//===-- SemaCoroutine.cpp - Semantic Analysis for Coroutines --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for C++ Coroutines. // // This file contains references to sections of the Coroutines TS, which // can be found at http://wg21.link/coroutines. // //===----------------------------------------------------------------------===// #include "CoroutineStmtBuilder.h" #include "clang/AST/ASTLambda.h" #include "clang/AST/Decl.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/StmtCXX.h" #include "clang/Basic/Builtins.h" #include "clang/Lex/Preprocessor.h" #include "clang/Sema/Initialization.h" #include "clang/Sema/Overload.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/SemaInternal.h" #include "llvm/ADT/SmallSet.h" using namespace clang; using namespace sema; static LookupResult lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD, SourceLocation Loc, bool &Res) { DeclarationName DN = S.PP.getIdentifierInfo(Name); LookupResult LR(S, DN, Loc, Sema::LookupMemberName); // Suppress diagnostics when a private member is selected. The same warnings // will be produced again when building the call. LR.suppressDiagnostics(); Res = S.LookupQualifiedName(LR, RD); return LR; } static bool lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD, SourceLocation Loc) { bool Res; lookupMember(S, Name, RD, Loc, Res); return Res; } /// Look up the std::coroutine_traits<...>::promise_type for the given /// function type. static QualType lookupPromiseType(Sema &S, const FunctionDecl *FD, SourceLocation KwLoc) { const FunctionProtoType *FnType = FD->getType()->castAs(); const SourceLocation FuncLoc = FD->getLocation(); NamespaceDecl *CoroNamespace = nullptr; ClassTemplateDecl *CoroTraits = S.lookupCoroutineTraits(KwLoc, FuncLoc, CoroNamespace); if (!CoroTraits) { return QualType(); } // Form template argument list for coroutine_traits according // to [dcl.fct.def.coroutine]3 TemplateArgumentListInfo Args(KwLoc, KwLoc); auto AddArg = [&](QualType T) { Args.addArgument(TemplateArgumentLoc( TemplateArgument(T), S.Context.getTrivialTypeSourceInfo(T, KwLoc))); }; AddArg(FnType->getReturnType()); // If the function is a non-static member function, add the type // of the implicit object parameter before the formal parameters. if (auto *MD = dyn_cast(FD)) { if (MD->isInstance()) { // [over.match.funcs]4 // For non-static member functions, the type of the implicit object // parameter is // -- "lvalue reference to cv X" for functions declared without a // ref-qualifier or with the & ref-qualifier // -- "rvalue reference to cv X" for functions declared with the && // ref-qualifier QualType T = MD->getThisType()->castAs()->getPointeeType(); T = FnType->getRefQualifier() == RQ_RValue ? S.Context.getRValueReferenceType(T) : S.Context.getLValueReferenceType(T, /*SpelledAsLValue*/ true); AddArg(T); } } for (QualType T : FnType->getParamTypes()) AddArg(T); // Build the template-id. QualType CoroTrait = S.CheckTemplateIdType(TemplateName(CoroTraits), KwLoc, Args); if (CoroTrait.isNull()) return QualType(); if (S.RequireCompleteType(KwLoc, CoroTrait, diag::err_coroutine_type_missing_specialization)) return QualType(); auto *RD = CoroTrait->getAsCXXRecordDecl(); assert(RD && "specialization of class template is not a class?"); // Look up the ::promise_type member. LookupResult R(S, &S.PP.getIdentifierTable().get("promise_type"), KwLoc, Sema::LookupOrdinaryName); S.LookupQualifiedName(R, RD); auto *Promise = R.getAsSingle(); if (!Promise) { S.Diag(FuncLoc, diag::err_implied_std_coroutine_traits_promise_type_not_found) << RD; return QualType(); } // The promise type is required to be a class type. QualType PromiseType = S.Context.getTypeDeclType(Promise); auto buildElaboratedType = [&]() { auto *NNS = NestedNameSpecifier::Create(S.Context, nullptr, CoroNamespace); NNS = NestedNameSpecifier::Create(S.Context, NNS, false, CoroTrait.getTypePtr()); return S.Context.getElaboratedType(ETK_None, NNS, PromiseType); }; if (!PromiseType->getAsCXXRecordDecl()) { S.Diag(FuncLoc, diag::err_implied_std_coroutine_traits_promise_type_not_class) << buildElaboratedType(); return QualType(); } if (S.RequireCompleteType(FuncLoc, buildElaboratedType(), diag::err_coroutine_promise_type_incomplete)) return QualType(); return PromiseType; } /// Look up the std::coroutine_handle. static QualType lookupCoroutineHandleType(Sema &S, QualType PromiseType, SourceLocation Loc) { if (PromiseType.isNull()) return QualType(); NamespaceDecl *CoroNamespace = S.getCachedCoroNamespace(); assert(CoroNamespace && "Should already be diagnosed"); LookupResult Result(S, &S.PP.getIdentifierTable().get("coroutine_handle"), Loc, Sema::LookupOrdinaryName); if (!S.LookupQualifiedName(Result, CoroNamespace)) { S.Diag(Loc, diag::err_implied_coroutine_type_not_found) << "std::coroutine_handle"; return QualType(); } ClassTemplateDecl *CoroHandle = Result.getAsSingle(); if (!CoroHandle) { Result.suppressDiagnostics(); // We found something weird. Complain about the first thing we found. NamedDecl *Found = *Result.begin(); S.Diag(Found->getLocation(), diag::err_malformed_std_coroutine_handle); return QualType(); } // Form template argument list for coroutine_handle. TemplateArgumentListInfo Args(Loc, Loc); Args.addArgument(TemplateArgumentLoc( TemplateArgument(PromiseType), S.Context.getTrivialTypeSourceInfo(PromiseType, Loc))); // Build the template-id. QualType CoroHandleType = S.CheckTemplateIdType(TemplateName(CoroHandle), Loc, Args); if (CoroHandleType.isNull()) return QualType(); if (S.RequireCompleteType(Loc, CoroHandleType, diag::err_coroutine_type_missing_specialization)) return QualType(); return CoroHandleType; } static bool isValidCoroutineContext(Sema &S, SourceLocation Loc, StringRef Keyword) { // [expr.await]p2 dictates that 'co_await' and 'co_yield' must be used within // a function body. // FIXME: This also covers [expr.await]p2: "An await-expression shall not // appear in a default argument." But the diagnostic QoI here could be // improved to inform the user that default arguments specifically are not // allowed. auto *FD = dyn_cast(S.CurContext); if (!FD) { S.Diag(Loc, isa(S.CurContext) ? diag::err_coroutine_objc_method : diag::err_coroutine_outside_function) << Keyword; return false; } // An enumeration for mapping the diagnostic type to the correct diagnostic // selection index. enum InvalidFuncDiag { DiagCtor = 0, DiagDtor, DiagMain, DiagConstexpr, DiagAutoRet, DiagVarargs, DiagConsteval, }; bool Diagnosed = false; auto DiagInvalid = [&](InvalidFuncDiag ID) { S.Diag(Loc, diag::err_coroutine_invalid_func_context) << ID << Keyword; Diagnosed = true; return false; }; // Diagnose when a constructor, destructor // or the function 'main' are declared as a coroutine. auto *MD = dyn_cast(FD); // [class.ctor]p11: "A constructor shall not be a coroutine." if (MD && isa(MD)) return DiagInvalid(DiagCtor); // [class.dtor]p17: "A destructor shall not be a coroutine." else if (MD && isa(MD)) return DiagInvalid(DiagDtor); // [basic.start.main]p3: "The function main shall not be a coroutine." else if (FD->isMain()) return DiagInvalid(DiagMain); // Emit a diagnostics for each of the following conditions which is not met. // [expr.const]p2: "An expression e is a core constant expression unless the // evaluation of e [...] would evaluate one of the following expressions: // [...] an await-expression [...] a yield-expression." if (FD->isConstexpr()) DiagInvalid(FD->isConsteval() ? DiagConsteval : DiagConstexpr); // [dcl.spec.auto]p15: "A function declared with a return type that uses a // placeholder type shall not be a coroutine." if (FD->getReturnType()->isUndeducedType()) DiagInvalid(DiagAutoRet); // [dcl.fct.def.coroutine]p1 // The parameter-declaration-clause of the coroutine shall not terminate with // an ellipsis that is not part of a parameter-declaration. if (FD->isVariadic()) DiagInvalid(DiagVarargs); return !Diagnosed; } /// Build a call to 'operator co_await' if there is a suitable operator for /// the given expression. ExprResult Sema::BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E, UnresolvedLookupExpr *Lookup) { UnresolvedSet<16> Functions; Functions.append(Lookup->decls_begin(), Lookup->decls_end()); return CreateOverloadedUnaryOp(Loc, UO_Coawait, