1 //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for inline asm statements. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ExprCXX.h" 14 #include "clang/AST/GlobalDecl.h" 15 #include "clang/AST/RecordLayout.h" 16 #include "clang/AST/TypeLoc.h" 17 #include "clang/Basic/TargetInfo.h" 18 #include "clang/Lex/Preprocessor.h" 19 #include "clang/Sema/Initialization.h" 20 #include "clang/Sema/Lookup.h" 21 #include "clang/Sema/Scope.h" 22 #include "clang/Sema/ScopeInfo.h" 23 #include "clang/Sema/SemaInternal.h" 24 #include "llvm/ADT/ArrayRef.h" 25 #include "llvm/ADT/StringSet.h" 26 #include "llvm/MC/MCParser/MCAsmParser.h" 27 using namespace clang; 28 using namespace sema; 29 30 /// Remove the upper-level LValueToRValue cast from an expression. 31 static void removeLValueToRValueCast(Expr *E) { 32 Expr *Parent = E; 33 Expr *ExprUnderCast = nullptr; 34 SmallVector<Expr *, 8> ParentsToUpdate; 35 36 while (true) { 37 ParentsToUpdate.push_back(Parent); 38 if (auto *ParenE = dyn_cast<ParenExpr>(Parent)) { 39 Parent = ParenE->getSubExpr(); 40 continue; 41 } 42 43 Expr *Child = nullptr; 44 CastExpr *ParentCast = dyn_cast<CastExpr>(Parent); 45 if (ParentCast) 46 Child = ParentCast->getSubExpr(); 47 else 48 return; 49 50 if (auto *CastE = dyn_cast<CastExpr>(Child)) 51 if (CastE->getCastKind() == CK_LValueToRValue) { 52 ExprUnderCast = CastE->getSubExpr(); 53 // LValueToRValue cast inside GCCAsmStmt requires an explicit cast. 54 ParentCast->setSubExpr(ExprUnderCast); 55 break; 56 } 57 Parent = Child; 58 } 59 60 // Update parent expressions to have same ValueType as the underlying. 61 assert(ExprUnderCast && 62 "Should be reachable only if LValueToRValue cast was found!"); 63 auto ValueKind = ExprUnderCast->getValueKind(); 64 for (Expr *E : ParentsToUpdate) 65 E->setValueKind(ValueKind); 66 } 67 68 /// Emit a warning about usage of "noop"-like casts for lvalues (GNU extension) 69 /// and fix the argument with removing LValueToRValue cast from the expression. 70 static void emitAndFixInvalidAsmCastLValue(const Expr *LVal, Expr *BadArgument, 71 Sema &S) { 72 if (!S.getLangOpts().HeinousExtensions) { 73 S.Diag(LVal->getBeginLoc(), diag::err_invalid_asm_cast_lvalue) 74 << BadArgument->getSourceRange(); 75 } else { 76 S.Diag(LVal->getBeginLoc(), diag::warn_invalid_asm_cast_lvalue) 77 << BadArgument->getSourceRange(); 78 } 79 removeLValueToRValueCast(BadArgument); 80 } 81 82 /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently 83 /// ignore "noop" casts in places where an lvalue is required by an inline asm. 84 /// We emulate this behavior when -fheinous-gnu-extensions is specified, but 85 /// provide a strong guidance to not use it. 86 /// 87 /// This method checks to see if the argument is an acceptable l-value and 88 /// returns false if it is a case we can handle. 89 static bool CheckAsmLValue(Expr *E, Sema &S) { 90 // Type dependent expressions will be checked during instantiation. 91 if (E->isTypeDependent()) 92 return false; 93 94 if (E->isLValue()) 95 return false; // Cool, this is an lvalue. 96 97 // Okay, this is not an lvalue, but perhaps it is the result of a cast that we 98 // are supposed to allow. 99 const Expr *E2 = E->IgnoreParenNoopCasts(S.Context); 100 if (E != E2 && E2->isLValue()) { 101 emitAndFixInvalidAsmCastLValue(E2, E, S); 102 // Accept, even if we emitted an error diagnostic. 103 return false; 104 } 105 106 // None of the above, just randomly invalid non-lvalue. 107 return true; 108 } 109 110 /// isOperandMentioned - Return true if the specified operand # is mentioned 111 /// anywhere in the decomposed asm string. 112 static bool 113 isOperandMentioned(unsigned OpNo, 114 ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) { 115 for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) { 116 const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p]; 117 if (!Piece.isOperand()) 118 continue; 119 120 // If this is a reference to the input and if the input was the smaller 121 // one, then we have to reject this asm. 122 if (Piece.getOperandNo() == OpNo) 123 return true; 124 } 125 return false; 126 } 127 128 static bool CheckNakedParmReference(Expr *E, Sema &S) { 129 FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext); 130 if (!Func) 131 return false; 132 if (!Func->hasAttr<NakedAttr>()) 133 return false; 134 135 SmallVector<Expr*, 4> WorkList; 136 WorkList.push_back(E); 