//===-- NullabilityChecker.cpp - Nullability checker ----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This checker tries to find nullability violations. There are several kinds of // possible violations: // * Null pointer is passed to a pointer which has a _Nonnull type. // * Null pointer is returned from a function which has a _Nonnull return type. // * Nullable pointer is passed to a pointer which has a _Nonnull type. // * Nullable pointer is returned from a function which has a _Nonnull return // type. // * Nullable pointer is dereferenced. // // This checker propagates the nullability information of the pointers and looks // for the patterns that are described above. Explicit casts are trusted and are // considered a way to suppress false positives for this checker. The other way // to suppress warnings would be to add asserts or guarding if statements to the // code. In addition to the nullability propagation this checker also uses some // heuristics to suppress potential false positives. // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" #include "clang/StaticAnalyzer/Core/Checker.h" #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Path.h" using namespace clang; using namespace ento; namespace { /// Returns the most nullable nullability. This is used for message expressions /// like [receiver method], where the nullability of this expression is either /// the nullability of the receiver or the nullability of the return type of the /// method, depending on which is more nullable. Contradicted is considered to /// be the most nullable, to avoid false positive results. Nullability getMostNullable(Nullability Lhs, Nullability Rhs) { return static_cast( std::min(static_cast(Lhs), static_cast(Rhs))); } const char *getNullabilityString(Nullability Nullab) { switch (Nullab) { case Nullability::Contradicted: return "contradicted"; case Nullability::Nullable: return "nullable"; case Nullability::Unspecified: return "unspecified"; case Nullability::Nonnull: return "nonnull"; } llvm_unreachable("Unexpected enumeration."); return ""; } // These enums are used as an index to ErrorMessages array. enum class ErrorKind : int { NilAssignedToNonnull, NilPassedToNonnull, NilReturnedToNonnull, NullableAssignedToNonnull, NullableReturnedToNonnull, NullableDereferenced, NullablePassedToNonnull }; class NullabilityChecker : public Checker, check::PostCall, check::PostStmt, check::PostObjCMessage, check::DeadSymbols, eval::Assume, check::Location, check::Event> { public: // If true, the checker will not diagnose nullabilility issues for calls // to system headers. This option is motivated by the observation that large // projects may have many nullability warnings. These projects may // find warnings about nullability annotations that they have explicitly // added themselves higher priority to fix than warnings on calls to system // libraries. bool NoDiagnoseCallsToSystemHeaders = false; void checkBind(SVal L, SVal V, const Stmt *S, CheckerContext &C) const; void checkPostStmt(const ExplicitCastExpr *CE, CheckerContext &C) const; void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const; void checkPostCall(const CallEvent &Call, CheckerContext &C) const; void checkPreCall(const CallEvent &Call, CheckerContext &C) const; void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; void checkEvent(ImplicitNullDerefEvent Event) const; void checkLocation(SVal Location, bool IsLoad, const Stmt *S, CheckerContext &C) const; ProgramStateRef evalAssume(ProgramStateRef State, SVal Cond, bool Assumption) const; void printState(raw_ostream &Out, ProgramStateRef State, const char *NL, const char *Sep) const override; enum CheckKind { CK_NullPassedToNonnull, CK_NullReturnedFromNonnull, CK_NullableDereferenced, CK_NullablePassedToNonnull, CK_NullableReturnedFromNonnull, CK_NumCheckKinds }; bool ChecksEnabled[CK_NumCheckKinds] = {false}; CheckerNameRef CheckNames[CK_NumCheckKinds]; mutable std::unique_ptr BTs[CK_NumCheckKinds]; const std::unique_ptr &getBugType(CheckKind Kind) const { if (!BTs[Kind]) BTs[Kind].reset(new BugType(CheckNames[Kind], "Nullability", categories::MemoryError)); return BTs[Kind]; } // When set to false no nullability information will be tracked in // NullabilityMap. It is possible to catch errors like passing a null pointer // to a callee that expects nonnull argument without the information that is // stored in the NullabilityMap. This is an optimization. bool NeedTracking = false; private: class NullabilityBugVisitor : public BugReporterVisitor { public: NullabilityBugVisitor(const MemRegion *M) : Region(M) {} void Profile(llvm::FoldingSetNodeID &ID) const override { static int X = 0; ID.AddPointer(&X); ID.AddPointer(Region); } PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR) override; private: // The tracked region. const MemRegion *Region; }; /// When any of the nonnull arguments of the analyzed function is null, do not /// report anything and turn off the check. /// /// When \p SuppressPath is set to true, no more bugs will be reported on this /// path by this checker. void reportBugIfInvariantHolds(StringRef Msg, ErrorKind Error, CheckKind CK, ExplodedNode *N, const MemRegion *Region, CheckerContext &C, const Stmt *ValueExpr = nullptr, bool SuppressPath = false) const; void reportBug(StringRef Msg, ErrorKind Error, CheckKind CK, ExplodedNode *N, const MemRegion *Region, BugReporter &BR, const Stmt *ValueExpr = nullptr) const { const std::unique_ptr &BT = getBugType(CK); auto