xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaCoroutine.cpp (revision 911f0260390e18cf85f3dbf2c719b593efdc1e3c)
1 //===-- SemaCoroutine.cpp - Semantic Analysis for Coroutines --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for C++ Coroutines.
10 //
11 //  This file contains references to sections of the Coroutines TS, which
12 //  can be found at http://wg21.link/coroutines.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "CoroutineStmtBuilder.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/StmtCXX.h"
21 #include "clang/Basic/Builtins.h"
22 #include "clang/Lex/Preprocessor.h"
23 #include "clang/Sema/Initialization.h"
24 #include "clang/Sema/Overload.h"
25 #include "clang/Sema/ScopeInfo.h"
26 #include "clang/Sema/SemaInternal.h"
27 #include "llvm/ADT/SmallSet.h"
28 
29 using namespace clang;
30 using namespace sema;
31 
32 static LookupResult lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
33                                  SourceLocation Loc, bool &Res) {
34   DeclarationName DN = S.PP.getIdentifierInfo(Name);
35   LookupResult LR(S, DN, Loc, Sema::LookupMemberName);
36   // Suppress diagnostics when a private member is selected. The same warnings
37   // will be produced again when building the call.
38   LR.suppressDiagnostics();
39   Res = S.LookupQualifiedName(LR, RD);
40   return LR;
41 }
42 
43 static bool lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
44                          SourceLocation Loc) {
45   bool Res;
46   lookupMember(S, Name, RD, Loc, Res);
47   return Res;
48 }
49 
50 /// Look up the std::coroutine_traits<...>::promise_type for the given
51 /// function type.
52 static QualType lookupPromiseType(Sema &S, const FunctionDecl *FD,
53                                   SourceLocation KwLoc) {
54   const FunctionProtoType *FnType = FD->getType()->castAs<FunctionProtoType>();
55   const SourceLocation FuncLoc = FD->getLocation();
56 
57   NamespaceDecl *CoroNamespace = nullptr;
58   ClassTemplateDecl *CoroTraits =
59       S.lookupCoroutineTraits(KwLoc, FuncLoc, CoroNamespace);
60   if (!CoroTraits) {
61     return QualType();
62   }
63 
64   // Form template argument list for coroutine_traits<R, P1, P2, ...> according
65   // to [dcl.fct.def.coroutine]3
66   TemplateArgumentListInfo Args(KwLoc, KwLoc);
67   auto AddArg = [&](QualType T) {
68     Args.addArgument(TemplateArgumentLoc(
69         TemplateArgument(T), S.Context.getTrivialTypeSourceInfo(T, KwLoc)));
70   };
71   AddArg(FnType->getReturnType());
72   // If the function is a non-static member function, add the type
73   // of the implicit object parameter before the formal parameters.
74   if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
75     if (MD->isInstance()) {
76       // [over.match.funcs]4
77       // For non-static member functions, the type of the implicit object
78       // parameter is
79       //  -- "lvalue reference to cv X" for functions declared without a
80       //      ref-qualifier or with the & ref-qualifier
81       //  -- "rvalue reference to cv X" for functions declared with the &&
82       //      ref-qualifier
83       QualType T = MD->getThisType()->castAs<PointerType>()->getPointeeType();
84       T = FnType->getRefQualifier() == RQ_RValue
85               ? S.Context.getRValueReferenceType(T)
86               : S.Context.getLValueReferenceType(T, /*SpelledAsLValue*/ true);
87       AddArg(T);
88     }
89   }
90   for (QualType T : FnType->getParamTypes())
91     AddArg(T);
92 
93   // Build the template-id.
94   QualType CoroTrait =
95       S.CheckTemplateIdType(TemplateName(CoroTraits), KwLoc, Args);
96   if (CoroTrait.isNull())
97     return QualType();
98   if (S.RequireCompleteType(KwLoc, CoroTrait,
99                             diag::err_coroutine_type_missing_specialization))
100     return QualType();
101 
102   auto *RD = CoroTrait->getAsCXXRecordDecl();
103   assert(RD && "specialization of class template is not a class?");
104 
105   // Look up the ::promise_type member.
106   LookupResult R(S, &S.PP.getIdentifierTable().get("promise_type"), KwLoc,
107                  Sema::LookupOrdinaryName);
108   S.LookupQualifiedName(R, RD);
109   auto *Promise = R.getAsSingle<TypeDecl>();
110   if (!Promise) {
111     S.Diag(FuncLoc,
112            diag::err_implied_std_coroutine_traits_promise_type_not_found)
113         << RD;
114     return QualType();
115   }
116   // The promise type is required to be a class type.
117   QualType PromiseType = S.Context.getTypeDeclType(Promise);
118 
119   auto buildElaboratedType = [&]() {
120     auto *NNS = NestedNameSpecifier::Create(S.Context, nullptr, CoroNamespace);
121     NNS = NestedNameSpecifier::Create(S.Context, NNS, false,
122                                       CoroTrait.getTypePtr());
123     return S.Context.getElaboratedType(ETK_None, NNS, PromiseType);
124   };
125 
126   if (!PromiseType->getAsCXXRecordDecl()) {
127     S.Diag(FuncLoc,
128            diag::err_implied_std_coroutine_traits_promise_type_not_class)
129         << buildElaboratedType();
130     return QualType();
131   }
132   if (S.RequireCompleteType(FuncLoc, buildElaboratedType(),
133                             diag::err_coroutine_promise_type_incomplete))
134     return QualType();
135 
136   return PromiseType;
137 }
138 
139 /// Look up the std::coroutine_handle<PromiseType>.
140 static QualType lookupCoroutineHandleType(Sema &S, QualType PromiseType,
141                                           SourceLocation Loc) {
142   if (PromiseType.isNull())
143     return QualType();
144 
145   NamespaceDecl *CoroNamespace = S.getCachedCoroNamespace();
146   assert(CoroNamespace && "Should already be diagnosed");
147 
148   LookupResult Result(S, &S.PP.getIdentifierTable().get("coroutine_handle"),
149                       Loc, Sema::LookupOrdinaryName);
150   if (!S.LookupQualifiedName(Result, CoroNamespace)) {
151     S.Diag(Loc, diag::err_implied_coroutine_type_not_found)
152         << "std::coroutine_handle";
153     return QualType();
154   }
155 
156   ClassTemplateDecl *CoroHandle = Result.getAsSingle<ClassTemplateDecl>();
157   if (!CoroHandle) {
158     Result.suppressDiagnostics();
159     // We found something weird. Complain about the first thing we found.
160     NamedDecl *Found = *Result.begin();
161     S.Diag(Found->getLocation(), diag::err_malformed_std_coroutine_handle);
162     return QualType();
163   }
164 
165   // Form template argument list for coroutine_handle<Promise>.
166   TemplateArgumentListInfo Args(Loc, Loc);
167   Args.addArgument(TemplateArgumentLoc(
168       TemplateArgument(PromiseType),
169       S.Context.getTrivialTypeSourceInfo(PromiseType, Loc)));
170 
171   // Build the template-id.
172   QualType CoroHandleType =
173       S.CheckTemplateIdType(TemplateName(CoroHandle), Loc, Args);
174   if (CoroHandleType.isNull())
175     return QualType();
176   if (S.RequireCompleteType(Loc, CoroHandleType,
177                             diag::err_coroutine_type_missing_specialization))
178     return QualType();
179 
180   return CoroHandleType;
181 }
182 
183 static bool isValidCoroutineContext(Sema &S, SourceLocation Loc,
184                                     StringRef Keyword) {
185   // [expr.await]p2 dictates that 'co_await' and 'co_yield' must be used within
186   // a function body.
187   // FIXME: This also covers [expr.await]p2: "An await-expression shall not
188   // appear in a default argument." But the diagnostic QoI here could be
189   // improved to inform the user that default arguments specifically are not
190   // allowed.
191   auto *FD = dyn_cast<FunctionDecl>(S.CurContext);
192   if (!FD) {
193     S.Diag(Loc, isa<ObjCMethodDecl>(S.CurContext)
194                     ? diag::err_coroutine_objc_method
195                     : diag::err_coroutine_outside_function) << Keyword;
196     return false;
197   }
198 
199   // An enumeration for mapping the diagnostic type to the correct diagnostic
200   // selection index.
201   enum InvalidFuncDiag {
202     DiagCtor = 0,
203     DiagDtor,
204     DiagMain,
205     DiagConstexpr,
206     DiagAutoRet,
207     DiagVarargs,
208     DiagConsteval,
209   };
210   bool Diagnosed = false;
211   auto DiagInvalid = [&](InvalidFuncDiag ID) {
212     S.Diag(Loc, diag::err_coroutine_invalid_func_context) << ID << Keyword;
213     Diagnosed = true;
214     return false;
215   };
216 
217   // Diagnose when a constructor, destructor
218   // or the function 'main' are declared as a coroutine.
219   auto *MD = dyn_cast<CXXMethodDecl>(FD);
220   // [class.ctor]p11: "A constructor shall not be a coroutine."
221   if (MD && isa<CXXConstructorDecl>(MD))
222     return DiagInvalid(DiagCtor);
223   // [class.dtor]p17: "A destructor shall not be a coroutine."
224   else if (MD && isa<CXXDestructorDecl>(MD))
225     return DiagInvalid(DiagDtor);
226   // [basic.start.main]p3: "The function main shall not be a coroutine."
227   else if (FD->isMain())
228     return DiagInvalid(DiagMain);
229 
230   // Emit a diagnostics for each of the following conditions which is not met.
231   // [expr.const]p2: "An expression e is a core constant expression unless the
232   // evaluation of e [...] would evaluate one of the following expressions:
233   // [...] an await-expression [...] a yield-expression."
234   if (FD->isConstexpr())
235     DiagInvalid(FD->isConsteval() ? DiagConsteval : DiagConstexpr);
236   // [dcl.spec.auto]p15: "A function declared with a return type that uses a
237   // placeholder type shall not be a coroutine."
238   if (FD->getReturnType()->isUndeducedType())
239     DiagInvalid(DiagAutoRet);
240   // [dcl.fct.def.coroutine]p1
241   // The parameter-declaration-clause of the coroutine shall not terminate with
242   // an ellipsis that is not part of a parameter-declaration.
243   if (FD->isVariadic())
244     DiagInvalid(DiagVarargs);
245 
246   return !Diagnosed;
247 }
248 
249 /// Build a call to 'operator co_await' if there is a suitable operator for
250 /// the given expression.
