xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaStmtAsm.cpp (revision 51015e6d0f570239b0c2088dc6cf2b018928375d)
1 //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for inline asm statements.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ExprCXX.h"
14 #include "clang/AST/GlobalDecl.h"
15 #include "clang/AST/RecordLayout.h"
16 #include "clang/AST/TypeLoc.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Lex/Preprocessor.h"
19 #include "clang/Sema/Initialization.h"
20 #include "clang/Sema/Lookup.h"
21 #include "clang/Sema/Scope.h"
22 #include "clang/Sema/ScopeInfo.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/StringSet.h"
26 #include "llvm/MC/MCParser/MCAsmParser.h"
27 using namespace clang;
28 using namespace sema;
29 
30 /// Remove the upper-level LValueToRValue cast from an expression.
31 static void removeLValueToRValueCast(Expr *E) {
32   Expr *Parent = E;
33   Expr *ExprUnderCast = nullptr;
34   SmallVector<Expr *, 8> ParentsToUpdate;
35 
36   while (true) {
37     ParentsToUpdate.push_back(Parent);
38     if (auto *ParenE = dyn_cast<ParenExpr>(Parent)) {
39       Parent = ParenE->getSubExpr();
40       continue;
41     }
42 
43     Expr *Child = nullptr;
44     CastExpr *ParentCast = dyn_cast<CastExpr>(Parent);
45     if (ParentCast)
46       Child = ParentCast->getSubExpr();
47     else
48       return;
49 
50     if (auto *CastE = dyn_cast<CastExpr>(Child))
51       if (CastE->getCastKind() == CK_LValueToRValue) {
52         ExprUnderCast = CastE->getSubExpr();
53         // LValueToRValue cast inside GCCAsmStmt requires an explicit cast.
54         ParentCast->setSubExpr(ExprUnderCast);
55         break;
56       }
57     Parent = Child;
58   }
59 
60   // Update parent expressions to have same ValueType as the underlying.
61   assert(ExprUnderCast &&
62          "Should be reachable only if LValueToRValue cast was found!");
63   auto ValueKind = ExprUnderCast->getValueKind();
64   for (Expr *E : ParentsToUpdate)
65     E->setValueKind(ValueKind);
66 }
67 
68 /// Emit a warning about usage of "noop"-like casts for lvalues (GNU extension)
69 /// and fix the argument with removing LValueToRValue cast from the expression.
70 static void emitAndFixInvalidAsmCastLValue(const Expr *LVal, Expr *BadArgument,
71                                            Sema &S) {
72   if (!S.getLangOpts().HeinousExtensions) {
73     S.Diag(LVal->getBeginLoc(), diag::err_invalid_asm_cast_lvalue)
74         << BadArgument->getSourceRange();
75   } else {
76     S.Diag(LVal->getBeginLoc(), diag::warn_invalid_asm_cast_lvalue)
77         << BadArgument->getSourceRange();
78   }
79   removeLValueToRValueCast(BadArgument);
80 }
81 
82 /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
83 /// ignore "noop" casts in places where an lvalue is required by an inline asm.
84 /// We emulate this behavior when -fheinous-gnu-extensions is specified, but
85 /// provide a strong guidance to not use it.
86 ///
87 /// This method checks to see if the argument is an acceptable l-value and
88 /// returns false if it is a case we can handle.
89 static bool CheckAsmLValue(Expr *E, Sema &S) {
90   // Type dependent expressions will be checked during instantiation.
91   if (E->isTypeDependent())
92     return false;
93 
94   if (E->isLValue())
95     return false;  // Cool, this is an lvalue.
96 
97   // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
98   // are supposed to allow.
99   const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
100   if (E != E2 && E2->isLValue()) {
101     emitAndFixInvalidAsmCastLValue(E2, E, S);
102     // Accept, even if we emitted an error diagnostic.
103     return false;
104   }
105 
106   // None of the above, just randomly invalid non-lvalue.
107   return true;
108 }
109 
110 /// isOperandMentioned - Return true if the specified operand # is mentioned
111 /// anywhere in the decomposed asm string.
112 static bool
113 isOperandMentioned(unsigned OpNo,
114                    ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) {
115   for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
116     const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
117     if (!Piece.isOperand())
118       continue;
119 
120     // If this is a reference to the input and if the input was the smaller
121     // one, then we have to reject this asm.
