//===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for inline asm statements. // //===----------------------------------------------------------------------===// #include "clang/AST/ExprCXX.h" #include "clang/AST/GlobalDecl.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/TypeLoc.h" #include "clang/Basic/TargetInfo.h" #include "clang/Lex/Preprocessor.h" #include "clang/Sema/Initialization.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/SemaInternal.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/StringSet.h" #include "llvm/MC/MCParser/MCAsmParser.h" using namespace clang; using namespace sema; /// Remove the upper-level LValueToRValue cast from an expression. static void removeLValueToRValueCast(Expr *E) { Expr *Parent = E; Expr *ExprUnderCast = nullptr; SmallVector ParentsToUpdate; while (true) { ParentsToUpdate.push_back(Parent); if (auto *ParenE = dyn_cast(Parent)) { Parent = ParenE->getSubExpr(); continue; } Expr *Child = nullptr; CastExpr *ParentCast = dyn_cast(Parent); if (ParentCast) Child = ParentCast->getSubExpr(); else return; if (auto *CastE = dyn_cast(Child)) if (CastE->getCastKind() == CK_LValueToRValue) { ExprUnderCast = CastE->getSubExpr(); // LValueToRValue cast inside GCCAsmStmt requires an explicit cast. ParentCast->setSubExpr(ExprUnderCast); break; } Parent = Child; } // Update parent expressions to have same ValueType as the underlying. assert(ExprUnderCast && "Should be reachable only if LValueToRValue cast was found!"); auto ValueKind = ExprUnderCast->getValueKind(); for (Expr *E : ParentsToUpdate) E->setValueKind(ValueKind); } /// Emit a warning about usage of "noop"-like casts for lvalues (GNU extension) /// and fix the argument with removing LValueToRValue cast from the expression. static void emitAndFixInvalidAsmCastLValue(const Expr *LVal, Expr *BadArgument, Sema &S) { if (!S.getLangOpts().HeinousExtensions) { S.Diag(LVal->getBeginLoc(), diag::err_invalid_asm_cast_lvalue) << BadArgument->getSourceRange(); } else { S.Diag(LVal->getBeginLoc(), diag::warn_invalid_asm_cast_lvalue) << BadArgument->getSourceRange(); } removeLValueToRValueCast(BadArgument); } /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently /// ignore "noop" casts in places where an lvalue is required by an inline asm. /// We emulate this behavior when -fheinous-gnu-extensions is specified, but /// provide a strong guidance to not use it. /// /// This method checks to see if the argument is an acceptable l-value and /// returns false if it is a case we can handle. static bool CheckAsmLValue(Expr *E, Sema &S) { // Type dependent expressions will be checked during instantiation. if (E->isTypeDependent()) return false; if (E->isLValue()) return false; // Cool, this is an lvalue. // Okay, this is not an lvalue, but perhaps it is the result of a cast that we // are supposed to allow. const Expr *E2 = E->IgnoreParenNoopCasts(S.Context); if (E != E2 && E2->isLValue()) { emitAndFixInvalidAsmCastLValue(E2, E, S); // Accept, even if we emitted an error diagnostic. return false; } // None of the above, just randomly invalid non-lvalue. return true; } /// isOperandMentioned - Return true if the specified operand # is mentioned /// anywhere in the decomposed asm string. static bool isOperandMentioned(unsigned OpNo, ArrayRef AsmStrPieces) { for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) { const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p]; if (!Piece.isOperand()) continue; // If this is a reference to the input and if the input was the smaller // one, then we have to reject this asm. if (Piece.getOperandNo() == OpNo) return true; } return false; } static bool CheckNakedParmReference(Expr *E, Sema &S) { FunctionDecl *Func = dyn_cast(S.CurContext); if (!Func) return false; if (!Func->hasAttr()) return