251 ExprResult Sema::BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E,
252                                           UnresolvedLookupExpr *Lookup) {
253   UnresolvedSet<16> Functions;
254   Functions.append(Lookup->decls_begin(), Lookup->decls_end());
255   return CreateOverloadedUnaryOp(Loc, UO_Coawait, Functions, E);
256 }
257 
258 static ExprResult buildOperatorCoawaitCall(Sema &SemaRef, Scope *S,
259                                            SourceLocation Loc, Expr *E) {
260   ExprResult R = SemaRef.BuildOperatorCoawaitLookupExpr(S, Loc);
261   if (R.isInvalid())
262     return ExprError();
263   return SemaRef.BuildOperatorCoawaitCall(Loc, E,
264                                           cast<UnresolvedLookupExpr>(R.get()));
265 }
266 
267 static ExprResult buildCoroutineHandle(Sema &S, QualType PromiseType,
268                                        SourceLocation Loc) {
269   QualType CoroHandleType = lookupCoroutineHandleType(S, PromiseType, Loc);
270   if (CoroHandleType.isNull())
271     return ExprError();
272 
273   DeclContext *LookupCtx = S.computeDeclContext(CoroHandleType);
274   LookupResult Found(S, &S.PP.getIdentifierTable().get("from_address"), Loc,
275                      Sema::LookupOrdinaryName);
276   if (!S.LookupQualifiedName(Found, LookupCtx)) {
277     S.Diag(Loc, diag::err_coroutine_handle_missing_member)
278         << "from_address";
279     return ExprError();
280   }
281 
282   Expr *FramePtr =
283       S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
284 
285   CXXScopeSpec SS;
286   ExprResult FromAddr =
287       S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false);
288   if (FromAddr.isInvalid())
289     return ExprError();
290 
291   return S.BuildCallExpr(nullptr, FromAddr.get(), Loc, FramePtr, Loc);
292 }
293 
294 struct ReadySuspendResumeResult {
295   enum AwaitCallType { ACT_Ready, ACT_Suspend, ACT_Resume };
296   Expr *Results[3];
297   OpaqueValueExpr *OpaqueValue;
298   bool IsInvalid;
299 };
300 
301 static ExprResult buildMemberCall(Sema &S, Expr *Base, SourceLocation Loc,
302                                   StringRef Name, MultiExprArg Args) {
303   DeclarationNameInfo NameInfo(&S.PP.getIdentifierTable().get(Name), Loc);
304 
305   // FIXME: Fix BuildMemberReferenceExpr to take a const CXXScopeSpec&.
306   CXXScopeSpec SS;
307   ExprResult Result = S.BuildMemberReferenceExpr(
308       Base, Base->getType(), Loc, /*IsPtr=*/false, SS,
309       SourceLocation(), nullptr, NameInfo, /*TemplateArgs=*/nullptr,
310       /*Scope=*/nullptr);
311   if (Result.isInvalid())
312     return ExprError();
313 
314   // We meant exactly what we asked for. No need for typo correction.
315   if (auto *TE = dyn_cast<TypoExpr>(Result.get())) {
316     S.clearDelayedTypo(TE);
317     S.Diag(Loc, diag::err_no_member)
318         << NameInfo.getName() << Base->getType()->getAsCXXRecordDecl()
319         << Base->getSourceRange();
320     return ExprError();
321   }
322 
323   return S.BuildCallExpr(nullptr, Result.get(), Loc, Args, Loc, nullptr);
324 }
325 
326 // See if return type is coroutine-handle and if so, invoke builtin coro-resume
327 // on its address. This is to enable experimental support for coroutine-handle
328 // returning await_suspend that results in a guaranteed tail call to the target
329 // coroutine.
330 static Expr *maybeTailCall(Sema &S, QualType RetType, Expr *E,
331                            SourceLocation Loc) {
332   if (RetType->isReferenceType())
333     return nullptr;
334   Type const *T = RetType.getTypePtr();
335   if (!T->isClassType() && !T->isStructureType())
336     return nullptr;
337 
338   // FIXME: Add convertability check to coroutine_handle<>. Possibly via
339   // EvaluateBinaryTypeTrait(BTT_IsConvertible, ...) which is at the moment
340   // a private function in SemaExprCXX.cpp
341 
342   ExprResult AddressExpr = buildMemberCall(S, E, Loc, "address", std::nullopt);
343   if (AddressExpr.isInvalid())
344     return nullptr;
345 
346   Expr *JustAddress = AddressExpr.get();
347 
348   // Check that the type of AddressExpr is void*
349   if (!JustAddress->getType().getTypePtr()->isVoidPointerType())
350     S.Diag(cast<CallExpr>(JustAddress)->getCalleeDecl()->getLocation(),
351            diag::warn_coroutine_handle_address_invalid_return_type)
352         << JustAddress->getType();
353 
354   // Clean up temporary objects so that they don't live across suspension points
355   // unnecessarily. We choose to clean up before the call to
356   // __builtin_coro_resume so that the cleanup code are not inserted in-between
357   // the resume call and return instruction, which would interfere with the
358   // musttail call contract.
359   JustAddress = S.MaybeCreateExprWithCleanups(JustAddress);
360   return S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_resume,
361                                 JustAddress);
362 }
363 
364 /// Build calls to await_ready, await_suspend, and await_resume for a co_await
365 /// expression.
366 /// The generated AST tries to clean up temporary objects as early as
367 /// possible so that they don't live across suspension points if possible.
368 /// Having temporary objects living across suspension points unnecessarily can
369 /// lead to large frame size, and also lead to memory corruptions if the
370 /// coroutine frame is destroyed after coming back from suspension. This is done
371 /// by wrapping both the await_ready call and the await_suspend call with
372 /// ExprWithCleanups. In the end of this function, we also need to explicitly
373 /// set cleanup state so that the CoawaitExpr is also wrapped with an
374 /// ExprWithCleanups to clean up the awaiter associated with the co_await
375 /// expression.
376 static ReadySuspendResumeResult buildCoawaitCalls(Sema &S, VarDecl *CoroPromise,
377                                                   SourceLocation Loc, Expr *E) {
378   OpaqueValueExpr *Operand = new (S.Context)
379       OpaqueValueExpr(Loc, E->getType(), VK_LValue, E->getObjectKind(), E);
380 
381   // Assume valid until we see otherwise.
382   // Further operations are responsible for setting IsInalid to true.
383   ReadySuspendResumeResult Calls = {{}, Operand, /*IsInvalid=*/false};
384 
385   using ACT = ReadySuspendResumeResult::AwaitCallType;
386 
387   auto BuildSubExpr = [&](ACT CallType, StringRef Func,
388                           MultiExprArg Arg) -> Expr * {
389     ExprResult Result = buildMemberCall(S, Operand, Loc, Func, Arg);
390     if (Result.isInvalid()) {
391       Calls.IsInvalid = true;
392       return nullptr;
393     }
394     Calls.Results[CallType] = Result.get();
395     return Result.get();
396   };
397 
398   CallExpr *AwaitReady = cast_or_null<CallExpr>(
399       BuildSubExpr(ACT::ACT_Ready, "await_ready", std::nullopt));
400   if (!AwaitReady)
401     return Calls;
402   if (!AwaitReady->getType()->isDependentType()) {
403     // [expr.await]p3 [...]
404     // — await-ready is the expression e.await_ready(), contextually converted
405     // to bool.
406     ExprResult Conv = S.PerformContextuallyConvertToBool(AwaitReady);
407     if (Conv.isInvalid()) {
408       S.Diag(AwaitReady->getDirectCallee()->getBeginLoc(),
409              diag::note_await_ready_no_bool_conversion);
410       S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
411           << AwaitReady->getDirectCallee() << E->getSourceRange();
412       Calls.IsInvalid = true;
413     } else
414       Calls.Results[ACT::ACT_Ready] = S.MaybeCreateExprWithCleanups(Conv.get());
415   }
416 
417   ExprResult CoroHandleRes =
418       buildCoroutineHandle(S, CoroPromise->getType(), Loc);
419   if (CoroHandleRes.isInvalid()) {
420     Calls.IsInvalid = true;
421     return Calls;
422   }
423   Expr *CoroHandle = CoroHandleRes.get();
424   CallExpr *AwaitSuspend = cast_or_null<CallExpr>(
425       BuildSubExpr(ACT::ACT_Suspend, "await_suspend", CoroHandle));
426   if (!AwaitSuspend)
427     return Calls;
428   if (!AwaitSuspend->getType()->isDependentType()) {
429     // [expr.await]p3 [...]
430     //   - await-suspend is the expression e.await_suspend(h), which shall be
431     //     a prvalue of type void, bool, or std::coroutine_handle<Z> for some
432     //     type Z.
433     QualType RetType = AwaitSuspend->getCallReturnType(S.Context);
434 
435     // Experimental support for coroutine_handle returning await_suspend.
436     if (Expr *TailCallSuspend =
437             maybeTailCall(S, RetType, AwaitSuspend, Loc))
438       // Note that we don't wrap the expression with ExprWithCleanups here
439       // because that might interfere with tailcall contract (e.g. inserting
440       // clean up instructions in-between tailcall and return). Instead
441       // ExprWithCleanups is wrapped within maybeTailCall() prior to the resume
442       // call.
443       Calls.Results[ACT::ACT_Suspend] = TailCallSuspend;
444     else {
445       // non-class prvalues always have cv-unqualified types
446       if (RetType->isReferenceType() ||
447           (!RetType->isBooleanType() && !RetType->isVoidType())) {
448         S.Diag(AwaitSuspend->getCalleeDecl()->getLocation(),
449                diag::err_await_suspend_invalid_return_type)
450             << RetType;
451         S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
452             << AwaitSuspend->getDirectCallee();
453         Calls.IsInvalid = true;
454       } else
455         Calls.Results[ACT::ACT_Suspend] =
456             S.MaybeCreateExprWithCleanups(AwaitSuspend);
457     }
458   }
459 
460   BuildSubExpr(ACT::ACT_Resume, "await_resume", std::nullopt);
461 
462   // Make sure the awaiter object gets a chance to be cleaned up.
463   S.Cleanup.setExprNeedsCleanups(true);
464 
465   return Calls;
466 }
467 
468 static ExprResult buildPromiseCall(Sema &S, VarDecl *Promise,
469                                    SourceLocation Loc, StringRef Name,
470                                    MultiExprArg Args) {
471 
472   // Form a reference to the promise.