122     if (Piece.getOperandNo() == OpNo)
123       return true;
124   }
125   return false;
126 }
127 
128 static bool CheckNakedParmReference(Expr *E, Sema &S) {
129   FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext);
130   if (!Func)
131     return false;
132   if (!Func->hasAttr<NakedAttr>())
133     return false;
134 
135   SmallVector<Expr*, 4> WorkList;
136   WorkList.push_back(E);
137   while (WorkList.size()) {
138     Expr *E = WorkList.pop_back_val();
139     if (isa<CXXThisExpr>(E)) {
140       S.Diag(E->getBeginLoc(), diag::err_asm_naked_this_ref);
141       S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
142       return true;
143     }
144     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
145       if (isa<ParmVarDecl>(DRE->getDecl())) {
146         S.Diag(DRE->getBeginLoc(), diag::err_asm_naked_parm_ref);
147         S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
148         return true;
149       }
150     }
151     for (Stmt *Child : E->children()) {
152       if (Expr *E = dyn_cast_or_null<Expr>(Child))
153         WorkList.push_back(E);
154     }
155   }
156   return false;
157 }
158 
159 /// Returns true if given expression is not compatible with inline
160 /// assembly's memory constraint; false otherwise.
161 static bool checkExprMemoryConstraintCompat(Sema &S, Expr *E,
162                                             TargetInfo::ConstraintInfo &Info,
163                                             bool is_input_expr) {
164   enum {
165     ExprBitfield = 0,
166     ExprVectorElt,
167     ExprGlobalRegVar,
168     ExprSafeType
169   } EType = ExprSafeType;
170 
171   // Bitfields, vector elements and global register variables are not
172   // compatible.
173   if (E->refersToBitField())
174     EType = ExprBitfield;
175   else if (E->refersToVectorElement())
176     EType = ExprVectorElt;
177   else if (E->refersToGlobalRegisterVar())
178     EType = ExprGlobalRegVar;
179 
180   if (EType != ExprSafeType) {
181     S.Diag(E->getBeginLoc(), diag::err_asm_non_addr_value_in_memory_constraint)
182         << EType << is_input_expr << Info.getConstraintStr()
183         << E->getSourceRange();
184     return true;
185   }
186 
187   return false;
188 }
189 
190 // Extracting the register name from the Expression value,
191 // if there is no register name to extract, returns ""
192 static StringRef extractRegisterName(const Expr *Expression,
193                                      const TargetInfo &Target) {
194   Expression = Expression->IgnoreImpCasts();
195   if (const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(Expression)) {
196     // Handle cases where the expression is a variable
197     const VarDecl *Variable = dyn_cast<VarDecl>(AsmDeclRef->getDecl());
198     if (Variable && Variable->getStorageClass() == SC_Register) {
199       if (AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>())
200         if (Target.isValidGCCRegisterName(Attr->getLabel()))
201           return Target.getNormalizedGCCRegisterName(Attr->getLabel(), true);
202     }
203   }
204   return "";
205 }
206 
207 // Checks if there is a conflict between the input and output lists with the
208 // clobbers list. If there's a conflict, returns the location of the
209 // conflicted clobber, else returns nullptr
210 static SourceLocation
211 getClobberConflictLocation(MultiExprArg Exprs, StringLiteral **Constraints,
212                            StringLiteral **Clobbers, int NumClobbers,
213                            unsigned NumLabels,
214                            const TargetInfo &Target, ASTContext &Cont) {
215   llvm::StringSet<> InOutVars;
216   // Collect all the input and output registers from the extended asm
217   // statement in order to check for conflicts with the clobber list
218   for (unsigned int i = 0; i < Exprs.size() - NumLabels; ++i) {
219     StringRef Constraint = Constraints[i]->getString();
220     StringRef InOutReg = Target.getConstraintRegister(
221         Constraint, extractRegisterName(Exprs[i], Target));
222     if (InOutReg != "")
223       InOutVars.insert(InOutReg);
224   }
225   // Check for each item in the clobber list if it conflicts with the input
226   // or output
227   for (int i = 0; i < NumClobbers; ++i) {
228     StringRef Clobber = Clobbers[i]->getString();
229     // We only check registers, therefore we don't check cc and memory
230     // clobbers
231     if (Clobber == "cc" || Clobber == "memory" || Clobber == "unwind")
232       continue;
233     Clobber = Target.getNormalizedGCCRegisterName(Clobber, true);
234     // Go over the output's registers we collected
235     if (InOutVars.count(Clobber))
236       return Clobbers[i]->getBeginLoc();
237   }
238   return SourceLocation();
239 }
240 
241 StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
242                                  bool IsVolatile, unsigned NumOutputs,
243                                  unsigned NumInputs, IdentifierInfo **Names,
244                                  MultiExprArg constraints, MultiExprArg Exprs,
245                                  Expr *asmString, MultiExprArg clobbers,
246                                  unsigned NumLabels,
247                                  SourceLocation RParenLoc) {
248   unsigned NumClobbers = clobbers.size();
249   StringLiteral **Constraints =
250     reinterpret_cast<StringLiteral**>(constraints.data());
251   StringLiteral *AsmString = cast<StringLiteral>(asmString);
252   StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());
253 
254   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
255 
256   // The parser verifies that there is a string literal here.
