 const MemRegion *ReceiverRegion = I->first.first; 511 if (!SR.isLiveRegion(ReceiverRegion)) { 512 State = State->remove<PropertyAccessesMap>(I->first); 513 } 514 } 515 516 // When one of the nonnull arguments are constrained to be null, nullability 517 // preconditions are violated. It is not enough to check this only when we 518 // actually report an error, because at that time interesting symbols might be 519 // reaped. 520 if (checkInvariantViolation(State, C.getPredecessor(), C)) 521 return; 522 C.addTransition(State); 523 } 524 525 /// This callback triggers when a pointer is dereferenced and the analyzer does 526 /// not know anything about the value of that pointer. When that pointer is 527 /// nullable, this code emits a warning. 528 void NullabilityChecker::checkEvent(ImplicitNullDerefEvent Event) const { 529 if (Event.SinkNode->getState()->get<InvariantViolated>()) 530 return; 531 532 const MemRegion *Region = 533 getTrackRegion(Event.Location, /*CheckSuperRegion=*/true); 534 if (!Region) 535 return; 536 537 ProgramStateRef State = Event.SinkNode->getState(); 538 const NullabilityState *TrackedNullability = 539 State->get<NullabilityMap>(Region); 540 541 if (!TrackedNullability) 542 return; 543 544 if (ChecksEnabled[CK_NullableDereferenced] && 545 TrackedNullability->getValue() == Nullability::Nullable) { 546 BugReporter &BR = *Event.BR; 547 // Do not suppress errors on defensive code paths, because dereferencing 548 // a nullable pointer is always an error. 549 if (Event.IsDirectDereference) 550 reportBug("Nullable pointer is dereferenced", 551 ErrorKind::NullableDereferenced, CK_NullableDereferenced, 552 Event.SinkNode, Region, BR); 553 else { 554 reportBug("Nullable pointer is passed to a callee that requires a " 555 "non-null", 556 ErrorKind::NullablePassedToNonnull, CK_NullableDereferenced, 557 Event.SinkNode, Region, BR); 558 } 559 } 560 } 561 562 // Whenever we see a load from a typed memory region that's been annotated as 563 // 'nonnull', we want to trust the user on that and assume that it is is indeed 564 // non-null. 565 // 566 // We do so even if the value is known to have been assigned to null. 567 // The user should be warned on assigning the null value to a non-null pointer 568 // as opposed to warning on the later dereference of this pointer. 569 // 570 // \code 571 // int * _Nonnull var = 0; // we want to warn the user here... 572 // // . . . 573 // *var = 42; // ...and not here 574 // \endcode 575 void NullabilityChecker::checkLocation(SVal Location, bool IsLoad, 576 const Stmt *S, 577 CheckerContext &Context) const { 578 // We should care only about loads. 579 // The main idea is to add a constraint whenever we're loading a value from 580 // an annotated pointer type. 581 if (!IsLoad) 582 return; 583 584 // Annotations that we want to consider make sense only for types. 585 const auto *Region = 586 dyn_cast_or_null<TypedValueRegion>(Location.getAsRegion()); 587 if (!Region) 588 return; 589 590 ProgramStateRef State = Context.getState(); 591 592 auto StoredVal = State->getSVal(Region).getAs<loc::MemRegionVal>(); 593 if (!StoredVal) 594 return; 595 596 Nullability NullabilityOfTheLoadedValue = 597 getNullabilityAnnotation(Region->getValueType()); 598 599 if (NullabilityOfTheLoadedValue == Nullability::Nonnull) { 600 // It doesn't matter what we think about this particular pointer, it should 601 // be considered non-null as annotated by the developer. 602 if (ProgramStateRef NewState = State->assume(*StoredVal, true)) { 603 Context.addTransition(NewState); 604 } 605 } 606 } 607 608 /// Find the outermost subexpression of E that is not an implicit cast. 609 /// This looks through the implicit casts to _Nonnull that ARC adds to 610 /// return expressions of ObjC types when the return type of the function or 611 /// method is non-null but the express is not. 612 static const Expr *lookThroughImplicitCasts(const Expr *E) { 613 return E->IgnoreImpCasts(); 614 } 615 616 /// This method check when nullable pointer or null value is returned from a 617 /// function that has nonnull return type. 618 void