473   ExprResult PromiseRef = S.BuildDeclRefExpr(
474       Promise, Promise->getType().getNonReferenceType(), VK_LValue, Loc);
475   if (PromiseRef.isInvalid())
476     return ExprError();
477 
478   return buildMemberCall(S, PromiseRef.get(), Loc, Name, Args);
479 }
480 
481 VarDecl *Sema::buildCoroutinePromise(SourceLocation Loc) {
482   assert(isa<FunctionDecl>(CurContext) && "not in a function scope");
483   auto *FD = cast<FunctionDecl>(CurContext);
484   bool IsThisDependentType = [&] {
485     if (auto *MD = dyn_cast_or_null<CXXMethodDecl>(FD))
486       return MD->isInstance() && MD->getThisType()->isDependentType();
487     else
488       return false;
489   }();
490 
491   QualType T = FD->getType()->isDependentType() || IsThisDependentType
492                    ? Context.DependentTy
493                    : lookupPromiseType(*this, FD, Loc);
494   if (T.isNull())
495     return nullptr;
496 
497   auto *VD = VarDecl::Create(Context, FD, FD->getLocation(), FD->getLocation(),
498                              &PP.getIdentifierTable().get("__promise"), T,
499                              Context.getTrivialTypeSourceInfo(T, Loc), SC_None);
500   VD->setImplicit();
501   CheckVariableDeclarationType(VD);
502   if (VD->isInvalidDecl())
503     return nullptr;
504 
505   auto *ScopeInfo = getCurFunction();
506 
507   // Build a list of arguments, based on the coroutine function's arguments,
508   // that if present will be passed to the promise type's constructor.
509   llvm::SmallVector<Expr *, 4> CtorArgExprs;
510 
511   // Add implicit object parameter.
512   if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
513     if (MD->isInstance() && !isLambdaCallOperator(MD)) {
514       ExprResult ThisExpr = ActOnCXXThis(Loc);
515       if (ThisExpr.isInvalid())
516         return nullptr;
517       ThisExpr = CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get());
518       if (ThisExpr.isInvalid())
519         return nullptr;
520       CtorArgExprs.push_back(ThisExpr.get());
521     }
522   }
523 
524   // Add the coroutine function's parameters.
525   auto &Moves = ScopeInfo->CoroutineParameterMoves;
526   for (auto *PD : FD->parameters()) {
527     if (PD->getType()->isDependentType())
528       continue;
529 
530     auto RefExpr = ExprEmpty();
531     auto Move = Moves.find(PD);
532     assert(Move != Moves.end() &&
533            "Coroutine function parameter not inserted into move map");
534     // If a reference to the function parameter exists in the coroutine
535     // frame, use that reference.
536     auto *MoveDecl =
537         cast<VarDecl>(cast<DeclStmt>(Move->second)->getSingleDecl());
538     RefExpr =
539         BuildDeclRefExpr(MoveDecl, MoveDecl->getType().getNonReferenceType(),
540                          ExprValueKind::VK_LValue, FD->getLocation());
541     if (RefExpr.isInvalid())
542       return nullptr;
543     CtorArgExprs.push_back(RefExpr.get());
544   }
545 
546   // If we have a non-zero number of constructor arguments, try to use them.
547   // Otherwise, fall back to the promise type's default constructor.
548   if (!CtorArgExprs.empty()) {
549     // Create an initialization sequence for the promise type using the
550     // constructor arguments, wrapped in a parenthesized list expression.
551     Expr *PLE = ParenListExpr::Create(Context, FD->getLocation(),
552                                       CtorArgExprs, FD->getLocation());
553     InitializedEntity Entity = InitializedEntity::InitializeVariable(VD);
554     InitializationKind Kind = InitializationKind::CreateForInit(
555         VD->getLocation(), /*DirectInit=*/true, PLE);
556     InitializationSequence InitSeq(*this, Entity, Kind, CtorArgExprs,
557                                    /*TopLevelOfInitList=*/false,
558                                    /*TreatUnavailableAsInvalid=*/false);
559 
560     // [dcl.fct.def.coroutine]5.7
561     // promise-constructor-arguments is determined as follows: overload
562     // resolution is performed on a promise constructor call created by
563     // assembling an argument list  q_1 ... q_n . If a viable constructor is
564     // found ([over.match.viable]), then promise-constructor-arguments is ( q_1
565     // , ...,  q_n ), otherwise promise-constructor-arguments is empty.
566     if (InitSeq) {
567       ExprResult Result = InitSeq.Perform(*this, Entity, Kind, CtorArgExprs);
568       if (Result.isInvalid()) {
569         VD->setInvalidDecl();
570       } else if (Result.get()) {
571         VD->setInit(MaybeCreateExprWithCleanups(Result.get()));
572         VD->setInitStyle(VarDecl::CallInit);
573         CheckCompleteVariableDeclaration(VD);
574       }
575     } else
576       ActOnUninitializedDecl(VD);
577   } else
578     ActOnUninitializedDecl(VD);
579 
580   FD->addDecl(VD);
581   return VD;
582 }
583 
584 /// Check that this is a context in which a coroutine suspension can appear.
585 static FunctionScopeInfo *checkCoroutineContext(Sema &S, SourceLocation Loc,
586                                                 StringRef Keyword,
587                                                 bool IsImplicit = false) {
588   if (!isValidCoroutineContext(S, Loc, Keyword))
589     return nullptr;
590 
591   assert(isa<FunctionDecl>(S.CurContext) && "not in a function scope");
592 
593   auto *ScopeInfo = S.getCurFunction();
594   assert(ScopeInfo && "missing function scope for function");
595 
596   if (ScopeInfo->FirstCoroutineStmtLoc.isInvalid() && !IsImplicit)
597     ScopeInfo->setFirstCoroutineStmt(Loc, Keyword);
598 
599   if (ScopeInfo->CoroutinePromise)
600     return ScopeInfo;
601 
602   if (!S.buildCoroutineParameterMoves(Loc))
603     return nullptr;
604 
605   ScopeInfo->CoroutinePromise = S.buildCoroutinePromise(Loc);
606   if (!ScopeInfo->CoroutinePromise)
607     return nullptr;
608 
609   return ScopeInfo;
610 }
611 
612 /// Recursively check \p E and all its children to see if any call target
613 /// (including constructor call) is declared noexcept. Also any value returned
614 /// from the call has a noexcept destructor.
615 static void checkNoThrow(Sema &S, const Stmt *E,
616                          llvm::SmallPtrSetImpl<const Decl *> &ThrowingDecls) {
617   auto checkDeclNoexcept = [&](const Decl *D, bool IsDtor = false) {
618     // In the case of dtor, the call to dtor is implicit and hence we should
619     // pass nullptr to canCalleeThrow.
620     if (Sema::canCalleeThrow(S, IsDtor ? nullptr : cast<Expr>(E), D)) {
621       if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
622         // co_await promise.final_suspend() could end up calling
623         // __builtin_coro_resume for symmetric transfer if await_suspend()
624         // returns a handle. In that case, even __builtin_coro_resume is not
625         // declared as noexcept and may throw, it does not throw _into_ the
626         // coroutine that just suspended, but rather throws back out from
627         // whoever called coroutine_handle::resume(), hence we claim that
628         // logically it does not throw.
629         if (FD->getBuiltinID() == Builtin::BI__builtin_coro_resume)
630           return;
631       }
632       if (ThrowingDecls.empty()) {
633         // [dcl.fct.def.coroutine]p15
634         //   The expression co_await promise.final_suspend() shall not be
635         //   potentially-throwing ([except.spec]).
636         //
637         // First time seeing an error, emit the error message.
638         S.Diag(cast<FunctionDecl>(S.CurContext)->getLocation(),
639                diag::err_coroutine_promise_final_suspend_requires_nothrow);
640       }
641       ThrowingDecls.insert(D);
642     }
643   };
644 
645   if (auto *CE = dyn_cast<CXXConstructExpr>(E)) {
646     CXXConstructorDecl *Ctor = CE->getConstructor();
647     checkDeclNoexcept(Ctor);
648     // Check the corresponding destructor of the constructor.
649     checkDeclNoexcept(Ctor->getParent()->getDestructor(), /*IsDtor=*/true);
650   } else if (auto *CE = dyn_cast<CallExpr>(E)) {
651     if (CE->isTypeDependent())
652       return;
653 
654     checkDeclNoexcept(CE->getCalleeDecl());
655     QualType ReturnType = CE->getCallReturnType(S.getASTContext());
656     // Check the destructor of the call return type, if any.
657     if (ReturnType.isDestructedType() ==
658         QualType::DestructionKind::DK_cxx_destructor) {
659       const auto *T =
660           cast<RecordType>(ReturnType.getCanonicalType().getTypePtr());
661       checkDeclNoexcept(cast<CXXRecordDecl>(T->getDecl())->getDestructor(),
662                         /*IsDtor=*/true);
663     }
664   } else
665     for (const auto *Child : E->children()) {
666       if (!Child)
667         continue;
668       checkNoThrow(S, Child, ThrowingDecls);
669     }
670 }
671 
672 bool Sema::checkFinalSuspendNoThrow(const Stmt *FinalSuspend) {
673   llvm::SmallPtrSet<const Decl *, 4> ThrowingDecls;
674   // We first collect all declarations that should not throw but not declared
675   // with noexcept. We then sort them based on the location before printing.
676   // This is to avoid emitting the same note multiple times on the same
677   // declaration, and also provide a deterministic order for the messages.
678   checkNoThrow(*this, FinalSuspend, ThrowingDecls);
679   auto SortedDecls = llvm::SmallVector<const Decl *, 4>{ThrowingDecls.begin(),
680                                                         ThrowingDecls.end()};
681   sort(SortedDecls, [](const Decl *A, const Decl *B) {
682     return A->getEndLoc() < B->getEndLoc();
683   });
684   for (const auto *D : SortedDecls) {
685     Diag(D->getEndLoc(), diag::note_coroutine_function_declare_noexcept);
686   }
687   return ThrowingDecls.empty();
688 }
689 
690 bool Sema::ActOnCoroutineBodyStart(Scope *SC, SourceLocation KWLoc,
691                                    StringRef Keyword) {
692   if (!checkCoroutineContext(*this, KWLoc, Keyword))
693     return false;
694   auto *ScopeInfo = getCurFunction();
695   assert(ScopeInfo->CoroutinePromise);
696 
697   // If we have existing coroutine statements then we have already built
698   // the initial and final suspend points.
699   if (!ScopeInfo->NeedsCoroutineSuspends)
700     return true;
701 
702   ScopeInfo->setNeedsCoroutineSuspends(false);
703 
704   auto *Fn = cast<FunctionDecl>(CurContext);
705   SourceLocation Loc = Fn->getLocation();
706   // Build the initial suspend point
707   auto buildSuspends = [&](StringRef Name) mutable -> StmtResult {
708     ExprResult Operand = buildPromiseCall(*this, ScopeInfo->CoroutinePromise,
709                                           Loc, Name, std::nullopt);
710     if (Operand.isInvalid())
711       return StmtError();
712     ExprResult Suspend =
713         buildOperatorCoawaitCall(*this, SC, Loc, Operand.get());
714     if (Suspend.isInvalid())
715       return StmtError();
716     Suspend = BuildResolvedCoawaitExpr(Loc, Operand.get(), Suspend.get(),
717                                        /*IsImplicit*/ true);
718     Suspend = ActOnFinishFullExpr(Suspend.get(), /*DiscardedValue*/ false);
719     if (Suspend.isInvalid()) {
720       Diag(Loc, diag::note_coroutine_promise_suspend_implicitly_required)
721           << ((Name == "initial_suspend") ? 0 : 1);
722       Diag(KWLoc, diag::note_declared_coroutine_here) << Keyword;
723       return StmtError();
724     }
725     return cast<Stmt>(Suspend.get());
726   };
727 
728   StmtResult InitSuspend = buildSuspends("initial_suspend");
729   if (InitSuspend.isInvalid())
730     return true;
731 
732   StmtResult FinalSuspend = buildSuspends("final_suspend");
733   if (FinalSuspend.isInvalid() || !checkFinalSuspendNoThrow(FinalSuspend.get()))
734     return true;
735 
736   ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get());
737 
738   return true;
739 }
740 
741 // Recursively walks up the scope hierarchy until either a 'catch' or a function
742 // scope is found, whichever comes first.