257   assert(AsmString->isOrdinary());
258 
259   FunctionDecl *FD = dyn_cast<FunctionDecl>(getCurLexicalContext());
260   llvm::StringMap<bool> FeatureMap;
261   Context.getFunctionFeatureMap(FeatureMap, FD);
262 
263   for (unsigned i = 0; i != NumOutputs; i++) {
264     StringLiteral *Literal = Constraints[i];
265     assert(Literal->isOrdinary());
266 
267     StringRef OutputName;
268     if (Names[i])
269       OutputName = Names[i]->getName();
270 
271     TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
272     if (!Context.getTargetInfo().validateOutputConstraint(Info)) {
273       targetDiag(Literal->getBeginLoc(),
274                  diag::err_asm_invalid_output_constraint)
275           << Info.getConstraintStr();
276       return new (Context)
277           GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
278                      NumInputs, Names, Constraints, Exprs.data(), AsmString,
279                      NumClobbers, Clobbers, NumLabels, RParenLoc);
280     }
281 
282     ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
283     if (ER.isInvalid())
284       return StmtError();
285     Exprs[i] = ER.get();
286 
287     // Check that the output exprs are valid lvalues.
288     Expr *OutputExpr = Exprs[i];
289 
290     // Referring to parameters is not allowed in naked functions.
291     if (CheckNakedParmReference(OutputExpr, *this))
292       return StmtError();
293 
294     // Check that the output expression is compatible with memory constraint.
295     if (Info.allowsMemory() &&
296         checkExprMemoryConstraintCompat(*this, OutputExpr, Info, false))
297       return StmtError();
298 
299     // Disallow bit-precise integer types, since the backends tend to have
300     // difficulties with abnormal sizes.
301     if (OutputExpr->getType()->isBitIntType())
302       return StmtError(
303           Diag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_type)
304           << OutputExpr->getType() << 0 /*Input*/
305           << OutputExpr->getSourceRange());
306 
307     OutputConstraintInfos.push_back(Info);
308 
309     // If this is dependent, just continue.
310     if (OutputExpr->isTypeDependent())
311       continue;
312 
313     Expr::isModifiableLvalueResult IsLV =
314         OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr);
315     switch (IsLV) {
316     case Expr::MLV_Valid:
317       // Cool, this is an lvalue.
318       break;
319     case Expr::MLV_ArrayType:
320       // This is OK too.
321       break;
322     case Expr::MLV_LValueCast: {
323       const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context);
324       emitAndFixInvalidAsmCastLValue(LVal, OutputExpr, *this);
325       // Accept, even if we emitted an error diagnostic.
326       break;
327     }
328     case Expr::MLV_IncompleteType:
329     case Expr::MLV_IncompleteVoidType:
330       if (RequireCompleteType(OutputExpr->getBeginLoc(), Exprs[i]->getType(),
331                               diag::err_dereference_incomplete_type))
332         return StmtError();
333       LLVM_FALLTHROUGH;
334     default:
335       return StmtError(Diag(OutputExpr->getBeginLoc(),
336                             diag::err_asm_invalid_lvalue_in_output)
337                        << OutputExpr->getSourceRange());
338     }
339 
340     unsigned Size = Context.getTypeSize(OutputExpr->getType());
341     if (!Context.getTargetInfo().validateOutputSize(
342             FeatureMap, Literal->getString(), Size)) {
343       targetDiag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_output_size)
344           << Info.getConstraintStr();
345       return new (Context)
346           GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
347                      NumInputs, Names, Constraints, Exprs.data(), AsmString,
348                      NumClobbers, Clobbers, NumLabels, RParenLoc);
349     }
350   }
351 
352   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
353 
354   for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
355     StringLiteral *Literal = Constraints[i];
356     assert(Literal->isOrdinary());
357 
358     StringRef InputName;
359     if (Names[i])
360       InputName = Names[i]->getName();
361 
362     TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
363     if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos,
364                                                          Info)) {
365       targetDiag(Literal->getBeginLoc(), diag::err_asm_invalid_input_constraint)
366           << Info.getConstraintStr();
367       return new (Context)
368           GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
369                      NumInputs, Names, Constraints, Exprs.data(), AsmString,
370                      NumClobbers, Clobbers, NumLabels, RParenLoc);
371     }
372 
373     ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
374     if (ER.isInvalid())
375       return StmtError();
376     Exprs[i] = ER.get();
377 
378     Expr *InputExpr = Exprs[i];
379 
380     // Referring to parameters is not allowed in naked functions.
381     if (CheckNakedParmReference(InputExpr, *this))
382       return StmtError();
383 
384     // Check that the input expression is compatible with memory constraint.