R = std::make_unique(*BT, Msg, N); if (Region) { R->markInteresting(Region); R->addVisitor(Region); } if (ValueExpr) { R->addRange(ValueExpr->getSourceRange()); if (Error == ErrorKind::NilAssignedToNonnull || Error == ErrorKind::NilPassedToNonnull || Error == ErrorKind::NilReturnedToNonnull) if (const auto *Ex = dyn_cast(ValueExpr)) bugreporter::trackExpressionValue(N, Ex, *R); } BR.emitReport(std::move(R)); } /// If an SVal wraps a region that should be tracked, it will return a pointer /// to the wrapped region. Otherwise it will return a nullptr. const SymbolicRegion *getTrackRegion(SVal Val, bool CheckSuperRegion = false) const; /// Returns true if the call is diagnosable in the current analyzer /// configuration. bool isDiagnosableCall(const CallEvent &Call) const { if (NoDiagnoseCallsToSystemHeaders && Call.isInSystemHeader()) return false; return true; } }; class NullabilityState { public: NullabilityState(Nullability Nullab, const Stmt *Source = nullptr) : Nullab(Nullab), Source(Source) {} const Stmt *getNullabilitySource() const { return Source; } Nullability getValue() const { return Nullab; } void Profile(llvm::FoldingSetNodeID &ID) const { ID.AddInteger(static_cast(Nullab)); ID.AddPointer(Source); } void print(raw_ostream &Out) const { Out << getNullabilityString(Nullab) << "\n"; } private: Nullability Nullab; // Source is the expression which determined the nullability. For example in a // message like [nullable nonnull_returning] has nullable nullability, because // the receiver is nullable. Here the receiver will be the source of the // nullability. This is useful information when the diagnostics are generated. const Stmt *Source; }; bool operator==(NullabilityState Lhs, NullabilityState Rhs) { return Lhs.getValue() == Rhs.getValue() && Lhs.getNullabilitySource() == Rhs.getNullabilitySource(); } // For the purpose of tracking historical property accesses, the key for lookup // is an object pointer (could be an instance or a class) paired with the unique // identifier for the property being invoked on that object. using ObjectPropPair = std::pair; // Metadata associated with the return value from a recorded property access. struct ConstrainedPropertyVal { // This will reference the conjured return SVal for some call // of the form [object property] DefinedOrUnknownSVal Value; // If the SVal has been determined to be nonnull, that is recorded here bool isConstrainedNonnull; ConstrainedPropertyVal(DefinedOrUnknownSVal SV) : Value(SV), isConstrainedNonnull(false) {} void Profile(llvm::FoldingSetNodeID &ID) const { Value.Profile(ID); ID.AddInteger(isConstrainedNonnull ? 1 : 0); } }; bool operator==(const ConstrainedPropertyVal &Lhs, const ConstrainedPropertyVal &Rhs) { return Lhs.Value == Rhs.Value && Lhs.isConstrainedNonnull == Rhs.isConstrainedNonnull; } } // end anonymous namespace REGISTER_MAP_WITH_PROGRAMSTATE(NullabilityMap, const MemRegion *, NullabilityState) REGISTER_MAP_WITH_PROGRAMSTATE(PropertyAccessesMap, ObjectPropPair, ConstrainedPropertyVal) // We say "the nullability type invariant is violated" when a location with a // non-null type contains NULL or a function with a non-null return type returns // NULL. Violations of the nullability type invariant can be detected either // directly (for example, when NULL is passed as an argument to a nonnull // parameter) or indirectly (for example, when, inside a function, the // programmer defensively checks whether a nonnull parameter contains NULL and // finds that it does). // // As a matter of policy, the nullability checker typically warns on direct // violations of the nullability invariant (although it uses various // heuristics to suppress warnings in some cases) but will not warn if the // invariant has already been violated along the path (either directly or // indirectly). As a practical matter, this prevents the analyzer from // (1) warning on defensive code paths where a nullability precondition is // determined to have been violated, (2) warning additional times after an // initial direct violation has been discovered, and (3) warning after a direct // violation that has been implicitly or explicitly suppressed (for // example, with a cast of NULL to _Nonnull). In essence, once an invariant // violation is detected on a path, this checker will be essentially turned off // for the rest of the analysis // // The analyzer takes this approach (rather than generating a sink node) to // ensure coverage of defensive paths, which may be important for backwards // compatibility in codebases that were developed without nullability in mind. REGISTER_TRAIT_WITH_PROGRAMSTATE(InvariantViolated, bool) enum class NullConstraint { IsNull, IsNotNull, Unknown }; static NullConstraint getNullConstraint(DefinedOrUnknownSVal Val, ProgramStateRef State) { ConditionTruthVal Nullness = State->isNull(Val); if (Nullness.isConstrainedFalse()) return NullConstraint::IsNotNull; if (Nullness.isConstrainedTrue()) return NullConstraint::IsNull; return NullConstraint::Unknown; } const SymbolicRegion * NullabilityChecker::getTrackRegion(SVal Val, bool CheckSuperRegion) const { if (!NeedTracking) return nullptr; auto RegionSVal = Val.getAs(); if (!RegionSVal) return nullptr; const MemRegion *Region = RegionSVal->getRegion(); if (CheckSuperRegion) { if (const SubRegion *FieldReg = Region->getAs()) { if (const auto *ER = dyn_cast(FieldReg->getSuperRegion())) FieldReg = ER; return dyn_cast(FieldReg->getSuperRegion()); } if (auto ElementReg = Region->getAs()) return