false; SmallVector WorkList; WorkList.push_back(E); while (WorkList.size()) { Expr *E = WorkList.pop_back_val(); if (isa(E)) { S.Diag(E->getBeginLoc(), diag::err_asm_naked_this_ref); S.Diag(Func->getAttr()->getLocation(), diag::note_attribute); return true; } if (DeclRefExpr *DRE = dyn_cast(E)) { if (isa(DRE->getDecl())) { S.Diag(DRE->getBeginLoc(), diag::err_asm_naked_parm_ref); S.Diag(Func->getAttr()->getLocation(), diag::note_attribute); return true; } } for (Stmt *Child : E->children()) { if (Expr *E = dyn_cast_or_null(Child)) WorkList.push_back(E); } } return false; } /// Returns true if given expression is not compatible with inline /// assembly's memory constraint; false otherwise. static bool checkExprMemoryConstraintCompat(Sema &S, Expr *E, TargetInfo::ConstraintInfo &Info, bool is_input_expr) { enum { ExprBitfield = 0, ExprVectorElt, ExprGlobalRegVar, ExprSafeType } EType = ExprSafeType; // Bitfields, vector elements and global register variables are not // compatible. if (E->refersToBitField()) EType = ExprBitfield; else if (E->refersToVectorElement()) EType = ExprVectorElt; else if (E->refersToGlobalRegisterVar()) EType = ExprGlobalRegVar; if (EType != ExprSafeType) { S.Diag(E->getBeginLoc(), diag::err_asm_non_addr_value_in_memory_constraint) << EType << is_input_expr << Info.getConstraintStr() << E->getSourceRange(); return true; } return false; } // Extracting the register name from the Expression value, // if there is no register name to extract, returns "" static StringRef extractRegisterName(const Expr *Expression, const TargetInfo &Target) { Expression = Expression->IgnoreImpCasts(); if (const DeclRefExpr *AsmDeclRef = dyn_cast(Expression)) { // Handle cases where the expression is a variable const VarDecl *Variable = dyn_cast(AsmDeclRef->getDecl()); if (Variable && Variable->getStorageClass() == SC_Register) { if (AsmLabelAttr *Attr = Variable->getAttr()) if (Target.isValidGCCRegisterName(Attr->getLabel())) return Target.getNormalizedGCCRegisterName(Attr->getLabel(), true); } } return ""; } // Checks if there is a conflict between the input and output lists with the // clobbers list. If there's a conflict, returns the location of the // conflicted clobber, else returns nullptr static SourceLocation getClobberConflictLocation(MultiExprArg Exprs, StringLiteral **Constraints, StringLiteral **Clobbers, int NumClobbers, unsigned NumLabels, const TargetInfo &Target, ASTContext &Cont) { llvm::StringSet<> InOutVars; // Collect all the input and output registers from the extended asm // statement in order to check for conflicts with the clobber list for (unsigned int i = 0; i < Exprs.size() - NumLabels; ++i) { StringRef Constraint = Constraints[i]->getString(); StringRef InOutReg = Target.getConstraintRegister( Constraint, extractRegisterName(Exprs[i], Target)); if (InOutReg != "") InOutVars.insert(InOutReg); } // Check for each item in the clobber list if it conflicts with the input // or output for (int i = 0; i < NumClobbers; ++i) { StringRef Clobber = Clobbers[i]->getString(); // We only check registers, therefore we don't check cc and memory // clobbers if (Clobber == "cc" || Clobber == "memory" || Clobber == "unwind") continue; Clobber = Target.getNormalizedGCCRegisterName(Clobber, true); // Go over the output's registers we collected if (InOutVars.count(Clobber)) return Clobbers[i]->getBeginLoc(); } return SourceLocation(); } StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, bool IsVolatile, unsigned NumOutputs, unsigned NumInputs, IdentifierInfo **Names, MultiExprArg constraints, MultiExprArg Exprs, Expr *asmString, MultiExprArg clobbers, unsigned NumLabels, SourceLocation RParenLoc) { unsigned NumClobbers = clobbers.size(); StringLiteral **Constraints = reinterpret_cast(constraints.data()); StringLiteral *AsmString = cast(asmString); StringLiteral **Clobbers = reinterpret_cast(clobbers.data()); SmallVector OutputConstraintInfos; // The parser verifies that there is a string literal here. assert(AsmString->isOrdinary()); FunctionDecl *FD = dyn_cast(getCurLexicalContext()); llvm::StringMap FeatureMap; Context.getFunctionFeatureMap(FeatureMap, FD); for (unsigned i = 0; i != NumOutputs; i++) { StringLiteral *Literal = Constraints[i]; assert(Literal->isOrdinary()); StringRef OutputName; if (Names[i]) OutputName = Names[i]->getName(); TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName); if (!Context.getTargetInfo().validateOutputConstraint(Info)) { targetDiag(Literal->getBeginLoc(), diag::err_asm_invalid_output_constraint) << Info.getConstraintStr(); return new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, Names, Constraints, Exprs.data(), AsmString, NumClobbers, Clobbers, NumLabels, RParenLoc); } ExprResult ER = CheckPlaceholderExpr(Exprs[i]); if (ER.isInvalid()) return StmtError(); Exprs[i] = ER.get(); // Check that the output exprs are valid lvalues. Expr *OutputExpr = Exprs[i]; // Referring to parameters is not allowed in naked functions. if (CheckNakedParmReference(OutputExpr, *this)) return StmtError(); // Check that the output expression is compatible with memory constraint. if (Info.allowsMemory() && checkExprMemoryConstraintCompat(*this, OutputExpr, Info, false)) return StmtError(); // Disallow bit-precise integer types, since the backends tend to have // difficulties with abnormal sizes. if (OutputExpr->getType()->isBitIntType()) return StmtError( Diag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_type) << OutputExpr->getType() << 0 /*Input*/ << OutputExpr->getSourceRange()); OutputConstraintInfos.push_back(Info); // If this is dependent, just continue. if (OutputExpr->isTypeDependent()) continue; Expr::isModifiableLvalueResult IsLV = OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr); switch (IsLV) { case Expr::MLV_Valid: // Cool, this is an lvalue. break; case Expr::MLV_ArrayType: // This is OK too. break; case Expr::MLV_LValueCast: { const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context); emitAndFixInvalidAsmCastLValue(LVal, OutputExpr, *this); // Accept, even if we emitted an error diagnostic. break; } case Expr::MLV_IncompleteType: case Expr::MLV_IncompleteVoidType: if (RequireCompleteType(OutputExpr->getBeginLoc(), Exprs[i]->getType(), diag::err_dereference_incomplete_type)) return StmtError(); LLVM_FALLTHROUGH; default: return StmtError(Diag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_lvalue_in_output) << OutputExpr->getSourceRange()); } unsigned Size = Context.getTypeSize(OutputExpr->getType()); if (!Context.getTargetInfo().validateOutputSize( FeatureMap, Literal->getString(), Size)) { targetDiag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_output_size) << Info.getConstraintStr(); return new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, Names, Constraints, Exprs.data(), AsmString, NumClobbers, Clobbers, NumLabels, RParenLoc); } } SmallVector InputConstraintInfos; for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { StringLiteral *Literal = Constraints[i]; assert(Literal->isOrdinary()); StringRef InputName; if (Names[i]) InputName = Names[i]->getName(); TargetInfo::ConstraintInfo Info(Literal->getString(), InputName); if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos, Info)) { targetDiag(Literal->getBeginLoc(), diag::err_asm_invalid_input_constraint) << Info.getConstraintStr(); return new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, Names, Constraints, Exprs.data(), AsmString, NumClobbers, Clobbers, NumLabels, RParenLoc); } ExprResult ER = CheckPlaceholderExpr(Exprs[i]); if (ER.isInvalid()) return StmtError(); Exprs[i] = ER.get(); Expr *InputExpr = Exprs[i]; // Referring to parameters is not allowed in naked functions. if (CheckNakedParmReference(InputExpr, *this)) return StmtError(); // Check that the input expression is compatible with memory constraint. if (Info.allowsMemory() && checkExprMemoryConstraintCompat(*this, InputExpr, Info, true)) return StmtError(); // Only allow void types for memory constraints. if (Info.allowsMemory() && !Info.allowsRegister()) { if (CheckAsmLValue(InputExpr, *this)) return StmtError(Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_lvalue_in_input) << Info.getConstraintStr() << InputExpr->getSourceRange()); } else { ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]); if (Result.isInvalid()) return StmtError(); InputExpr = Exprs[i] = Result.get(); if (Info.requiresImmediateConstant() && !Info.allowsRegister()) { if (!InputExpr->isValueDependent()) { Expr::EvalResult EVResult; if (InputExpr->EvaluateAsRValue(EVResult, Context, true)) { // For compatibility with GCC, we also allow pointers that would be // integral constant expressions if they were cast to int. llvm::APSInt IntResult; if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), Context)) if (!Info.isValidAsmImmediate(IntResult)) return StmtError( Diag(InputExpr->getBeginLoc(), diag::err_invalid_asm_value_for_constraint) << toString(IntResult, 10) << Info.getConstraintStr() << InputExpr->getSourceRange()); } } } } if (Info.allowsRegister()) { if (InputExpr->getType()->isVoidType()) { return StmtError( Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type_in_input) << InputExpr->getType() << Info.getConstraintStr() << InputExpr->getSourceRange()); } } if (InputExpr->getType()->isBitIntType()) return StmtError( Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type) << InputExpr->getType() << 1 /*Output*/ << InputExpr->getSourceRange()); InputConstraintInfos.push_back(Info); const Type *Ty = Exprs[i]->getType().getTypePtr(); if (Ty->isDependentType()) continue; if (!Ty->isVoidType() || !Info.allowsMemory()) if (RequireCompleteType(InputExpr->getBeginLoc(), Exprs[i]->getType(), diag::err_dereference_incomplete_type)) return StmtError(); unsigned Size = Context.getTypeSize(Ty); if (!Context.getTargetInfo().validateInputSize(FeatureMap, Literal->getString(), Size)) return targetDiag(InputExpr->getBeginLoc(), diag::err_asm_invalid_input_size) << Info.getConstraintStr(); } Optional UnwindClobberLoc; // Check that the clobbers are valid. for (unsigned i = 0; i != NumClobbers; i++) { StringLiteral *Literal = Clobbers[i]; assert(Literal->isOrdinary()); StringRef Clobber = Literal->getString(); if (!Context.getTargetInfo().isValidClobber(Clobber)) { targetDiag(Literal->getBeginLoc(), diag::err_asm_unknown_register_name) << Clobber; return new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, Names, Constraints, Exprs.data(), AsmString, NumClobbers, Clobbers, NumLabels, RParenLoc); } if (Clobber == "unwind") { UnwindClobberLoc = Literal->getBeginLoc(); } } // Using unwind clobber and asm-goto together is not supported right now. if (UnwindClobberLoc && NumLabels > 0) { targetDiag(*UnwindClobberLoc, diag::err_asm_unwind_and_goto); return new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, Names, Constraints, Exprs.data(), AsmString, NumClobbers, Clobbers, NumLabels, RParenLoc); } GCCAsmStmt *NS = new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, Names, Constraints, Exprs.data(), AsmString, NumClobbers, Clobbers, NumLabels, RParenLoc); // Validate the asm string, ensuring it makes sense given the operands we // have. SmallVector Pieces; unsigned DiagOffs; if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) { targetDiag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID) << AsmString->getSourceRange(); return NS; } // Validate constraints