1 //===-- SemaCoroutine.cpp - Semantic Analysis for Coroutines --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ Coroutines. 10 // 11 // This file contains references to sections of the Coroutines TS, which 12 // can be found at http://wg21.link/coroutines. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CoroutineStmtBuilder.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/StmtCXX.h" 21 #include "clang/Basic/Builtins.h" 22 #include "clang/Lex/Preprocessor.h" 23 #include "clang/Sema/Initialization.h" 24 #include "clang/Sema/Overload.h" 25 #include "clang/Sema/ScopeInfo.h" 26 #include "clang/Sema/SemaInternal.h" 27 #include "llvm/ADT/SmallSet.h" 28 29 using namespace clang; 30 using namespace sema; 31 32 static LookupResult lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD, 33 SourceLocation Loc, bool &Res) { 34 DeclarationName DN = S.PP.getIdentifierInfo(Name); 35 LookupResult LR(S, DN, Loc, Sema::LookupMemberName); 36 // Suppress diagnostics when a private member is selected. The same warnings 37 // will be produced again when building the call. 38 LR.suppressDiagnostics(); 39 Res = S.LookupQualifiedName(LR, RD); 40 return LR; 41 } 42 43 static bool lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD, 44 SourceLocation Loc) { 45 bool Res; 46 lookupMember(S, Name, RD, Loc, Res); 47 return Res; 48 } 49 50 /// Look up the std::coroutine_traits<...>::promise_type for the given 51 /// function type. 52 static QualType lookupPromiseType(Sema &S, const FunctionDecl *FD, 53 SourceLocation KwLoc) { 54 const FunctionProtoType *FnType = FD->getType()->castAs<FunctionProtoType>(); 55 const SourceLocation FuncLoc = FD->getLocation(); 56 57 NamespaceDecl *CoroNamespace = nullptr; 58 ClassTemplateDecl *CoroTraits = 59 S.lookupCoroutineTraits(KwLoc, FuncLoc, CoroNamespace); 60 if (!CoroTraits) { 61 return QualType(); 62 } 63 64 // Form template argument list for coroutine_traits<R, P1, P2, ...> according 65 // to [dcl.fct.def.coroutine]3 66 TemplateArgumentListInfo Args(KwLoc, KwLoc); 67 auto AddArg = [&](QualType T) { 68 Args.addArgument(TemplateArgumentLoc( 69 TemplateArgument(T), S.Context.getTrivialTypeSourceInfo(T, KwLoc))); 70 }; 71 AddArg(FnType->getReturnType()); 72 // If the function is a non-static member function, add the type 73 // of the implicit object parameter before the formal parameters. 74 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 75 if (MD->isInstance()) { 76 // [over.match.funcs]4 77 // For non-static member functions, the type of the implicit object 78 // parameter is 79 // -- "lvalue reference to cv X" for functions declared without a 80 // ref-qualifier or with the & ref-qualifier 81 // -- "rvalue reference to cv X" for functions declared with the && 82 // ref-qualifier 83 QualType T = MD->getThisType()->castAs<PointerType>()->getPointeeType(); 84 T = FnType->getRefQualifier() == RQ_RValue 85 ? S.Context.getRValueReferenceType(T) 86 : S.Context.getLValueReferenceType(T, /*SpelledAsLValue*/ true); 87 AddArg(T); 88 } 89 } 90 for (QualType T : FnType->getParamTypes()) 91 AddArg(T); 92 93 // Build the template-id. 94 QualType CoroTrait = 95 S.CheckTemplateIdType(TemplateName(CoroTraits), KwLoc, Args); 96 if (CoroTrait.isNull()) 97 return QualType(); 98 if (S.RequireCompleteType(KwLoc, CoroTrait, 99 diag::err_coroutine_type_missing_specialization)) 100 return QualType(); 101 102 auto *RD = CoroTrait->getAsCXXRecordDecl(); 103 assert(RD && "specialization of class template is not a class?"); 104 105 // Look up the ::promise_type member. 106 LookupResult R(S, &S.PP.getIdentifierTable().get("promise_type"), KwLoc, 107 Sema::LookupOrdinaryName); 108 S.LookupQualifiedName(R, RD); 109 auto *Promise = R.getAsSingle<TypeDecl>(); 110 if (!Promise) { 111 S.Diag(FuncLoc, 112 diag::err_implied_std_coroutine_traits_promise_type_not_found) 113 << RD; 114 return QualType(); 115 } 116 // The promise type is required to be a class type. 117 QualType PromiseType = S.Context.getTypeDeclType(Promise); 118 119 auto buildElaboratedType = [&]() { 120 auto *NNS = NestedNameSpecifier::Create(S.Context, nullptr, CoroNamespace); 121 NNS = NestedNameSpecifier::Create(S.Context, NNS, false, 122 CoroTrait.getTypePtr()); 123 return S.Context.getElaboratedType(ETK_None, NNS, PromiseType); 124 }; 125 126 if (!PromiseType->getAsCXXRecordDecl()) { 127 S.Diag(FuncLoc, 128 diag::err_implied_std_coroutine_traits_promise_type_not_class) 129 << buildElaboratedType(); 130 return QualType(); 131 } 132 if (S.RequireCompleteType(FuncLoc, buildElaboratedType(), 133 diag::err_coroutine_promise_type_incomplete)) 134 return QualType(); 135 136 return PromiseType; 137 } 138 139 /// Look up the std::coroutine_handle<PromiseType>. 140 static QualType lookupCoroutineHandleType(Sema &S, QualType PromiseType, 141 SourceLocation Loc) { 142 if (PromiseType.isNull()) 143 return QualType(); 144 145 NamespaceDecl *CoroNamespace = S.getCachedCoroNamespace(); 146 assert(CoroNamespace && "Should already be diagnosed"); 147 148 LookupResult Result(S, &S.PP.getIdentifierTable().get("coroutine_handle"), 149 Loc, Sema::LookupOrdinaryName); 150 if (!S.LookupQualifiedName(Result, CoroNamespace)) { 151 S.Diag(Loc, diag::err_implied_coroutine_type_not_found) 152 << "std::coroutine_handle"; 153 return QualType(); 154 } 155 156 ClassTemplateDecl *CoroHandle = Result.getAsSingle<ClassTemplateDecl>(); 157 if (!CoroHandle) { 158 Result.suppressDiagnostics(); 159 // We found something weird. Complain about the first thing we found. 160 NamedDecl *Found = *Result.begin(); 161 S.Diag(Found->getLocation(), diag::err_malformed_std_coroutine_handle); 162 return QualType(); 163 } 164 165 // Form template argument list for coroutine_handle<Promise>. 166 TemplateArgumentListInfo Args(Loc, Loc); 167 Args.addArgument(TemplateArgumentLoc( 168 TemplateArgument(PromiseType), 169 S.Context.getTrivialTypeSourceInfo(PromiseType, Loc))); 170 171 // Build the template-id. 172 QualType CoroHandleType = 173 S.CheckTemplateIdType(TemplateName(CoroHandle), Loc, Args); 174 if (CoroHandleType.isNull()) 175 return QualType(); 176 if (S.RequireCompleteType(Loc, CoroHandleType, 177 diag::err_coroutine_type_missing_specialization)) 178 return QualType(); 179 180 return CoroHandleType; 181 } 182 183 static bool isValidCoroutineContext(Sema &S, SourceLocation Loc, 184 StringRef Keyword) { 185 // [expr.await]p2 dictates that 'co_await' and 'co_yield' must be used within 186 // a function body. 187 // FIXME: This also covers [expr.await]p2: "An await-expression shall not 188 // appear in a default argument." But the diagnostic QoI here could be 189 // improved to inform the user that default arguments specifically are not 190 // allowed. 191 auto *FD = dyn_cast<FunctionDecl>(S.CurContext); 192 if (!FD) { 193 S.Diag(Loc, isa<ObjCMethodDecl>(S.CurContext) 194 ? diag::err_coroutine_objc_method 195 : diag::err_coroutine_outside_function) << Keyword; 196 return false; 197 } 198 199 // An enumeration for mapping the diagnostic type to the correct diagnostic 200 // selection index. 201 enum InvalidFuncDiag { 202 DiagCtor = 0, 203 DiagDtor, 204 DiagMain, 205 DiagConstexpr, 206 DiagAutoRet, 207 DiagVarargs, 208 DiagConsteval, 209 }; 210 bool Diagnosed = false; 211 auto DiagInvalid = [&](InvalidFuncDiag ID) { 212 S.Diag(Loc, diag::err_coroutine_invalid_func_context) << ID << Keyword; 213 Diagnosed = true; 214 return false; 215 }; 216 217 // Diagnose when a constructor, destructor 218 // or the function 'main' are declared as a coroutine. 219 auto *MD = dyn_cast<CXXMethodDecl>(FD); 220 // [class.ctor]p11: "A constructor shall not be a coroutine." 221 if (MD && isa<CXXConstructorDecl>(MD)) 222 return DiagInvalid(DiagCtor); 223 // [class.dtor]p17: "A destructor shall not be a coroutine." 224 else if (MD && isa<CXXDestructorDecl>(MD)) 225 return DiagInvalid(DiagDtor); 226 // [basic.start.main]p3: "The function main shall not be a coroutine." 227 else if (FD->isMain()) 228 return DiagInvalid(DiagMain); 229 230 // Emit a diagnostics for each of the following conditions which is not met. 231 // [expr.const]p2: "An expression e is a core constant expression unless the 232 // evaluation of e [...] would evaluate one of the following expressions: 233 // [...] an await-expression [...] a yield-expression." 234 if (FD->isConstexpr()) 235 DiagInvalid(FD->isConsteval() ? DiagConsteval : DiagConstexpr); 236 // [dcl.spec.auto]p15: "A function declared with a return type that uses a 237 // placeholder type shall not be a coroutine." 238 if (FD->getReturnType()->isUndeducedType()) 239 DiagInvalid(DiagAutoRet); 240 // [dcl.fct.def.coroutine]p1 241 // The parameter-declaration-clause of the coroutine shall not terminate with 242 // an ellipsis that is not part of a parameter-declaration. 243 if (FD->isVariadic()) 244 DiagInvalid(DiagVarargs); 245 246 return !Diagnosed; 247 } 248 249 /// Build a call to 'operator co_await' if there is a suitable operator for 250 /// the given expression. 