dyn_cast(ElementReg->getSuperRegion()); } return dyn_cast(Region); } PathDiagnosticPieceRef NullabilityChecker::NullabilityBugVisitor::VisitNode( const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR) { ProgramStateRef State = N->getState(); ProgramStateRef StatePrev = N->getFirstPred()->getState(); const NullabilityState *TrackedNullab = State->get(Region); const NullabilityState *TrackedNullabPrev = StatePrev->get(Region); if (!TrackedNullab) return nullptr; if (TrackedNullabPrev && TrackedNullabPrev->getValue() == TrackedNullab->getValue()) return nullptr; // Retrieve the associated statement. const Stmt *S = TrackedNullab->getNullabilitySource(); if (!S || S->getBeginLoc().isInvalid()) { S = N->getStmtForDiagnostics(); } if (!S) return nullptr; std::string InfoText = (llvm::Twine("Nullability '") + getNullabilityString(TrackedNullab->getValue()) + "' is inferred") .str(); // Generate the extra diagnostic. PathDiagnosticLocation Pos(S, BRC.getSourceManager(), N->getLocationContext()); return std::make_shared(Pos, InfoText, true); } /// Returns true when the value stored at the given location has been /// constrained to null after being passed through an object of nonnnull type. static bool checkValueAtLValForInvariantViolation(ProgramStateRef State, SVal LV, QualType T) { if (getNullabilityAnnotation(T) != Nullability::Nonnull) return false; auto RegionVal = LV.getAs(); if (!RegionVal) return false; // If the value was constrained to null *after* it was passed through that // location, it could not have been a concrete pointer *when* it was passed. // In that case we would have handled the situation when the value was // bound to that location, by emitting (or not emitting) a report. // Therefore we are only interested in symbolic regions that can be either // null or non-null depending on the value of their respective symbol. auto StoredVal = State->getSVal(*RegionVal).getAs(); if (!StoredVal || !isa(StoredVal->getRegion())) return false; if (getNullConstraint(*StoredVal, State) == NullConstraint::IsNull) return true; return false; } static bool checkParamsForPreconditionViolation(ArrayRef Params, ProgramStateRef State, const LocationContext *LocCtxt) { for (const auto *ParamDecl : Params) { if (ParamDecl->isParameterPack()) break; SVal LV = State->getLValue(ParamDecl, LocCtxt); if (checkValueAtLValForInvariantViolation(State, LV, ParamDecl->getType())) { return true; } } return false; } static bool checkSelfIvarsForInvariantViolation(ProgramStateRef State, const LocationContext *LocCtxt) { auto *MD = dyn_cast(LocCtxt->getDecl()); if (!MD || !MD->isInstanceMethod()) return false; const ImplicitParamDecl *SelfDecl = LocCtxt->getSelfDecl(); if (!SelfDecl) return false; SVal SelfVal = State->getSVal(State->getRegion(SelfDecl, LocCtxt)); const ObjCObjectPointerType *SelfType = dyn_cast(SelfDecl->getType()); if (!SelfType) return false; const ObjCInterfaceDecl *ID = SelfType->getInterfaceDecl(); if (!ID) return false; for (const auto *IvarDecl : ID->ivars()) { SVal LV = State->getLValue(IvarDecl, SelfVal); if (checkValueAtLValForInvariantViolation(State, LV, IvarDecl->getType())) { return true; } } return false; } static bool checkInvariantViolation(ProgramStateRef State, ExplodedNode *N, CheckerContext &C) { if (State->get()) return true; const LocationContext *LocCtxt = C.getLocationContext(); const Decl *D = LocCtxt->getDecl(); if (!D) return false; ArrayRef Params; if (const auto *BD = dyn_cast(D)) Params = BD->parameters(); else if (const auto *FD = dyn_cast(D)) Params = FD->parameters(); else if (const auto *MD = dyn_cast(D)) Params = MD->parameters(); else return false; if (checkParamsForPreconditionViolation(Params, State, LocCtxt) || checkSelfIvarsForInvariantViolation(State, LocCtxt)) { if (!N->isSink()) C.addTransition(State->set(true), N); return true; } return false; } void NullabilityChecker::reportBugIfInvariantHolds( StringRef Msg, ErrorKind Error, CheckKind CK, ExplodedNode *N, const MemRegion *Region, CheckerContext &C, const Stmt *ValueExpr, bool SuppressPath) const { ProgramStateRef OriginalState = N->getState(); if (checkInvariantViolation(OriginalState, N, C)) return; if (SuppressPath) { OriginalState = OriginalState->set(true); N = C.addTransition(OriginalState, N); } reportBug(Msg, Error, CK, N, Region, C.getBugReporter(), ValueExpr); } /// Cleaning up the program state. void NullabilityChecker::checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const { ProgramStateRef State = C.getState(); NullabilityMapTy Nullabilities = State->get(); for (NullabilityMapTy::iterator I = Nullabilities.begin(), E = Nullabilities.end(); I != E; ++I) { const auto *Region = I->first->getAs(); assert(Region && "Non-symbolic region is tracked."); if (SR.isDead(Region->getSymbol())) { State = State->remove(I->first); } } // When an object goes out of scope, we can free the history associated // with any property accesses on that object PropertyAccessesMapTy PropertyAccesses = State->get(); for (PropertyAccessesMapTy::iterator I = PropertyAccesses.begin(), E = PropertyAccesses.end(); I != E; ++I) { const MemRegion *ReceiverRegion = I->first.first; if (!SR.isLiveRegion(ReceiverRegion)) { State = State->remove(I->first); } } // When one of the nonnull arguments are constrained to be null, nullability // preconditions are violated. It is not enough to check this only when we // actually report an error, because at that time interesting symbols might be // reaped. if (checkInvariantViolation(State, C.getPredecessor(), C)) return; C.addTransition(State); } /// This callback triggers when a pointer is dereferenced and the analyzer does /// not know anything about the value of that pointer. When that pointer is /// nullable, this code emits a warning. void NullabilityChecker::checkEvent(ImplicitNullDerefEvent Event) const { if (Event.SinkNode->getState()->get()) return; const MemRegion *Region = getTrackRegion(Event.Location, /*CheckSuperRegion=*/true); if (!Region) return; ProgramStateRef State = Event.SinkNode->getState(); const NullabilityState *TrackedNullability = State->get(Region); if (!TrackedNullability) return; if (ChecksEnabled[CK_NullableDereferenced] && TrackedNullability->getValue() == Nullability::Nullable) { BugReporter &BR = *Event.BR; // Do not suppress errors on defensive code paths, because dereferencing // a nullable pointer is always an error. if (Event.IsDirectDereference) reportBug("Nullable pointer is dereferenced", ErrorKind::NullableDereferenced, CK_NullableDereferenced, Event.SinkNode, Region, BR); else { reportBug("Nullable pointer is passed to a callee that requires a " "non-null", ErrorKind::NullablePassedToNonnull, CK_NullableDereferenced, Event.SinkNode, Region, BR); } } } // Whenever we see a load from a typed memory region that's been annotated as // 'nonnull', we want to trust the user on that and assume that it is is indeed // non-null. // // We do so even if the value is known to have been assigned to null. // The user should be warned on assigning the null value to a non-null pointer // as opposed to warning on the later dereference of this pointer. // // \code // int * _Nonnull var = 0; // we want to warn the user here... // // . . . // *var = 42; // ...and not here // \endcode void NullabilityChecker::checkLocation(SVal Location, bool IsLoad, const Stmt *S, CheckerContext &Context) const { // We should care only about loads. // The main idea is to add a constraint whenever we're loading a value from // an annotated pointer type. if (!IsLoad) return; // Annotations that we want to consider make sense only for types. const auto *Region = dyn_cast_or_null(Location.getAsRegion()); if (!Region) return; ProgramStateRef State = Context.getState(); auto StoredVal = State->getSVal(Region).getAs(); if (!StoredVal) return; Nullability NullabilityOfTheLoadedValue = getNullabilityAnnotation(Region->getValueType()); if (NullabilityOfTheLoadedValue == Nullability::Nonnull) { // It doesn't matter what we think about this particular pointer, it should // be considered non-null as annotated by the developer. if (ProgramStateRef NewState = State->assume(*StoredVal, true)) { Context.addTransition(NewState); } } } /// Find the outermost subexpression of E that is not an implicit cast. /// This looks through the implicit casts to _Nonnull that ARC adds to /// return expressions of ObjC types when the return type of the function or /// method is non-null but the express is not. static const Expr *lookThroughImplicitCasts(const Expr *E) { return E->IgnoreImpCasts(); } /// This method check when nullable pointer or null value is returned from a /// function that has nonnull return type. void NullabilityChecker::checkPreStmt(const ReturnStmt *S, CheckerContext &C) const { auto RetExpr = S->getRetValue(); if (!RetExpr) return; if (!RetExpr->getType()->isAnyPointerType()) return; ProgramStateRef State = C.getState(); if (State->get()) return; auto RetSVal = C.getSVal(S).getAs(); if (!RetSVal) return; bool InSuppressedMethodFamily = false; QualType RequiredRetType; AnalysisDeclContext *DeclCtxt = C.getLocationContext()->getAnalysisDeclContext(); const Decl *D = DeclCtxt->getDecl(); if (auto *MD = dyn_cast(D)) { // HACK: This is a big hammer to avoid warning when there are defensive // nil checks in -init and -copy methods. We should add more sophisticated // logic here to suppress on common defensive idioms but still // warn when there is a likely problem. ObjCMethodFamily Family = MD->getMethodFamily(); if (OMF_init == Family || OMF_copy == Family || OMF_mutableCopy == Family) InSuppressedMethodFamily = true; RequiredRetType = MD->getReturnType(); } else if (auto *FD = dyn_cast(D)) { RequiredRetType = FD->getReturnType(); } else { return; } NullConstraint Nullness = getNullConstraint(*RetSVal, State); Nullability RequiredNullability = getNullabilityAnnotation(RequiredRetType); // If the returned value is null but the type of the expression // generating it is nonnull then we will suppress the diagnostic. // This enables explicit suppression when returning a nil literal in a // function with a _Nonnull return type: // return (NSString * _Nonnull)0; Nullability RetExprTypeLevelNullability = getNullabilityAnnotation(lookThroughImplicitCasts(RetExpr)->getType()); bool NullReturnedFromNonNull = (RequiredNullability == Nullability::Nonnull && Nullness == NullConstraint::IsNull); if (ChecksEnabled[CK_NullReturnedFromNonnull] && NullReturnedFromNonNull && RetExprTypeLevelNullability != Nullability::Nonnull && !InSuppressedMethodFamily && C.getLocationContext()->inTopFrame()) { static CheckerProgramPointTag Tag(this, "NullReturnedFromNonnull"); ExplodedNode *N = C.generateErrorNode(State, &Tag); if (!N) return; SmallString<256> SBuf; llvm::raw_svector_ostream OS(SBuf); OS << (RetExpr->getType()->isObjCObjectPointerType() ? "nil" : "Null"); OS << " returned from a " << C.getDeclDescription(D) << " that is expected to return a non-null