385     if (Info.allowsMemory() &&
386         checkExprMemoryConstraintCompat(*this, InputExpr, Info, true))
387       return StmtError();
388 
389     // Only allow void types for memory constraints.
390     if (Info.allowsMemory() && !Info.allowsRegister()) {
391       if (CheckAsmLValue(InputExpr, *this))
392         return StmtError(Diag(InputExpr->getBeginLoc(),
393                               diag::err_asm_invalid_lvalue_in_input)
394                          << Info.getConstraintStr()
395                          << InputExpr->getSourceRange());
396     } else {
397       ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
398       if (Result.isInvalid())
399         return StmtError();
400 
401       InputExpr = Exprs[i] = Result.get();
402 
403       if (Info.requiresImmediateConstant() && !Info.allowsRegister()) {
404         if (!InputExpr->isValueDependent()) {
405           Expr::EvalResult EVResult;
406           if (InputExpr->EvaluateAsRValue(EVResult, Context, true)) {
407             // For compatibility with GCC, we also allow pointers that would be
408             // integral constant expressions if they were cast to int.
409             llvm::APSInt IntResult;
410             if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
411                                                 Context))
412               if (!Info.isValidAsmImmediate(IntResult))
413                 return StmtError(
414                     Diag(InputExpr->getBeginLoc(),
415                          diag::err_invalid_asm_value_for_constraint)
416                     << toString(IntResult, 10) << Info.getConstraintStr()
417                     << InputExpr->getSourceRange());
418           }
419         }
420       }
421     }
422 
423     if (Info.allowsRegister()) {
424       if (InputExpr->getType()->isVoidType()) {
425         return StmtError(
426             Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type_in_input)
427             << InputExpr->getType() << Info.getConstraintStr()
428             << InputExpr->getSourceRange());
429       }
430     }
431 
432     if (InputExpr->getType()->isBitIntType())
433       return StmtError(
434           Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type)
435           << InputExpr->getType() << 1 /*Output*/
436           << InputExpr->getSourceRange());
437 
438     InputConstraintInfos.push_back(Info);
439 
440     const Type *Ty = Exprs[i]->getType().getTypePtr();
441     if (Ty->isDependentType())
442       continue;
443 
444     if (!Ty->isVoidType() || !Info.allowsMemory())
445       if (RequireCompleteType(InputExpr->getBeginLoc(), Exprs[i]->getType(),
446                               diag::err_dereference_incomplete_type))
447         return StmtError();
448 
449     unsigned Size = Context.getTypeSize(Ty);
450     if (!Context.getTargetInfo().validateInputSize(FeatureMap,
451                                                    Literal->getString(), Size))
452       return targetDiag(InputExpr->getBeginLoc(),
453                         diag::err_asm_invalid_input_size)
454              << Info.getConstraintStr();
455   }
456 
457   Optional<SourceLocation> UnwindClobberLoc;
458 
459   // Check that the clobbers are valid.
460   for (unsigned i = 0; i != NumClobbers; i++) {
461     StringLiteral *Literal = Clobbers[i];
462     assert(Literal->isOrdinary());
463 
464     StringRef Clobber = Literal->getString();
465 
466     if (!Context.getTargetInfo().isValidClobber(Clobber)) {
467       targetDiag(Literal->getBeginLoc(), diag::err_asm_unknown_register_name)
468           << Clobber;
469       return new (Context)
470           GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
471                      NumInputs, Names, Constraints, Exprs.data(), AsmString,
472                      NumClobbers, Clobbers, NumLabels, RParenLoc);
473     }
474 
475     if (Clobber == "unwind") {
476       UnwindClobberLoc = Literal->getBeginLoc();
477     }
478   }
479 
480   // Using unwind clobber and asm-goto together is not supported right now.
481   if (UnwindClobberLoc && NumLabels > 0) {
482     targetDiag(*UnwindClobberLoc, diag::err_asm_unwind_and_goto);
483     return new (Context)
484         GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs,
485                    Names, Constraints, Exprs.data(), AsmString, NumClobbers,
486                    Clobbers, NumLabels, RParenLoc);
487   }
488 
489   GCCAsmStmt *NS =
490     new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
491                              NumInputs, Names, Constraints, Exprs.data(),
492                              AsmString, NumClobbers, Clobbers, NumLabels,
493                              RParenLoc);
494   // Validate the asm string, ensuring it makes sense given the operands we
495   // have.
496   SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
497   unsigned DiagOffs;
498   if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
499     targetDiag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
500         << AsmString->getSourceRange();
501     return NS;
502   }
503 
504   // Validate constraints and modifiers.
505   for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
506     GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
507     if (!Piece.isOperand()) continue;
508 
509     // Look for the correct constraint index.
510     unsigned ConstraintIdx = Piece.getOperandNo();
511     unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs();
512     // Labels are the last in the Exprs list.