137 while (WorkList.size()) { 138 Expr *E = WorkList.pop_back_val(); 139 if (isa<CXXThisExpr>(E)) { 140 S.Diag(E->getBeginLoc(), diag::err_asm_naked_this_ref); 141 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 142 return true; 143 } 144 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 145 if (isa<ParmVarDecl>(DRE->getDecl())) { 146 S.Diag(DRE->getBeginLoc(), diag::err_asm_naked_parm_ref); 147 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 148 return true; 149 } 150 } 151 for (Stmt *Child : E->children()) { 152 if (Expr *E = dyn_cast_or_null<Expr>(Child)) 153 WorkList.push_back(E); 154 } 155 } 156 return false; 157 } 158 159 /// Returns true if given expression is not compatible with inline 160 /// assembly's memory constraint; false otherwise. 161 static bool checkExprMemoryConstraintCompat(Sema &S, Expr *E, 162 TargetInfo::ConstraintInfo &Info, 163 bool is_input_expr) { 164 enum { 165 ExprBitfield = 0, 166 ExprVectorElt, 167 ExprGlobalRegVar, 168 ExprSafeType 169 } EType = ExprSafeType; 170 171 // Bitfields, vector elements and global register variables are not 172 // compatible. 173 if (E->refersToBitField()) 174 EType = ExprBitfield; 175 else if (E->refersToVectorElement()) 176 EType = ExprVectorElt; 177 else if (E->refersToGlobalRegisterVar()) 178 EType = ExprGlobalRegVar; 179 180 if (EType != ExprSafeType) { 181 S.Diag(E->getBeginLoc(), diag::err_asm_non_addr_value_in_memory_constraint) 182 << EType << is_input_expr << Info.getConstraintStr() 183 << E->getSourceRange(); 184 return true; 185 } 186 187 return false; 188 } 189 190 // Extracting the register name from the Expression value, 191 // if there is no register name to extract, returns "" 192 static StringRef extractRegisterName(const Expr *Expression, 193 const TargetInfo &Target) { 194 Expression = Expression->IgnoreImpCasts(); 195 if (const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(Expression)) { 196 // Handle cases where the expression is a variable 197 const VarDecl *Variable = dyn_cast<VarDecl>(AsmDeclRef->getDecl()); 198 if (Variable && Variable->getStorageClass() == SC_Register) { 199 if (AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>()) 200 if (Target.isValidGCCRegisterName(Attr->getLabel())) 201 return Target.getNormalizedGCCRegisterName(Attr->getLabel(), true); 202 } 203 } 204 return ""; 205 } 206 207 // Checks if there is a conflict between the input and output lists with the 208 // clobbers list. If there's a conflict, returns the location of the 209 // conflicted clobber, else returns nullptr 210 static SourceLocation 211 getClobberConflictLocation(MultiExprArg Exprs, StringLiteral **Constraints, 212 StringLiteral **Clobbers, int NumClobbers, 213 unsigned NumLabels, 214 const TargetInfo &Target, ASTContext &Cont) { 215 llvm::StringSet<> InOutVars; 216 // Collect all the input and output registers from the extended asm 217 // statement in order to check for conflicts with the clobber list 218 for (unsigned int i = 0; i < Exprs.size() - NumLabels; ++i) { 219 StringRef Constraint = Constraints[i]->getString(); 220 StringRef InOutReg = Target.getConstraintRegister( 221 Constraint, extractRegisterName(Exprs[i], Target)); 222 if (InOutReg != "") 223 InOutVars.insert(InOutReg); 224 } 225 // Check for each item in the clobber list if it conflicts with the input 226 // or output 227 for (int i = 0; i < NumClobbers; ++i) { 228 StringRef Clobber = Clobbers[i]->getString(); 229 // We only check registers, therefore we don't check cc and memory 230 // clobbers 231 if (Clobber == "cc" || Clobber == "memory" || Clobber == "unwind") 232 continue; 233 Clobber = Target.getNormalizedGCCRegisterName(Clobber, true); 234 // Go over the output's registers we collected 235 if (InOutVars.count(Clobber)) 236 return Clobbers[i]->getBeginLoc(); 237 } 238 return SourceLocation(); 239 } 240 241 StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, 242 bool IsVolatile, unsigned NumOutputs, 243 unsigned NumInputs, IdentifierInfo **Names, 244 MultiExprArg constraints, MultiExprArg Exprs, 245 Expr *asmString, MultiExprArg clobbers, 246 unsigned NumLabels, 247 SourceLocation RParenLoc) { 248 unsigned NumClobbers = clobbers.size(); 249 StringLiteral **Constraints = 250 reinterpret_cast<StringLiteral**>(constraints.data()); 251 StringLiteral *AsmString = cast<StringLiteral>(asmString); 252 StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data()); 253 254 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 255 256 // The parser verifies that there is a string literal here. 257 assert(AsmString->isOrdinary()); 258 259 FunctionDecl *FD = dyn_cast<FunctionDecl>(getCurLexicalContext()); 260 llvm::StringMap<bool> FeatureMap; 261 Context.getFunctionFeatureMap(FeatureMap, FD); 262 263 for (unsigned i = 0; i != NumOutputs; i++) { 264 StringLiteral *Literal = Constraints[i]; 265 assert(Literal->isOrdinary()); 266 267 StringRef OutputName; 268 if (Names[i]) 269 OutputName = Names[i]->getName(); 270 271 TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName); 272 if (!Context.getTargetInfo().validateOutputConstraint(Info)) { 273 targetDiag(Literal->getBeginLoc(), 274 diag::err_asm_invalid_output_constraint) 275 << Info.getConstraintStr(); 276 return new (Context) 277 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 278 NumInputs, Names, Constraints, Exprs.data(), AsmString, 279 NumClobbers, Clobbers, NumLabels, RParenLoc); 280 } 281 282 ExprResult ER = CheckPlaceholderExpr(Exprs[i]); 283 if (ER.isInvalid()) 284 return StmtError(); 285 Exprs[i] = ER.get(); 286 287 // Check that the output exprs are valid lvalues. 288 Expr *OutputExpr = Exprs[i]; 289 290 // Referring to parameters is not allowed in naked functions. 291 if (CheckNakedParmReference(OutputExpr, *this)) 292 return StmtError(); 293 294 // Check that the output expression is compatible with memory constraint. 295 if (Info.allowsMemory() && 296 checkExprMemoryConstraintCompat(*this, OutputExpr, Info, false)) 297 return StmtError(); 298 299 // Disallow bit-precise integer types, since the backends tend to have 300 // difficulties with abnormal sizes. 301 if (OutputExpr->getType()->isBitIntType()) 302 return StmtError( 303 Diag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_type) 304 << OutputExpr->getType() << 0 /*Input*/ 305 << OutputExpr->getSourceRange()); 306 307 OutputConstraintInfos.push_back(Info); 308 309 // If this is dependent, just continue. 310 if (OutputExpr->isTypeDependent()) 311 continue; 312 313 Expr::isModifiableLvalueResult IsLV = 314 OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr); 315 switch (IsLV) { 316 case Expr::MLV_Valid: 317 // Cool, this is an lvalue. 318 break; 319 case Expr::MLV_ArrayType: 320 // This is OK too. 321 break; 322 case Expr::MLV_LValueCast: { 323 const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context); 324 emitAndFixInvalidAsmCastLValue(LVal, OutputExpr, *this); 325 // Accept, even if we emitted an error diagnostic. 326 break; 327 } 328 case Expr::MLV_IncompleteType: 329 case Expr::MLV_IncompleteVoidType: 330 if (RequireCompleteType(OutputExpr->getBeginLoc(), Exprs[i]->getType(), 331 diag::err_dereference_incomplete_type)) 332 return StmtError(); 333 LLVM_FALLTHROUGH; 334 default: 335 return StmtError(Diag(OutputExpr->getBeginLoc(), 336 diag::err_asm_invalid_lvalue_in_output) 337 << OutputExpr->getSourceRange()); 338 } 339 340 unsigned Size = Context.getTypeSize(OutputExpr->getType()); 341 if (!Context.getTargetInfo().validateOutputSize( 342 FeatureMap, Literal->getString(), Size)) { 343 targetDiag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_output_size) 344 << Info.getConstraintStr(); 345 return new (Context) 346 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 347 NumInputs, Names, Constraints, Exprs.data(), AsmString, 348 NumClobbers, Clobbers, NumLabels, RParenLoc); 349 } 350 } 351 352 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 353 354 for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { 355 StringLiteral *Literal = Constraints[i]; 356 assert(Literal->isOrdinary()); 357 358 StringRef InputName; 359 if (Names[i]) 360 InputName = Names[i]->getName(); 361 362 TargetInfo::ConstraintInfo Info(Literal->getString(), InputName); 363 if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos, 364 Info)) { 365 targetDiag(Literal->getBeginLoc(), diag::err_asm_invalid_input_constraint) 366 << Info.getConstraintStr(); 367 return new (Context) 368 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 369 NumInputs, Names, Constraints, Exprs.data(), AsmString, 370 NumClobbers, Clobbers, NumLabels, RParenLoc); 371 } 372 373 ExprResult ER = CheckPlaceholderExpr(Exprs[i]); 374 if (ER.isInvalid()) 375 return StmtError(); 376 Exprs[i] = ER.get(); 377 378 Expr *InputExpr = Exprs[i]; 379 380 // Referring to parameters is not allowed in naked functions. 