743 static bool isWithinCatchScope(Scope *S) {
744   // 'co_await' and 'co_yield' keywords are disallowed within catch blocks, but
745   // lambdas that use 'co_await' are allowed. The loop below ends when a
746   // function scope is found in order to ensure the following behavior:
747   //
748   // void foo() {      // <- function scope
749   //   try {           //
750   //     co_await x;   // <- 'co_await' is OK within a function scope
751   //   } catch {       // <- catch scope
752   //     co_await x;   // <- 'co_await' is not OK within a catch scope
753   //     []() {        // <- function scope
754   //       co_await x; // <- 'co_await' is OK within a function scope
755   //     }();
756   //   }
757   // }
758   while (S && !S->isFunctionScope()) {
759     if (S->isCatchScope())
760       return true;
761     S = S->getParent();
762   }
763   return false;
764 }
765 
766 // [expr.await]p2, emphasis added: "An await-expression shall appear only in
767 // a *potentially evaluated* expression within the compound-statement of a
768 // function-body *outside of a handler* [...] A context within a function
769 // where an await-expression can appear is called a suspension context of the
770 // function."
771 static bool checkSuspensionContext(Sema &S, SourceLocation Loc,
772                                    StringRef Keyword) {
773   // First emphasis of [expr.await]p2: must be a potentially evaluated context.
774   // That is, 'co_await' and 'co_yield' cannot appear in subexpressions of
775   // \c sizeof.
776   if (S.isUnevaluatedContext()) {
777     S.Diag(Loc, diag::err_coroutine_unevaluated_context) << Keyword;
778     return false;
779   }
780 
781   // Second emphasis of [expr.await]p2: must be outside of an exception handler.
782   if (isWithinCatchScope(S.getCurScope())) {
783     S.Diag(Loc, diag::err_coroutine_within_handler) << Keyword;
784     return false;
785   }
786 
787   return true;
788 }
789 
790 ExprResult Sema::ActOnCoawaitExpr(Scope *S, SourceLocation Loc, Expr *E) {
791   if (!checkSuspensionContext(*this, Loc, "co_await"))
792     return ExprError();
793 
794   if (!ActOnCoroutineBodyStart(S, Loc, "co_await")) {
795     CorrectDelayedTyposInExpr(E);
796     return ExprError();
797   }
798 
799   if (E->hasPlaceholderType()) {
800     ExprResult R = CheckPlaceholderExpr(E);
801     if (R.isInvalid()) return ExprError();
802     E = R.get();
803   }
804   ExprResult Lookup = BuildOperatorCoawaitLookupExpr(S, Loc);
805   if (Lookup.isInvalid())
806     return ExprError();
807   return BuildUnresolvedCoawaitExpr(Loc, E,
808                                    cast<UnresolvedLookupExpr>(Lookup.get()));
809 }
810 
811 ExprResult Sema::BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc) {
812   DeclarationName OpName =
813       Context.DeclarationNames.getCXXOperatorName(OO_Coawait);
814   LookupResult Operators(*this, OpName, SourceLocation(),
815                          Sema::LookupOperatorName);
816   LookupName(Operators, S);
817 
818   assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
819   const auto &Functions = Operators.asUnresolvedSet();
820   bool IsOverloaded =
821       Functions.size() > 1 ||
822       (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
823   Expr *CoawaitOp = UnresolvedLookupExpr::Create(
824       Context, /*NamingClass*/ nullptr, NestedNameSpecifierLoc(),
825       DeclarationNameInfo(OpName, Loc), /*RequiresADL*/ true, IsOverloaded,
826       Functions.begin(), Functions.end());
827   assert(CoawaitOp);
828   return CoawaitOp;
829 }
830 
831 // Attempts to resolve and build a CoawaitExpr from "raw" inputs, bailing out to
832 // DependentCoawaitExpr if needed.
833 ExprResult Sema::BuildUnresolvedCoawaitExpr(SourceLocation Loc, Expr *Operand,
834                                             UnresolvedLookupExpr *Lookup) {
835   auto *FSI = checkCoroutineContext(*this, Loc, "co_await");
836   if (!FSI)
837     return ExprError();
838 
839   if (Operand->hasPlaceholderType()) {
840     ExprResult R = CheckPlaceholderExpr(Operand);
841     if (R.isInvalid())
842       return ExprError();
843     Operand = R.get();
844   }
845 
846   auto *Promise = FSI->CoroutinePromise;
847   if (Promise->getType()->isDependentType()) {
848     Expr *Res = new (Context)
849         DependentCoawaitExpr(Loc, Context.DependentTy, Operand, Lookup);
850     return Res;
851   }
852 
853   auto *RD = Promise->getType()->getAsCXXRecordDecl();
854   auto *Transformed = Operand;
855   if (lookupMember(*this, "await_transform", RD, Loc)) {
856     ExprResult R =
857         buildPromiseCall(*this, Promise, Loc, "await_transform", Operand);
858     if (R.isInvalid()) {
859       Diag(Loc,
860            diag::note_coroutine_promise_implicit_await_transform_required_here)
861           << Operand->getSourceRange();
862       return ExprError();
863     }
864     Transformed = R.get();
865   }
866   ExprResult Awaiter = BuildOperatorCoawaitCall(Loc, Transformed, Lookup);
867   if (Awaiter.isInvalid())
868     return ExprError();
869 
870   return BuildResolvedCoawaitExpr(Loc, Operand, Awaiter.get());
871 }
872 
873 ExprResult Sema::BuildResolvedCoawaitExpr(SourceLocation Loc, Expr *Operand,
874                                           Expr *Awaiter, bool IsImplicit) {
875   auto *Coroutine = checkCoroutineContext(*this, Loc, "co_await", IsImplicit);
876   if (!Coroutine)
877     return ExprError();
878 
879   if (Awaiter->hasPlaceholderType()) {
880     ExprResult R = CheckPlaceholderExpr(Awaiter);
881     if (R.isInvalid()) return ExprError();
882     Awaiter = R.get();
883   }
884 
885   if (Awaiter->getType()->isDependentType()) {
886     Expr *Res = new (Context)
887         CoawaitExpr(Loc, Context.DependentTy, Operand, Awaiter, IsImplicit);
888     return Res;
889   }
890 
891   // If the expression is a temporary, materialize it as an lvalue so that we
892   // can use it multiple times.
893   if (Awaiter->isPRValue())
894     Awaiter = CreateMaterializeTemporaryExpr(Awaiter->getType(), Awaiter, true);
895 
896   // The location of the `co_await` token cannot be used when constructing
897   // the member call expressions since it's before the location of `Expr`, which
898   // is used as the start of the member call expression.
899   SourceLocation CallLoc = Awaiter->getExprLoc();
900 
901   // Build the await_ready, await_suspend, await_resume calls.
902   ReadySuspendResumeResult RSS =
903       buildCoawaitCalls(*this, Coroutine->CoroutinePromise, CallLoc, Awaiter);
904   if (RSS.IsInvalid)
905     return ExprError();
906 
907   Expr *Res = new (Context)
908       CoawaitExpr(Loc, Operand, Awaiter, RSS.Results[0], RSS.Results[1],
909                   RSS.Results[2], RSS.OpaqueValue, IsImplicit);
910 
911   return Res;
912 }
913 
914 ExprResult Sema::ActOnCoyieldExpr(Scope *S, SourceLocation Loc, Expr *E) {
915   if (!checkSuspensionContext(*this, Loc, "co_yield"))
916     return ExprError();
917 
918   if (!ActOnCoroutineBodyStart(S, Loc, "co_yield")) {
919     CorrectDelayedTyposInExpr(E);
920     return ExprError();
921   }
922 
923   // Build yield_value call.
924   ExprResult Awaitable = buildPromiseCall(
925       *this, getCurFunction()->CoroutinePromise, Loc, "yield_value", E);
926   if (Awaitable.isInvalid())
927     return ExprError();
928 
929   // Build 'operator co_await' call.
930   Awaitable = buildOperatorCoawaitCall(*this, S, Loc, Awaitable.get());
931   if (Awaitable.isInvalid())
932     return ExprError();
933 
934   return BuildCoyieldExpr(Loc, Awaitable.get());
935 }
936 ExprResult Sema::BuildCoyieldExpr(SourceLocation Loc, Expr *E) {
937   auto *Coroutine = checkCoroutineContext(*this, Loc, "co_yield");
938   if (!Coroutine)
939     return ExprError();
940 
941   if (E->hasPlaceholderType()) {
942     ExprResult R = CheckPlaceholderExpr(E);
943     if (R.isInvalid()) return ExprError();
944     E = R.get();
945   }
946 
947   Expr *Operand = E;
948 
949   if (E->getType()->isDependentType()) {
950     Expr *Res = new (Context) CoyieldExpr(Loc, Context.DependentTy, Operand, E);
951     return Res;
952   }
953 
954   // If the expression is a temporary, materialize it as an lvalue so that we
955   // can use it multiple times.
956   if (E->isPRValue())
957     E = CreateMaterializeTemporaryExpr(E->getType(), E, true);
958 
959   // Build the await_ready, await_suspend, await_resume calls.
960   ReadySuspendResumeResult RSS = buildCoawaitCalls(
961       *this, Coroutine->CoroutinePromise, Loc, E);
962   if (RSS.IsInvalid)
963     return ExprError();
964 
965   Expr *Res =
966       new (Context) CoyieldExpr(Loc, Operand, E, RSS.Results[0], RSS.Results[1],
967                                 RSS.Results[2], RSS.OpaqueValue);
968 
969   return Res;
970 }
971 
972 StmtResult Sema::ActOnCoreturnStmt(Scope *S, SourceLocation Loc, Expr *E) {
973   if (!ActOnCoroutineBodyStart(S, Loc, "co_return")) {
974     CorrectDelayedTyposInExpr(E);
975     return StmtError();
976   }
977   return BuildCoreturnStmt(Loc, E);
978 }
979 
980 StmtResult Sema::BuildCoreturnStmt(SourceLocation Loc, Expr *E,
981                                    bool IsImplicit) {
982   auto *FSI = checkCoroutineContext(*this, Loc, "co_return", IsImplicit);
983   if (!FSI)
984     return StmtError();
985 
986   if (E && E->hasPlaceholderType() &&
987       !E->hasPlaceholderType(BuiltinType::Overload)) {
988     ExprResult R = CheckPlaceholderExpr(E);
989     if (R.isInvalid()) return StmtError();
990     E = R.get();
991   }
992 
993   VarDecl *Promise = FSI->CoroutinePromise;
994   ExprResult PC;
995   if (E && (isa<InitListExpr>(E) || !E->getType()->isVoidType())) {
996     getNamedReturnInfo(E, SimplerImplicitMoveMode::ForceOn);
997     PC = buildPromiseCall(*this, Promise, Loc, "return_value", E);
998   } else {
999     E = MakeFullDiscardedValueExpr(E).get();
1000     PC = buildPromiseCall(*this, Promise, Loc, "return_void", std::nullopt);
1001   }
1002   if (PC.isInvalid())
1003     return StmtError();
1004 
1005   Expr *PCE = ActOnFinishFullExpr(PC.get(), /*DiscardedValue*/ false).get();
1006 
1007   Stmt *Res = new (Context) CoreturnStmt(Loc, E, PCE, IsImplicit);
1008   return Res;
1009 }
1010 
1011 /// Look up the std::nothrow object.
1012 static Expr *buildStdNoThrowDeclRef(Sema &S, SourceLocation Loc) {
1013   NamespaceDecl *Std = S.getStdNamespace();
1014   assert(Std && "Should already be diagnosed");
1015 
1016   LookupResult Result(S, &S.PP.getIdentifierTable().get("nothrow"), Loc,
1017                       Sema::LookupOrdinaryName);
1018   if (!S.LookupQualifiedName(Result, Std)) {
1019     // <coroutine> is not requred to include <new>, so we couldn't omit
1020     // the check here.
1021     S.Diag(Loc, diag::err_implicit_coroutine_std_nothrow_type_not_found);
1022     return nullptr;
1023   }
1024 
1025   auto *VD = Result.getAsSingle<VarDecl>();
1026   if (!VD) {
1027     Result.suppressDiagnostics();
1028     // We found something weird. Complain about the first thing we found.
1029     NamedDecl *Found = *Result.begin();
1030     S.Diag(Found->getLocation(), diag::err_malformed_std_nothrow);
1031     return nullptr;
1032   }
1033 
1034   ExprResult DR = S.BuildDeclRefExpr(VD, VD->getType(), VK_LValue, Loc);
1035   if (DR.isInvalid())
1036     return nullptr;
1037 
1038   return DR.get();
1039 }
1040 
1041 static TypeSourceInfo *getTypeSourceInfoForStdAlignValT(Sema &S,
1042                                                         SourceLocation Loc) {
1043   EnumDecl *StdAlignValT = S.getStdAlignValT();
1044   QualType StdAlignValDecl = S.Context.getTypeDeclType(StdAlignValT);
1045   return S.Context.getTrivialTypeSourceInfo(StdAlignValDecl);
1046 }
1047 
1048 // Find an appropriate delete for the promise.
1049 static bool findDeleteForPromise(Sema &S, SourceLocation Loc, QualType PromiseType,
1050                                  FunctionDecl *&OperatorDelete) {
1051   DeclarationName DeleteName =
1052       S.Context.DeclarationNames.getCXXOperatorName(OO_Delete);
1053 
1054   auto *PointeeRD = PromiseType->getAsCXXRecordDecl();
1055   assert(PointeeRD && "PromiseType must be a CxxRecordDecl type");
1056 
1057   const bool Overaligned = S.getLangOpts().CoroAlignedAllocation;
1058 
1059   // [dcl.fct.def.coroutine]p12
1060   // The deallocation function's name is looked up by searching for it in the
1061   // scope of the promise type. If nothing is found, a search is performed in
1062   // the global scope.
1063   if (S.FindDeallocationFunction(Loc, PointeeRD, DeleteName, OperatorDelete,
1064                                  /*Diagnose*/ true, /*WantSize*/ true,
1065                                  /*WantAligned*/ Overaligned))
1066     return false;
1067 
1068   // [dcl.fct.def.coroutine]p12
1069   //   If both a usual deallocation function with only a pointer parameter and a
1070   //   usual deallocation function with both a pointer parameter and a size
1071   //   parameter are found, then the selected deallocation function shall be the
1072   //   one with two parameters. Otherwise, the selected deallocation function
1073   //   shall be the function with one parameter.
1074   if (!OperatorDelete) {
1075     // Look for a global declaration.
1076     // Coroutines can always provide their required size.
1077     const bool CanProvideSize = true;
1078     // Sema::FindUsualDeallocationFunction will try to find the one with two
1079     // parameters first. It will return the deallocation function with one
1080     // parameter if failed.
1081     OperatorDelete = S.FindUsualDeallocationFunction(Loc, CanProvideSize,
1082                                                      Overaligned, DeleteName);
1083 
1084     if (!OperatorDelete)
1085       return false;
1086   }
1087 
1088   S.MarkFunctionReferenced(Loc, OperatorDelete);
1089   return true;
1090 }
1091 
1092 
1093 void Sema::CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body) {
1094   FunctionScopeInfo *Fn = getCurFunction();
1095   assert(Fn && Fn->isCoroutine() && "not a coroutine");
1096   if (!Body) {
1097     assert(FD->isInvalidDecl() &&
1098            "a null body is only allowed for invalid declarations");
1099     return;
1100   }
1101   // We have a function that uses coroutine keywords, but we failed to build
1102   // the promise type.
1103   if (!Fn->CoroutinePromise)
1104     return FD->setInvalidDecl();
1105 
1106   if (isa<CoroutineBodyStmt>(Body)) {
1107     // Nothing todo. the body is already a transformed coroutine body statement.
1108     return;
1109   }
1110 
1111   // The always_inline attribute doesn't reliably apply to a coroutine,
1112   // because the coroutine will be split into pieces and some pieces
1113   // might be called indirectly, as in a virtual call. Even the ramp
1114   // function cannot be inlined at -O0, due to pipeline ordering
1115   // problems (see https://llvm.org/PR53413). Tell the user about it.
1116   if (FD->hasAttr<AlwaysInlineAttr>())
1117     Diag(FD->getLocation(), diag::warn_always_inline_coroutine);
1118 
1119   // [stmt.return.coroutine]p1:
1120   //   A coroutine shall not enclose a return statement ([stmt.return]).
1121   if (Fn->FirstReturnLoc.isValid()) {
1122     assert(Fn->FirstCoroutineStmtLoc.isValid() &&
1123                    "first coroutine location not set");
1124     Diag(Fn->FirstReturnLoc, diag::err_return_in_coroutine);
1125     Diag(Fn->FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1126             << Fn->getFirstCoroutineStmtKeyword();
1127   }
1128 
1129   // Coroutines will get splitted into pieces. The GNU address of label
1130   // extension wouldn't be meaningful in coroutines.
1131   for (AddrLabelExpr *ALE : Fn->AddrLabels)
1132     Diag(ALE->getBeginLoc(), diag::err_coro_invalid_addr_of_label);
1133 
1134   CoroutineStmtBuilder Builder(*this, *FD, *Fn, Body);
1135   if (Builder.isInvalid() || !Builder.buildStatements())
1136     return FD->setInvalidDecl();
1137 
1138   // Build body for the coroutine wrapper statement.
1139   Body = CoroutineBodyStmt::Create(Context, Builder);
1140 }
1141 
1142 CoroutineStmtBuilder::CoroutineStmtBuilder(Sema &S, FunctionDecl &FD,
1143                                            sema::FunctionScopeInfo &Fn,
1144                                            Stmt *Body)
1145     : S(S), FD(FD), Fn(Fn), Loc(FD.getLocation()),
1146       IsPromiseDependentType(
1147           !Fn.CoroutinePromise ||
1148           Fn.CoroutinePromise->getType()->isDependentType()) {
1149   this->Body = Body;
1150 
1151   for (auto KV : Fn.CoroutineParameterMoves)
1152     this->ParamMovesVector.push_back(KV.second);
1153   this->ParamMoves = this->ParamMovesVector;
1154 
1155   if (!IsPromiseDependentType) {
1156     PromiseRecordDecl = Fn.CoroutinePromise->getType()->getAsCXXRecordDecl();
1157     assert(PromiseRecordDecl && "Type should have already been checked");
1158   }
1159   this->IsValid = makePromiseStmt() && makeInitialAndFinalSuspend();
1160 }
1161 
1162 bool CoroutineStmtBuilder::buildStatements() {
1163   assert(this->IsValid && "coroutine already invalid");
1164   this->IsValid = makeReturnObject();
1165   if (this->IsValid && !IsPromiseDependentType)
1166     buildDependentStatements();
1167   return this->IsValid;
1168 }
1169 
1170 bool CoroutineStmtBuilder::buildDependentStatements() {
1171   assert(this->IsValid && "coroutine already invalid");
1172   assert(!this->IsPromiseDependentType &&
1173          "coroutine cannot have a dependent promise type");
1174   this->IsValid = makeOnException() && makeOnFallthrough() &&
1175                   makeGroDeclAndReturnStmt() && makeReturnOnAllocFailure() &&
1176                   makeNewAndDeleteExpr();
1177   return this->IsValid;
1178 }
1179 
1180 bool CoroutineStmtBuilder::makePromiseStmt() {
1181   // Form a declaration statement for the promise declaration, so that AST
1182   // visitors can more easily find it.