NullabilityChecker::checkPreStmt(const ReturnStmt *S, 619 CheckerContext &C) const { 620 auto RetExpr = S->getRetValue(); 621 if (!RetExpr) 622 return; 623 624 if (!RetExpr->getType()->isAnyPointerType()) 625 return; 626 627 ProgramStateRef State = C.getState(); 628 if (State->get<InvariantViolated>()) 629 return; 630 631 auto RetSVal = C.getSVal(S).getAs<DefinedOrUnknownSVal>(); 632 if (!RetSVal) 633 return; 634 635 bool InSuppressedMethodFamily = false; 636 637 QualType RequiredRetType; 638 AnalysisDeclContext *DeclCtxt = 639 C.getLocationContext()->getAnalysisDeclContext(); 640 const Decl *D = DeclCtxt->getDecl(); 641 if (auto *MD = dyn_cast<ObjCMethodDecl>(D)) { 642 // HACK: This is a big hammer to avoid warning when there are defensive 643 // nil checks in -init and -copy methods. We should add more sophisticated 644 // logic here to suppress on common defensive idioms but still 645 // warn when there is a likely problem. 646 ObjCMethodFamily Family = MD->getMethodFamily(); 647 if (OMF_init == Family || OMF_copy == Family || OMF_mutableCopy == Family) 648 InSuppressedMethodFamily = true; 649 650 RequiredRetType = MD->getReturnType(); 651 } else if (auto *FD = dyn_cast<FunctionDecl>(D)) { 652 RequiredRetType = FD->getReturnType(); 653 } else { 654 return; 655 } 656 657 NullConstraint Nullness = getNullConstraint(*RetSVal, State); 658 659 Nullability RequiredNullability = getNullabilityAnnotation(RequiredRetType); 660 661 // If the returned value is null but the type of the expression 662 // generating it is nonnull then we will suppress the diagnostic. 663 // This enables explicit suppression when returning a nil literal in a 664 // function with a _Nonnull return type: 665 // return (NSString * _Nonnull)0; 666 Nullability RetExprTypeLevelNullability = 667 getNullabilityAnnotation(lookThroughImplicitCasts(RetExpr)->getType()); 668 669 bool NullReturnedFromNonNull = (RequiredNullability == Nullability::Nonnull && 670 Nullness == NullConstraint::IsNull); 671 if (ChecksEnabled[CK_NullReturnedFromNonnull] && NullReturnedFromNonNull && 672 RetExprTypeLevelNullability != Nullability::Nonnull && 673 !InSuppressedMethodFamily && C.getLocationContext()->inTopFrame()) { 674 static CheckerProgramPointTag Tag(this, "NullReturnedFromNonnull"); 675 ExplodedNode *N = C.generateErrorNode(State, &Tag); 676 if (!N) 677 return; 678 679 SmallString<256> SBuf; 680 llvm::raw_svector_ostream OS(SBuf); 681 OS << (RetExpr->getType()->isObjCObjectPointerType() ? "nil" : "Null"); 682 OS << " returned from a " << C.getDeclDescription(D) << 683 " that is expected to return a non-null value"; 684 reportBugIfInvariantHolds(OS.str(), ErrorKind::NilReturnedToNonnull, 685 CK_NullReturnedFromNonnull, N, nullptr, C, 686 RetExpr); 687 return; 688 } 689 690 // If null was returned from a non-null function, mark the nullability 691 // invariant as violated even if the diagnostic was suppressed. 692 if (NullReturnedFromNonNull) { 693 State = State->set<InvariantViolated>(true); 694 C.addTransition(State); 695 return; 696 } 697 698 const MemRegion *Region = getTrackRegion(*RetSVal); 699 if (!Region) 700 return; 701 702 const NullabilityState *TrackedNullability = 703 State->get<NullabilityMap>(Region); 704 if (TrackedNullability) { 705 Nullability TrackedNullabValue = TrackedNullability->getValue(); 706 if (ChecksEnabled[CK_NullableReturnedFromNonnull] && 707 Nullness != NullConstraint::IsNotNull && 708 TrackedNullabValue == Nullability::Nullable && 709 RequiredNullability == Nullability::Nonnull) { 710 static CheckerProgramPointTag Tag(this, "NullableReturnedFromNonnull"); 711 ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag); 712 713 SmallString<256> SBuf; 714 llvm::raw_svector_ostream OS(SBuf); 715 OS << "Nullable pointer is returned from a " << C.getDeclDescription(D) << 716 " that is expected to return a non-null value"; 717 718 reportBugIfInvariantHolds(OS.str(), ErrorKind::NullableReturnedToNonnull, 719 CK_NullableReturnedFromNonnull, N, Region, C); 720 } 721 return; 722 } 723 if (RequiredNullability == Nullability::Nullable) { 724 State = State->set<NullabilityMap>(Region, 725 NullabilityState(RequiredNullability, 726 S)); 727 C.addTransition(State); 728 } 729 } 730 731 /// This callback warns when a nullable pointer or a null value is passed to a 732 /// function that expects its argument to be nonnull. 