251 ExprResult Sema::BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E, 252 UnresolvedLookupExpr *Lookup) { 253 UnresolvedSet<16> Functions; 254 Functions.append(Lookup->decls_begin(), Lookup->decls_end()); 255 return CreateOverloadedUnaryOp(Loc, UO_Coawait, Functions, E); 256 } 257 258 static ExprResult buildOperatorCoawaitCall(Sema &SemaRef, Scope *S, 259 SourceLocation Loc, Expr *E) { 260 ExprResult R = SemaRef.BuildOperatorCoawaitLookupExpr(S, Loc); 261 if (R.isInvalid()) 262 return ExprError(); 263 return SemaRef.BuildOperatorCoawaitCall(Loc, E, 264 cast<UnresolvedLookupExpr>(R.get())); 265 } 266 267 static ExprResult buildCoroutineHandle(Sema &S, QualType PromiseType, 268 SourceLocation Loc) { 269 QualType CoroHandleType = lookupCoroutineHandleType(S, PromiseType, Loc); 270 if (CoroHandleType.isNull()) 271 return ExprError(); 272 273 DeclContext *LookupCtx = S.computeDeclContext(CoroHandleType); 274 LookupResult Found(S, &S.PP.getIdentifierTable().get("from_address"), Loc, 275 Sema::LookupOrdinaryName); 276 if (!S.LookupQualifiedName(Found, LookupCtx)) { 277 S.Diag(Loc, diag::err_coroutine_handle_missing_member) 278 << "from_address"; 279 return ExprError(); 280 } 281 282 Expr *FramePtr = 283 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {}); 284 285 CXXScopeSpec SS; 286 ExprResult FromAddr = 287 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false); 288 if (FromAddr.isInvalid()) 289 return ExprError(); 290 291 return S.BuildCallExpr(nullptr, FromAddr.get(), Loc, FramePtr, Loc); 292 } 293 294 struct ReadySuspendResumeResult { 295 enum AwaitCallType { ACT_Ready, ACT_Suspend, ACT_Resume }; 296 Expr *Results[3]; 297 OpaqueValueExpr *OpaqueValue; 298 bool IsInvalid; 299 }; 300 301 static ExprResult buildMemberCall(Sema &S, Expr *Base, SourceLocation Loc, 302 StringRef Name, MultiExprArg Args) { 303 DeclarationNameInfo NameInfo(&S.PP.getIdentifierTable().get(Name), Loc); 304 305 // FIXME: Fix BuildMemberReferenceExpr to take a const CXXScopeSpec&. 306 CXXScopeSpec SS; 307 ExprResult Result = S.BuildMemberReferenceExpr( 308 Base, Base->getType(), Loc, /*IsPtr=*/false, SS, 309 SourceLocation(), nullptr, NameInfo, /*TemplateArgs=*/nullptr, 310 /*Scope=*/nullptr); 311 if (Result.isInvalid()) 312 return ExprError(); 313 314 // We meant exactly what we asked for. No need for typo correction. 315 if (auto *TE = dyn_cast<TypoExpr>(Result.get())) { 316 S.clearDelayedTypo(TE); 317 S.Diag(Loc, diag::err_no_member) 318 << NameInfo.getName() << Base->getType()->getAsCXXRecordDecl() 319 << Base->getSourceRange(); 320 return ExprError(); 321 } 322 323 return S.BuildCallExpr(nullptr, Result.get(), Loc, Args, Loc, nullptr); 324 } 325 326 // See if return type is coroutine-handle and if so, invoke builtin coro-resume 327 // on its address. This is to enable experimental support for coroutine-handle 328 // returning await_suspend that results in a guaranteed tail call to the target 329 // coroutine. 330 static Expr *maybeTailCall(Sema &S, QualType RetType, Expr *E, 331 SourceLocation Loc) { 332 if (RetType->isReferenceType()) 333 return nullptr; 334 Type const *T = RetType.getTypePtr(); 335 if (!T->isClassType() && !T->isStructureType()) 336 return nullptr; 337 338 // FIXME: Add convertability check to coroutine_handle<>. Possibly via 339 // EvaluateBinaryTypeTrait(BTT_IsConvertible, ...) which is at the moment 340 // a private function in SemaExprCXX.cpp 341 342 ExprResult AddressExpr = buildMemberCall(S, E, Loc, "address", std::nullopt); 343 if (AddressExpr.isInvalid()) 344 return nullptr; 345 346 Expr *JustAddress = AddressExpr.get(); 347 348 // Check that the type of AddressExpr is void* 349 if (!JustAddress->getType().getTypePtr()->isVoidPointerType()) 350 S.Diag(cast<CallExpr>(JustAddress)->getCalleeDecl()->getLocation(), 351 diag::warn_coroutine_handle_address_invalid_return_type) 352 << JustAddress->getType(); 353 354 // Clean up temporary objects so that they don't live across suspension points 355 // unnecessarily. We choose to clean up before the call to 356 // __builtin_coro_resume so that the cleanup code are not inserted in-between 357 // the resume call and return instruction, which would interfere with the 358 // musttail call contract. 359 JustAddress = S.MaybeCreateExprWithCleanups(JustAddress); 360 return S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_resume, 361 JustAddress); 362 } 363 364 /// Build calls to await_ready, await_suspend, and await_resume for a co_await 365 /// expression. 366 /// The generated AST tries to clean up temporary objects as early as 367 /// possible so that they don't live across suspension points if possible. 368 /// Having temporary objects living across suspension points unnecessarily can 369 /// lead to large frame size, and also lead to memory corruptions if the 370 /// coroutine frame is destroyed after coming back from suspension. This is done 371 /// by wrapping both the await_ready call and the await_suspend call with 372 /// ExprWithCleanups. In the end of this function, we also need to explicitly 373 /// set cleanup state so that the CoawaitExpr is also wrapped with an 374 /// ExprWithCleanups to clean up the awaiter associated with the co_await 375 /// expression. 376 static ReadySuspendResumeResult buildCoawaitCalls(Sema &S, VarDecl *CoroPromise, 377 SourceLocation Loc, Expr *E) { 378 OpaqueValueExpr *Operand = new (S.Context) 379 OpaqueValueExpr(Loc, E->getType(), VK_LValue, E->getObjectKind(), E); 380 381 // Assume valid until we see otherwise. 382 // Further operations are responsible for setting IsInalid to true. 383 ReadySuspendResumeResult Calls = {{}, Operand, /*IsInvalid=*/false}; 384 385 using ACT = ReadySuspendResumeResult::AwaitCallType; 386 387 auto BuildSubExpr = [&](ACT CallType, StringRef Func, 388 MultiExprArg Arg) -> Expr * { 389 ExprResult Result = buildMemberCall(S, Operand, Loc, Func, Arg); 390 if (Result.isInvalid()) { 391 Calls.IsInvalid = true; 392 return nullptr; 393 } 394 Calls.Results[CallType] = Result.get(); 395 return Result.get(); 396 }; 397 398 CallExpr *AwaitReady = cast_or_null<CallExpr>( 399 BuildSubExpr(ACT::ACT_Ready, "await_ready", std::nullopt)); 400 if (!AwaitReady) 401 return Calls; 402 if (!AwaitReady->getType()->isDependentType()) { 403 // [expr.await]p3 [...] 404 // — await-ready is the expression e.await_ready(), contextually converted 405 // to bool. 406 ExprResult Conv = S.PerformContextuallyConvertToBool(AwaitReady); 407 if (Conv.isInvalid()) { 408 S.Diag(AwaitReady->getDirectCallee()->getBeginLoc(), 409 diag::note_await_ready_no_bool_conversion); 410 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) 411 << AwaitReady->getDirectCallee() << E->getSourceRange(); 412 Calls.IsInvalid = true; 413 } else 414 Calls.Results[ACT::ACT_Ready] = S.MaybeCreateExprWithCleanups(Conv.get()); 415 } 416 417 ExprResult CoroHandleRes = 418 buildCoroutineHandle(S, CoroPromise->getType(), Loc); 419 if (CoroHandleRes.isInvalid()) { 420 Calls.IsInvalid = true; 421 return Calls; 422 } 423 Expr *CoroHandle = CoroHandleRes.get(); 424 CallExpr *AwaitSuspend = cast_or_null<CallExpr>( 425 BuildSubExpr(ACT::ACT_Suspend, "await_suspend", CoroHandle)); 426 if (!AwaitSuspend) 427 return Calls; 428 if (!AwaitSuspend->getType()->isDependentType()) { 429 // [expr.await]p3 [...] 430 // - await-suspend is the expression e.await_suspend(h), which shall be 431 // a prvalue of type void, bool, or std::coroutine_handle<Z> for some 432 // type Z. 433 QualType RetType = AwaitSuspend->getCallReturnType(S.Context); 434 435 // Experimental support for coroutine_handle returning await_suspend. 436 if (Expr *TailCallSuspend = 437 maybeTailCall(S, RetType, AwaitSuspend, Loc)) 438 // Note that we don't wrap the expression with ExprWithCleanups here 439 // because that might interfere with tailcall contract (e.g. inserting 440 // clean up instructions in-between tailcall and return). Instead 441 // ExprWithCleanups is wrapped within maybeTailCall() prior to the resume 442 // call. 443 Calls.Results[ACT::ACT_Suspend] = TailCallSuspend; 444 else { 445 // non-class prvalues always have cv-unqualified types 446 if (RetType->isReferenceType() || 447 (!RetType->isBooleanType() && !RetType->isVoidType())) { 448 S.Diag(AwaitSuspend->getCalleeDecl()->getLocation(), 449 diag::err_await_suspend_invalid_return_type) 450 << RetType; 451 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) 452 << AwaitSuspend->getDirectCallee(); 453 Calls.IsInvalid = true; 454 } else 455 Calls.Results[ACT::ACT_Suspend] = 456 S.MaybeCreateExprWithCleanups(AwaitSuspend); 457 } 458 } 459 460 BuildSubExpr(ACT::ACT_Resume, "await_resume", std::nullopt); 461 462 // Make sure the awaiter object gets a chance to be cleaned up. 463 S.Cleanup.setExprNeedsCleanups(true); 464 465 return Calls; 466 } 467 468 static ExprResult buildPromiseCall(Sema &S, VarDecl *Promise, 469 SourceLocation Loc, StringRef Name, 470 MultiExprArg Args) { 471 472 // Form a reference to the promise. 