and modifiers. for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { GCCAsmStmt::AsmStringPiece &Piece = Pieces[i]; if (!Piece.isOperand()) continue; // Look for the correct constraint index. unsigned ConstraintIdx = Piece.getOperandNo(); unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs(); // Labels are the last in the Exprs list. if (NS->isAsmGoto() && ConstraintIdx >= NumOperands) continue; // Look for the (ConstraintIdx - NumOperands + 1)th constraint with // modifier '+'. if (ConstraintIdx >= NumOperands) { unsigned I = 0, E = NS->getNumOutputs(); for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I) if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) { ConstraintIdx = I; break; } assert(I != E && "Invalid operand number should have been caught in " " AnalyzeAsmString"); } // Now that we have the right indexes go ahead and check. StringLiteral *Literal = Constraints[ConstraintIdx]; const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr(); if (Ty->isDependentType() || Ty->isIncompleteType()) continue; unsigned Size = Context.getTypeSize(Ty); std::string SuggestedModifier; if (!Context.getTargetInfo().validateConstraintModifier( Literal->getString(), Piece.getModifier(), Size, SuggestedModifier)) { targetDiag(Exprs[ConstraintIdx]->getBeginLoc(), diag::warn_asm_mismatched_size_modifier); if (!SuggestedModifier.empty()) { auto B = targetDiag(Piece.getRange().getBegin(), diag::note_asm_missing_constraint_modifier) << SuggestedModifier; SuggestedModifier = "%" + SuggestedModifier + Piece.getString(); B << FixItHint::CreateReplacement(Piece.getRange(), SuggestedModifier); } } } // Validate tied input operands for type mismatches. unsigned NumAlternatives = ~0U; for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) { TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; StringRef ConstraintStr = Info.getConstraintStr(); unsigned AltCount = ConstraintStr.count(',') + 1; if (NumAlternatives == ~0U) { NumAlternatives = AltCount; } else if (NumAlternatives != AltCount) { targetDiag(NS->getOutputExpr(i)->getBeginLoc(), diag::err_asm_unexpected_constraint_alternatives) << NumAlternatives << AltCount; return NS; } } SmallVector InputMatchedToOutput(OutputConstraintInfos.size(), ~0U); for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) { TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; StringRef ConstraintStr = Info.getConstraintStr(); unsigned AltCount = ConstraintStr.count(',') + 1; if (NumAlternatives == ~0U) { NumAlternatives = AltCount; } else if (NumAlternatives != AltCount) { targetDiag(NS->getInputExpr(i)->getBeginLoc(), diag::err_asm_unexpected_constraint_alternatives) << NumAlternatives << AltCount; return NS; } // If this is a tied constraint, verify that the output and input have // either exactly the same type, or that they are int/ptr operands with the // same size (int/long, int*/long, are ok etc). if (!Info.hasTiedOperand()) continue; unsigned TiedTo = Info.getTiedOperand(); unsigned InputOpNo = i+NumOutputs; Expr *OutputExpr = Exprs[TiedTo]; Expr *InputExpr = Exprs[InputOpNo]; // Make sure no more than one input constraint matches each output. assert(TiedTo < InputMatchedToOutput.size() && "TiedTo value out of range"); if (InputMatchedToOutput[TiedTo] != ~0U) { targetDiag(NS->getInputExpr(i)->getBeginLoc(), diag::err_asm_input_duplicate_match) << TiedTo; targetDiag(NS->getInputExpr(InputMatchedToOutput[TiedTo])->getBeginLoc(), diag::note_asm_input_duplicate_first) << TiedTo; return NS; } InputMatchedToOutput[TiedTo] = i; if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent()) continue; QualType InTy = InputExpr->getType(); QualType OutTy = OutputExpr->getType(); if (Context.hasSameType(InTy, OutTy)) continue; // All types can be tied to themselves. // Decide if the input