733 void NullabilityChecker::checkPreCall(const CallEvent &Call, 734 CheckerContext &C) const { 735 if (!Call.getDecl()) 736 return; 737 738 ProgramStateRef State = C.getState(); 739 if (State->get<InvariantViolated>()) 740 return; 741 742 ProgramStateRef OrigState = State; 743 744 unsigned Idx = 0; 745 for (const ParmVarDecl *Param : Call.parameters()) { 746 if (Param->isParameterPack()) 747 break; 748 749 if (Idx >= Call.getNumArgs()) 750 break; 751 752 const Expr *ArgExpr = Call.getArgExpr(Idx); 753 auto ArgSVal = Call.getArgSVal(Idx++).getAs<DefinedOrUnknownSVal>(); 754 if (!ArgSVal) 755 continue; 756 757 if (!Param->getType()->isAnyPointerType() && 758 !Param->getType()->isReferenceType()) 759 continue; 760 761 NullConstraint Nullness = getNullConstraint(*ArgSVal, State); 762 763 Nullability RequiredNullability = 764 getNullabilityAnnotation(Param->getType()); 765 Nullability ArgExprTypeLevelNullability = 766 getNullabilityAnnotation(ArgExpr->getType()); 767 768 unsigned ParamIdx = Param->getFunctionScopeIndex() + 1; 769 770 if (ChecksEnabled[CK_NullPassedToNonnull] && 771 Nullness == NullConstraint::IsNull && 772 ArgExprTypeLevelNullability != Nullability::Nonnull && 773 RequiredNullability == Nullability::Nonnull && 774 isDiagnosableCall(Call)) { 775 ExplodedNode *N = C.generateErrorNode(State); 776 if (!N) 777 return; 778 779 SmallString<256> SBuf; 780 llvm::raw_svector_ostream OS(SBuf); 781 OS << (Param->getType()->isObjCObjectPointerType() ? "nil" : "Null"); 782 OS << " passed to a callee that requires a non-null " << ParamIdx 783 << llvm::getOrdinalSuffix(ParamIdx) << " parameter"; 784 reportBugIfInvariantHolds(OS.str(), ErrorKind::NilPassedToNonnull, 785 CK_NullPassedToNonnull, N, nullptr, C, ArgExpr, 786 /*SuppressPath=*/false); 787 return; 788 } 789 790 const MemRegion *Region = getTrackRegion(*ArgSVal); 791 if (!Region) 792 continue; 793 794 const NullabilityState *TrackedNullability = 795 State->get<NullabilityMap>(Region); 796 797 if (TrackedNullability) { 798 if (Nullness == NullConstraint::IsNotNull || 799 TrackedNullability->getValue() != Nullability::Nullable) 800 continue; 801 802 if (ChecksEnabled[CK_NullablePassedToNonnull] && 803 RequiredNullability == Nullability::Nonnull && 804 isDiagnosableCall(Call)) { 805 ExplodedNode *N = C.addTransition(State); 806 SmallString<256> SBuf; 807 llvm::raw_svector_ostream OS(SBuf); 808 OS << "Nullable pointer is passed to a callee that requires a non-null " 809 << ParamIdx << llvm::getOrdinalSuffix(ParamIdx) << " parameter"; 810 reportBugIfInvariantHolds(OS.str(), ErrorKind::NullablePassedToNonnull, 811 CK_NullablePassedToNonnull, N, Region, C, 812 ArgExpr, /*SuppressPath=*/true); 813 return; 814 } 815 if (ChecksEnabled[CK_NullableDereferenced] && 816 Param->getType()->isReferenceType()) { 817 ExplodedNode *N = C.addTransition(State); 818 reportBugIfInvariantHolds("Nullable pointer is dereferenced", 819 ErrorKind::NullableDereferenced, 820 CK_NullableDereferenced, N, Region, C, 821 ArgExpr, /*SuppressPath=*/true); 822 return; 823 } 824 continue; 825 } 826 } 827 if (State != OrigState) 828 C.addTransition(State); 829 } 830 831 /// Suppress the nullability warnings for some functions. 832 void NullabilityChecker::checkPostCall(const CallEvent &Call, 833 CheckerContext &C) const { 834 auto Decl = Call.getDecl(); 835 if (!Decl) 836 return; 837 // ObjC Messages handles in a different callback. 838 if (Call.getKind() == CE_ObjCMessage) 839 return; 840 const FunctionType *FuncType = Decl->getFunctionType(); 841 if (!FuncType) 842 return; 843 QualType ReturnType = FuncType->getReturnType(); 844 if (!ReturnType->isAnyPointerType()) 845 return; 846 ProgramStateRef State = C.getState(); 847 if (State->get<InvariantViolated>()) 848 return; 849 850 const MemRegion *Region = getTrackRegion(Call.getReturnValue()); 851 if (!Region) 852 return; 853 854 // CG headers are misannotated. Do not warn for symbols that are the results 855 // of CG calls. 