473 ExprResult PromiseRef = S.BuildDeclRefExpr( 474 Promise, Promise->getType().getNonReferenceType(), VK_LValue, Loc); 475 if (PromiseRef.isInvalid()) 476 return ExprError(); 477 478 return buildMemberCall(S, PromiseRef.get(), Loc, Name, Args); 479 } 480 481 VarDecl *Sema::buildCoroutinePromise(SourceLocation Loc) { 482 assert(isa<FunctionDecl>(CurContext) && "not in a function scope"); 483 auto *FD = cast<FunctionDecl>(CurContext); 484 bool IsThisDependentType = [&] { 485 if (auto *MD = dyn_cast_or_null<CXXMethodDecl>(FD)) 486 return MD->isInstance() && MD->getThisType()->isDependentType(); 487 else 488 return false; 489 }(); 490 491 QualType T = FD->getType()->isDependentType() || IsThisDependentType 492 ? Context.DependentTy 493 : lookupPromiseType(*this, FD, Loc); 494 if (T.isNull()) 495 return nullptr; 496 497 auto *VD = VarDecl::Create(Context, FD, FD->getLocation(), FD->getLocation(), 498 &PP.getIdentifierTable().get("__promise"), T, 499 Context.getTrivialTypeSourceInfo(T, Loc), SC_None); 500 VD->setImplicit(); 501 CheckVariableDeclarationType(VD); 502 if (VD->isInvalidDecl()) 503 return nullptr; 504 505 auto *ScopeInfo = getCurFunction(); 506 507 // Build a list of arguments, based on the coroutine function's arguments, 508 // that if present will be passed to the promise type's constructor. 509 llvm::SmallVector<Expr *, 4> CtorArgExprs; 510 511 // Add implicit object parameter. 512 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 513 if (MD->isInstance() && !isLambdaCallOperator(MD)) { 514 ExprResult ThisExpr = ActOnCXXThis(Loc); 515 if (ThisExpr.isInvalid()) 516 return nullptr; 517 ThisExpr = CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get()); 518 if (ThisExpr.isInvalid()) 519 return nullptr; 520 CtorArgExprs.push_back(ThisExpr.get()); 521 } 522 } 523 524 // Add the coroutine function's parameters. 525 auto &Moves = ScopeInfo->CoroutineParameterMoves; 526 for (auto *PD : FD->parameters()) { 527 if (PD->getType()->isDependentType()) 528 continue; 529 530 auto RefExpr = ExprEmpty(); 531 auto Move = Moves.find(PD); 532 assert(Move != Moves.end() && 533 "Coroutine function parameter not inserted into move map"); 534 // If a reference to the function parameter exists in the coroutine 535 // frame, use that reference. 536 auto *MoveDecl = 537 cast<VarDecl>(cast<DeclStmt>(Move->second)->getSingleDecl()); 538 RefExpr = 539 BuildDeclRefExpr(MoveDecl, MoveDecl->getType().getNonReferenceType(), 540 ExprValueKind::VK_LValue, FD->getLocation()); 541 if (RefExpr.isInvalid()) 542 return nullptr; 543 CtorArgExprs.push_back(RefExpr.get()); 544 } 545 546 // If we have a non-zero number of constructor arguments, try to use them. 547 // Otherwise, fall back to the promise type's default constructor. 548 if (!CtorArgExprs.empty()) { 549 // Create an initialization sequence for the promise type using the 550 // constructor arguments, wrapped in a parenthesized list expression. 551 Expr *PLE = ParenListExpr::Create(Context, FD->getLocation(), 552 CtorArgExprs, FD->getLocation()); 553 InitializedEntity Entity = InitializedEntity::InitializeVariable(VD); 554 InitializationKind Kind = InitializationKind::CreateForInit( 555 VD->getLocation(), /*DirectInit=*/true, PLE); 556 InitializationSequence InitSeq(*this, Entity, Kind, CtorArgExprs, 557 /*TopLevelOfInitList=*/false, 558 /*TreatUnavailableAsInvalid=*/false); 559 560 // [dcl.fct.def.coroutine]5.7 561 // promise-constructor-arguments is determined as follows: overload 562 // resolution is performed on a promise constructor call created by 563 // assembling an argument list q_1 ... q_n . If a viable constructor is 564 // found ([over.match.viable]), then promise-constructor-arguments is ( q_1 565 // , ..., q_n ), otherwise promise-constructor-arguments is empty. 566 if (InitSeq) { 567 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, CtorArgExprs); 568 if (Result.isInvalid()) { 569 VD->setInvalidDecl(); 570 } else if (Result.get()) { 571 VD->setInit(MaybeCreateExprWithCleanups(Result.get())); 572 VD->setInitStyle(VarDecl::CallInit); 573 CheckCompleteVariableDeclaration(VD); 574 } 575 } else 576 ActOnUninitializedDecl(VD); 577 } else 578 ActOnUninitializedDecl(VD); 579 580 FD->addDecl(VD); 581 return VD; 582 } 583 584 /// Check that this is a context in which a coroutine suspension can appear. 585 static FunctionScopeInfo *checkCoroutineContext(Sema &S, SourceLocation Loc, 586 StringRef Keyword, 587 bool IsImplicit = false) { 588 if (!isValidCoroutineContext(S, Loc, Keyword)) 589 return nullptr; 590 591 assert(isa<FunctionDecl>(S.CurContext) && "not in a function scope"); 592 593 auto *ScopeInfo = S.getCurFunction(); 594 assert(ScopeInfo && "missing function scope for function"); 595 596 if (ScopeInfo->FirstCoroutineStmtLoc.isInvalid() && !IsImplicit) 597 ScopeInfo->setFirstCoroutineStmt(Loc, Keyword); 598 599 if (ScopeInfo->CoroutinePromise) 600 return ScopeInfo; 601 602 if (!S.buildCoroutineParameterMoves(Loc)) 603 return nullptr; 604 605 ScopeInfo->CoroutinePromise = S.buildCoroutinePromise(Loc); 606 if (!ScopeInfo->CoroutinePromise) 607 return nullptr; 608 609 return ScopeInfo; 610 } 611 612 /// Recursively check \p E and all its children to see if any call target 613 /// (including constructor call) is declared noexcept. Also any value returned 614 /// from the call has a noexcept destructor. 615 static void checkNoThrow(Sema &S, const Stmt *E, 616 llvm::SmallPtrSetImpl<const Decl *> &ThrowingDecls) { 617 auto checkDeclNoexcept = [&](const Decl *D, bool IsDtor = false) { 618 // In the case of dtor, the call to dtor is implicit and hence we should 619 // pass nullptr to canCalleeThrow. 620 if (Sema::canCalleeThrow(S, IsDtor ? nullptr : cast<Expr>(E), D)) { 621 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 622 // co_await promise.final_suspend() could end up calling 623 // __builtin_coro_resume for symmetric transfer if await_suspend() 624 // returns a handle. In that case, even __builtin_coro_resume is not 625 // declared as noexcept and may throw, it does not throw _into_ the 626 // coroutine that just suspended, but rather throws back out from 627 // whoever called coroutine_handle::resume(), hence we claim that 628 // logically it does not throw. 629 if (FD->getBuiltinID() == Builtin::BI__builtin_coro_resume) 630 return; 631 } 632 if (ThrowingDecls.empty()) { 633 // [dcl.fct.def.coroutine]p15 634 // The expression co_await promise.final_suspend() shall not be 635 // potentially-throwing ([except.spec]). 636 // 637 // First time seeing an error, emit the error message. 638 S.Diag(cast<FunctionDecl>(S.CurContext)->getLocation(), 639 diag::err_coroutine_promise_final_suspend_requires_nothrow); 640 } 641 ThrowingDecls.insert(D); 642 } 643 }; 644 645 if (auto *CE = dyn_cast<CXXConstructExpr>(E)) { 646 CXXConstructorDecl *Ctor = CE->getConstructor(); 647 checkDeclNoexcept(Ctor); 648 // Check the corresponding destructor of the constructor. 649 checkDeclNoexcept(Ctor->getParent()->getDestructor(), /*IsDtor=*/true); 650 } else if (auto *CE = dyn_cast<CallExpr>(E)) { 651 if (CE->isTypeDependent()) 652 return; 653 654 checkDeclNoexcept(CE->getCalleeDecl()); 655 QualType ReturnType = CE->getCallReturnType(S.getASTContext()); 656 // Check the destructor of the call return type, if any. 657 if (ReturnType.isDestructedType() == 658 QualType::DestructionKind::DK_cxx_destructor) { 659 const auto *T = 660 cast<RecordType>(ReturnType.getCanonicalType().getTypePtr()); 661 checkDeclNoexcept(cast<CXXRecordDecl>(T->getDecl())->getDestructor(), 662 /*IsDtor=*/true); 663 } 664 } else 665 for (const auto *Child : E->children()) { 666 if (!Child) 667 continue; 668 checkNoThrow(S, Child, ThrowingDecls); 669 } 670 } 671 672 bool Sema::checkFinalSuspendNoThrow(const Stmt *FinalSuspend) { 673 llvm::SmallPtrSet<const Decl *, 4> ThrowingDecls; 674 // We first collect all declarations that should not throw but not declared 675 // with noexcept. We then sort them based on the location before printing. 676 // This is to avoid emitting the same note multiple times on the same 677 // declaration, and also provide a deterministic order for the messages. 678 checkNoThrow(*this, FinalSuspend, ThrowingDecls); 679 auto SortedDecls = llvm::SmallVector<const Decl *, 4>{ThrowingDecls.begin(), 680 ThrowingDecls.end()}; 681 sort(SortedDecls, [](const Decl *A, const Decl *B) { 682 return A->getEndLoc() < B->getEndLoc(); 683 }); 684 for (const auto *D : SortedDecls) { 685 Diag(D->getEndLoc(), diag::note_coroutine_function_declare_noexcept); 686 } 687 return ThrowingDecls.empty(); 688 } 689 690 bool Sema::ActOnCoroutineBodyStart(Scope *SC, SourceLocation KWLoc, 691 StringRef Keyword) { 692 if (!checkCoroutineContext(*this, KWLoc, Keyword)) 693 return false; 694 auto *ScopeInfo = getCurFunction(); 695 assert(ScopeInfo->CoroutinePromise); 696 697 // If we have existing coroutine statements then we have already built 698 // the initial and final suspend points. 699 if (!ScopeInfo->NeedsCoroutineSuspends) 700 return true; 701 702 ScopeInfo->setNeedsCoroutineSuspends(false); 703 704 auto *Fn = cast<FunctionDecl>(CurContext); 705 SourceLocation Loc = Fn->getLocation(); 706 // Build the initial suspend point 707 auto buildSuspends = [&](StringRef Name) mutable -> StmtResult { 708 ExprResult Operand = buildPromiseCall(*this, ScopeInfo->CoroutinePromise, 709 Loc, Name, std::nullopt); 710 if (Operand.isInvalid()) 711 return StmtError(); 712 ExprResult Suspend = 713 buildOperatorCoawaitCall(*this, SC, Loc, Operand.get()); 714 if (Suspend.isInvalid()) 715 return StmtError(); 716 Suspend = BuildResolvedCoawaitExpr(Loc, Operand.get(), Suspend.get(), 717 /*IsImplicit*/ true); 718 Suspend = ActOnFinishFullExpr(Suspend.get(), /*DiscardedValue*/ false); 719 if (Suspend.isInvalid()) { 720 Diag(Loc, diag::note_coroutine_promise_suspend_implicitly_required) 721 << ((Name == "initial_suspend") ? 