513     if (NS->isAsmGoto() && ConstraintIdx >= NumOperands)
514       continue;
515     // Look for the (ConstraintIdx - NumOperands + 1)th constraint with
516     // modifier '+'.
517     if (ConstraintIdx >= NumOperands) {
518       unsigned I = 0, E = NS->getNumOutputs();
519 
520       for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I)
521         if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) {
522           ConstraintIdx = I;
523           break;
524         }
525 
526       assert(I != E && "Invalid operand number should have been caught in "
527                        " AnalyzeAsmString");
528     }
529 
530     // Now that we have the right indexes go ahead and check.
531     StringLiteral *Literal = Constraints[ConstraintIdx];
532     const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
533     if (Ty->isDependentType() || Ty->isIncompleteType())
534       continue;
535 
536     unsigned Size = Context.getTypeSize(Ty);
537     std::string SuggestedModifier;
538     if (!Context.getTargetInfo().validateConstraintModifier(
539             Literal->getString(), Piece.getModifier(), Size,
540             SuggestedModifier)) {
541       targetDiag(Exprs[ConstraintIdx]->getBeginLoc(),
542                  diag::warn_asm_mismatched_size_modifier);
543 
544       if (!SuggestedModifier.empty()) {
545         auto B = targetDiag(Piece.getRange().getBegin(),
546                             diag::note_asm_missing_constraint_modifier)
547                  << SuggestedModifier;
548         SuggestedModifier = "%" + SuggestedModifier + Piece.getString();
549         B << FixItHint::CreateReplacement(Piece.getRange(), SuggestedModifier);
550       }
551     }
552   }
553 
554   // Validate tied input operands for type mismatches.
555   unsigned NumAlternatives = ~0U;
556   for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) {
557     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
558     StringRef ConstraintStr = Info.getConstraintStr();
559     unsigned AltCount = ConstraintStr.count(',') + 1;
560     if (NumAlternatives == ~0U) {
561       NumAlternatives = AltCount;
562     } else if (NumAlternatives != AltCount) {
563       targetDiag(NS->getOutputExpr(i)->getBeginLoc(),
564                  diag::err_asm_unexpected_constraint_alternatives)
565           << NumAlternatives << AltCount;
566       return NS;
567     }
568   }
569   SmallVector<size_t, 4> InputMatchedToOutput(OutputConstraintInfos.size(),
570                                               ~0U);
571   for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
572     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
573     StringRef ConstraintStr = Info.getConstraintStr();
574     unsigned AltCount = ConstraintStr.count(',') + 1;
575     if (NumAlternatives == ~0U) {
576       NumAlternatives = AltCount;
577     } else if (NumAlternatives != AltCount) {
578       targetDiag(NS->getInputExpr(i)->getBeginLoc(),
579                  diag::err_asm_unexpected_constraint_alternatives)
580           << NumAlternatives << AltCount;
581       return NS;
582     }
583 
584     // If this is a tied constraint, verify that the output and input have
585     // either exactly the same type, or that they are int/ptr operands with the
586     // same size (int/long, int*/long, are ok etc).
587     if (!Info.hasTiedOperand()) continue;
588 
589     unsigned TiedTo = Info.getTiedOperand();
590     unsigned InputOpNo = i+NumOutputs;
591     Expr *OutputExpr = Exprs[TiedTo];
592     Expr *InputExpr = Exprs[InputOpNo];
593 
594     // Make sure no more than one input constraint matches each output.
595     assert(TiedTo < InputMatchedToOutput.size() && "TiedTo value out of range");
596     if (InputMatchedToOutput[TiedTo] != ~0U) {
597       targetDiag(NS->getInputExpr(i)->getBeginLoc(),
598                  diag::err_asm_input_duplicate_match)
599           << TiedTo;
600       targetDiag(NS->getInputExpr(InputMatchedToOutput[TiedTo])->getBeginLoc(),
601                  diag::note_asm_input_duplicate_first)
602           << TiedTo;
603       return NS;
604     }
605     InputMatchedToOutput[TiedTo] = i;
606 
607     if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
608       continue;
609 
610     QualType InTy = InputExpr->getType();
611     QualType OutTy = OutputExpr->getType();
612     if (Context.hasSameType(InTy, OutTy))
613       continue;  // All types can be tied to themselves.
614 
615     // Decide if the input and output are in the same domain (integer/ptr or
616     // floating point.
617     enum AsmDomain {
618       AD_Int, AD_FP, AD_Other
619     } InputDomain, OutputDomain;
620 
621     if (InTy->isIntegerType() || InTy->isPointerType())
622       InputDomain = AD_Int;
623     else if (InTy->isRealFloatingType())
624       InputDomain = AD_FP;
625     else
626       InputDomain = AD_Other;
627 
628     if (OutTy->isIntegerType() || OutTy->isPointerType())
629       OutputDomain = AD_Int;
630     else if (OutTy->isRealFloatingType())
631       OutputDomain = AD_FP;
632     else
633       OutputDomain = AD_Other;
634 
635     // They are ok if they are the same size and in the same domain.  This
636     // allows tying things like:
637     //   void* to int*
638     //   void* to int            if they are the same size.