381 if (CheckNakedParmReference(InputExpr, *this)) 382 return StmtError(); 383 384 // Check that the input expression is compatible with memory constraint. 385 if (Info.allowsMemory() && 386 checkExprMemoryConstraintCompat(*this, InputExpr, Info, true)) 387 return StmtError(); 388 389 // Only allow void types for memory constraints. 390 if (Info.allowsMemory() && !Info.allowsRegister()) { 391 if (CheckAsmLValue(InputExpr, *this)) 392 return StmtError(Diag(InputExpr->getBeginLoc(), 393 diag::err_asm_invalid_lvalue_in_input) 394 << Info.getConstraintStr() 395 << InputExpr->getSourceRange()); 396 } else { 397 ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]); 398 if (Result.isInvalid()) 399 return StmtError(); 400 401 InputExpr = Exprs[i] = Result.get(); 402 403 if (Info.requiresImmediateConstant() && !Info.allowsRegister()) { 404 if (!InputExpr->isValueDependent()) { 405 Expr::EvalResult EVResult; 406 if (InputExpr->EvaluateAsRValue(EVResult, Context, true)) { 407 // For compatibility with GCC, we also allow pointers that would be 408 // integral constant expressions if they were cast to int. 409 llvm::APSInt IntResult; 410 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 411 Context)) 412 if (!Info.isValidAsmImmediate(IntResult)) 413 return StmtError( 414 Diag(InputExpr->getBeginLoc(), 415 diag::err_invalid_asm_value_for_constraint) 416 << toString(IntResult, 10) << Info.getConstraintStr() 417 << InputExpr->getSourceRange()); 418 } 419 } 420 } 421 } 422 423 if (Info.allowsRegister()) { 424 if (InputExpr->getType()->isVoidType()) { 425 return StmtError( 426 Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type_in_input) 427 << InputExpr->getType() << Info.getConstraintStr() 428 << InputExpr->getSourceRange()); 429 } 430 } 431 432 if (InputExpr->getType()->isBitIntType()) 433 return StmtError( 434 Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type) 435 << InputExpr->getType() << 1 /*Output*/ 436 << InputExpr->getSourceRange()); 437 438 InputConstraintInfos.push_back(Info); 439 440 const Type *Ty = Exprs[i]->getType().getTypePtr(); 441 if (Ty->isDependentType()) 442 continue; 443 444 if (!Ty->isVoidType() || !Info.allowsMemory()) 445 if (RequireCompleteType(InputExpr->getBeginLoc(), Exprs[i]->getType(), 446 diag::err_dereference_incomplete_type)) 447 return StmtError(); 448 449 unsigned Size = Context.getTypeSize(Ty); 450 if (!Context.getTargetInfo().validateInputSize(FeatureMap, 451 Literal->getString(), Size)) 452 return targetDiag(InputExpr->getBeginLoc(), 453 diag::err_asm_invalid_input_size) 454 << Info.getConstraintStr(); 455 } 456 457 Optional<SourceLocation> UnwindClobberLoc; 458 459 // Check that the clobbers are valid. 460 for (unsigned i = 0; i != NumClobbers; i++) { 461 StringLiteral *Literal = Clobbers[i]; 462 assert(Literal->isOrdinary()); 463 464 StringRef Clobber = Literal->getString(); 465 466 if (!Context.getTargetInfo().isValidClobber(Clobber)) { 467 targetDiag(Literal->getBeginLoc(), diag::err_asm_unknown_register_name) 468 << Clobber; 469 return new (Context) 470 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 471 NumInputs, Names, Constraints, Exprs.data(), AsmString, 472 NumClobbers, Clobbers, NumLabels, RParenLoc); 473 } 474 475 if (Clobber == "unwind") { 476 UnwindClobberLoc = Literal->getBeginLoc(); 477 } 478 } 479 480 // Using unwind clobber and asm-goto together is not supported right now. 481 if (UnwindClobberLoc && NumLabels > 0) { 482 targetDiag(*UnwindClobberLoc, diag::err_asm_unwind_and_goto); 483 return new (Context) 484 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, 485 Names, Constraints, Exprs.data(), AsmString, NumClobbers, 486 Clobbers, NumLabels, RParenLoc); 487 } 488 489 GCCAsmStmt *NS = 490 new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 491 NumInputs, Names, Constraints, Exprs.data(), 492 AsmString, NumClobbers, Clobbers, NumLabels, 493 RParenLoc); 494 // Validate the asm string, ensuring it makes sense given the operands we 495 // have. 496 SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces; 497 unsigned DiagOffs; 498 if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) { 499 targetDiag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID) 500 << AsmString->getSourceRange(); 501 return NS; 502 } 503 504 // Validate constraints and modifiers. 