856 const SourceManager &SM = C.getSourceManager(); 857 StringRef FilePath = SM.getFilename(SM.getSpellingLoc(Decl->getBeginLoc())); 858 if (llvm::sys::path::filename(FilePath).startswith("CG")) { 859 State = State->set<NullabilityMap>(Region, Nullability::Contradicted); 860 C.addTransition(State); 861 return; 862 } 863 864 const NullabilityState *TrackedNullability = 865 State->get<NullabilityMap>(Region); 866 867 if (!TrackedNullability && 868 getNullabilityAnnotation(ReturnType) == Nullability::Nullable) { 869 State = State->set<NullabilityMap>(Region, Nullability::Nullable); 870 C.addTransition(State); 871 } 872 } 873 874 static Nullability getReceiverNullability(const ObjCMethodCall &M, 875 ProgramStateRef State) { 876 if (M.isReceiverSelfOrSuper()) { 877 // For super and super class receivers we assume that the receiver is 878 // nonnull. 879 return Nullability::Nonnull; 880 } 881 // Otherwise look up nullability in the state. 882 SVal Receiver = M.getReceiverSVal(); 883 if (auto DefOrUnknown = Receiver.getAs<DefinedOrUnknownSVal>()) { 884 // If the receiver is constrained to be nonnull, assume that it is nonnull 885 // regardless of its type. 886 NullConstraint Nullness = getNullConstraint(*DefOrUnknown, State); 887 if (Nullness == NullConstraint::IsNotNull) 888 return Nullability::Nonnull; 889 } 890 auto ValueRegionSVal = Receiver.getAs<loc::MemRegionVal>(); 891 if (ValueRegionSVal) { 892 const MemRegion *SelfRegion = ValueRegionSVal->getRegion(); 893 assert(SelfRegion); 894 895 const NullabilityState *TrackedSelfNullability = 896 State->get<NullabilityMap>(SelfRegion); 897 if (TrackedSelfNullability) 898 return TrackedSelfNullability->getValue(); 899 } 900 return Nullability::Unspecified; 901 } 902 903 // The return value of a property access is typically a temporary value which 904 // will not be tracked in a persistent manner by the analyzer. We use 905 // evalAssume() in order to immediately record constraints on those temporaries 906 // at the time they are imposed (e.g. by a nil-check conditional). 907 ProgramStateRef NullabilityChecker::evalAssume(ProgramStateRef State, SVal Cond, 908 bool Assumption) const { 909 PropertyAccessesMapTy PropertyAccesses = State->get<PropertyAccessesMap>(); 910 for (PropertyAccessesMapTy::iterator I = PropertyAccesses.begin(), 911 E = PropertyAccesses.end(); 912 I != E; ++I) { 913 if (!I->second.isConstrainedNonnull) { 914 ConditionTruthVal IsNonNull = State->isNonNull(I->second.Value); 915 if (IsNonNull.isConstrainedTrue()) { 916 ConstrainedPropertyVal Replacement = I->second; 917 Replacement.isConstrainedNonnull = true; 918 State = State->set<PropertyAccessesMap>(I->first, Replacement); 919 } else if (IsNonNull.isConstrainedFalse()) { 920 // Space optimization: no point in tracking constrained-null cases 921 State = State->remove<PropertyAccessesMap>(I->first); 922 } 923 } 924 } 925 926 return State; 927 } 928 929 /// Calculate the nullability of the result of a message expr based on the 930 /// nullability of the receiver, the nullability of the return value, and the 931 /// constraints. 932 void NullabilityChecker::checkPostObjCMessage(const ObjCMethodCall &M, 933 CheckerContext &C) const { 934 auto Decl = M.getDecl(); 935 if (!Decl) 936 return; 937 QualType RetType = Decl->getReturnType(); 938 if (!RetType->isAnyPointerType()) 939 return; 940 941 ProgramStateRef State = C.getState(); 942 if (State->get<InvariantViolated>()) 943 return; 944 945 const MemRegion *ReturnRegion = getTrackRegion(M.getReturnValue()); 946 if (!ReturnRegion) 947 return; 948 949 auto Interface = Decl->getClassInterface(); 950 auto Name = Interface ? Interface->getName() : ""; 951 // In order to reduce the noise in the diagnostics generated by this checker, 952 // some framework and programming style based heuristics are used. These 953 // heuristics are for Cocoa APIs which have NS prefix. 