639     //   double to long double   if they are the same size.
640     //
641     uint64_t OutSize = Context.getTypeSize(OutTy);
642     uint64_t InSize = Context.getTypeSize(InTy);
643     if (OutSize == InSize && InputDomain == OutputDomain &&
644         InputDomain != AD_Other)
645       continue;
646 
647     // If the smaller input/output operand is not mentioned in the asm string,
648     // then we can promote the smaller one to a larger input and the asm string
649     // won't notice.
650     bool SmallerValueMentioned = false;
651 
652     // If this is a reference to the input and if the input was the smaller
653     // one, then we have to reject this asm.
654     if (isOperandMentioned(InputOpNo, Pieces)) {
655       // This is a use in the asm string of the smaller operand.  Since we
656       // codegen this by promoting to a wider value, the asm will get printed
657       // "wrong".
658       SmallerValueMentioned |= InSize < OutSize;
659     }
660     if (isOperandMentioned(TiedTo, Pieces)) {
661       // If this is a reference to the output, and if the output is the larger
662       // value, then it's ok because we'll promote the input to the larger type.
663       SmallerValueMentioned |= OutSize < InSize;
664     }
665 
666     // If the smaller value wasn't mentioned in the asm string, and if the
667     // output was a register, just extend the shorter one to the size of the
668     // larger one.
669     if (!SmallerValueMentioned && InputDomain != AD_Other &&
670         OutputConstraintInfos[TiedTo].allowsRegister()) {
671       // FIXME: GCC supports the OutSize to be 128 at maximum. Currently codegen
672       // crash when the size larger than the register size. So we limit it here.
673       if (OutTy->isStructureType() &&
674           Context.getIntTypeForBitwidth(OutSize, /*Signed*/ false).isNull()) {
675         targetDiag(OutputExpr->getExprLoc(), diag::err_store_value_to_reg);
676         return NS;
677       }
678 
679       continue;
680     }
681 
682     // Either both of the operands were mentioned or the smaller one was
683     // mentioned.  One more special case that we'll allow: if the tied input is
684     // integer, unmentioned, and is a constant, then we'll allow truncating it
685     // down to the size of the destination.
686     if (InputDomain == AD_Int && OutputDomain == AD_Int &&
687         !isOperandMentioned(InputOpNo, Pieces) &&
688         InputExpr->isEvaluatable(Context)) {
689       CastKind castKind =
690         (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
691       InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get();
692       Exprs[InputOpNo] = InputExpr;
693       NS->setInputExpr(i, InputExpr);
694       continue;
695     }
696 
697     targetDiag(InputExpr->getBeginLoc(), diag::err_asm_tying_incompatible_types)
698         << InTy << OutTy << OutputExpr->getSourceRange()
699         << InputExpr->getSourceRange();
700     return NS;
701   }
702 
703   // Check for conflicts between clobber list and input or output lists
704   SourceLocation ConstraintLoc =
705       getClobberConflictLocation(Exprs, Constraints, Clobbers, NumClobbers,
706                                  NumLabels,
707                                  Context.getTargetInfo(), Context);
708   if (ConstraintLoc.isValid())
709     targetDiag(ConstraintLoc, diag::error_inoutput_conflict_with_clobber);
710 
711   // Check for duplicate asm operand name between input, output and label lists.
712   typedef std::pair<StringRef , Expr *> NamedOperand;
713   SmallVector<NamedOperand, 4> NamedOperandList;
714   for (unsigned i = 0, e = NumOutputs + NumInputs + NumLabels; i != e; ++i)
715     if (Names[i])
716       NamedOperandList.emplace_back(
717           std::make_pair(Names[i]->getName(), Exprs[i]));
718   // Sort NamedOperandList.
719   llvm::stable_sort(NamedOperandList, llvm::less_first());
720   // Find adjacent duplicate operand.