and output are in the same domain (integer/ptr or // floating point. enum AsmDomain { AD_Int, AD_FP, AD_Other } InputDomain, OutputDomain; if (InTy->isIntegerType() || InTy->isPointerType()) InputDomain = AD_Int; else if (InTy->isRealFloatingType()) InputDomain = AD_FP; else InputDomain = AD_Other; if (OutTy->isIntegerType() || OutTy->isPointerType()) OutputDomain = AD_Int; else if (OutTy->isRealFloatingType()) OutputDomain = AD_FP; else OutputDomain = AD_Other; // They are ok if they are the same size and in the same domain. This // allows tying things like: // void* to int* // void* to int if they are the same size. // double to long double if they are the same size. // uint64_t OutSize = Context.getTypeSize(OutTy); uint64_t InSize = Context.getTypeSize(InTy); if (OutSize == InSize && InputDomain == OutputDomain && InputDomain != AD_Other) continue; // If the smaller input/output operand is not mentioned in the asm string, // then we can promote the smaller one to a larger input and the asm string // won't notice. bool SmallerValueMentioned = false; // If this is a reference to the input and if the input was the smaller // one, then we have to reject this asm. if (isOperandMentioned(InputOpNo, Pieces)) { // This is a use in the asm string of the smaller operand. Since we // codegen this by promoting to a wider value, the asm will get printed // "wrong". SmallerValueMentioned |= InSize < OutSize; } if (isOperandMentioned(TiedTo, Pieces)) { // If this is a reference to the output, and if the output is the larger // value, then it's ok because we'll promote the input to the larger type. SmallerValueMentioned |= OutSize < InSize; } // If the smaller value wasn't mentioned in the asm string, and if the // output was a register, just extend the shorter one to the size of the // larger one. if (!SmallerValueMentioned && InputDomain != AD_Other && OutputConstraintInfos[TiedTo].allowsRegister()) { // FIXME: GCC supports the OutSize to be 128 at maximum. Currently codegen // crash when the size larger than the register size. So we limit it here. if (OutTy->isStructureType() && Context.getIntTypeForBitwidth(OutSize, /*Signed*/ false).isNull()) { targetDiag(OutputExpr->getExprLoc(), diag::err_store_value_to_reg); return NS; } continue; } // Either both of the operands were mentioned or the smaller one was // mentioned. One more special case that we'll allow: if the tied input is // integer, unmentioned, and is a constant, then we'll allow truncating it // down to the size of the destination. if (InputDomain == AD_Int && OutputDomain == AD_Int && !isOperandMentioned(InputOpNo, Pieces) && InputExpr->isEvaluatable(Context)) { CastKind castKind = (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast); InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get(); Exprs[InputOpNo] = InputExpr; NS->setInputExpr(i, InputExpr); continue; } targetDiag(InputExpr->getBeginLoc(), diag::err_asm_tying_incompatible_types) << InTy << OutTy << OutputExpr->getSourceRange() << InputExpr->getSourceRange(); return NS; } // Check for conflicts between clobber list and input or output lists SourceLocation ConstraintLoc = getClobberConflictLocation(Exprs, Constraints, Clobbers, NumClobbers, NumLabels, Context.getTargetInfo(), Context); if (ConstraintLoc.isValid()) targetDiag(ConstraintLoc, diag::error_inoutput_conflict_with_clobber); // Check for duplicate asm operand name between input, output and label lists. typedef std::pair NamedOperand; SmallVector NamedOperandList; for (unsigned i = 0, e = NumOutputs + NumInputs + NumLabels; i != e; ++i) if (Names[i]) NamedOperandList.emplace_back( std::make_pair(Names[i]->getName(), Exprs[i])); // Sort NamedOperandList. llvm::stable_sort(NamedOperandList, llvm::less_first()); // Find adjacent duplicate operand. SmallVector::iterator