0 : 1); 722 Diag(KWLoc, diag::note_declared_coroutine_here) << Keyword; 723 return StmtError(); 724 } 725 return cast<Stmt>(Suspend.get()); 726 }; 727 728 StmtResult InitSuspend = buildSuspends("initial_suspend"); 729 if (InitSuspend.isInvalid()) 730 return true; 731 732 StmtResult FinalSuspend = buildSuspends("final_suspend"); 733 if (FinalSuspend.isInvalid() || !checkFinalSuspendNoThrow(FinalSuspend.get())) 734 return true; 735 736 ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get()); 737 738 return true; 739 } 740 741 // Recursively walks up the scope hierarchy until either a 'catch' or a function 742 // scope is found, whichever comes first. 743 static bool isWithinCatchScope(Scope *S) { 744 // 'co_await' and 'co_yield' keywords are disallowed within catch blocks, but 745 // lambdas that use 'co_await' are allowed. The loop below ends when a 746 // function scope is found in order to ensure the following behavior: 747 // 748 // void foo() { // <- function scope 749 // try { // 750 // co_await x; // <- 'co_await' is OK within a function scope 751 // } catch { // <- catch scope 752 // co_await x; // <- 'co_await' is not OK within a catch scope 753 // []() { // <- function scope 754 // co_await x; // <- 'co_await' is OK within a function scope 755 // }(); 756 // } 757 // } 758 while (S && !S->isFunctionScope()) { 759 if (S->isCatchScope()) 760 return true; 761 S = S->getParent(); 762 } 763 return false; 764 } 765 766 // [expr.await]p2, emphasis added: "An await-expression shall appear only in 767 // a *potentially evaluated* expression within the compound-statement of a 768 // function-body *outside of a handler* [...] A context within a function 769 // where an await-expression can appear is called a suspension context of the 770 // function." 771 static bool checkSuspensionContext(Sema &S, SourceLocation Loc, 772 StringRef Keyword) { 773 // First emphasis of [expr.await]p2: must be a potentially evaluated context. 774 // That is, 'co_await' and 'co_yield' cannot appear in subexpressions of 775 // \c sizeof. 776 if (S.isUnevaluatedContext()) { 777 S.Diag(Loc, diag::err_coroutine_unevaluated_context) << Keyword; 778 return false; 779 } 780 781 // Second emphasis of [expr.await]p2: must be outside of an exception handler. 782 if (isWithinCatchScope(S.getCurScope())) { 783 S.Diag(Loc, diag::err_coroutine_within_handler) << Keyword; 784 return false; 785 } 786 787 return true; 788 } 789 790 ExprResult Sema::ActOnCoawaitExpr(Scope *S, SourceLocation Loc, Expr *E) { 791 if (!checkSuspensionContext(*this, Loc, "co_await")) 792 return ExprError(); 793 794 if (!ActOnCoroutineBodyStart(S, Loc, "co_await")) { 795 CorrectDelayedTyposInExpr(E); 796 return ExprError(); 797 } 798 799 if (E->hasPlaceholderType()) { 800 ExprResult R = CheckPlaceholderExpr(E); 801 if (R.isInvalid()) return ExprError(); 802 E = R.get(); 803 } 804 ExprResult Lookup = BuildOperatorCoawaitLookupExpr(S, Loc); 805 if (Lookup.isInvalid()) 806 return ExprError(); 807 return BuildUnresolvedCoawaitExpr(Loc, E, 808 cast<UnresolvedLookupExpr>(Lookup.get())); 809 } 810 811 ExprResult Sema::BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc) { 812 DeclarationName OpName = 813 Context.DeclarationNames.getCXXOperatorName(OO_Coawait); 814 LookupResult Operators(*this, OpName, SourceLocation(), 815 Sema::LookupOperatorName); 816 LookupName(Operators, S); 817 818 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); 819 const auto &Functions = Operators.asUnresolvedSet(); 820 bool IsOverloaded = 821 Functions.size() > 1 || 822 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 823 Expr *CoawaitOp = UnresolvedLookupExpr::Create( 824 Context, /*NamingClass*/ nullptr, NestedNameSpecifierLoc(), 825 DeclarationNameInfo(OpName, Loc), /*RequiresADL*/ true, IsOverloaded, 826 Functions.begin(), Functions.end()); 827 assert(CoawaitOp); 828 return CoawaitOp; 829 } 830 831 // Attempts to resolve and build a CoawaitExpr from "raw" inputs, bailing out to 832 // DependentCoawaitExpr if needed. 833 ExprResult Sema::BuildUnresolvedCoawaitExpr(SourceLocation Loc, Expr *Operand, 834 UnresolvedLookupExpr *Lookup) { 835 auto *FSI = checkCoroutineContext(*this, Loc, "co_await"); 836 if (!FSI) 837 return ExprError(); 838 839 if (Operand->hasPlaceholderType()) { 840 ExprResult R = CheckPlaceholderExpr(Operand); 841 if (R.isInvalid()) 842 return ExprError(); 843 Operand = R.get(); 844 } 845 846 auto *Promise = FSI->CoroutinePromise; 847 if (Promise->getType()->isDependentType()) { 848 Expr *Res = new (Context) 849 DependentCoawaitExpr(Loc, Context.DependentTy, Operand, Lookup); 850 return Res; 851 } 852 853 auto *RD = Promise->getType()->getAsCXXRecordDecl(); 854 auto *Transformed = Operand; 855 if (lookupMember(*this, "await_transform", RD, Loc)) { 856 ExprResult R = 857 buildPromiseCall(*this, Promise, Loc, "await_transform", Operand); 858 if (R.isInvalid()) { 859 Diag(Loc, 860 diag::note_coroutine_promise_implicit_await_transform_required_here) 861 << Operand->getSourceRange(); 862 return ExprError(); 863 } 864 Transformed = R.get(); 865 } 866 ExprResult Awaiter = BuildOperatorCoawaitCall(Loc, Transformed, Lookup); 867 if (Awaiter.isInvalid()) 868 return ExprError(); 869 870 return BuildResolvedCoawaitExpr(Loc, Operand, Awaiter.get()); 871 } 872 873 ExprResult Sema::BuildResolvedCoawaitExpr(SourceLocation Loc, Expr *Operand, 874 Expr *Awaiter, bool IsImplicit) { 875 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_await", IsImplicit); 876 if (!Coroutine) 877 return ExprError(); 878 879 if (Awaiter->hasPlaceholderType()) { 880 ExprResult R = CheckPlaceholderExpr(Awaiter); 881 if (R.isInvalid()) return ExprError(); 882 Awaiter = R.get(); 883 } 884 885 if (Awaiter->getType()->isDependentType()) { 886 Expr *Res = new (Context) 887 CoawaitExpr(Loc, Context.DependentTy, Operand, Awaiter, IsImplicit); 888 return Res; 889 } 890 891 // If the expression is a temporary, materialize it as an lvalue so that we 892 // can use it multiple times. 893 if (Awaiter->isPRValue()) 894 Awaiter = CreateMaterializeTemporaryExpr(Awaiter->getType(), Awaiter, true); 895 896 // The location of the `co_await` token cannot be used when constructing 897 // the member call expressions since it's before the location of `Expr`, which 898 // is used as the start of the member call expression. 899 SourceLocation CallLoc = Awaiter->getExprLoc(); 900 901 // Build the await_ready, await_suspend, await_resume calls. 902 ReadySuspendResumeResult RSS = 903 buildCoawaitCalls(*this, Coroutine->CoroutinePromise, CallLoc, Awaiter); 904 if (RSS.IsInvalid) 905 return ExprError(); 906 907 Expr *Res = new (Context) 908 CoawaitExpr(Loc, Operand, Awaiter, RSS.Results[0], RSS.Results[1], 909 RSS.Results[2], RSS.OpaqueValue, IsImplicit); 910 911 return Res; 912 } 913 914 ExprResult Sema::ActOnCoyieldExpr(Scope *S, SourceLocation Loc, Expr *E) { 915 if (!checkSuspensionContext(*this, Loc, "co_yield")) 916 return ExprError(); 917 918 if (!ActOnCoroutineBodyStart(S, Loc, "co_yield")) { 919 CorrectDelayedTyposInExpr(E); 920 return ExprError(); 921 } 922 923 // Build yield_value call. 924 ExprResult Awaitable = buildPromiseCall( 925 *this, getCurFunction()->CoroutinePromise, Loc, "yield_value", E); 926 if (Awaitable.isInvalid()) 927 return ExprError(); 928 929 // Build 'operator co_await' call. 930 Awaitable = buildOperatorCoawaitCall(*this, S, Loc, Awaitable.get()); 931 if (Awaitable.isInvalid()) 932 return ExprError(); 933 934 return BuildCoyieldExpr(Loc, Awaitable.get()); 935 } 936 ExprResult Sema::BuildCoyieldExpr(SourceLocation Loc, Expr *E) { 937 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_yield"); 938 if (!Coroutine) 939 return ExprError(); 940 941 if (E->hasPlaceholderType()) { 942 ExprResult R = CheckPlaceholderExpr(E); 943 if (R.isInvalid()) return ExprError(); 944 E = R.get(); 945 } 946 947 Expr *Operand = E; 948 949 if (E->getType()->isDependentType()) { 950 Expr *Res = new (Context) CoyieldExpr(Loc, Context.DependentTy, Operand, E); 951 return Res; 952 } 953 954 // If the expression is a temporary, materialize it as an lvalue so that we 955 // can use it multiple times. 956 if (E->isPRValue()) 957 E = CreateMaterializeTemporaryExpr(E->getType(), E, true); 958 959 // Build the await_ready, await_suspend, await_resume calls. 