505 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { 506 GCCAsmStmt::AsmStringPiece &Piece = Pieces[i]; 507 if (!Piece.isOperand()) continue; 508 509 // Look for the correct constraint index. 510 unsigned ConstraintIdx = Piece.getOperandNo(); 511 unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs(); 512 // Labels are the last in the Exprs list. 513 if (NS->isAsmGoto() && ConstraintIdx >= NumOperands) 514 continue; 515 // Look for the (ConstraintIdx - NumOperands + 1)th constraint with 516 // modifier '+'. 517 if (ConstraintIdx >= NumOperands) { 518 unsigned I = 0, E = NS->getNumOutputs(); 519 520 for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I) 521 if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) { 522 ConstraintIdx = I; 523 break; 524 } 525 526 assert(I != E && "Invalid operand number should have been caught in " 527 " AnalyzeAsmString"); 528 } 529 530 // Now that we have the right indexes go ahead and check. 531 StringLiteral *Literal = Constraints[ConstraintIdx]; 532 const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr(); 533 if (Ty->isDependentType() || Ty->isIncompleteType()) 534 continue; 535 536 unsigned Size = Context.getTypeSize(Ty); 537 std::string SuggestedModifier; 538 if (!Context.getTargetInfo().validateConstraintModifier( 539 Literal->getString(), Piece.getModifier(), Size, 540 SuggestedModifier)) { 541 targetDiag(Exprs[ConstraintIdx]->getBeginLoc(), 542 diag::warn_asm_mismatched_size_modifier); 543 544 if (!SuggestedModifier.empty()) { 545 auto B = targetDiag(Piece.getRange().getBegin(), 546 diag::note_asm_missing_constraint_modifier) 547 << SuggestedModifier; 548 SuggestedModifier = "%" + SuggestedModifier + Piece.getString(); 549 B << FixItHint::CreateReplacement(Piece.getRange(), SuggestedModifier); 550 } 551 } 552 } 553 554 // Validate tied input operands for type mismatches. 555 unsigned NumAlternatives = ~0U; 556 for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) { 557 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 558 StringRef ConstraintStr = Info.getConstraintStr(); 559 unsigned AltCount = ConstraintStr.count(',') + 1; 560 if (NumAlternatives == ~0U) { 561 NumAlternatives = AltCount; 562 } else if (NumAlternatives != AltCount) { 563 targetDiag(NS->getOutputExpr(i)->getBeginLoc(), 564 diag::err_asm_unexpected_constraint_alternatives) 565 << NumAlternatives << AltCount; 566 return NS; 567 } 568 } 569 SmallVector<size_t, 4> InputMatchedToOutput(OutputConstraintInfos.size(), 570 ~0U); 571 for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) { 572 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 573 StringRef ConstraintStr = Info.getConstraintStr(); 574 unsigned AltCount = ConstraintStr.count(',') + 1; 575 if (NumAlternatives == ~0U) { 576 NumAlternatives = AltCount; 577 } else if (NumAlternatives != AltCount) { 578 targetDiag(NS->getInputExpr(i)->getBeginLoc(), 579 diag::err_asm_unexpected_constraint_alternatives) 580 << NumAlternatives << AltCount; 581 return NS; 582 } 583 584 // If this is a tied constraint, verify that the output and input have 585 // either exactly the same type, or that they are int/ptr operands with the 586 // same size (int/long, int*/long, are ok etc). 587 if (!Info.hasTiedOperand()) continue; 588 589 unsigned TiedTo = Info.getTiedOperand(); 590 unsigned InputOpNo = i+NumOutputs; 591 Expr *OutputExpr = Exprs[TiedTo]; 592 Expr *InputExpr = Exprs[InputOpNo]; 593 594 // Make sure no more than one input constraint matches each output. 595 assert(TiedTo < InputMatchedToOutput.size() && "TiedTo value out of range"); 596 if (InputMatchedToOutput[TiedTo] != ~0U) { 597 targetDiag(NS->getInputExpr(i)->getBeginLoc(), 598 diag::err_asm_input_duplicate_match) 599 << TiedTo; 600 targetDiag(NS->getInputExpr(InputMatchedToOutput[TiedTo])->getBeginLoc(), 601 diag::note_asm_input_duplicate_first) 602 << TiedTo; 603 return NS; 604 } 605 InputMatchedToOutput[TiedTo] = i; 606 607 if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent()) 608 continue; 609 610 QualType InTy = InputExpr->getType(); 611 QualType OutTy = OutputExpr->getType(); 612 if (Context.hasSameType(InTy, OutTy)) 613 continue; // All types can be tied to themselves. 614 615 // Decide if the input and output are in the same domain (integer/ptr or 616 // floating point. 