1183   StmtResult PromiseStmt =
1184       S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(Fn.CoroutinePromise), Loc, Loc);
1185   if (PromiseStmt.isInvalid())
1186     return false;
1187 
1188   this->Promise = PromiseStmt.get();
1189   return true;
1190 }
1191 
1192 bool CoroutineStmtBuilder::makeInitialAndFinalSuspend() {
1193   if (Fn.hasInvalidCoroutineSuspends())
1194     return false;
1195   this->InitialSuspend = cast<Expr>(Fn.CoroutineSuspends.first);
1196   this->FinalSuspend = cast<Expr>(Fn.CoroutineSuspends.second);
1197   return true;
1198 }
1199 
1200 static bool diagReturnOnAllocFailure(Sema &S, Expr *E,
1201                                      CXXRecordDecl *PromiseRecordDecl,
1202                                      FunctionScopeInfo &Fn) {
1203   auto Loc = E->getExprLoc();
1204   if (auto *DeclRef = dyn_cast_or_null<DeclRefExpr>(E)) {
1205     auto *Decl = DeclRef->getDecl();
1206     if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Decl)) {
1207       if (Method->isStatic())
1208         return true;
1209       else
1210         Loc = Decl->getLocation();
1211     }
1212   }
1213 
1214   S.Diag(
1215       Loc,
1216       diag::err_coroutine_promise_get_return_object_on_allocation_failure)
1217       << PromiseRecordDecl;
1218   S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1219       << Fn.getFirstCoroutineStmtKeyword();
1220   return false;
1221 }
1222 
1223 bool CoroutineStmtBuilder::makeReturnOnAllocFailure() {
1224   assert(!IsPromiseDependentType &&
1225          "cannot make statement while the promise type is dependent");
1226 
1227   // [dcl.fct.def.coroutine]p10
1228   //   If a search for the name get_return_object_on_allocation_failure in
1229   // the scope of the promise type ([class.member.lookup]) finds any
1230   // declarations, then the result of a call to an allocation function used to
1231   // obtain storage for the coroutine state is assumed to return nullptr if it
1232   // fails to obtain storage, ... If the allocation function returns nullptr,
1233   // ... and the return value is obtained by a call to
1234   // T::get_return_object_on_allocation_failure(), where T is the
1235   // promise type.
1236   DeclarationName DN =
1237       S.PP.getIdentifierInfo("get_return_object_on_allocation_failure");
1238   LookupResult Found(S, DN, Loc, Sema::LookupMemberName);
1239   if (!S.LookupQualifiedName(Found, PromiseRecordDecl))
1240     return true;
1241 
1242   CXXScopeSpec SS;
1243   ExprResult DeclNameExpr =
1244       S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false);
1245   if (DeclNameExpr.isInvalid())
1246     return false;
1247 
1248   if (!diagReturnOnAllocFailure(S, DeclNameExpr.get(), PromiseRecordDecl, Fn))
1249     return false;
1250 
1251   ExprResult ReturnObjectOnAllocationFailure =
1252       S.BuildCallExpr(nullptr, DeclNameExpr.get(), Loc, {}, Loc);
1253   if (ReturnObjectOnAllocationFailure.isInvalid())
1254     return false;
1255 
1256   StmtResult ReturnStmt =
1257       S.BuildReturnStmt(Loc, ReturnObjectOnAllocationFailure.get());
1258   if (ReturnStmt.isInvalid()) {
1259     S.Diag(Found.getFoundDecl()->getLocation(), diag::note_member_declared_here)
1260         << DN;
1261     S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1262         << Fn.getFirstCoroutineStmtKeyword();
1263     return false;
1264   }
1265 
1266   this->ReturnStmtOnAllocFailure = ReturnStmt.get();
1267   return true;
1268 }
1269 
1270 // Collect placement arguments for allocation function of coroutine FD.
1271 // Return true if we collect placement arguments succesfully. Return false,
1272 // otherwise.
1273 static bool collectPlacementArgs(Sema &S, FunctionDecl &FD, SourceLocation Loc,
1274                                  SmallVectorImpl<Expr *> &PlacementArgs) {
1275   if (auto *MD = dyn_cast<CXXMethodDecl>(&FD)) {
1276     if (MD->isInstance() && !isLambdaCallOperator(MD)) {
1277       ExprResult ThisExpr = S.ActOnCXXThis(Loc);
1278       if (ThisExpr.isInvalid())
1279         return false;
1280       ThisExpr = S.CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get());
1281       if (ThisExpr.isInvalid())
1282         return false;
1283       PlacementArgs.push_back(ThisExpr.get());
1284     }
1285   }
1286 
1287   for (auto *PD : FD.parameters()) {
1288     if (PD->getType()->isDependentType())
1289       continue;
1290 
1291     // Build a reference to the parameter.
1292     auto PDLoc = PD->getLocation();
1293     ExprResult PDRefExpr =
1294         S.BuildDeclRefExpr(PD, PD->getOriginalType().getNonReferenceType(),
1295                            ExprValueKind::VK_LValue, PDLoc);
1296     if (PDRefExpr.isInvalid())
1297       return false;
1298 
1299     PlacementArgs.push_back(PDRefExpr.get());
1300   }
1301 
1302   return true;
1303 }
1304 
1305 bool CoroutineStmtBuilder::makeNewAndDeleteExpr() {
1306   // Form and check allocation and deallocation calls.
1307   assert(!IsPromiseDependentType &&
1308          "cannot make statement while the promise type is dependent");
1309   QualType PromiseType = Fn.CoroutinePromise->getType();
1310 
1311   if (S.RequireCompleteType(Loc, PromiseType, diag::err_incomplete_type))
1312     return false;
1313 
1314   const bool RequiresNoThrowAlloc = ReturnStmtOnAllocFailure != nullptr;
1315 
1316   // According to [dcl.fct.def.coroutine]p9, Lookup allocation functions using a
1317   // parameter list composed of the requested size of the coroutine state being
1318   // allocated, followed by the coroutine function's arguments. If a matching
1319   // allocation function exists, use it. Otherwise, use an allocation function
1320   // that just takes the requested size.
1321   //
1322   // [dcl.fct.def.coroutine]p9
1323   //   An implementation may need to allocate additional storage for a
1324   //   coroutine.
1325   // This storage is known as the coroutine state and is obtained by calling a
1326   // non-array allocation function ([basic.stc.dynamic.allocation]). The
1327   // allocation function's name is looked up by searching for it in the scope of
1328   // the promise type.
1329   // - If any declarations are found, overload resolution is performed on a
1330   // function call created by assembling an argument list. The first argument is
1331   // the amount of space requested, and has type std::size_t. The
1332   // lvalues p1 ... pn are the succeeding arguments.
1333   //
1334   // ...where "p1 ... pn" are defined earlier as:
1335   //
1336   // [dcl.fct.def.coroutine]p3
1337   //   The promise type of a coroutine is `std::coroutine_traits<R, P1, ...,
1338   //   Pn>`
1339   // , where R is the return type of the function, and `P1, ..., Pn` are the
1340   // sequence of types of the non-object function parameters, preceded by the
1341   // type of the object parameter ([dcl.fct]) if the coroutine is a non-static
1342   // member function. [dcl.fct.def.coroutine]p4 In the following, p_i is an
1343   // lvalue of type P_i, where p1 denotes the object parameter and p_i+1 denotes
1344   // the i-th non-object function parameter for a non-static member function,
1345   // and p_i denotes the i-th function parameter otherwise. For a non-static
1346   // member function, q_1 is an lvalue that denotes *this; any other q_i is an
1347   // lvalue that denotes the parameter copy corresponding to p_i.
1348 
1349   FunctionDecl *OperatorNew = nullptr;
1350   SmallVector<Expr *, 1> PlacementArgs;
1351 
1352   const bool PromiseContainsNew = [this, &PromiseType]() -> bool {
1353     DeclarationName NewName =
1354         S.getASTContext().DeclarationNames.getCXXOperatorName(OO_New);
1355     LookupResult R(S, NewName, Loc, Sema::LookupOrdinaryName);
1356 
1357     if (PromiseType->isRecordType())
1358       S.LookupQualifiedName(R, PromiseType->getAsCXXRecordDecl());
1359 
1360     return !R.empty() && !R.isAmbiguous();
1361   }();
1362 
1363   // Helper function to indicate whether the last lookup found the aligned
1364   // allocation function.
1365   bool PassAlignment = S.getLangOpts().CoroAlignedAllocation;
1366   auto LookupAllocationFunction = [&](Sema::AllocationFunctionScope NewScope =
1367                                           Sema::AFS_Both,
1368                                       bool WithoutPlacementArgs = false,
1369                                       bool ForceNonAligned = false) {
1370     // [dcl.fct.def.coroutine]p9
1371     //   The allocation function's name is looked up by searching for it in the
1372     // scope of the promise type.
1373     // - If any declarations are found, ...
1374     // - If no declarations are found in the scope of the promise type, a search
1375     // is performed in the global scope.
1376     if (NewScope == Sema::AFS_Both)
1377       NewScope = PromiseContainsNew ? Sema::AFS_Class : Sema::AFS_Global;
1378 
1379     PassAlignment = !ForceNonAligned && S.getLangOpts().CoroAlignedAllocation;
1380     FunctionDecl *UnusedResult = nullptr;
1381     S.FindAllocationFunctions(Loc, SourceRange(), NewScope,
1382                               /*DeleteScope*/ Sema::AFS_Both, PromiseType,
1383                               /*isArray*/ false, PassAlignment,
1384                               WithoutPlacementArgs ? MultiExprArg{}
1385                                                    : PlacementArgs,
1386                               OperatorNew, UnusedResult, /*Diagnose*/ false);
1387   };
1388 
1389   // We don't expect to call to global operator new with (size, p0, …, pn).
1390   // So if we choose to lookup the allocation function in global scope, we
1391   // shouldn't lookup placement arguments.
1392   if (PromiseContainsNew && !collectPlacementArgs(S, FD, Loc, PlacementArgs))
1393     return false;
1394 
1395   LookupAllocationFunction();
1396 
1397   if (PromiseContainsNew && !PlacementArgs.empty()) {
1398     // [dcl.fct.def.coroutine]p9
1399     //   If no viable function is found ([over.match.viable]), overload
1400     //   resolution
1401     // is performed again on a function call created by passing just the amount
1402     // of space required as an argument of type std::size_t.
1403     //
1404     // Proposed Change of [dcl.fct.def.coroutine]p9 in P2014R0:
1405     //   Otherwise, overload resolution is performed again on a function call
1406     //   created
1407     // by passing the amount of space requested as an argument of type
1408     // std::size_t as the first argument, and the requested alignment as
1409     // an argument of type std:align_val_t as the second argument.
1410     if (!OperatorNew ||
1411         (S.getLangOpts().CoroAlignedAllocation && !PassAlignment))
1412       LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1413                                /*WithoutPlacementArgs*/ true);
1414   }
1415 
1416   // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0:
1417   //   Otherwise, overload resolution is performed again on a function call
1418   //   created
1419   // by passing the amount of space requested as an argument of type
1420   // std::size_t as the first argument, and the lvalues p1 ... pn as the
1421   // succeeding arguments. Otherwise, overload resolution is performed again
1422   // on a function call created by passing just the amount of space required as
1423   // an argument of type std::size_t.
1424   //
1425   // So within the proposed change in P2014RO, the priority order of aligned
1426   // allocation functions wiht promise_type is:
1427   //
1428   //    void* operator new( std::size_t, std::align_val_t, placement_args... );
1429   //    void* operator new( std::size_t, std::align_val_t);
1430   //    void* operator new( std::size_t, placement_args... );
1431   //    void* operator new( std::size_t);
1432 
1433   // Helper variable to emit warnings.