Found = std::adjacent_find(begin(NamedOperandList), end(NamedOperandList), [](const NamedOperand &LHS, const NamedOperand &RHS) { return LHS.first == RHS.first; }); if (Found != NamedOperandList.end()) { Diag((Found + 1)->second->getBeginLoc(), diag::error_duplicate_asm_operand_name) << (Found + 1)->first; Diag(Found->second->getBeginLoc(), diag::note_duplicate_asm_operand_name) << Found->first; return StmtError(); } if (NS->isAsmGoto()) setFunctionHasBranchIntoScope(); CleanupVarDeclMarking(); DiscardCleanupsInEvaluationContext(); return NS; } void Sema::FillInlineAsmIdentifierInfo(Expr *Res, llvm::InlineAsmIdentifierInfo &Info) { QualType T = Res->getType(); Expr::EvalResult Eval; if (T->isFunctionType() || T->isDependentType()) return Info.setLabel(Res); if (Res->isPRValue()) { bool IsEnum = isa(T); if (DeclRefExpr *DRE = dyn_cast(Res)) if (DRE->getDecl()->getKind() == Decl::EnumConstant) IsEnum = true; if (IsEnum && Res->EvaluateAsRValue(Eval, Context)) return Info.setEnum(Eval.Val.getInt().getSExtValue()); return Info.setLabel(Res); } unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); unsigned Type = Size; if (const auto *ATy = Context.getAsArrayType(T)) Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity(); bool IsGlobalLV = false; if (Res->EvaluateAsLValue(Eval, Context)) IsGlobalLV = Eval.isGlobalLValue(); Info.setVar(Res, IsGlobalLV, Size, Type); } ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, UnqualifiedId &Id, bool IsUnevaluatedContext) { if (IsUnevaluatedContext) PushExpressionEvaluationContext( ExpressionEvaluationContext::UnevaluatedAbstract, ReuseLambdaContextDecl); ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id, /*trailing lparen*/ false, /*is & operand*/ false, /*CorrectionCandidateCallback=*/nullptr, /*IsInlineAsmIdentifier=*/ true); if (IsUnevaluatedContext) PopExpressionEvaluationContext(); if (!Result.isUsable()) return Result; Result = CheckPlaceholderExpr(Result.get()); if (!Result.isUsable()) return Result; // Referring to parameters is not allowed in naked functions. if (CheckNakedParmReference(Result.get(), *this)) return ExprError(); QualType T = Result.get()->getType(); if (T->isDependentType()) { return Result; } // Any sort of function type is fine. if (T->isFunctionType()) { return Result; } // Otherwise, it needs to be a complete type. if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) { return ExprError(); } return Result; } bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member, unsigned &Offset, SourceLocation AsmLoc) { Offset = 0; SmallVector Members; Member.split(Members, "."); NamedDecl *FoundDecl = nullptr; // MS InlineAsm uses 'this' as a base if (getLangOpts().CPlusPlus && Base.equals("this")) { if (const Type *PT = getCurrentThisType().getTypePtrOrNull()) FoundDecl = PT->getPointeeType()->getAsTagDecl(); } else { LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(), LookupOrdinaryName); if (LookupName(BaseResult, getCurScope()) && BaseResult.isSingleResult()) FoundDecl = BaseResult.getFoundDecl(); } if (!FoundDecl) return true; for (StringRef NextMember : Members) { const RecordType *RT = nullptr; if (VarDecl *VD = dyn_cast(FoundDecl)) RT = VD->getType()->getAs(); else if (TypedefNameDecl *TD = dyn_cast(FoundDecl)) { MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); // MS InlineAsm often uses struct pointer aliases as a base QualType QT = TD->getUnderlyingType(); if (const auto *PT = QT->getAs()) QT = PT->getPointeeType(); RT = QT->getAs(); } else if (TypeDecl *TD = dyn_cast(FoundDecl)) RT = TD->getTypeForDecl()->getAs(); else if (FieldDecl *TD = dyn_cast(FoundDecl)) RT = TD->getType()->getAs(); if (!RT) return true; if (RequireCompleteType(AsmLoc, QualType(RT, 0), diag::err_asm_incomplete_type)) return true; LookupResult