954 if (Name.startswith("NS")) { 955 // Developers rely on dynamic invariants such as an item should be available 956 // in a collection, or a collection is not empty often. Those invariants can 957 // not be inferred by any static analysis tool. To not to bother the users 958 // with too many false positives, every item retrieval function should be 959 // ignored for collections. The instance methods of dictionaries in Cocoa 960 // are either item retrieval related or not interesting nullability wise. 961 // Using this fact, to keep the code easier to read just ignore the return 962 // value of every instance method of dictionaries. 963 if (M.isInstanceMessage() && Name.contains("Dictionary")) { 964 State = 965 State->set<NullabilityMap>(ReturnRegion, Nullability::Contradicted); 966 C.addTransition(State); 967 return; 968 } 969 // For similar reasons ignore some methods of Cocoa arrays. 970 StringRef FirstSelectorSlot = M.getSelector().getNameForSlot(0); 971 if (Name.contains("Array") && 972 (FirstSelectorSlot == "firstObject" || 973 FirstSelectorSlot == "lastObject")) { 974 State = 975 State->set<NullabilityMap>(ReturnRegion, Nullability::Contradicted); 976 C.addTransition(State); 977 return; 978 } 979 980 // Encoding related methods of string should not fail when lossless 981 // encodings are used. Using lossless encodings is so frequent that ignoring 982 // this class of methods reduced the emitted diagnostics by about 30% on 983 // some projects (and all of that was false positives). 984 if (Name.contains("String")) { 985 for (auto *Param : M.parameters()) { 986 if (Param->getName() == "encoding") { 987 State = State->set<NullabilityMap>(ReturnRegion, 988 Nullability::Contradicted); 989 C.addTransition(State); 990 return; 991 } 992 } 993 } 994 } 995 996 const ObjCMessageExpr *Message = M.getOriginExpr(); 997 Nullability SelfNullability = getReceiverNullability(M, State); 998 999 const NullabilityState *NullabilityOfReturn = 1000 State->get<NullabilityMap>(ReturnRegion); 1001 1002 if (NullabilityOfReturn) { 1003 // When we have a nullability tracked for the return value, the nullability 1004 // of the expression will be the most nullable of the receiver and the 1005 // return value. 1006 Nullability RetValTracked = NullabilityOfReturn->getValue(); 1007 Nullability ComputedNullab = 1008 getMostNullable(RetValTracked, SelfNullability); 1009 if (ComputedNullab != RetValTracked && 1010 ComputedNullab != Nullability::Unspecified) { 1011 const Stmt *NullabilitySource = 1012 ComputedNullab == RetValTracked 1013 ? NullabilityOfReturn->getNullabilitySource() 1014 : Message->getInstanceReceiver(); 1015 State = State->set<NullabilityMap>( 1016 ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource)); 1017 C.addTransition(State); 1018 } 1019 return; 1020 } 1021 1022 // No tracked information. Use static type information for return value. 1023 Nullability RetNullability = getNullabilityAnnotation(RetType); 1024 1025 // Properties might be computed, which means the property value could 1026 // theoretically change between calls even in commonly-observed cases like 1027 // this: 1028 // 1029 // if (foo.prop) { // ok, it's nonnull here... 1030 // [bar doStuffWithNonnullVal:foo.prop]; // ...but what about 1031 // here? 1032 // } 1033 // 1034 // If the property is nullable-annotated, a naive analysis would lead to many 1035 // false positives despite the presence of probably-correct nil-checks. To 1036 // reduce the false positive rate, we maintain a history of the most recently 1037 // observed property value. For each property access, if the prior value has 1038 // been constrained to be not nil then we will conservatively assume that the 1039 // next access can be inferred as nonnull. 