617 enum AsmDomain { 618 AD_Int, AD_FP, AD_Other 619 } InputDomain, OutputDomain; 620 621 if (InTy->isIntegerType() || InTy->isPointerType()) 622 InputDomain = AD_Int; 623 else if (InTy->isRealFloatingType()) 624 InputDomain = AD_FP; 625 else 626 InputDomain = AD_Other; 627 628 if (OutTy->isIntegerType() || OutTy->isPointerType()) 629 OutputDomain = AD_Int; 630 else if (OutTy->isRealFloatingType()) 631 OutputDomain = AD_FP; 632 else 633 OutputDomain = AD_Other; 634 635 // They are ok if they are the same size and in the same domain. This 636 // allows tying things like: 637 // void* to int* 638 // void* to int if they are the same size. 639 // double to long double if they are the same size. 640 // 641 uint64_t OutSize = Context.getTypeSize(OutTy); 642 uint64_t InSize = Context.getTypeSize(InTy); 643 if (OutSize == InSize && InputDomain == OutputDomain && 644 InputDomain != AD_Other) 645 continue; 646 647 // If the smaller input/output operand is not mentioned in the asm string, 648 // then we can promote the smaller one to a larger input and the asm string 649 // won't notice. 650 bool SmallerValueMentioned = false; 651 652 // If this is a reference to the input and if the input was the smaller 653 // one, then we have to reject this asm. 654 if (isOperandMentioned(InputOpNo, Pieces)) { 655 // This is a use in the asm string of the smaller operand. Since we 656 // codegen this by promoting to a wider value, the asm will get printed 657 // "wrong". 658 SmallerValueMentioned |= InSize < OutSize; 659 } 660 if (isOperandMentioned(TiedTo, Pieces)) { 661 // If this is a reference to the output, and if the output is the larger 662 // value, then it's ok because we'll promote the input to the larger type. 663 SmallerValueMentioned |= OutSize < InSize; 664 } 665 666 // If the smaller value wasn't mentioned in the asm string, and if the 667 // output was a register, just extend the shorter one to the size of the 668 // larger one. 669 if (!SmallerValueMentioned && InputDomain != AD_Other && 670 OutputConstraintInfos[TiedTo].allowsRegister()) { 671 // FIXME: GCC supports the OutSize to be 128 at maximum. Currently codegen 672 // crash when the size larger than the register size. So we limit it here. 673 if (OutTy->isStructureType() && 674 Context.getIntTypeForBitwidth(OutSize, /*Signed*/ false).isNull()) { 675 targetDiag(OutputExpr->getExprLoc(), diag::err_store_value_to_reg); 676 return NS; 677 } 678 679 continue; 680 } 681 682 // Either both of the operands were mentioned or the smaller one was 683 // mentioned. One more special case that we'll allow: if the tied input is 684 // integer, unmentioned, and is a constant, then we'll allow truncating it 685 // down to the size of the destination. 686 if (InputDomain == AD_Int && OutputDomain == AD_Int && 687 !isOperandMentioned(InputOpNo, Pieces) && 688 InputExpr->isEvaluatable(Context)) { 689 CastKind castKind = 690 (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast); 691 InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get(); 692 Exprs[InputOpNo] = InputExpr; 693 NS->setInputExpr(i, InputExpr); 694 continue; 695 } 696 697 targetDiag(InputExpr->getBeginLoc(), diag::err_asm_tying_incompatible_types) 698 << InTy << OutTy << OutputExpr->getSourceRange() 699 << InputExpr->getSourceRange(); 700 return NS; 701 } 702 703 // Check for conflicts between clobber list and input or output lists 704 SourceLocation ConstraintLoc = 705 getClobberConflictLocation(Exprs, Constraints, Clobbers, NumClobbers, 706 NumLabels, 707 Context.getTargetInfo(), Context); 708 if (ConstraintLoc.isValid()) 709 targetDiag(ConstraintLoc, diag::error_inoutput_conflict_with_clobber); 710 711 // Check for duplicate asm operand name between input, output and label lists. 712 typedef std::pair<StringRef , Expr *> NamedOperand; 713 SmallVector<NamedOperand, 4> NamedOperandList; 714 for (unsigned i = 0, e = NumOutputs + NumInputs + NumLabels; i != e; ++i) 715 if (Names[i]) 716 NamedOperandList.emplace_back( 717 std::make_pair(Names[i]->getName(), Exprs[i])); 718 // Sort NamedOperandList. 719 llvm::stable_sort(NamedOperandList, llvm::less_first()); 720 // Find adjacent duplicate operand. 