960 ReadySuspendResumeResult RSS = buildCoawaitCalls( 961 *this, Coroutine->CoroutinePromise, Loc, E); 962 if (RSS.IsInvalid) 963 return ExprError(); 964 965 Expr *Res = 966 new (Context) CoyieldExpr(Loc, Operand, E, RSS.Results[0], RSS.Results[1], 967 RSS.Results[2], RSS.OpaqueValue); 968 969 return Res; 970 } 971 972 StmtResult Sema::ActOnCoreturnStmt(Scope *S, SourceLocation Loc, Expr *E) { 973 if (!ActOnCoroutineBodyStart(S, Loc, "co_return")) { 974 CorrectDelayedTyposInExpr(E); 975 return StmtError(); 976 } 977 return BuildCoreturnStmt(Loc, E); 978 } 979 980 StmtResult Sema::BuildCoreturnStmt(SourceLocation Loc, Expr *E, 981 bool IsImplicit) { 982 auto *FSI = checkCoroutineContext(*this, Loc, "co_return", IsImplicit); 983 if (!FSI) 984 return StmtError(); 985 986 if (E && E->hasPlaceholderType() && 987 !E->hasPlaceholderType(BuiltinType::Overload)) { 988 ExprResult R = CheckPlaceholderExpr(E); 989 if (R.isInvalid()) return StmtError(); 990 E = R.get(); 991 } 992 993 VarDecl *Promise = FSI->CoroutinePromise; 994 ExprResult PC; 995 if (E && (isa<InitListExpr>(E) || !E->getType()->isVoidType())) { 996 getNamedReturnInfo(E, SimplerImplicitMoveMode::ForceOn); 997 PC = buildPromiseCall(*this, Promise, Loc, "return_value", E); 998 } else { 999 E = MakeFullDiscardedValueExpr(E).get(); 1000 PC = buildPromiseCall(*this, Promise, Loc, "return_void", std::nullopt); 1001 } 1002 if (PC.isInvalid()) 1003 return StmtError(); 1004 1005 Expr *PCE = ActOnFinishFullExpr(PC.get(), /*DiscardedValue*/ false).get(); 1006 1007 Stmt *Res = new (Context) CoreturnStmt(Loc, E, PCE, IsImplicit); 1008 return Res; 1009 } 1010 1011 /// Look up the std::nothrow object. 1012 static Expr *buildStdNoThrowDeclRef(Sema &S, SourceLocation Loc) { 1013 NamespaceDecl *Std = S.getStdNamespace(); 1014 assert(Std && "Should already be diagnosed"); 1015 1016 LookupResult Result(S, &S.PP.getIdentifierTable().get("nothrow"), Loc, 1017 Sema::LookupOrdinaryName); 1018 if (!S.LookupQualifiedName(Result, Std)) { 1019 // <coroutine> is not requred to include <new>, so we couldn't omit 1020 // the check here. 1021 S.Diag(Loc, diag::err_implicit_coroutine_std_nothrow_type_not_found); 1022 return nullptr; 1023 } 1024 1025 auto *VD = Result.getAsSingle<VarDecl>(); 1026 if (!VD) { 1027 Result.suppressDiagnostics(); 1028 // We found something weird. Complain about the first thing we found. 1029 NamedDecl *Found = *Result.begin(); 1030 S.Diag(Found->getLocation(), diag::err_malformed_std_nothrow); 1031 return nullptr; 1032 } 1033 1034 ExprResult DR = S.BuildDeclRefExpr(VD, VD->getType(), VK_LValue, Loc); 1035 if (DR.isInvalid()) 1036 return nullptr; 1037 1038 return DR.get(); 1039 } 1040 1041 static TypeSourceInfo *getTypeSourceInfoForStdAlignValT(Sema &S, 1042 SourceLocation Loc) { 1043 EnumDecl *StdAlignValT = S.getStdAlignValT(); 1044 QualType StdAlignValDecl = S.Context.getTypeDeclType(StdAlignValT); 1045 return S.Context.getTrivialTypeSourceInfo(StdAlignValDecl); 1046 } 1047 1048 // Find an appropriate delete for the promise. 1049 static bool findDeleteForPromise(Sema &S, SourceLocation Loc, QualType PromiseType, 1050 FunctionDecl *&OperatorDelete) { 1051 DeclarationName DeleteName = 1052 S.Context.DeclarationNames.getCXXOperatorName(OO_Delete); 1053 1054 auto *PointeeRD = PromiseType->getAsCXXRecordDecl(); 1055 assert(PointeeRD && "PromiseType must be a CxxRecordDecl type"); 1056 1057 const bool Overaligned = S.getLangOpts().CoroAlignedAllocation; 1058 1059 // [dcl.fct.def.coroutine]p12 1060 // The deallocation function's name is looked up by searching for it in the 1061 // scope of the promise type. If nothing is found, a search is performed in 1062 // the global scope. 1063 if (S.FindDeallocationFunction(Loc, PointeeRD, DeleteName, OperatorDelete, 1064 /*Diagnose*/ true, /*WantSize*/ true, 1065 /*WantAligned*/ Overaligned)) 1066 return false; 1067 1068 // [dcl.fct.def.coroutine]p12 1069 // If both a usual deallocation function with only a pointer parameter and a 1070 // usual deallocation function with both a pointer parameter and a size 1071 // parameter are found, then the selected deallocation function shall be the 1072 // one with two parameters. Otherwise, the selected deallocation function 1073 // shall be the function with one parameter. 1074 if (!OperatorDelete) { 1075 // Look for a global declaration. 1076 // Coroutines can always provide their required size. 1077 const bool CanProvideSize = true; 1078 // Sema::FindUsualDeallocationFunction will try to find the one with two 1079 // parameters first. It will return the deallocation function with one 1080 // parameter if failed. 1081 OperatorDelete = S.FindUsualDeallocationFunction(Loc, CanProvideSize, 1082 Overaligned, DeleteName); 1083 1084 if (!OperatorDelete) 1085 return false; 1086 } 1087 1088 S.MarkFunctionReferenced(Loc, OperatorDelete); 1089 return true; 1090 } 1091 1092 1093 void Sema::CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body) { 1094 FunctionScopeInfo *Fn = getCurFunction(); 1095 assert(Fn && Fn->isCoroutine() && "not a coroutine"); 1096 if (!Body) { 1097 assert(FD->isInvalidDecl() && 1098 "a null body is only allowed for invalid declarations"); 1099 return; 1100 } 1101 // We have a function that uses coroutine keywords, but we failed to build 1102 // the promise type. 1103 if (!Fn->CoroutinePromise) 1104 return FD->setInvalidDecl(); 1105 1106 if (isa<CoroutineBodyStmt>(Body)) { 1107 // Nothing todo. the body is already a transformed coroutine body statement. 1108 return; 1109 } 1110 1111 // The always_inline attribute doesn't reliably apply to a coroutine, 1112 // because the coroutine will be split into pieces and some pieces 1113 // might be called indirectly, as in a virtual call. Even the ramp 1114 // function cannot be inlined at -O0, due to pipeline ordering 1115 // problems (see https://llvm.org/PR53413). Tell the user about it. 1116 if (FD->hasAttr<AlwaysInlineAttr>()) 1117 Diag(FD->getLocation(), diag::warn_always_inline_coroutine); 1118 1119 // [stmt.return.coroutine]p1: 1120 // A coroutine shall not enclose a return statement ([stmt.return]). 1121 if (Fn->FirstReturnLoc.isValid()) { 1122 assert(Fn->FirstCoroutineStmtLoc.isValid() && 1123 "first coroutine location not set"); 1124 Diag(Fn->FirstReturnLoc, diag::err_return_in_coroutine); 1125 Diag(Fn->FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1126 << Fn->getFirstCoroutineStmtKeyword(); 1127 } 1128 1129 // Coroutines will get splitted into pieces. The GNU address of label 1130 // extension wouldn't be meaningful in coroutines. 1131 for (AddrLabelExpr *ALE : Fn->AddrLabels) 1132 Diag(ALE->getBeginLoc(), diag::err_coro_invalid_addr_of_label); 1133 1134 CoroutineStmtBuilder Builder(*this, *FD, *Fn, Body); 1135 if (Builder.isInvalid() || !Builder.buildStatements()) 1136 return FD->setInvalidDecl(); 1137 1138 // Build body for the coroutine wrapper statement. 1139 Body = CoroutineBodyStmt::Create(Context, Builder); 1140 } 1141 1142 CoroutineStmtBuilder::CoroutineStmtBuilder(Sema &S, FunctionDecl &FD, 1143 sema::FunctionScopeInfo &Fn, 1144 Stmt *Body) 1145 : S(S), FD(FD), Fn(Fn), Loc(FD.getLocation()), 1146 IsPromiseDependentType( 1147 !Fn.CoroutinePromise || 1148 Fn.CoroutinePromise->getType()->isDependentType()) { 1149 this->Body = Body; 1150 1151 for (auto KV : Fn.CoroutineParameterMoves) 1152 this->ParamMovesVector.push_back(KV.second); 1153 this->ParamMoves = this->ParamMovesVector; 1154 1155 if (!IsPromiseDependentType) { 1156 PromiseRecordDecl = Fn.CoroutinePromise->getType()->getAsCXXRecordDecl(); 1157 assert(PromiseRecordDecl && "Type should have already been checked"); 1158 } 1159 this->IsValid = makePromiseStmt() && makeInitialAndFinalSuspend(); 1160 } 1161 1162 bool CoroutineStmtBuilder::buildStatements() { 1163 assert(this->IsValid && "coroutine already invalid"); 1164 this->IsValid = makeReturnObject(); 1165 if (this->IsValid && !IsPromiseDependentType) 1166 buildDependentStatements(); 1167 return this->IsValid; 1168 } 1169 1170 bool CoroutineStmtBuilder::buildDependentStatements() { 1171 assert(this->IsValid && "coroutine already invalid"); 1172 assert(!this->IsPromiseDependentType && 1173 "coroutine cannot have a dependent promise type"); 1174 this->IsValid = makeOnException() && makeOnFallthrough() && 1175 makeGroDeclAndReturnStmt() && makeReturnOnAllocFailure() && 1176 makeNewAndDeleteExpr(); 1177 return this->IsValid; 1178 } 1179 1180 bool CoroutineStmtBuilder::makePromiseStmt() { 1181 // Form a declaration statement for the promise declaration, so that AST 1182 // visitors can more easily find it. 1183 StmtResult PromiseStmt = 1184 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(Fn.CoroutinePromise), Loc, Loc); 1185 if (PromiseStmt.isInvalid()) 1186 return false; 1187 1188 this->Promise = PromiseStmt.get(); 1189 return true; 1190 } 1191 1192 bool CoroutineStmtBuilder::makeInitialAndFinalSuspend() { 1193 if (Fn.hasInvalidCoroutineSuspends()) 1194 return false; 1195 this->InitialSuspend = cast<Expr>(Fn.CoroutineSuspends.first); 1196 this->FinalSuspend = cast<Expr>(Fn.CoroutineSuspends.second); 1197 return true; 1198 } 1199 1200 static bool diagReturnOnAllocFailure(Sema &S, Expr *E, 1201 CXXRecordDecl *PromiseRecordDecl, 1202 FunctionScopeInfo &Fn) { 1203 auto Loc = E->getExprLoc(); 1204 if (auto *DeclRef = dyn_cast_or_null<DeclRefExpr>(E)) { 1205 auto *Decl = DeclRef->getDecl(); 1206 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Decl)) { 1207 if (Method->isStatic()) 1208 return true; 1209 else 1210 Loc = Decl->getLocation(); 1211 } 1212 } 1213 1214 S.Diag( 1215 Loc, 1216 diag::err_coroutine_promise_get_return_object_on_allocation_failure) 1217 << PromiseRecordDecl; 1218 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1219 << Fn.getFirstCoroutineStmtKeyword(); 1220 return false; 1221 } 1222 