1040 if (RetNullability != Nullability::Nonnull && 1041 M.getMessageKind() == OCM_PropertyAccess && !C.wasInlined) { 1042 bool LookupResolved = false; 1043 if (const MemRegion *ReceiverRegion = getTrackRegion(M.getReceiverSVal())) { 1044 if (IdentifierInfo *Ident = M.getSelector().getIdentifierInfoForSlot(0)) { 1045 LookupResolved = true; 1046 ObjectPropPair Key = std::make_pair(ReceiverRegion, Ident); 1047 const ConstrainedPropertyVal *PrevPropVal = 1048 State->get<PropertyAccessesMap>(Key); 1049 if (PrevPropVal && PrevPropVal->isConstrainedNonnull) { 1050 RetNullability = Nullability::Nonnull; 1051 } else { 1052 // If a previous property access was constrained as nonnull, we hold 1053 // on to that constraint (effectively inferring that all subsequent 1054 // accesses on that code path can be inferred as nonnull). If the 1055 // previous property access was *not* constrained as nonnull, then 1056 // let's throw it away in favor of keeping the SVal associated with 1057 // this more recent access. 1058 if (auto ReturnSVal = 1059 M.getReturnValue().getAs<DefinedOrUnknownSVal>()) { 1060 State = State->set<PropertyAccessesMap>( 1061 Key, ConstrainedPropertyVal(*ReturnSVal)); 1062 } 1063 } 1064 } 1065 } 1066 1067 if (!LookupResolved) { 1068 // Fallback: err on the side of suppressing the false positive. 1069 RetNullability = Nullability::Nonnull; 1070 } 1071 } 1072 1073 Nullability ComputedNullab = getMostNullable(RetNullability, SelfNullability); 1074 if (ComputedNullab == Nullability::Nullable) { 1075 const Stmt *NullabilitySource = ComputedNullab == RetNullability 1076 ? Message 1077 : Message->getInstanceReceiver(); 1078 State = State->set<NullabilityMap>( 1079 ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource)); 1080 C.addTransition(State); 1081 } 1082 } 1083 1084 /// Explicit casts are trusted. If there is a disagreement in the nullability 1085 /// annotations in the destination and the source or '0' is casted to nonnull 1086 /// track the value as having contraditory nullability. This will allow users to 1087 /// suppress warnings. 1088 void NullabilityChecker::checkPostStmt(const ExplicitCastExpr *CE, 1089 CheckerContext &C) const { 1090 QualType OriginType = CE->getSubExpr()->getType(); 1091 QualType DestType = CE->getType(); 1092 if (!OriginType->isAnyPointerType()) 1093 return; 1094 if (!DestType->isAnyPointerType()) 1095 return; 1096 1097 ProgramStateRef State = C.getState(); 1098 if (State->get<InvariantViolated>()) 1099 return; 1100 1101 Nullability DestNullability = getNullabilityAnnotation(DestType); 1102 1103 // No explicit nullability in the destination type, so this cast does not 1104 // change the nullability. 1105 if (DestNullability == Nullability::Unspecified) 1106 return; 1107 1108 auto RegionSVal = C.getSVal(CE).getAs<DefinedOrUnknownSVal>(); 1109 const MemRegion *Region = getTrackRegion(*RegionSVal); 1110 if (!Region) 1111 return; 1112 1113 // When 0 is converted to nonnull mark it as contradicted. 1114 if (DestNullability == Nullability::Nonnull) { 1115 NullConstraint Nullness = getNullConstraint(*RegionSVal, State); 1116 if (Nullness == NullConstraint::IsNull) { 1117 State = State->set<NullabilityMap>(Region, Nullability::Contradicted); 1118 C.addTransition(State); 1119 return; 1120 } 1121 } 1122 1123 const NullabilityState *TrackedNullability = 1124 State->get<NullabilityMap>(Region); 1125 1126 if (!TrackedNullability) { 1127 if (DestNullability != Nullability::Nullable) 1128 return; 1129 State = State->set<NullabilityMap>(Region, 1130 NullabilityState(DestNullability, CE)); 1131 C.addTransition(State); 1132 return; 1133 } 1134 1135 if (TrackedNullability->getValue() != DestNullability && 1136 TrackedNullability->getValue() != Nullability::Contradicted) { 1137 State = State->set<NullabilityMap>(Region, Nullability::Contradicted); 1138 C.addTransition(State); 1139 } 1140 } 1141 1142 /// For a given statement performing a bind, attempt to syntactically 1143 /// match the expression resulting in the bound value. 1144 static const Expr * matchValueExprForBind(const Stmt *S) { 1145 // For `x = e` the value expression is the right-hand side. 1146 if (auto *BinOp = dyn_cast<BinaryOperator>(S)) { 1147 if (BinOp->getOpcode() == BO_Assign) 1148 return BinOp->getRHS(); 1149 } 1150 1151 // For `int x = e` the value expression is the initializer. 