721 SmallVector<NamedOperand, 4>::iterator Found = 722 std::adjacent_find(begin(NamedOperandList), end(NamedOperandList), 723 [](const NamedOperand &LHS, const NamedOperand &RHS) { 724 return LHS.first == RHS.first; 725 }); 726 if (Found != NamedOperandList.end()) { 727 Diag((Found + 1)->second->getBeginLoc(), 728 diag::error_duplicate_asm_operand_name) 729 << (Found + 1)->first; 730 Diag(Found->second->getBeginLoc(), diag::note_duplicate_asm_operand_name) 731 << Found->first; 732 return StmtError(); 733 } 734 if (NS->isAsmGoto()) 735 setFunctionHasBranchIntoScope(); 736 737 CleanupVarDeclMarking(); 738 DiscardCleanupsInEvaluationContext(); 739 return NS; 740 } 741 742 void Sema::FillInlineAsmIdentifierInfo(Expr *Res, 743 llvm::InlineAsmIdentifierInfo &Info) { 744 QualType T = Res->getType(); 745 Expr::EvalResult Eval; 746 if (T->isFunctionType() || T->isDependentType()) 747 return Info.setLabel(Res); 748 if (Res->isPRValue()) { 749 bool IsEnum = isa<clang::EnumType>(T); 750 if (DeclRefExpr *DRE = dyn_cast<clang::DeclRefExpr>(Res)) 751 if (DRE->getDecl()->getKind() == Decl::EnumConstant) 752 IsEnum = true; 753 if (IsEnum && Res->EvaluateAsRValue(Eval, Context)) 754 return Info.setEnum(Eval.Val.getInt().getSExtValue()); 755 756 return Info.setLabel(Res); 757 } 758 unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); 759 unsigned Type = Size; 760 if (const auto *ATy = Context.getAsArrayType(T)) 761 Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity(); 762 bool IsGlobalLV = false; 763 if (Res->EvaluateAsLValue(Eval, Context)) 764 IsGlobalLV = Eval.isGlobalLValue(); 765 Info.setVar(Res, IsGlobalLV, Size, Type); 766 } 767 768 ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS, 769 SourceLocation TemplateKWLoc, 770 UnqualifiedId &Id, 771 bool IsUnevaluatedContext) { 772 773 if (IsUnevaluatedContext) 774 PushExpressionEvaluationContext( 775 ExpressionEvaluationContext::UnevaluatedAbstract, 776 ReuseLambdaContextDecl); 777 778 ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id, 779 /*trailing lparen*/ false, 780 /*is & operand*/ false, 781 /*CorrectionCandidateCallback=*/nullptr, 782 /*IsInlineAsmIdentifier=*/ true); 783 784 if (IsUnevaluatedContext) 785 PopExpressionEvaluationContext(); 786 787 if (!Result.isUsable()) return Result; 788 789 Result = CheckPlaceholderExpr(Result.get()); 790 if (!Result.isUsable()) return Result; 791 792 // Referring to parameters is not allowed in naked functions. 793 if (CheckNakedParmReference(Result.get(), *this)) 794 return ExprError(); 795 796 QualType T = Result.get()->getType(); 797 798 if (T->isDependentType()) { 799 return Result; 800 } 801 802 // Any sort of function type is fine. 803 if (T->isFunctionType()) { 804 return Result; 805 } 806 807 // Otherwise, it needs to be a complete type. 808 if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) { 809 return ExprError(); 810 } 811 812 return Result; 813 } 814 815 bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member, 816 unsigned &Offset, SourceLocation AsmLoc) { 817 Offset = 0; 818 SmallVector<StringRef, 2> Members; 819 Member.split(Members, "."); 820 821 NamedDecl *FoundDecl = nullptr; 822 823 // MS InlineAsm uses 'this' as a base 824 if (getLangOpts().CPlusPlus && Base.equals("this")) { 825 if (const Type *PT = getCurrentThisType().getTypePtrOrNull()) 826 FoundDecl = PT->getPointeeType()->getAsTagDecl(); 827 } else { 828 LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(), 829 LookupOrdinaryName); 830 if (LookupName(BaseResult, getCurScope()) && BaseResult.isSingleResult()) 831 FoundDecl = BaseResult.getFoundDecl(); 832 } 833 834 if (!FoundDecl) 835 return true; 836 837 for (StringRef NextMember : Members) { 838 const RecordType *RT = nullptr; 839 if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl)) 840 RT = VD->getType()->getAs<RecordType>(); 841 else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) { 842 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); 843 // MS InlineAsm often uses struct pointer aliases as a base 844 QualType QT = TD->getUnderlyingType(); 845 if (const auto *PT = QT->getAs<PointerType>()) 846 QT = PT->getPointeeType(); 847 RT = QT->getAs<RecordType>(); 848 } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl)) 849 RT = TD->getTypeForDecl()->getAs<RecordType>(); 850 else if (FieldDecl *TD = dyn_cast<FieldDecl>(FoundDecl)) 851 RT = TD->getType()->getAs<RecordType>(); 852 if (!RT) 853 return true; 854 855 if (RequireCompleteType(AsmLoc, QualType(RT, 0), 856 diag::err_asm_incomplete_type)) 857 return true; 858 859 LookupResult FieldResult(*this, &Context.Idents.get(NextMember), 860 SourceLocation(), LookupMemberName); 861 862 if (!LookupQualifiedName(FieldResult, RT->getDecl())) 863 return true; 864 865 if (!FieldResult.isSingleResult()) 866 return true; 867 FoundDecl = FieldResult.getFoundDecl(); 868 869 // FIXME: Handle IndirectFieldDecl? 