721   SmallVector<NamedOperand, 4>::iterator Found =
722       std::adjacent_find(begin(NamedOperandList), end(NamedOperandList),
723                          [](const NamedOperand &LHS, const NamedOperand &RHS) {
724                            return LHS.first == RHS.first;
725                          });
726   if (Found != NamedOperandList.end()) {
727     Diag((Found + 1)->second->getBeginLoc(),
728          diag::error_duplicate_asm_operand_name)
729         << (Found + 1)->first;
730     Diag(Found->second->getBeginLoc(), diag::note_duplicate_asm_operand_name)
731         << Found->first;
732     return StmtError();
733   }
734   if (NS->isAsmGoto())
735     setFunctionHasBranchIntoScope();
736 
737   CleanupVarDeclMarking();
738   DiscardCleanupsInEvaluationContext();
739   return NS;
740 }
741 
742 void Sema::FillInlineAsmIdentifierInfo(Expr *Res,
743                                        llvm::InlineAsmIdentifierInfo &Info) {
744   QualType T = Res->getType();
745   Expr::EvalResult Eval;
746   if (T->isFunctionType() || T->isDependentType())
747     return Info.setLabel(Res);
748   if (Res->isPRValue()) {
749     bool IsEnum = isa<clang::EnumType>(T);
750     if (DeclRefExpr *DRE = dyn_cast<clang::DeclRefExpr>(Res))
751       if (DRE->getDecl()->getKind() == Decl::EnumConstant)
752         IsEnum = true;
753     if (IsEnum && Res->EvaluateAsRValue(Eval, Context))
754       return Info.setEnum(Eval.Val.getInt().getSExtValue());
755 
756     return Info.setLabel(Res);
757   }
758   unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
759   unsigned Type = Size;
760   if (const auto *ATy = Context.getAsArrayType(T))
761     Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity();
762   bool IsGlobalLV = false;
763   if (Res->EvaluateAsLValue(Eval, Context))
764     IsGlobalLV = Eval.isGlobalLValue();
765   Info.setVar(Res, IsGlobalLV, Size, Type);
766 }
767 
768 ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS,
769                                            SourceLocation TemplateKWLoc,
770                                            UnqualifiedId &Id,
771                                            bool IsUnevaluatedContext) {
772 
773   if (IsUnevaluatedContext)
774     PushExpressionEvaluationContext(
775         ExpressionEvaluationContext::UnevaluatedAbstract,
776         ReuseLambdaContextDecl);
777 
778   ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id,
779                                         /*trailing lparen*/ false,
780                                         /*is & operand*/ false,
781                                         /*CorrectionCandidateCallback=*/nullptr,
782                                         /*IsInlineAsmIdentifier=*/ true);
783 
784   if (IsUnevaluatedContext)
785     PopExpressionEvaluationContext();
786 
787   if (!Result.isUsable()) return Result;
788 
789   Result = CheckPlaceholderExpr(Result.get());
790   if (!Result.isUsable()) return Result;
791 
792   // Referring to parameters is not allowed in naked functions.
793   if (CheckNakedParmReference(Result.get(), *this))
794     return ExprError();
795 
796   QualType T = Result.get()->getType();
797 
798   if (T->isDependentType()) {
799     return Result;
800   }
801 
802   // Any sort of function type is fine.
803   if (T->isFunctionType()) {
804     return Result;
805   }
806 
807   // Otherwise, it needs to be a complete type.
808   if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) {
809     return ExprError();
810   }
811 
812   return Result;
813 }
814 
815 bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member,
816                                 unsigned &Offset, SourceLocation AsmLoc) {
817   Offset = 0;
818   SmallVector<StringRef, 2> Members;
819   Member.split(Members, ".");
820 
821   NamedDecl *FoundDecl = nullptr;
822 
823   // MS InlineAsm uses 'this' as a base
824   if (getLangOpts().CPlusPlus && Base.equals("this")) {
825     if (const Type *PT = getCurrentThisType().getTypePtrOrNull())
826       FoundDecl = PT->getPointeeType()->getAsTagDecl();
827   } else {
828     LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(),
829                             LookupOrdinaryName);
830     if (LookupName(BaseResult, getCurScope()) && BaseResult.isSingleResult())
831       FoundDecl = BaseResult.getFoundDecl();
832   }
833 
834   if (!FoundDecl)
835     return true;
836 
837   for (StringRef NextMember : Members) {
838     const RecordType *RT = nullptr;
839     if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl))
840       RT = VD->getType()->getAs<RecordType>();
841     else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) {
842       MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
843       // MS InlineAsm often uses struct pointer aliases as a base
844       QualType QT = TD->getUnderlyingType();
845       if (const auto *PT = QT->getAs<PointerType>())
846         QT = PT->getPointeeType();
847       RT = QT->getAs<RecordType>();
848     } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl))
849       RT = TD->getTypeForDecl()->getAs<RecordType>();
850     else if (FieldDecl *TD = dyn_cast<FieldDecl>(FoundDecl))
851       RT = TD->getType()->getAs<RecordType>();
852     if (!RT)
853       return true;
854 
855     if (RequireCompleteType(AsmLoc, QualType(RT, 0),
856                             diag::err_asm_incomplete_type))
857       return true;
858 
859     LookupResult FieldResult(*this, &Context.Idents.get(NextMember),
860                              SourceLocation(), LookupMemberName);
861 
862     if (!LookupQualifiedName(FieldResult, RT->getDecl()))
863       return true;
864 
865     if (!FieldResult.isSingleResult())
866       return true;
867     FoundDecl = FieldResult.getFoundDecl();
868 
869     // FIXME: Handle IndirectFieldDecl?