1434   bool FoundNonAlignedInPromise = false;
1435   if (PromiseContainsNew && S.getLangOpts().CoroAlignedAllocation)
1436     if (!OperatorNew || !PassAlignment) {
1437       FoundNonAlignedInPromise = OperatorNew;
1438 
1439       LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1440                                /*WithoutPlacementArgs*/ false,
1441                                /*ForceNonAligned*/ true);
1442 
1443       if (!OperatorNew && !PlacementArgs.empty())
1444         LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1445                                  /*WithoutPlacementArgs*/ true,
1446                                  /*ForceNonAligned*/ true);
1447     }
1448 
1449   bool IsGlobalOverload =
1450       OperatorNew && !isa<CXXRecordDecl>(OperatorNew->getDeclContext());
1451   // If we didn't find a class-local new declaration and non-throwing new
1452   // was is required then we need to lookup the non-throwing global operator
1453   // instead.
1454   if (RequiresNoThrowAlloc && (!OperatorNew || IsGlobalOverload)) {
1455     auto *StdNoThrow = buildStdNoThrowDeclRef(S, Loc);
1456     if (!StdNoThrow)
1457       return false;
1458     PlacementArgs = {StdNoThrow};
1459     OperatorNew = nullptr;
1460     LookupAllocationFunction(Sema::AFS_Global);
1461   }
1462 
1463   // If we found a non-aligned allocation function in the promise_type,
1464   // it indicates the user forgot to update the allocation function. Let's emit
1465   // a warning here.
1466   if (FoundNonAlignedInPromise) {
1467     S.Diag(OperatorNew->getLocation(),
1468            diag::warn_non_aligned_allocation_function)
1469         << &FD;
1470   }
1471 
1472   if (!OperatorNew) {
1473     if (PromiseContainsNew)
1474       S.Diag(Loc, diag::err_coroutine_unusable_new) << PromiseType << &FD;
1475     else if (RequiresNoThrowAlloc)
1476       S.Diag(Loc, diag::err_coroutine_unfound_nothrow_new)
1477           << &FD << S.getLangOpts().CoroAlignedAllocation;
1478 
1479     return false;
1480   }
1481 
1482   if (RequiresNoThrowAlloc) {
1483     const auto *FT = OperatorNew->getType()->castAs<FunctionProtoType>();
1484     if (!FT->isNothrow(/*ResultIfDependent*/ false)) {
1485       S.Diag(OperatorNew->getLocation(),
1486              diag::err_coroutine_promise_new_requires_nothrow)
1487           << OperatorNew;
1488       S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
1489           << OperatorNew;
1490       return false;
1491     }
1492   }
1493 
1494   FunctionDecl *OperatorDelete = nullptr;
1495   if (!findDeleteForPromise(S, Loc, PromiseType, OperatorDelete)) {
1496     // FIXME: We should add an error here. According to:
1497     // [dcl.fct.def.coroutine]p12
1498     //   If no usual deallocation function is found, the program is ill-formed.
1499     return false;
1500   }
1501 
1502   Expr *FramePtr =
1503       S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
1504 
1505   Expr *FrameSize =
1506       S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_size, {});
1507 
1508   Expr *FrameAlignment = nullptr;
1509 
1510   if (S.getLangOpts().CoroAlignedAllocation) {
1511     FrameAlignment =
1512         S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_align, {});
1513 
1514     TypeSourceInfo *AlignValTy = getTypeSourceInfoForStdAlignValT(S, Loc);
1515     if (!AlignValTy)
1516       return false;
1517 
1518     FrameAlignment = S.BuildCXXNamedCast(Loc, tok::kw_static_cast, AlignValTy,
1519                                          FrameAlignment, SourceRange(Loc, Loc),
1520                                          SourceRange(Loc, Loc))
1521                          .get();
1522   }
1523 
1524   // Make new call.
1525   ExprResult NewRef =
1526       S.BuildDeclRefExpr(OperatorNew, OperatorNew->getType(), VK_LValue, Loc);
1527   if (NewRef.isInvalid())
1528     return false;
1529 
1530   SmallVector<Expr *, 2> NewArgs(1, FrameSize);
1531   if (S.getLangOpts().CoroAlignedAllocation && PassAlignment)
1532     NewArgs.push_back(FrameAlignment);
1533 
1534   if (OperatorNew->getNumParams() > NewArgs.size())
1535     llvm::append_range(NewArgs, PlacementArgs);
1536 
1537   ExprResult NewExpr =
1538       S.BuildCallExpr(S.getCurScope(), NewRef.get(), Loc, NewArgs, Loc);
1539   NewExpr = S.ActOnFinishFullExpr(NewExpr.get(), /*DiscardedValue*/ false);
1540   if (NewExpr.isInvalid())
1541     return false;
1542 
1543   // Make delete call.
1544 
1545   QualType OpDeleteQualType = OperatorDelete->getType();
1546 
1547   ExprResult DeleteRef =
1548       S.BuildDeclRefExpr(OperatorDelete, OpDeleteQualType, VK_LValue, Loc);
1549   if (DeleteRef.isInvalid())
1550     return false;
1551 
1552   Expr *CoroFree =
1553       S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_free, {FramePtr});
1554 
1555   SmallVector<Expr *, 2> DeleteArgs{CoroFree};
1556 
1557   // [dcl.fct.def.coroutine]p12
1558   //   The selected deallocation function shall be called with the address of
1559   //   the block of storage to be reclaimed as its first argument. If a
1560   //   deallocation function with a parameter of type std::size_t is
1561   //   used, the size of the block is passed as the corresponding argument.
1562   const auto *OpDeleteType =
1563       OpDeleteQualType.getTypePtr()->castAs<FunctionProtoType>();
1564   if (OpDeleteType->getNumParams() > DeleteArgs.size() &&
1565       S.getASTContext().hasSameUnqualifiedType(
1566           OpDeleteType->getParamType(DeleteArgs.size()), FrameSize->getType()))
1567     DeleteArgs.push_back(FrameSize);
1568 
1569   // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0:
1570   //   If deallocation function lookup finds a usual deallocation function with
1571   //   a pointer parameter, size parameter and alignment parameter then this
1572   //   will be the selected deallocation function, otherwise if lookup finds a
1573   //   usual deallocation function with both a pointer parameter and a size
1574   //   parameter, then this will be the selected deallocation function.
1575   //   Otherwise, if lookup finds a usual deallocation function with only a
1576   //   pointer parameter, then this will be the selected deallocation
1577   //   function.
1578   //
1579   // So we are not forced to pass alignment to the deallocation function.
1580   if (S.getLangOpts().CoroAlignedAllocation &&
1581       OpDeleteType->getNumParams() > DeleteArgs.size() &&
1582       S.getASTContext().hasSameUnqualifiedType(
1583           OpDeleteType->getParamType(DeleteArgs.size()),
1584           FrameAlignment->getType()))
1585     DeleteArgs.push_back(FrameAlignment);
1586 
1587   ExprResult DeleteExpr =
1588       S.BuildCallExpr(S.getCurScope(), DeleteRef.get(), Loc, DeleteArgs, Loc);
1589   DeleteExpr =
1590       S.ActOnFinishFullExpr(DeleteExpr.get(), /*DiscardedValue*/ false);
1591   if (DeleteExpr.isInvalid())
1592     return false;
1593 
1594   this->Allocate = NewExpr.get();
1595   this->Deallocate = DeleteExpr.get();
1596 
1597   return true;
1598 }
1599 
1600 bool CoroutineStmtBuilder::makeOnFallthrough() {
1601   assert(!IsPromiseDependentType &&
1602          "cannot make statement while the promise type is dependent");
1603 
1604   // [dcl.fct.def.coroutine]/p6
1605   // If searches for the names return_void and return_value in the scope of
1606   // the promise type each find any declarations, the program is ill-formed.
1607   // [Note 1: If return_void is found, flowing off the end of a coroutine is
1608   // equivalent to a co_return with no operand. Otherwise, flowing off the end
1609   // of a coroutine results in undefined behavior ([stmt.return.coroutine]). —
1610   // end note]
1611   bool HasRVoid, HasRValue;
1612   LookupResult LRVoid =
1613       lookupMember(S, "return_void", PromiseRecordDecl, Loc, HasRVoid);
1614   LookupResult LRValue =
1615       lookupMember(S, "return_value", PromiseRecordDecl, Loc, HasRValue);
1616 
1617   StmtResult Fallthrough;
1618   if (HasRVoid && HasRValue) {
1619     // FIXME Improve this diagnostic
1620     S.Diag(FD.getLocation(),
1621            diag::err_coroutine_promise_incompatible_return_functions)
1622         << PromiseRecordDecl;
1623     S.Diag(LRVoid.getRepresentativeDecl()->getLocation(),
1624            diag::note_member_first_declared_here)
1625         << LRVoid.getLookupName();
1626     S.Diag(LRValue.getRepresentativeDecl()->getLocation(),
1627            diag::note_member_first_declared_here)
1628         << LRValue.getLookupName();
1629     return false;
1630   } else if (!HasRVoid && !HasRValue) {
1631     // We need to set 'Fallthrough'. Otherwise the other analysis part might
1632     // think the coroutine has defined a return_value method. So it might emit
1633     // **false** positive warning. e.g.,
1634     //
1635     //    promise_without_return_func foo() {
1636     //        co_await something();
1637     //    }
1638     //
1639     // Then AnalysisBasedWarning would emit a warning about `foo()` lacking a
1640     // co_return statements, which isn't correct.
1641     Fallthrough = S.ActOnNullStmt(PromiseRecordDecl->getLocation());
1642     if (Fallthrough.isInvalid())
1643       return false;
1644   } else if (HasRVoid) {
1645     Fallthrough = S.BuildCoreturnStmt(FD.getLocation(), nullptr,
1646                                       /*IsImplicit*/false);
1647     Fallthrough = S.ActOnFinishFullStmt(Fallthrough.get());
1648     if (Fallthrough.isInvalid())
1649       return false;
1650   }
1651 
1652   this->OnFallthrough = Fallthrough.get();
1653   return true;
1654 }
1655 
1656 bool CoroutineStmtBuilder::makeOnException() {
1657   // Try to form 'p.unhandled_exception();'
1658   assert(!IsPromiseDependentType &&
1659          "cannot make statement while the promise type is dependent");
1660 
1661   const bool RequireUnhandledException = S.getLangOpts().CXXExceptions;
1662 
1663   if (!lookupMember(S, "unhandled_exception", PromiseRecordDecl, Loc)) {
1664     auto DiagID =
1665         RequireUnhandledException
1666             ? diag::err_coroutine_promise_unhandled_exception_required
1667             : diag::
1668                   warn_coroutine_promise_unhandled_exception_required_with_exceptions;
1669     S.Diag(Loc, DiagID) << PromiseRecordDecl;
1670     S.Diag(PromiseRecordDecl->getLocation(), diag::note_defined_here)
1671         << PromiseRecordDecl;
1672     return !RequireUnhandledException;
1673   }
1674 
1675   // If exceptions are disabled, don't try to build OnException.