1223 bool CoroutineStmtBuilder::makeReturnOnAllocFailure() { 1224 assert(!IsPromiseDependentType && 1225 "cannot make statement while the promise type is dependent"); 1226 1227 // [dcl.fct.def.coroutine]p10 1228 // If a search for the name get_return_object_on_allocation_failure in 1229 // the scope of the promise type ([class.member.lookup]) finds any 1230 // declarations, then the result of a call to an allocation function used to 1231 // obtain storage for the coroutine state is assumed to return nullptr if it 1232 // fails to obtain storage, ... If the allocation function returns nullptr, 1233 // ... and the return value is obtained by a call to 1234 // T::get_return_object_on_allocation_failure(), where T is the 1235 // promise type. 1236 DeclarationName DN = 1237 S.PP.getIdentifierInfo("get_return_object_on_allocation_failure"); 1238 LookupResult Found(S, DN, Loc, Sema::LookupMemberName); 1239 if (!S.LookupQualifiedName(Found, PromiseRecordDecl)) 1240 return true; 1241 1242 CXXScopeSpec SS; 1243 ExprResult DeclNameExpr = 1244 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false); 1245 if (DeclNameExpr.isInvalid()) 1246 return false; 1247 1248 if (!diagReturnOnAllocFailure(S, DeclNameExpr.get(), PromiseRecordDecl, Fn)) 1249 return false; 1250 1251 ExprResult ReturnObjectOnAllocationFailure = 1252 S.BuildCallExpr(nullptr, DeclNameExpr.get(), Loc, {}, Loc); 1253 if (ReturnObjectOnAllocationFailure.isInvalid()) 1254 return false; 1255 1256 StmtResult ReturnStmt = 1257 S.BuildReturnStmt(Loc, ReturnObjectOnAllocationFailure.get()); 1258 if (ReturnStmt.isInvalid()) { 1259 S.Diag(Found.getFoundDecl()->getLocation(), diag::note_member_declared_here) 1260 << DN; 1261 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1262 << Fn.getFirstCoroutineStmtKeyword(); 1263 return false; 1264 } 1265 1266 this->ReturnStmtOnAllocFailure = ReturnStmt.get(); 1267 return true; 1268 } 1269 1270 // Collect placement arguments for allocation function of coroutine FD. 1271 // Return true if we collect placement arguments succesfully. Return false, 1272 // otherwise. 1273 static bool collectPlacementArgs(Sema &S, FunctionDecl &FD, SourceLocation Loc, 1274 SmallVectorImpl<Expr *> &PlacementArgs) { 1275 if (auto *MD = dyn_cast<CXXMethodDecl>(&FD)) { 1276 if (MD->isInstance() && !isLambdaCallOperator(MD)) { 1277 ExprResult ThisExpr = S.ActOnCXXThis(Loc); 1278 if (ThisExpr.isInvalid()) 1279 return false; 1280 ThisExpr = S.CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get()); 1281 if (ThisExpr.isInvalid()) 1282 return false; 1283 PlacementArgs.push_back(ThisExpr.get()); 1284 } 1285 } 1286 1287 for (auto *PD : FD.parameters()) { 1288 if (PD->getType()->isDependentType()) 1289 continue; 1290 1291 // Build a reference to the parameter. 1292 auto PDLoc = PD->getLocation(); 1293 ExprResult PDRefExpr = 1294 S.BuildDeclRefExpr(PD, PD->getOriginalType().getNonReferenceType(), 1295 ExprValueKind::VK_LValue, PDLoc); 1296 if (PDRefExpr.isInvalid()) 1297 return false; 1298 1299 PlacementArgs.push_back(PDRefExpr.get()); 1300 } 1301 1302 return true; 1303 } 1304 1305 bool CoroutineStmtBuilder::makeNewAndDeleteExpr() { 1306 // Form and check allocation and deallocation calls. 1307 assert(!IsPromiseDependentType && 1308 "cannot make statement while the promise type is dependent"); 1309 QualType PromiseType = Fn.CoroutinePromise->getType(); 1310 1311 if (S.RequireCompleteType(Loc, PromiseType, diag::err_incomplete_type)) 1312 return false; 1313 1314 const bool RequiresNoThrowAlloc = ReturnStmtOnAllocFailure != nullptr; 1315 1316 // According to [dcl.fct.def.coroutine]p9, Lookup allocation functions using a 1317 // parameter list composed of the requested size of the coroutine state being 1318 // allocated, followed by the coroutine function's arguments. If a matching 1319 // allocation function exists, use it. Otherwise, use an allocation function 1320 // that just takes the requested size. 1321 // 1322 // [dcl.fct.def.coroutine]p9 1323 // An implementation may need to allocate additional storage for a 1324 // coroutine. 1325 // This storage is known as the coroutine state and is obtained by calling a 1326 // non-array allocation function ([basic.stc.dynamic.allocation]). The 1327 // allocation function's name is looked up by searching for it in the scope of 1328 // the promise type. 1329 // - If any declarations are found, overload resolution is performed on a 1330 // function call created by assembling an argument list. The first argument is 1331 // the amount of space requested, and has type std::size_t. The 1332 // lvalues p1 ... pn are the succeeding arguments. 1333 // 1334 // ...where "p1 ... pn" are defined earlier as: 1335 // 1336 // [dcl.fct.def.coroutine]p3 1337 // The promise type of a coroutine is `std::coroutine_traits<R, P1, ..., 1338 // Pn>` 1339 // , where R is the return type of the function, and `P1, ..., Pn` are the 1340 // sequence of types of the non-object function parameters, preceded by the 1341 // type of the object parameter ([dcl.fct]) if the coroutine is a non-static 1342 // member function. [dcl.fct.def.coroutine]p4 In the following, p_i is an 1343 // lvalue of type P_i, where p1 denotes the object parameter and p_i+1 denotes 1344 // the i-th non-object function parameter for a non-static member function, 1345 // and p_i denotes the i-th function parameter otherwise. For a non-static 1346 // member function, q_1 is an lvalue that denotes *this; any other q_i is an 1347 // lvalue that denotes the parameter copy corresponding to p_i. 1348 1349 FunctionDecl *OperatorNew = nullptr; 1350 SmallVector<Expr *, 1> PlacementArgs; 1351 1352 const bool PromiseContainsNew = [this, &PromiseType]() -> bool { 1353 DeclarationName NewName = 1354 S.getASTContext().DeclarationNames.getCXXOperatorName(OO_New); 1355 LookupResult R(S, NewName, Loc, Sema::LookupOrdinaryName); 1356 1357 if (PromiseType->isRecordType()) 1358 S.LookupQualifiedName(R, PromiseType->getAsCXXRecordDecl()); 1359 1360 return !R.empty() && !R.isAmbiguous(); 1361 }(); 1362 1363 // Helper function to indicate whether the last lookup found the aligned 1364 // allocation function. 1365 bool PassAlignment = S.getLangOpts().CoroAlignedAllocation; 1366 auto LookupAllocationFunction = [&](Sema::AllocationFunctionScope NewScope = 1367 Sema::AFS_Both, 1368 bool WithoutPlacementArgs = false, 1369 bool ForceNonAligned = false) { 1370 // [dcl.fct.def.coroutine]p9 1371 // The allocation function's name is looked up by searching for it in the 1372 // scope of the promise type. 1373 // - If any declarations are found, ... 1374 // - If no declarations are found in the scope of the promise type, a search 1375 // is performed in the global scope. 1376 if (NewScope == Sema::AFS_Both) 1377 NewScope = PromiseContainsNew ? Sema::AFS_Class : Sema::AFS_Global; 1378 1379 PassAlignment = !ForceNonAligned && S.getLangOpts().CoroAlignedAllocation; 1380 FunctionDecl *UnusedResult = nullptr; 1381 S.FindAllocationFunctions(Loc, SourceRange(), NewScope, 1382 /*DeleteScope*/ Sema::AFS_Both, PromiseType, 1383 /*isArray*/ false, PassAlignment, 1384 WithoutPlacementArgs ? MultiExprArg{} 1385 : PlacementArgs, 1386 OperatorNew, UnusedResult, /*Diagnose*/ false); 1387 }; 1388 1389 // We don't expect to call to global operator new with (size, p0, …, pn). 1390 // So if we choose to lookup the allocation function in global scope, we 1391 // shouldn't lookup placement arguments. 1392 if (PromiseContainsNew && !collectPlacementArgs(S, FD, Loc, PlacementArgs)) 1393 return false; 1394 1395 LookupAllocationFunction(); 1396 1397 if (PromiseContainsNew && !PlacementArgs.empty()) { 1398 // [dcl.fct.def.coroutine]p9 1399 // If no viable function is found ([over.match.viable]), overload 1400 // resolution 1401 // is performed again on a function call created by passing just the amount 1402 // of space required as an argument of type std::size_t. 1403 // 1404 // Proposed Change of [dcl.fct.def.coroutine]p9 in P2014R0: 1405 // Otherwise, overload resolution is performed again on a function call 1406 // created 1407 // by passing the amount of space requested as an argument of type 1408 // std::size_t as the first argument, and the requested alignment as 1409 // an argument of type std:align_val_t as the second argument. 1410 if (!OperatorNew || 1411 (S.getLangOpts().CoroAlignedAllocation && !PassAlignment)) 1412 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, 1413 /*WithoutPlacementArgs*/ true); 1414 } 1415 1416 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0: 1417 // Otherwise, overload resolution is performed again on a function call 1418 // created 1419 // by passing the amount of space requested as an argument of type 1420 // std::size_t as the first argument, and the lvalues p1 ... pn as the 1421 // succeeding arguments. Otherwise, overload resolution is performed again 1422 // on a function call created by passing just the amount of space required as 1423 // an argument of type std::size_t. 1424 // 1425 // So within the proposed change in P2014RO, the priority order of aligned 1426 // allocation functions wiht promise_type is: 1427 // 1428 // void* operator new( std::size_t, std::align_val_t, placement_args... ); 1429 // void* operator new( std::size_t, std::align_val_t); 1430 // void* operator new( std::size_t, placement_args... ); 1431 // void* operator new( std::size_t); 1432 1433 // Helper variable to emit warnings. 