FieldResult(*this, &Context.Idents.get(NextMember), SourceLocation(), LookupMemberName); if (!LookupQualifiedName(FieldResult, RT->getDecl())) return true; if (!FieldResult.isSingleResult()) return true; FoundDecl = FieldResult.getFoundDecl(); // FIXME: Handle IndirectFieldDecl? FieldDecl *FD = dyn_cast(FoundDecl); if (!FD) return true; const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl()); unsigned i = FD->getFieldIndex(); CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i)); Offset += (unsigned)Result.getQuantity(); } return false; } ExprResult Sema::LookupInlineAsmVarDeclField(Expr *E, StringRef Member, SourceLocation AsmLoc) { QualType T = E->getType(); if (T->isDependentType()) { DeclarationNameInfo NameInfo; NameInfo.setLoc(AsmLoc); NameInfo.setName(&Context.Idents.get(Member)); return CXXDependentScopeMemberExpr::Create( Context, E, T, /*IsArrow=*/false, AsmLoc, NestedNameSpecifierLoc(), SourceLocation(), /*FirstQualifierFoundInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr); } const RecordType *RT = T->getAs(); // FIXME: Diagnose this as field access into a scalar type. if (!RT) return ExprResult(); LookupResult FieldResult(*this, &Context.Idents.get(Member), AsmLoc, LookupMemberName); if (!LookupQualifiedName(FieldResult, RT->getDecl())) return ExprResult(); // Only normal and indirect field results will work. ValueDecl *FD = dyn_cast(FieldResult.getFoundDecl()); if (!FD) FD = dyn_cast(FieldResult.getFoundDecl()); if (!FD) return ExprResult(); // Make an Expr to thread through OpDecl. ExprResult Result = BuildMemberReferenceExpr( E, E->getType(), AsmLoc, /*IsArrow=*/false, CXXScopeSpec(), SourceLocation(), nullptr, FieldResult, nullptr, nullptr); return Result; } StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, ArrayRef AsmToks, StringRef AsmString, unsigned NumOutputs, unsigned NumInputs, ArrayRef Constraints, ArrayRef Clobbers, ArrayRef Exprs, SourceLocation EndLoc) { bool IsSimple = (NumOutputs != 0 || NumInputs != 0); setFunctionHasBranchProtectedScope(); for (uint64_t I = 0; I < NumOutputs + NumInputs; ++I) { if (Exprs[I]->getType()->isBitIntType()) return StmtError( Diag(Exprs[I]->getBeginLoc(), diag::err_asm_invalid_type) << Exprs[I]->getType() << (I < NumOutputs) << Exprs[I]->getSourceRange()); } MSAsmStmt *NS = new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple, /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs, Constraints, Exprs, AsmString, Clobbers, EndLoc); return NS; } LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName, SourceLocation Location, bool AlwaysCreate) { LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName), Location); if (Label->isMSAsmLabel()) { // If we have previously created this label implicitly, mark it as used. Label->markUsed(Context); } else { // Otherwise, insert it, but only resolve it if we have seen the label itself. std::string InternalName; llvm::raw_string_ostream OS(InternalName); // Create an internal name for the label. The name should not be a valid // mangled name, and should be unique. We use a dot to make the name an // invalid mangled name. We use LLVM's inline asm ${:uid} escape so that a // unique label is generated each time this blob is emitted, even after // inlining or LTO. OS << "__MSASMLABEL_.${:uid}__"; for (char C : ExternalLabelName) { OS << C; // We escape '$' in asm strings by replacing it with "$$" if (C == '$') OS << '$'; } Label->setMSAsmLabel(OS.str()); } if (AlwaysCreate) { // The label might have been created implicitly from a previously encountered // goto statement. So, for both newly created and looked up labels, we mark // them as resolved. Label->setMSAsmLabelResolved(); } // Adjust their location for being able to generate accurate diagnostics. Label->setLocation(Location); return Label; }