1676   if (!S.getLangOpts().CXXExceptions)
1677     return true;
1678 
1679   ExprResult UnhandledException = buildPromiseCall(
1680       S, Fn.CoroutinePromise, Loc, "unhandled_exception", std::nullopt);
1681   UnhandledException = S.ActOnFinishFullExpr(UnhandledException.get(), Loc,
1682                                              /*DiscardedValue*/ false);
1683   if (UnhandledException.isInvalid())
1684     return false;
1685 
1686   // Since the body of the coroutine will be wrapped in try-catch, it will
1687   // be incompatible with SEH __try if present in a function.
1688   if (!S.getLangOpts().Borland && Fn.FirstSEHTryLoc.isValid()) {
1689     S.Diag(Fn.FirstSEHTryLoc, diag::err_seh_in_a_coroutine_with_cxx_exceptions);
1690     S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1691         << Fn.getFirstCoroutineStmtKeyword();
1692     return false;
1693   }
1694 
1695   this->OnException = UnhandledException.get();
1696   return true;
1697 }
1698 
1699 bool CoroutineStmtBuilder::makeReturnObject() {
1700   // [dcl.fct.def.coroutine]p7
1701   // The expression promise.get_return_object() is used to initialize the
1702   // returned reference or prvalue result object of a call to a coroutine.
1703   ExprResult ReturnObject = buildPromiseCall(S, Fn.CoroutinePromise, Loc,
1704                                              "get_return_object", std::nullopt);
1705   if (ReturnObject.isInvalid())
1706     return false;
1707 
1708   this->ReturnValue = ReturnObject.get();
1709   return true;
1710 }
1711 
1712 static void noteMemberDeclaredHere(Sema &S, Expr *E, FunctionScopeInfo &Fn) {
1713   if (auto *MbrRef = dyn_cast<CXXMemberCallExpr>(E)) {
1714     auto *MethodDecl = MbrRef->getMethodDecl();
1715     S.Diag(MethodDecl->getLocation(), diag::note_member_declared_here)
1716         << MethodDecl;
1717   }
1718   S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1719       << Fn.getFirstCoroutineStmtKeyword();
1720 }
1721 
1722 bool CoroutineStmtBuilder::makeGroDeclAndReturnStmt() {
1723   assert(!IsPromiseDependentType &&
1724          "cannot make statement while the promise type is dependent");
1725   assert(this->ReturnValue && "ReturnValue must be already formed");
1726 
1727   QualType const GroType = this->ReturnValue->getType();
1728   assert(!GroType->isDependentType() &&
1729          "get_return_object type must no longer be dependent");
1730 
1731   QualType const FnRetType = FD.getReturnType();
1732   assert(!FnRetType->isDependentType() &&
1733          "get_return_object type must no longer be dependent");
1734 
1735   if (FnRetType->isVoidType()) {
1736     ExprResult Res =
1737         S.ActOnFinishFullExpr(this->ReturnValue, Loc, /*DiscardedValue*/ false);
1738     if (Res.isInvalid())
1739       return false;
1740 
1741     return true;
1742   }
1743 
1744   if (GroType->isVoidType()) {
1745     // Trigger a nice error message.
1746     InitializedEntity Entity =
1747         InitializedEntity::InitializeResult(Loc, FnRetType);
1748     S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue);
1749     noteMemberDeclaredHere(S, ReturnValue, Fn);
1750     return false;
1751   }
1752 
1753   StmtResult ReturnStmt = S.BuildReturnStmt(Loc, ReturnValue);
1754   if (ReturnStmt.isInvalid()) {
1755     noteMemberDeclaredHere(S, ReturnValue, Fn);
1756     return false;
1757   }
1758 
1759   this->ReturnStmt = ReturnStmt.get();
1760   return true;
1761 }
1762 
1763 // Create a static_cast\<T&&>(expr).
1764 static Expr *castForMoving(Sema &S, Expr *E, QualType T = QualType()) {
1765   if (T.isNull())
1766     T = E->getType();
1767   QualType TargetType = S.BuildReferenceType(
1768       T, /*SpelledAsLValue*/ false, SourceLocation(), DeclarationName());
1769   SourceLocation ExprLoc = E->getBeginLoc();
1770   TypeSourceInfo *TargetLoc =
1771       S.Context.getTrivialTypeSourceInfo(TargetType, ExprLoc);
1772 
1773   return S
1774       .BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
1775                          SourceRange(ExprLoc, ExprLoc), E->getSourceRange())
1776       .get();
1777 }
1778 
1779 /// Build a variable declaration for move parameter.
1780 static VarDecl *buildVarDecl(Sema &S, SourceLocation Loc, QualType Type,
1781                              IdentifierInfo *II) {
1782   TypeSourceInfo *TInfo = S.Context.getTrivialTypeSourceInfo(Type, Loc);
1783   VarDecl *Decl = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, II, Type,
1784                                   TInfo, SC_None);
1785   Decl->setImplicit();
1786   return Decl;
1787 }
1788 
1789 // Build statements that move coroutine function parameters to the coroutine
1790 // frame, and store them on the function scope info.
1791 bool Sema::buildCoroutineParameterMoves(SourceLocation Loc) {
1792   assert(isa<FunctionDecl>(CurContext) && "not in a function scope");
1793   auto *FD = cast<FunctionDecl>(CurContext);
1794 
1795   auto *ScopeInfo = getCurFunction();
1796   if (!ScopeInfo->CoroutineParameterMoves.empty())
1797     return false;
1798 
1799   // [dcl.fct.def.coroutine]p13
1800   //   When a coroutine is invoked, after initializing its parameters
1801   //   ([expr.call]), a copy is created for each coroutine parameter. For a
1802   //   parameter of type cv T, the copy is a variable of type cv T with
1803   //   automatic storage duration that is direct-initialized from an xvalue of
1804   //   type T referring to the parameter.
1805   for (auto *PD : FD->parameters()) {
1806     if (PD->getType()->isDependentType())
1807       continue;
1808 
1809     ExprResult PDRefExpr =
1810         BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
1811                          ExprValueKind::VK_LValue, Loc); // FIXME: scope?
1812     if (PDRefExpr.isInvalid())
1813       return false;
1814 
1815     Expr *CExpr = nullptr;
1816     if (PD->getType()->getAsCXXRecordDecl() ||
1817         PD->getType()->isRValueReferenceType())
1818       CExpr = castForMoving(*this, PDRefExpr.get());
1819     else
1820       CExpr = PDRefExpr.get();
1821     // [dcl.fct.def.coroutine]p13
1822     //   The initialization and destruction of each parameter copy occurs in the
1823     //   context of the called coroutine.
1824     auto *D = buildVarDecl(*this, Loc, PD->getType(), PD->getIdentifier());
1825     AddInitializerToDecl(D, CExpr, /*DirectInit=*/true);
1826 
1827     // Convert decl to a statement.
1828     StmtResult Stmt = ActOnDeclStmt(ConvertDeclToDeclGroup(D), Loc, Loc);
1829     if (Stmt.isInvalid())
1830       return false;
1831 
1832     ScopeInfo->CoroutineParameterMoves.insert(std::make_pair(PD, Stmt.get()));
1833   }
1834   return true;
1835 }
1836 
1837 StmtResult Sema::BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) {
1838   CoroutineBodyStmt *Res = CoroutineBodyStmt::Create(Context, Args);
1839   if (!Res)
1840     return StmtError();
1841   return Res;
1842 }
1843 
1844 ClassTemplateDecl *Sema::lookupCoroutineTraits(SourceLocation KwLoc,
1845                                                SourceLocation FuncLoc,
1846                                                NamespaceDecl *&Namespace) {
1847   if (!StdCoroutineTraitsCache) {
1848     // Because coroutines moved from std::experimental in the TS to std in
1849     // C++20, we look in both places to give users time to transition their
1850     // TS-specific code to C++20.  Diagnostics are given when the TS usage is
1851     // discovered.
1852     // TODO: Become stricter when <experimental/coroutine> is removed.
1853 
1854     IdentifierInfo const &TraitIdent =
1855         PP.getIdentifierTable().get("coroutine_traits");
1856 
1857     NamespaceDecl *StdSpace = getStdNamespace();
1858     LookupResult ResStd(*this, &TraitIdent, FuncLoc, LookupOrdinaryName);
1859     bool InStd = StdSpace && LookupQualifiedName(ResStd, StdSpace);
1860 
1861     NamespaceDecl *ExpSpace = lookupStdExperimentalNamespace();
1862     LookupResult ResExp(*this, &TraitIdent, FuncLoc, LookupOrdinaryName);
1863     bool InExp = ExpSpace && LookupQualifiedName(ResExp, ExpSpace);
1864 
1865     if (!InStd && !InExp) {
1866       // The goggles, they found nothing!
1867       Diag(KwLoc, diag::err_implied_coroutine_type_not_found)
1868           << "std::coroutine_traits";
1869       return nullptr;
1870     }
1871 
1872     // Prefer ::std to std::experimental.
1873     LookupResult &Result = InStd ? ResStd : ResExp;
1874     CoroTraitsNamespaceCache = InStd ? StdSpace : ExpSpace;
1875 
1876     // coroutine_traits is required to be a class template.
1877     StdCoroutineTraitsCache = Result.getAsSingle<ClassTemplateDecl>();
1878     if (!StdCoroutineTraitsCache) {
1879       Result.suppressDiagnostics();
1880       NamedDecl *Found = *Result.begin();
1881       Diag(Found->getLocation(), diag::err_malformed_std_coroutine_traits);
1882       return nullptr;
1883     }
1884 
1885     if (InExp) {
1886       // Found in std::experimental
1887       Diag(KwLoc, diag::warn_deprecated_coroutine_namespace)
1888           << "coroutine_traits";
1889       ResExp.suppressDiagnostics();
1890       NamedDecl *Found = *ResExp.begin();
1891       Diag(Found->getLocation(), diag::note_entity_declared_at) << Found;
1892 
1893       if (InStd &&
1894           StdCoroutineTraitsCache != ResExp.getAsSingle<ClassTemplateDecl>()) {
1895         // Also found something different in std
1896         Diag(KwLoc,
1897              diag::err_mixed_use_std_and_experimental_namespace_for_coroutine);
1898         Diag(StdCoroutineTraitsCache->getLocation(),
1899              diag::note_entity_declared_at)
1900             << StdCoroutineTraitsCache;
1901 
1902         return nullptr;
1903       }
1904     }
1905   }
1906   Namespace = CoroTraitsNamespaceCache;
1907   return StdCoroutineTraitsCache;
1908 }
1909