1434 bool FoundNonAlignedInPromise = false; 1435 if (PromiseContainsNew && S.getLangOpts().CoroAlignedAllocation) 1436 if (!OperatorNew || !PassAlignment) { 1437 FoundNonAlignedInPromise = OperatorNew; 1438 1439 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, 1440 /*WithoutPlacementArgs*/ false, 1441 /*ForceNonAligned*/ true); 1442 1443 if (!OperatorNew && !PlacementArgs.empty()) 1444 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, 1445 /*WithoutPlacementArgs*/ true, 1446 /*ForceNonAligned*/ true); 1447 } 1448 1449 bool IsGlobalOverload = 1450 OperatorNew && !isa<CXXRecordDecl>(OperatorNew->getDeclContext()); 1451 // If we didn't find a class-local new declaration and non-throwing new 1452 // was is required then we need to lookup the non-throwing global operator 1453 // instead. 1454 if (RequiresNoThrowAlloc && (!OperatorNew || IsGlobalOverload)) { 1455 auto *StdNoThrow = buildStdNoThrowDeclRef(S, Loc); 1456 if (!StdNoThrow) 1457 return false; 1458 PlacementArgs = {StdNoThrow}; 1459 OperatorNew = nullptr; 1460 LookupAllocationFunction(Sema::AFS_Global); 1461 } 1462 1463 // If we found a non-aligned allocation function in the promise_type, 1464 // it indicates the user forgot to update the allocation function. Let's emit 1465 // a warning here. 1466 if (FoundNonAlignedInPromise) { 1467 S.Diag(OperatorNew->getLocation(), 1468 diag::warn_non_aligned_allocation_function) 1469 << &FD; 1470 } 1471 1472 if (!OperatorNew) { 1473 if (PromiseContainsNew) 1474 S.Diag(Loc, diag::err_coroutine_unusable_new) << PromiseType << &FD; 1475 else if (RequiresNoThrowAlloc) 1476 S.Diag(Loc, diag::err_coroutine_unfound_nothrow_new) 1477 << &FD << S.getLangOpts().CoroAlignedAllocation; 1478 1479 return false; 1480 } 1481 1482 if (RequiresNoThrowAlloc) { 1483 const auto *FT = OperatorNew->getType()->castAs<FunctionProtoType>(); 1484 if (!FT->isNothrow(/*ResultIfDependent*/ false)) { 1485 S.Diag(OperatorNew->getLocation(), 1486 diag::err_coroutine_promise_new_requires_nothrow) 1487 << OperatorNew; 1488 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) 1489 << OperatorNew; 1490 return false; 1491 } 1492 } 1493 1494 FunctionDecl *OperatorDelete = nullptr; 1495 if (!findDeleteForPromise(S, Loc, PromiseType, OperatorDelete)) { 1496 // FIXME: We should add an error here. According to: 1497 // [dcl.fct.def.coroutine]p12 1498 // If no usual deallocation function is found, the program is ill-formed. 1499 return false; 1500 } 1501 1502 Expr *FramePtr = 1503 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {}); 1504 1505 Expr *FrameSize = 1506 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_size, {}); 1507 1508 Expr *FrameAlignment = nullptr; 1509 1510 if (S.getLangOpts().CoroAlignedAllocation) { 1511 FrameAlignment = 1512 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_align, {}); 1513 1514 TypeSourceInfo *AlignValTy = getTypeSourceInfoForStdAlignValT(S, Loc); 1515 if (!AlignValTy) 1516 return false; 1517 1518 FrameAlignment = S.BuildCXXNamedCast(Loc, tok::kw_static_cast, AlignValTy, 1519 FrameAlignment, SourceRange(Loc, Loc), 1520 SourceRange(Loc, Loc)) 1521 .get(); 1522 } 1523 1524 // Make new call. 1525 ExprResult NewRef = 1526 S.BuildDeclRefExpr(OperatorNew, OperatorNew->getType(), VK_LValue, Loc); 1527 if (NewRef.isInvalid()) 1528 return false; 1529 1530 SmallVector<Expr *, 2> NewArgs(1, FrameSize); 1531 if (S.getLangOpts().CoroAlignedAllocation && PassAlignment) 1532 NewArgs.push_back(FrameAlignment); 1533 1534 if (OperatorNew->getNumParams() > NewArgs.size()) 1535 llvm::append_range(NewArgs, PlacementArgs); 1536 1537 ExprResult NewExpr = 1538 S.BuildCallExpr(S.getCurScope(), NewRef.get(), Loc, NewArgs, Loc); 1539 NewExpr = S.ActOnFinishFullExpr(NewExpr.get(), /*DiscardedValue*/ false); 1540 if (NewExpr.isInvalid()) 1541 return false; 1542 1543 // Make delete call. 1544 1545 QualType OpDeleteQualType = OperatorDelete->getType(); 1546 1547 ExprResult DeleteRef = 1548 S.BuildDeclRefExpr(OperatorDelete, OpDeleteQualType, VK_LValue, Loc); 1549 if (DeleteRef.isInvalid()) 1550 return false; 1551 1552 Expr *CoroFree = 1553 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_free, {FramePtr}); 1554 1555 SmallVector<Expr *, 2> DeleteArgs{CoroFree}; 1556 1557 // [dcl.fct.def.coroutine]p12 1558 // The selected deallocation function shall be called with the address of 1559 // the block of storage to be reclaimed as its first argument. If a 1560 // deallocation function with a parameter of type std::size_t is 1561 // used, the size of the block is passed as the corresponding argument. 1562 const auto *OpDeleteType = 1563 OpDeleteQualType.getTypePtr()->castAs<FunctionProtoType>(); 1564 if (OpDeleteType->getNumParams() > DeleteArgs.size() && 1565 S.getASTContext().hasSameUnqualifiedType( 1566 OpDeleteType->getParamType(DeleteArgs.size()), FrameSize->getType())) 1567 DeleteArgs.push_back(FrameSize); 1568 1569 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0: 1570 // If deallocation function lookup finds a usual deallocation function with 1571 // a pointer parameter, size parameter and alignment parameter then this 1572 // will be the selected deallocation function, otherwise if lookup finds a 1573 // usual deallocation function with both a pointer parameter and a size 1574 // parameter, then this will be the selected deallocation function. 1575 // Otherwise, if lookup finds a usual deallocation function with only a 1576 // pointer parameter, then this will be the selected deallocation 1577 // function. 1578 // 1579 // So we are not forced to pass alignment to the deallocation function. 1580 if (S.getLangOpts().CoroAlignedAllocation && 1581 OpDeleteType->getNumParams() > DeleteArgs.size() && 1582 S.getASTContext().hasSameUnqualifiedType( 1583 OpDeleteType->getParamType(DeleteArgs.size()), 1584 FrameAlignment->getType())) 1585 DeleteArgs.push_back(FrameAlignment); 1586 1587 ExprResult DeleteExpr = 1588 S.BuildCallExpr(S.getCurScope(), DeleteRef.get(), Loc, DeleteArgs, Loc); 1589 DeleteExpr = 1590 S.ActOnFinishFullExpr(DeleteExpr.get(), /*DiscardedValue*/ false); 1591 if (DeleteExpr.isInvalid()) 1592 return false; 1593 1594 this->Allocate = NewExpr.get(); 1595 this->Deallocate = DeleteExpr.get(); 1596 1597 return true; 1598 } 1599 1600 bool CoroutineStmtBuilder::makeOnFallthrough() { 1601 assert(!IsPromiseDependentType && 1602 "cannot make statement while the promise type is dependent"); 1603 1604 // [dcl.fct.def.coroutine]/p6 1605 // If searches for the names return_void and return_value in the scope of 1606 // the promise type each find any declarations, the program is ill-formed. 1607 // [Note 1: If return_void is found, flowing off the end of a coroutine is 1608 // equivalent to a co_return with no operand. Otherwise, flowing off the end 1609 // of a coroutine results in undefined behavior ([stmt.return.coroutine]). — 1610 // end note] 1611 bool HasRVoid, HasRValue; 1612 LookupResult LRVoid = 1613 lookupMember(S, "return_void", PromiseRecordDecl, Loc, HasRVoid); 1614 LookupResult LRValue = 1615 lookupMember(S, "return_value", PromiseRecordDecl, Loc, HasRValue); 1616 1617 StmtResult Fallthrough; 1618 if (HasRVoid && HasRValue) { 1619 // FIXME Improve this diagnostic 1620 S.Diag(FD.getLocation(), 1621 diag::err_coroutine_promise_incompatible_return_functions) 1622 << PromiseRecordDecl; 1623 S.Diag(LRVoid.getRepresentativeDecl()->getLocation(), 1624 diag::note_member_first_declared_here) 1625 << LRVoid.getLookupName(); 1626 S.Diag(LRValue.getRepresentativeDecl()->getLocation(), 1627 diag::note_member_first_declared_here) 1628 << LRValue.getLookupName(); 1629 return false; 1630 } else if (!HasRVoid && !HasRValue) { 1631 // We need to set 'Fallthrough'. Otherwise the other analysis part might 1632 // think the coroutine has defined a return_value method. So it might emit 1633 // **false** positive warning. e.g., 1634 // 1635 // promise_without_return_func foo() { 1636 // co_await something(); 1637 // } 1638 // 1639 // Then AnalysisBasedWarning would emit a warning about `foo()` lacking a 1640 // co_return statements, which isn't correct. 1641 Fallthrough = S.ActOnNullStmt(PromiseRecordDecl->getLocation()); 1642 if (Fallthrough.isInvalid()) 1643 return false; 1644 } else if (HasRVoid) { 1645 Fallthrough = S.BuildCoreturnStmt(FD.getLocation(), nullptr, 1646 /*IsImplicit*/false); 1647 Fallthrough = S.ActOnFinishFullStmt(Fallthrough.get()); 1648 if (Fallthrough.isInvalid()) 1649 return false; 1650 } 1651 1652 this->OnFallthrough = Fallthrough.get(); 1653 return true; 1654 } 1655 1656 bool CoroutineStmtBuilder::makeOnException() { 1657 // Try to form 'p.unhandled_exception();' 1658 assert(!IsPromiseDependentType && 1659 "cannot make statement while the promise type is dependent"); 1660 1661 const bool RequireUnhandledException = S.getLangOpts().CXXExceptions; 1662 1663 if (!lookupMember(S, "unhandled_exception", PromiseRecordDecl, Loc)) { 1664 auto DiagID = 1665 RequireUnhandledException 1666 ? diag::err_coroutine_promise_unhandled_exception_required 1667 : diag:: 1668 warn_coroutine_promise_unhandled_exception_required_with_exceptions; 1669 S.Diag(Loc, DiagID) << PromiseRecordDecl; 1670 S.Diag(PromiseRecordDecl->getLocation(), diag::note_defined_here) 1671 << PromiseRecordDecl; 1672 return !RequireUnhandledException; 1673 } 1674 1675 // If exceptions are disabled, don't try to build OnException. 