1152 if (auto *DS = dyn_cast<DeclStmt>(S)) { 1153 if (DS->isSingleDecl()) { 1154 auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl()); 1155 if (!VD) 1156 return nullptr; 1157 1158 if (const Expr *Init = VD->getInit()) 1159 return Init; 1160 } 1161 } 1162 1163 return nullptr; 1164 } 1165 1166 /// Returns true if \param S is a DeclStmt for a local variable that 1167 /// ObjC automated reference counting initialized with zero. 1168 static bool isARCNilInitializedLocal(CheckerContext &C, const Stmt *S) { 1169 // We suppress diagnostics for ARC zero-initialized _Nonnull locals. This 1170 // prevents false positives when a _Nonnull local variable cannot be 1171 // initialized with an initialization expression: 1172 // NSString * _Nonnull s; // no-warning 1173 // @autoreleasepool { 1174 // s = ... 1175 // } 1176 // 1177 // FIXME: We should treat implicitly zero-initialized _Nonnull locals as 1178 // uninitialized in Sema's UninitializedValues analysis to warn when a use of 1179 // the zero-initialized definition will unexpectedly yield nil. 1180 1181 // Locals are only zero-initialized when automated reference counting 1182 // is turned on. 1183 if (!C.getASTContext().getLangOpts().ObjCAutoRefCount) 1184 return false; 1185 1186 auto *DS = dyn_cast<DeclStmt>(S); 1187 if (!DS || !DS->isSingleDecl()) 1188 return false; 1189 1190 auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl()); 1191 if (!VD) 1192 return false; 1193 1194 // Sema only zero-initializes locals with ObjCLifetimes. 1195 if(!VD->getType().getQualifiers().hasObjCLifetime()) 1196 return false; 1197 1198 const Expr *Init = VD->getInit(); 1199 assert(Init && "ObjC local under ARC without initializer"); 1200 1201 // Return false if the local is explicitly initialized (e.g., with '= nil'). 1202 if (!isa<ImplicitValueInitExpr>(Init)) 1203 return false; 1204 1205 return true; 1206 } 1207 1208 /// Propagate the nullability information through binds and warn when nullable 1209 /// pointer or null symbol is assigned to a pointer with a nonnull type. 1210 void NullabilityChecker::checkBind(SVal L, SVal V, const Stmt *S, 1211 CheckerContext &C) const { 1212 const TypedValueRegion *TVR = 1213 dyn_cast_or_null<TypedValueRegion>(L.getAsRegion()); 1214 if (!TVR) 1215 return; 1216 1217 QualType LocType = TVR->getValueType(); 1218 if (!LocType->isAnyPointerType()) 1219 return; 1220 1221 ProgramStateRef State = C.getState(); 1222 if (State->get<InvariantViolated>()) 1223 return; 1224 1225 auto ValDefOrUnknown = V.getAs<DefinedOrUnknownSVal>(); 1226 if (!ValDefOrUnknown) 1227 return; 1228 1229 NullConstraint RhsNullness = getNullConstraint(*ValDefOrUnknown, State); 1230 1231 Nullability ValNullability = Nullability::Unspecified; 1232 if (SymbolRef Sym = ValDefOrUnknown->getAsSymbol()) 1233 ValNullability = getNullabilityAnnotation(Sym->getType()); 1234 1235 Nullability LocNullability = getNullabilityAnnotation(LocType); 1236 1237 // If the type of the RHS expression is nonnull, don't warn. This 1238 // enables explicit suppression with a cast to nonnull. 1239 Nullability ValueExprTypeLevelNullability = Nullability::Unspecified; 1240 const Expr *ValueExpr = matchValueExprForBind(S); 1241 if (ValueExpr) { 1242 ValueExprTypeLevelNullability = 1243 getNullabilityAnnotation(lookThroughImplicitCasts(ValueExpr)->getType()); 1244 } 1245 1246 bool NullAssignedToNonNull = (LocNullability == Nullability::Nonnull && 1247 RhsNullness == NullConstraint::IsNull); 1248 if (ChecksEnabled[CK_NullPassedToNonnull] && NullAssignedToNonNull && 1249 ValNullability != Nullability::Nonnull && 1250 ValueExprTypeLevelNullability != Nullability::Nonnull && 1251 !isARCNilInitializedLocal(C, S)) { 1252 static CheckerProgramPointTag Tag(this, "NullPassedToNonnull"); 1253 ExplodedNode *N = C.generateErrorNode(State, &Tag); 1254 if (!N) 1255 return; 1256 1257 1258 const Stmt *ValueStmt = S; 1259 if (ValueExpr) 1260 ValueStmt = ValueExpr; 1261 1262 SmallString<256> SBuf; 1263 llvm::raw_svector_ostream OS(SBuf); 1264 OS << (LocType->isObjCObjectPointerType() ? "nil" : "Null"); 1265 OS << " assigned to a pointer which is expected to have non-null value"; 1266 reportBugIfInvariantHolds(OS.str(), ErrorKind::NilAssignedToNonnull, 1267 CK_NullPassedToNonnull, N, nullptr, C, ValueStmt); 1268 return; 1269 } 1270 1271 // If null was returned from a non-null function, mark the nullability 1272 // invariant as violated even if the diagnostic was suppressed. 