value"; reportBugIfInvariantHolds(OS.str(), ErrorKind::NilReturnedToNonnull, CK_NullReturnedFromNonnull, N, nullptr, C, RetExpr); return; } // If null was returned from a non-null function, mark the nullability // invariant as violated even if the diagnostic was suppressed. if (NullReturnedFromNonNull) { State = State->set(true); C.addTransition(State); return; } const MemRegion *Region = getTrackRegion(*RetSVal); if (!Region) return; const NullabilityState *TrackedNullability = State->get(Region); if (TrackedNullability) { Nullability TrackedNullabValue = TrackedNullability->getValue(); if (ChecksEnabled[CK_NullableReturnedFromNonnull] && Nullness != NullConstraint::IsNotNull && TrackedNullabValue == Nullability::Nullable && RequiredNullability == Nullability::Nonnull) { static CheckerProgramPointTag Tag(this, "NullableReturnedFromNonnull"); ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag); SmallString<256> SBuf; llvm::raw_svector_ostream OS(SBuf); OS << "Nullable pointer is returned from a " << C.getDeclDescription(D) << " that is expected to return a non-null value"; reportBugIfInvariantHolds(OS.str(), ErrorKind::NullableReturnedToNonnull, CK_NullableReturnedFromNonnull, N, Region, C); } return; } if (RequiredNullability == Nullability::Nullable) { State = State->set(Region, NullabilityState(RequiredNullability, S)); C.addTransition(State); } } /// This callback warns when a nullable pointer or a null value is passed to a /// function that expects its argument to be nonnull. void NullabilityChecker::checkPreCall(const CallEvent &Call, CheckerContext &C) const { if (!Call.getDecl()) return; ProgramStateRef State = C.getState(); if (State->get()) return; ProgramStateRef OrigState = State; unsigned Idx = 0; for (const ParmVarDecl *Param : Call.parameters()) { if (Param->isParameterPack()) break; if (Idx >= Call.getNumArgs()) break; const Expr *ArgExpr = Call.getArgExpr(Idx); auto ArgSVal = Call.getArgSVal(Idx++).getAs(); if (!ArgSVal) continue; if (!Param->getType()->isAnyPointerType() && !Param->getType()->isReferenceType()) continue; NullConstraint Nullness = getNullConstraint(*ArgSVal, State); Nullability RequiredNullability = getNullabilityAnnotation(Param->getType()); Nullability ArgExprTypeLevelNullability = getNullabilityAnnotation(ArgExpr->getType()); unsigned ParamIdx = Param->getFunctionScopeIndex() + 1; if (ChecksEnabled[CK_NullPassedToNonnull] && Nullness == NullConstraint::IsNull && ArgExprTypeLevelNullability != Nullability::Nonnull && RequiredNullability == Nullability::Nonnull && isDiagnosableCall(Call)) { ExplodedNode *N = C.generateErrorNode(State); if (!N) return; SmallString<256> SBuf; llvm::raw_svector_ostream OS(SBuf); OS << (Param->getType()->isObjCObjectPointerType() ? "nil" : "Null"); OS << " passed to a callee that requires a non-null " << ParamIdx << llvm::getOrdinalSuffix(ParamIdx) << " parameter"; reportBugIfInvariantHolds(OS.str(), ErrorKind::NilPassedToNonnull, CK_NullPassedToNonnull, N, nullptr, C, ArgExpr, /*SuppressPath=*/false); return; } const MemRegion *Region = getTrackRegion(*ArgSVal); if (!Region) continue; const NullabilityState *TrackedNullability = State->get(Region); if (TrackedNullability) { if (Nullness == NullConstraint::IsNotNull || TrackedNullability->getValue() != Nullability::Nullable) continue; if (ChecksEnabled[CK_NullablePassedToNonnull] && RequiredNullability == Nullability::Nonnull && isDiagnosableCall(Call)) { ExplodedNode *N = C.addTransition(State); SmallString<256> SBuf; llvm::raw_svector_ostream OS(SBuf); OS << "Nullable pointer is passed to a callee that requires a non-null " << ParamIdx << llvm::getOrdinalSuffix(ParamIdx) << " parameter"; reportBugIfInvariantHolds(OS.str(), ErrorKind::NullablePassedToNonnull, CK_NullablePassedToNonnull, N, Region, C, ArgExpr, /*SuppressPath=*/true); return; } if (ChecksEnabled[CK_NullableDereferenced] && Param->getType()->isReferenceType()) { ExplodedNode *N = C.addTransition(State); reportBugIfInvariantHolds("Nullable pointer is dereferenced", ErrorKind::NullableDereferenced, CK_NullableDereferenced, N, Region, C, ArgExpr, /*SuppressPath=*/true); return; } continue; } } if (State != OrigState) C.addTransition(State); } /// Suppress the nullability warnings for some functions. void NullabilityChecker::checkPostCall(const CallEvent &Call, CheckerContext &C) const { auto Decl = Call.getDecl(); if (!Decl) return; // ObjC Messages handles in a different callback. if (Call.getKind() == CE_ObjCMessage) return; const FunctionType *FuncType = Decl->getFunctionType(); if (!FuncType) return; QualType ReturnType = FuncType->getReturnType(); if (!ReturnType->isAnyPointerType()) return; ProgramStateRef State = C.getState(); if (State->get()) return; const MemRegion *Region = getTrackRegion(Call.getReturnValue()); if (!Region) return; // CG headers are misannotated. Do not warn for symbols that are the results // of CG calls. const SourceManager &SM = C.getSourceManager(); StringRef FilePath = SM.getFilename(SM.getSpellingLoc(Decl->getBeginLoc())); if (llvm::sys::path::filename(FilePath).startswith("CG")) { State = State->set(Region, Nullability::Contradicted); C.addTransition(State); return; } const NullabilityState *TrackedNullability = State->get(Region); if (!TrackedNullability && getNullabilityAnnotation(ReturnType) == Nullability::Nullable) { State = State->set(Region, Nullability::Nullable); C.addTransition(State); } } static Nullability getReceiverNullability(const ObjCMethodCall &M, ProgramStateRef State) { if (M.isReceiverSelfOrSuper()) { // For