1676 if (!S.getLangOpts().CXXExceptions) 1677 return true; 1678 1679 ExprResult UnhandledException = buildPromiseCall( 1680 S, Fn.CoroutinePromise, Loc, "unhandled_exception", std::nullopt); 1681 UnhandledException = S.ActOnFinishFullExpr(UnhandledException.get(), Loc, 1682 /*DiscardedValue*/ false); 1683 if (UnhandledException.isInvalid()) 1684 return false; 1685 1686 // Since the body of the coroutine will be wrapped in try-catch, it will 1687 // be incompatible with SEH __try if present in a function. 1688 if (!S.getLangOpts().Borland && Fn.FirstSEHTryLoc.isValid()) { 1689 S.Diag(Fn.FirstSEHTryLoc, diag::err_seh_in_a_coroutine_with_cxx_exceptions); 1690 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1691 << Fn.getFirstCoroutineStmtKeyword(); 1692 return false; 1693 } 1694 1695 this->OnException = UnhandledException.get(); 1696 return true; 1697 } 1698 1699 bool CoroutineStmtBuilder::makeReturnObject() { 1700 // [dcl.fct.def.coroutine]p7 1701 // The expression promise.get_return_object() is used to initialize the 1702 // returned reference or prvalue result object of a call to a coroutine. 1703 ExprResult ReturnObject = buildPromiseCall(S, Fn.CoroutinePromise, Loc, 1704 "get_return_object", std::nullopt); 1705 if (ReturnObject.isInvalid()) 1706 return false; 1707 1708 this->ReturnValue = ReturnObject.get(); 1709 return true; 1710 } 1711 1712 static void noteMemberDeclaredHere(Sema &S, Expr *E, FunctionScopeInfo &Fn) { 1713 if (auto *MbrRef = dyn_cast<CXXMemberCallExpr>(E)) { 1714 auto *MethodDecl = MbrRef->getMethodDecl(); 1715 S.Diag(MethodDecl->getLocation(), diag::note_member_declared_here) 1716 << MethodDecl; 1717 } 1718 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1719 << Fn.getFirstCoroutineStmtKeyword(); 1720 } 1721 1722 bool CoroutineStmtBuilder::makeGroDeclAndReturnStmt() { 1723 assert(!IsPromiseDependentType && 1724 "cannot make statement while the promise type is dependent"); 1725 assert(this->ReturnValue && "ReturnValue must be already formed"); 1726 1727 QualType const GroType = this->ReturnValue->getType(); 1728 assert(!GroType->isDependentType() && 1729 "get_return_object type must no longer be dependent"); 1730 1731 QualType const FnRetType = FD.getReturnType(); 1732 assert(!FnRetType->isDependentType() && 1733 "get_return_object type must no longer be dependent"); 1734 1735 if (FnRetType->isVoidType()) { 1736 ExprResult Res = 1737 S.ActOnFinishFullExpr(this->ReturnValue, Loc, /*DiscardedValue*/ false); 1738 if (Res.isInvalid()) 1739 return false; 1740 1741 return true; 1742 } 1743 1744 if (GroType->isVoidType()) { 1745 // Trigger a nice error message. 1746 InitializedEntity Entity = 1747 InitializedEntity::InitializeResult(Loc, FnRetType); 1748 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue); 1749 noteMemberDeclaredHere(S, ReturnValue, Fn); 1750 return false; 1751 } 1752 1753 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, ReturnValue); 1754 if (ReturnStmt.isInvalid()) { 1755 noteMemberDeclaredHere(S, ReturnValue, Fn); 1756 return false; 1757 } 1758 1759 this->ReturnStmt = ReturnStmt.get(); 1760 return true; 1761 } 1762 1763 // Create a static_cast\<T&&>(expr). 1764 static Expr *castForMoving(Sema &S, Expr *E, QualType T = QualType()) { 1765 if (T.isNull()) 1766 T = E->getType(); 1767 QualType TargetType = S.BuildReferenceType( 1768 T, /*SpelledAsLValue*/ false, SourceLocation(), DeclarationName()); 1769 SourceLocation ExprLoc = E->getBeginLoc(); 1770 TypeSourceInfo *TargetLoc = 1771 S.Context.getTrivialTypeSourceInfo(TargetType, ExprLoc); 1772 1773 return S 1774 .BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, 1775 SourceRange(ExprLoc, ExprLoc), E->getSourceRange()) 1776 .get(); 1777 } 1778 1779 /// Build a variable declaration for move parameter. 1780 static VarDecl *buildVarDecl(Sema &S, SourceLocation Loc, QualType Type, 1781 IdentifierInfo *II) { 1782 TypeSourceInfo *TInfo = S.Context.getTrivialTypeSourceInfo(Type, Loc); 1783 VarDecl *Decl = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, II, Type, 1784 TInfo, SC_None); 1785 Decl->setImplicit(); 1786 return Decl; 1787 } 1788 1789 // Build statements that move coroutine function parameters to the coroutine 1790 // frame, and store them on the function scope info. 1791 bool Sema::buildCoroutineParameterMoves(SourceLocation Loc) { 1792 assert(isa<FunctionDecl>(CurContext) && "not in a function scope"); 1793 auto *FD = cast<FunctionDecl>(CurContext); 1794 1795 auto *ScopeInfo = getCurFunction(); 1796 if (!ScopeInfo->CoroutineParameterMoves.empty()) 1797 return false; 1798 1799 // [dcl.fct.def.coroutine]p13 1800 // When a coroutine is invoked, after initializing its parameters 1801 // ([expr.call]), a copy is created for each coroutine parameter. For a 1802 // parameter of type cv T, the copy is a variable of type cv T with 1803 // automatic storage duration that is direct-initialized from an xvalue of 1804 // type T referring to the parameter. 1805 for (auto *PD : FD->parameters()) { 1806 if (PD->getType()->isDependentType()) 1807 continue; 1808 1809 ExprResult PDRefExpr = 1810 BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(), 1811 ExprValueKind::VK_LValue, Loc); // FIXME: scope? 1812 if (PDRefExpr.isInvalid()) 1813 return false; 1814 1815 Expr *CExpr = nullptr; 1816 if (PD->getType()->getAsCXXRecordDecl() || 1817 PD->getType()->isRValueReferenceType()) 1818 CExpr = castForMoving(*this, PDRefExpr.get()); 1819 else 1820 CExpr = PDRefExpr.get(); 1821 // [dcl.fct.def.coroutine]p13 1822 // The initialization and destruction of each parameter copy occurs in the 1823 // context of the called coroutine. 1824 auto *D = buildVarDecl(*this, Loc, PD->getType(), PD->getIdentifier()); 1825 AddInitializerToDecl(D, CExpr, /*DirectInit=*/true); 1826 1827 // Convert decl to a statement. 1828 StmtResult Stmt = ActOnDeclStmt(ConvertDeclToDeclGroup(D), Loc, Loc); 1829 if (Stmt.isInvalid()) 1830 return false; 1831 1832 ScopeInfo->CoroutineParameterMoves.insert(std::make_pair(PD, Stmt.get())); 1833 } 1834 return true; 1835 } 1836 1837 StmtResult Sema::BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) { 1838 CoroutineBodyStmt *Res = CoroutineBodyStmt::Create(Context, Args); 1839 if (!Res) 1840 return StmtError(); 1841 return Res; 1842 } 1843 1844 ClassTemplateDecl *Sema::lookupCoroutineTraits(SourceLocation KwLoc, 1845 SourceLocation FuncLoc, 1846 NamespaceDecl *&Namespace) { 1847 if (!StdCoroutineTraitsCache) { 1848 // Because coroutines moved from std::experimental in the TS to std in 1849 // C++20, we look in both places to give users time to transition their 1850 // TS-specific code to C++20. Diagnostics are given when the TS usage is 1851 // discovered. 1852 // TODO: Become stricter when <experimental/coroutine> is removed. 1853 1854 IdentifierInfo const &TraitIdent = 1855 PP.getIdentifierTable().get("coroutine_traits"); 1856 1857 NamespaceDecl *StdSpace = getStdNamespace(); 1858 LookupResult ResStd(*this, &TraitIdent, FuncLoc, LookupOrdinaryName); 1859 bool InStd = StdSpace && LookupQualifiedName(ResStd, StdSpace); 1860 1861 NamespaceDecl *ExpSpace = lookupStdExperimentalNamespace(); 1862 LookupResult ResExp(*this, &TraitIdent, FuncLoc, LookupOrdinaryName); 1863 bool InExp = ExpSpace && LookupQualifiedName(ResExp, ExpSpace); 1864 1865 if (!InStd && !InExp) { 1866 // The goggles, they found nothing! 1867 Diag(KwLoc, diag::err_implied_coroutine_type_not_found) 1868 << "std::coroutine_traits"; 1869 return nullptr; 1870 } 1871 1872 // Prefer ::std to std::experimental. 1873 LookupResult &Result = InStd ? ResStd : ResExp; 1874 CoroTraitsNamespaceCache = InStd ? StdSpace : ExpSpace; 1875 1876 // coroutine_traits is required to be a class template. 1877 StdCoroutineTraitsCache = Result.getAsSingle<ClassTemplateDecl>(); 1878 if (!StdCoroutineTraitsCache) { 1879 Result.suppressDiagnostics(); 1880 NamedDecl *Found = *Result.begin(); 1881 Diag(Found->getLocation(), diag::err_malformed_std_coroutine_traits); 1882 return nullptr; 1883 } 1884 1885 if (InExp) { 1886 // Found in std::experimental 1887 Diag(KwLoc, diag::warn_deprecated_coroutine_namespace) 1888 << "coroutine_traits"; 1889 ResExp.suppressDiagnostics(); 1890 NamedDecl *Found = *ResExp.begin(); 1891 Diag(Found->getLocation(), diag::note_entity_declared_at) << Found; 1892 1893 if (InStd && 1894 StdCoroutineTraitsCache != ResExp.getAsSingle<ClassTemplateDecl>()) { 1895 // Also found something different in std 1896 Diag(KwLoc, 1897 diag::err_mixed_use_std_and_experimental_namespace_for_coroutine); 1898 Diag(StdCoroutineTraitsCache->getLocation(), 1899 diag::note_entity_declared_at) 1900 << StdCoroutineTraitsCache; 1901 1902 return nullptr; 1903 } 1904 } 1905 } 1906 Namespace = CoroTraitsNamespaceCache; 1907 return StdCoroutineTraitsCache; 1908 } 1909