1273 if (NullAssignedToNonNull) { 1274 State = State->set<InvariantViolated>(true); 1275 C.addTransition(State); 1276 return; 1277 } 1278 1279 // Intentionally missing case: '0' is bound to a reference. It is handled by 1280 // the DereferenceChecker. 1281 1282 const MemRegion *ValueRegion = getTrackRegion(*ValDefOrUnknown); 1283 if (!ValueRegion) 1284 return; 1285 1286 const NullabilityState *TrackedNullability = 1287 State->get<NullabilityMap>(ValueRegion); 1288 1289 if (TrackedNullability) { 1290 if (RhsNullness == NullConstraint::IsNotNull || 1291 TrackedNullability->getValue() != Nullability::Nullable) 1292 return; 1293 if (ChecksEnabled[CK_NullablePassedToNonnull] && 1294 LocNullability == Nullability::Nonnull) { 1295 static CheckerProgramPointTag Tag(this, "NullablePassedToNonnull"); 1296 ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag); 1297 reportBugIfInvariantHolds("Nullable pointer is assigned to a pointer " 1298 "which is expected to have non-null value", 1299 ErrorKind::NullableAssignedToNonnull, 1300 CK_NullablePassedToNonnull, N, ValueRegion, C); 1301 } 1302 return; 1303 } 1304 1305 const auto *BinOp = dyn_cast<BinaryOperator>(S); 1306 1307 if (ValNullability == Nullability::Nullable) { 1308 // Trust the static information of the value more than the static 1309 // information on the location. 1310 const Stmt *NullabilitySource = BinOp ? BinOp->getRHS() : S; 1311 State = State->set<NullabilityMap>( 1312 ValueRegion, NullabilityState(ValNullability, NullabilitySource)); 1313 C.addTransition(State); 1314 return; 1315 } 1316 1317 if (LocNullability == Nullability::Nullable) { 1318 const Stmt *NullabilitySource = BinOp ? BinOp->getLHS() : S; 1319 State = State->set<NullabilityMap>( 1320 ValueRegion, NullabilityState(LocNullability, NullabilitySource)); 1321 C.addTransition(State); 1322 } 1323 } 1324 1325 void NullabilityChecker::printState(raw_ostream &Out, ProgramStateRef State, 1326 const char *NL, const char *Sep) const { 1327 1328 NullabilityMapTy B = State->get<NullabilityMap>(); 1329 1330 if (State->get<InvariantViolated>()) 1331 Out << Sep << NL 1332 << "Nullability invariant was violated, warnings suppressed." << NL; 1333 1334 if (B.isEmpty()) 1335 return; 1336 1337 if (!State->get<InvariantViolated>()) 1338 Out << Sep << NL; 1339 1340 for (NullabilityMapTy::iterator I = B.begin(), E = B.end(); I != E; ++I) { 1341 Out << I->first << " : "; 1342 I->second.print(Out); 1343 Out << NL; 1344 } 1345 } 1346 1347 void ento::registerNullabilityBase(CheckerManager &mgr) { 1348 mgr.registerChecker<NullabilityChecker>(); 1349 } 1350 1351 bool ento::shouldRegisterNullabilityBase(const CheckerManager &mgr) { 1352 return true; 1353 } 1354 1355 #define REGISTER_CHECKER(name, trackingRequired) \ 1356 void ento::register##name##Checker(CheckerManager &mgr) { \ 1357 NullabilityChecker *checker = mgr.getChecker<NullabilityChecker>(); \ 1358 checker->ChecksEnabled[NullabilityChecker::CK_##name] = true; \ 1359 checker->CheckNames[NullabilityChecker::CK_##name] = \ 1360 mgr.getCurrentCheckerName(); \ 1361 checker->NeedTracking = checker->NeedTracking || trackingRequired; \ 1362 checker->NoDiagnoseCallsToSystemHeaders = \ 1363 checker->NoDiagnoseCallsToSystemHeaders || \ 1364 mgr.getAnalyzerOptions().getCheckerBooleanOption( \ 1365 checker, "NoDiagnoseCallsToSystemHeaders", true); \ 1366 } \ 1367 \ 1368 bool ento::shouldRegister##name##Checker(const CheckerManager &mgr) { \ 1369 return true; \ 1370 } 1371 1372 // The checks are likely to be turned on by default and it is possible to do 1373 // them without tracking any nullability related information. As an optimization 1374 // no nullability information will be tracked when only these two checks are 1375 // enables. 1376 REGISTER_CHECKER(NullPassedToNonnull, false) 1377 REGISTER_CHECKER(NullReturnedFromNonnull, false) 1378 1379 REGISTER_CHECKER(NullableDereferenced, true) 1380 REGISTER_CHECKER(NullablePassedToNonnull, true) 1381 REGISTER_CHECKER(NullableReturnedFromNonnull, true) 1382