super and super class receivers we assume that the receiver is // nonnull. return Nullability::Nonnull; } // Otherwise look up nullability in the state. SVal Receiver = M.getReceiverSVal(); if (auto DefOrUnknown = Receiver.getAs()) { // If the receiver is constrained to be nonnull, assume that it is nonnull // regardless of its type. NullConstraint Nullness = getNullConstraint(*DefOrUnknown, State); if (Nullness == NullConstraint::IsNotNull) return Nullability::Nonnull; } auto ValueRegionSVal = Receiver.getAs(); if (ValueRegionSVal) { const MemRegion *SelfRegion = ValueRegionSVal->getRegion(); assert(SelfRegion); const NullabilityState *TrackedSelfNullability = State->get(SelfRegion); if (TrackedSelfNullability) return TrackedSelfNullability->getValue(); } return Nullability::Unspecified; } // The return value of a property access is typically a temporary value which // will not be tracked in a persistent manner by the analyzer. We use // evalAssume() in order to immediately record constraints on those temporaries // at the time they are imposed (e.g. by a nil-check conditional). ProgramStateRef NullabilityChecker::evalAssume(ProgramStateRef State, SVal Cond, bool Assumption) const { PropertyAccessesMapTy PropertyAccesses = State->get(); for (PropertyAccessesMapTy::iterator I = PropertyAccesses.begin(), E = PropertyAccesses.end(); I != E; ++I) { if (!I->second.isConstrainedNonnull) { ConditionTruthVal IsNonNull = State->isNonNull(I->second.Value); if (IsNonNull.isConstrainedTrue()) { ConstrainedPropertyVal Replacement = I->second; Replacement.isConstrainedNonnull = true; State = State->set(I->first, Replacement); } else if (IsNonNull.isConstrainedFalse()) { // Space optimization: no point in tracking constrained-null cases State = State->remove(I->first); } } } return State; } /// Calculate the nullability of the result of a message expr based on the /// nullability of the receiver, the nullability of the return value, and the /// constraints. void NullabilityChecker::checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const { auto Decl = M.getDecl(); if (!Decl) return; QualType RetType = Decl->getReturnType(); if (!RetType->isAnyPointerType()) return; ProgramStateRef State = C.getState(); if (State->get()) return; const MemRegion *ReturnRegion = getTrackRegion(M.getReturnValue()); if (!ReturnRegion) return; auto Interface = Decl->getClassInterface(); auto Name = Interface ? Interface->getName() : ""; // In order to reduce the noise in the diagnostics generated by this checker, // some framework and programming style based heuristics are used. These // heuristics are for Cocoa APIs which have NS prefix. if (Name.startswith("NS")) { // Developers rely on dynamic invariants such as an item should be available // in a collection, or a collection is not empty often. Those invariants can // not be inferred by any static analysis tool. To not to bother the users // with too many false positives, every item retrieval function should be // ignored for collections. The instance methods of dictionaries in Cocoa // are either item retrieval related or not interesting nullability wise. // Using this fact, to keep the code easier to read just ignore the return // value of every instance method of dictionaries. if (M.isInstanceMessage() && Name.contains("Dictionary")) { State = State->set(ReturnRegion, Nullability::Contradicted); C.addTransition(State); return; } // For similar reasons ignore some methods of Cocoa arrays. StringRef FirstSelectorSlot = M.getSelector().getNameForSlot(0); if (Name.contains("Array") && (FirstSelectorSlot == "firstObject" || FirstSelectorSlot == "lastObject")) { State = State->set(ReturnRegion, Nullability::Contradicted); C.addTransition(State); return; } // Encoding related methods of string should not fail when lossless // encodings are used. Using lossless encodings is so frequent that ignoring // this class of methods reduced the emitted diagnostics by about 30% on // some projects (and all of that was false positives). if (Name.contains("String")) { for (auto *Param : M.parameters()) { if (Param->getName() == "encoding") { State = State->set(ReturnRegion, Nullability::Contradicted); C.addTransition(State); return; } } } } const ObjCMessageExpr *Message = M.getOriginExpr(); Nullability SelfNullability = getReceiverNullability(M, State); const NullabilityState *NullabilityOfReturn = State->get(ReturnRegion); if (NullabilityOfReturn) { // When we have a nullability tracked for the return value, the nullability // of the expression will be the most nullable of the receiver and the // return value. Nullability RetValTracked = NullabilityOfReturn->getValue(); Nullability ComputedNullab = getMostNullable(RetValTracked, SelfNullability); if (ComputedNullab != RetValTracked && ComputedNullab != Nullability::Unspecified) { const Stmt *NullabilitySource = ComputedNullab == RetValTracked ? NullabilityOfReturn->getNullabilitySource() : Message->getInstanceReceiver(); State = State->set( ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource)); C.addTransition(State); } return; } // No tracked information. Use static type information for return value. Nullability RetNullability = getNullabilityAnnotation(RetType); // Properties might be computed, which means the property value could // theoretically change between calls even in commonly-observed cases like // this: // // if (foo.prop) { // ok, it's nonnull here... // [bar doStuffWithNonnullVal:foo.prop]; // ...but what about // here? // } // // If the property is nullable-annotated, a naive analysis would lead to many // false positives despite the presence of probably-correct nil-checks. To // reduce the false positive rate, we maintain a history of the most recently // observed property value. For each property access, if the prior value has // been constrained to be not nil then we will conservatively assume that the // next access can be inferred as nonnull. if (RetNullability != Nullability::Nonnull && M.getMessageKind() == OCM_PropertyAccess && !C.wasInlined) { bool LookupResolved = false; if (const MemRegion *ReceiverRegion = getTrackRegion(M.getReceiverSVal())) { if (IdentifierInfo *Ident = M.getSelector().getIdentifierInfoForSlot(0)) { LookupResolved = true; ObjectPropPair Key = std::make_pair(ReceiverRegion, Ident); const ConstrainedPropertyVal *PrevPropVal = State->get(Key); if (PrevPropVal && PrevPropVal->isConstrainedNonnull) { RetNullability = Nullability::Nonnull; } else { // If a previous property access was constrained as nonnull, we hold // on to that constraint (effectively inferring that all subsequent // accesses on that code path can be inferred as nonnull). If the // previous property access was *not* constrained as nonnull, then // let's throw it away in favor of keeping the SVal associated with // this more recent access. if (auto ReturnSVal = M.getReturnValue().getAs()) { State = State->set( Key, ConstrainedPropertyVal(*ReturnSVal)); } } } } if (!LookupResolved) { // Fallback: err on the side of suppressing the false positive. RetNullability = Nullability::Nonnull; } } Nullability ComputedNullab = getMostNullable(RetNullability, SelfNullability); if (ComputedNullab == Nullability::Nullable) { const Stmt *NullabilitySource = ComputedNullab == RetNullability ? Message : Message->getInstanceReceiver(); State = State->set( ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource)); C.addTransition(State); } } /// Explicit casts are trusted. If there is a disagreement in the nullability /// annotations in the destination and the source or '0' is casted to nonnull /// track the value as having contraditory nullability. This will allow users to /// suppress warnings. void NullabilityChecker::checkPostStmt(const ExplicitCastExpr *CE, CheckerContext &C) const { QualType OriginType = CE->getSubExpr()->getType(); QualType DestType = CE->getType(); if (!OriginType->isAnyPointerType()) return; if (!DestType->isAnyPointerType()) return; ProgramStateRef State = C.getState(); if (State->get()) return; Nullability DestNullability = getNullabilityAnnotation(DestType); // No explicit nullability in the destination type, so this cast does not // change the nullability. if (DestNullability == Nullability::Unspecified) return; auto RegionSVal = C.getSVal(CE).getAs(); const MemRegion *Region = getTrackRegion(*RegionSVal); if (!Region) return; // When 0 is converted to nonnull mark it as contradicted. if (DestNullability == Nullability::Nonnull) { NullConstraint Nullness = getNullConstraint(*RegionSVal, State); if (Nullness == NullConstraint::IsNull) { State = State->set(Region, Nullability::Contradicted); C.addTransition(State); return; } } const NullabilityState *TrackedNullability = State->get(Region); if (!TrackedNullability) { if (DestNullability != Nullability::Nullable) return; State = State->set(Region, NullabilityState(DestNullability, CE)); C.addTransition(State); return; } if (TrackedNullability->getValue() != DestNullability && TrackedNullability->getValue() != Nullability::Contradicted) { State = State->set(Region, Nullability::Contradicted); C.addTransition(State); } } /// For a given statement performing a bind, attempt to syntactically /// match the expression resulting in the bound value. static const Expr * matchValueExprForBind(const Stmt *S) { // For `x = e` the value expression is the right-hand side. if (auto *BinOp = dyn_cast(S)) { if (BinOp->getOpcode() == BO_Assign) return BinOp->getRHS(); } // For `int x = e` the value expression is the initializer. if (auto *DS = dyn_cast(S)) { if (DS->isSingleDecl()) { auto *VD = dyn_cast(DS->getSingleDecl()); if (!VD) return nullptr; if (const Expr *Init = VD->getInit()) return Init; } } return nullptr; } /// Returns true if \param S is a DeclStmt for a local variable that /// ObjC automated reference counting initialized with zero. static bool isARCNilInitializedLocal(CheckerContext &C, const Stmt *S) { // We suppress diagnostics for ARC zero-initialized _Nonnull locals. This // prevents false positives when a _Nonnull local variable cannot be // initialized with an initialization expression: // NSString * _Nonnull s; // no-warning // @autoreleasepool { // s = ... // } // // FIXME: We should treat implicitly zero-initialized _Nonnull locals as // uninitialized in Sema's UninitializedValues analysis to warn when a use of // the zero-initialized definition will unexpectedly yield nil. // Locals are only zero-initialized when automated reference counting // is turned on. if (!C.getASTContext().getLangOpts().ObjCAutoRefCount) return false; auto *DS = dyn_cast(S); if (!DS || !DS->isSingleDecl()) return false; auto *VD = dyn_cast(DS->getSingleDecl()); if (!VD) return false; // Sema only zero-initializes locals with ObjCLifetimes. if(!VD->getType().getQualifiers().hasObjCLifetime()) return false; const Expr *Init = VD->getInit(); assert(Init && "ObjC local under ARC without initializer"); // Return false if the local is explicitly initialized (e.g., with '= nil'). if (!isa(Init)) return false; return true; } /// Propagate the nullability information through binds and warn when nullable /// pointer or null symbol is assigned to a pointer with a nonnull type. void NullabilityChecker::checkBind(SVal L, SVal V, const Stmt *S, CheckerContext &C) const { const TypedValueRegion *TVR = dyn_cast_or_null(L.getAsRegion()); if (!TVR) return; QualType LocType = TVR->getValueType(); if (!LocType->isAnyPointerType()) return; ProgramStateRef State = C.getState(); if (State->get()) return; auto ValDefOrUnknown = V.getAs(); if (!ValDefOrUnknown) return; NullConstraint RhsNullness = getNullConstraint(*ValDefOrUnknown, State); Nullability ValNullability = Nullability::Unspecified; if (SymbolRef Sym = ValDefOrUnknown->getAsSymbol()) ValNullability = getNullabilityAnnotation(Sym->getType()); Nullability LocNullability = getNullabilityAnnotation(LocType); // If the type of the RHS expression is nonnull, don't warn. This // enables explicit suppression with a cast to nonnull. Nullability ValueExprTypeLevelNullability = Nullability::Unspecified; const Expr *ValueExpr = matchValueExprForBind(S); if (ValueExpr) { ValueExprTypeLevelNullability = getNullabilityAnnotation(lookThroughImplicitCasts(ValueExpr)->getType()); } bool NullAssignedToNonNull = (LocNullability == Nullability::Nonnull && RhsNullness == NullConstraint::IsNull); if (ChecksEnabled[CK_NullPassedToNonnull] && NullAssignedToNonNull && ValNullability != Nullability::Nonnull && ValueExprTypeLevelNullability != Nullability::Nonnull && !isARCNilInitializedLocal(C, S)) { static CheckerProgramPointTag Tag(this, "NullPassedToNonnull"); ExplodedNode *N = C.generateErrorNode(State, &Tag); if (!N) return; const Stmt *ValueStmt = S; if (ValueExpr) ValueStmt = ValueExpr; SmallString<256> SBuf; llvm::raw_svector_ostream OS(SBuf); OS << (LocType->isObjCObjectPointerType() ? "nil" : "Null"); OS << " assigned to a pointer which is expected to have non-null value"; reportBugIfInvariantHolds(OS.str(), ErrorKind::NilAssignedToNonnull, CK_NullPassedToNonnull, N, nullptr, C, ValueStmt); return; } // If null was returned from a non-null function, mark the nullability // invariant as violated even if the diagnostic was suppressed. if (NullAssignedToNonNull) { State = State->set(true); C.addTransition(State); return; } // Intentionally missing case: '0' is bound to a reference. It is handled by // the DereferenceChecker. const MemRegion *ValueRegion = getTrackRegion(*ValDefOrUnknown); if (!ValueRegion) return; const NullabilityState *TrackedNullability = State->get(ValueRegion); if (TrackedNullability) { if (RhsNullness == NullConstraint::IsNotNull || TrackedNullability->getValue() != Nullability::Nullable) return; if (ChecksEnabled[CK_NullablePassedToNonnull] && LocNullability == Nullability::Nonnull) { static CheckerProgramPointTag Tag(this, "NullablePassedToNonnull"); ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag); reportBugIfInvariantHolds("Nullable pointer is assigned to a pointer " "which is expected to have non-null value", ErrorKind::NullableAssignedToNonnull, CK_NullablePassedToNonnull, N, ValueRegion, C); } return; } const auto *BinOp = dyn_cast(S); if (ValNullability == Nullability::Nullable) { // Trust the static information of the value more than the static // information on the location. const Stmt *NullabilitySource = BinOp ? BinOp->getRHS() : S; State = State->set( ValueRegion, NullabilityState(ValNullability, NullabilitySource)); C.addTransition(State); return; } if (LocNullability == Nullability::Nullable) { const Stmt *NullabilitySource = BinOp ? BinOp->getLHS() : S; State = State->set( ValueRegion, NullabilityState(LocNullability, NullabilitySource)); C.addTransition(State); } } void NullabilityChecker::printState(raw_ostream &Out, ProgramStateRef State, const char *NL, const char *Sep) const { NullabilityMapTy B = State->get(); if (State->get()) Out << Sep << NL << "Nullability invariant was violated, warnings suppressed." << NL; if (B.isEmpty()) return; if (!State->get()) Out << Sep << NL; for (NullabilityMapTy::iterator I = B.begin(), E = B.end(); I != E; ++I) { Out << I->first << " : "; I->second.print(Out); Out << NL; } } void ento::registerNullabilityBase(CheckerManager &mgr) { mgr.registerChecker(); } bool ento::shouldRegisterNullabilityBase(const CheckerManager &mgr) { return true; } #define REGISTER_CHECKER(name, trackingRequired) \ void ento::register##name##Checker(CheckerManager &mgr) { \ NullabilityChecker *checker = mgr.getChecker(); \ checker->ChecksEnabled[NullabilityChecker::CK_##name] = true; \ checker->CheckNames[NullabilityChecker::CK_##name] = \ mgr.getCurrentCheckerName(); \ checker->NeedTracking = checker->NeedTracking || trackingRequired; \ checker->NoDiagnoseCallsToSystemHeaders = \ checker->NoDiagnoseCallsToSystemHeaders || \ mgr.getAnalyzerOptions().getCheckerBooleanOption( \ checker, "NoDiagnoseCallsToSystemHeaders", true); \ } \ \ bool ento::shouldRegister##name##Checker(const CheckerManager &mgr) { \ return true; \ } // The checks are likely to be turned on by default and it is possible to do // them without tracking any nullability related information. As an optimization // no nullability information will be tracked when only these two checks are // enables. REGISTER_CHECKER(NullPassedToNonnull, false) REGISTER_CHECKER(NullReturnedFromNonnull, false) REGISTER_CHECKER(NullableDereferenced, true) REGISTER_CHECKER(NullablePassedToNonnull, true) REGISTER_CHECKER(NullableReturnedFromNonnull, true)