870     FieldDecl *FD = dyn_cast<FieldDecl>(FoundDecl);
871     if (!FD)
872       return true;
873 
874     const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl());
875     unsigned i = FD->getFieldIndex();
876     CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i));
877     Offset += (unsigned)Result.getQuantity();
878   }
879 
880   return false;
881 }
882 
883 ExprResult
884 Sema::LookupInlineAsmVarDeclField(Expr *E, StringRef Member,
885                                   SourceLocation AsmLoc) {
886 
887   QualType T = E->getType();
888   if (T->isDependentType()) {
889     DeclarationNameInfo NameInfo;
890     NameInfo.setLoc(AsmLoc);
891     NameInfo.setName(&Context.Idents.get(Member));
892     return CXXDependentScopeMemberExpr::Create(
893         Context, E, T, /*IsArrow=*/false, AsmLoc, NestedNameSpecifierLoc(),
894         SourceLocation(),
895         /*FirstQualifierFoundInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr);
896   }
897 
898   const RecordType *RT = T->getAs<RecordType>();
899   // FIXME: Diagnose this as field access into a scalar type.
900   if (!RT)
901     return ExprResult();
902 
903   LookupResult FieldResult(*this, &Context.Idents.get(Member), AsmLoc,
904                            LookupMemberName);
905 
906   if (!LookupQualifiedName(FieldResult, RT->getDecl()))
907     return ExprResult();
908 
909   // Only normal and indirect field results will work.
910   ValueDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl());
911   if (!FD)
912     FD = dyn_cast<IndirectFieldDecl>(FieldResult.getFoundDecl());
913   if (!FD)
914     return ExprResult();
915 
916   // Make an Expr to thread through OpDecl.
917   ExprResult Result = BuildMemberReferenceExpr(
918       E, E->getType(), AsmLoc, /*IsArrow=*/false, CXXScopeSpec(),
919       SourceLocation(), nullptr, FieldResult, nullptr, nullptr);
920 
921   return Result;
922 }
923 
924 StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
925                                 ArrayRef<Token> AsmToks,
926                                 StringRef AsmString,
927                                 unsigned NumOutputs, unsigned NumInputs,
928                                 ArrayRef<StringRef> Constraints,
929                                 ArrayRef<StringRef> Clobbers,
930                                 ArrayRef<Expr*> Exprs,
931                                 SourceLocation EndLoc) {
932   bool IsSimple = (NumOutputs != 0 || NumInputs != 0);
933   setFunctionHasBranchProtectedScope();
934 
935   for (uint64_t I = 0; I < NumOutputs + NumInputs; ++I) {
936     if (Exprs[I]->getType()->isBitIntType())
937       return StmtError(
938           Diag(Exprs[I]->getBeginLoc(), diag::err_asm_invalid_type)
939           << Exprs[I]->getType() << (I < NumOutputs)
940           << Exprs[I]->getSourceRange());
941   }
942 
943   MSAsmStmt *NS =
944     new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple,
945                             /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs,
946                             Constraints, Exprs, AsmString,
947                             Clobbers, EndLoc);
948   return NS;
949 }
950 
951 LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
952                                        SourceLocation Location,
953                                        bool AlwaysCreate) {
954   LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName),
955                                          Location);
956 
957   if (Label->isMSAsmLabel()) {
958     // If we have previously created this label implicitly, mark it as used.
959     Label->markUsed(Context);
960   } else {
961     // Otherwise, insert it, but only resolve it if we have seen the label itself.
962     std::string InternalName;
963     llvm::raw_string_ostream OS(InternalName);
964     // Create an internal name for the label.  The name should not be a valid
965     // mangled name, and should be unique.  We use a dot to make the name an
966     // invalid mangled name. We use LLVM's inline asm ${:uid} escape so that a
967     // unique label is generated each time this blob is emitted, even after
968     // inlining or LTO.
969     OS << "__MSASMLABEL_.${:uid}__";
970     for (char C : ExternalLabelName) {
971       OS << C;
972       // We escape '$' in asm strings by replacing it with "$$"
973       if (C == '$')
974         OS << '$';
975     }
976     Label->setMSAsmLabel(OS.str());
977   }
978   if (AlwaysCreate) {
979     // The label might have been created implicitly from a previously encountered
980     // goto statement.  So, for both newly created and looked up labels, we mark
981     // them as resolved.
982     Label->setMSAsmLabelResolved();
983   }
984   // Adjust their location for being able to generate accurate diagnostics.
985   Label->setLocation(Location);
986 
987   return Label;
988 }
989