870 FieldDecl *FD = dyn_cast<FieldDecl>(FoundDecl); 871 if (!FD) 872 return true; 873 874 const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl()); 875 unsigned i = FD->getFieldIndex(); 876 CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i)); 877 Offset += (unsigned)Result.getQuantity(); 878 } 879 880 return false; 881 } 882 883 ExprResult 884 Sema::LookupInlineAsmVarDeclField(Expr *E, StringRef Member, 885 SourceLocation AsmLoc) { 886 887 QualType T = E->getType(); 888 if (T->isDependentType()) { 889 DeclarationNameInfo NameInfo; 890 NameInfo.setLoc(AsmLoc); 891 NameInfo.setName(&Context.Idents.get(Member)); 892 return CXXDependentScopeMemberExpr::Create( 893 Context, E, T, /*IsArrow=*/false, AsmLoc, NestedNameSpecifierLoc(), 894 SourceLocation(), 895 /*FirstQualifierFoundInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr); 896 } 897 898 const RecordType *RT = T->getAs<RecordType>(); 899 // FIXME: Diagnose this as field access into a scalar type. 900 if (!RT) 901 return ExprResult(); 902 903 LookupResult FieldResult(*this, &Context.Idents.get(Member), AsmLoc, 904 LookupMemberName); 905 906 if (!LookupQualifiedName(FieldResult, RT->getDecl())) 907 return ExprResult(); 908 909 // Only normal and indirect field results will work. 910 ValueDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl()); 911 if (!FD) 912 FD = dyn_cast<IndirectFieldDecl>(FieldResult.getFoundDecl()); 913 if (!FD) 914 return ExprResult(); 915 916 // Make an Expr to thread through OpDecl. 917 ExprResult Result = BuildMemberReferenceExpr( 918 E, E->getType(), AsmLoc, /*IsArrow=*/false, CXXScopeSpec(), 919 SourceLocation(), nullptr, FieldResult, nullptr, nullptr); 920 921 return Result; 922 } 923 924 StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, 925 ArrayRef<Token> AsmToks, 926 StringRef AsmString, 927 unsigned NumOutputs, unsigned NumInputs, 928 ArrayRef<StringRef> Constraints, 929 ArrayRef<StringRef> Clobbers, 930 ArrayRef<Expr*> Exprs, 931 SourceLocation EndLoc) { 932 bool IsSimple = (NumOutputs != 0 || NumInputs != 0); 933 setFunctionHasBranchProtectedScope(); 934 935 for (uint64_t I = 0; I < NumOutputs + NumInputs; ++I) { 936 if (Exprs[I]->getType()->isBitIntType()) 937 return StmtError( 938 Diag(Exprs[I]->getBeginLoc(), diag::err_asm_invalid_type) 939 << Exprs[I]->getType() << (I < NumOutputs) 940 << Exprs[I]->getSourceRange()); 941 } 942 943 MSAsmStmt *NS = 944 new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple, 945 /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs, 946 Constraints, Exprs, AsmString, 947 Clobbers, EndLoc); 948 return NS; 949 } 950 951 LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName, 952 SourceLocation Location, 953 bool AlwaysCreate) { 954 LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName), 955 Location); 956 957 if (Label->isMSAsmLabel()) { 958 // If we have previously created this label implicitly, mark it as used. 959 Label->markUsed(Context); 960 } else { 961 // Otherwise, insert it, but only resolve it if we have seen the label itself. 962 std::string InternalName; 963 llvm::raw_string_ostream OS(InternalName); 964 // Create an internal name for the label. The name should not be a valid 965 // mangled name, and should be unique. We use a dot to make the name an 966 // invalid mangled name. We use LLVM's inline asm ${:uid} escape so that a 967 // unique label is generated each time this blob is emitted, even after 968 // inlining or LTO. 969 OS << "__MSASMLABEL_.${:uid}__"; 970 for (char C : ExternalLabelName) { 971 OS << C; 972 // We escape '$' in asm strings by replacing it with "$$" 973 if (C == '$') 974 OS << '$'; 975 } 976 Label->setMSAsmLabel(OS.str()); 977 } 978 if (AlwaysCreate) { 979 // The label might have been created implicitly from a previously encountered 980 // goto statement. So, for both newly created and looked up labels, we mark 981 // them as resolved. 982 Label->setMSAsmLabelResolved(); 983 } 984 // Adjust their location for being able to generate accurate diagnostics. 985 Label->setLocation(Location); 986 987 return Label; 988 } 989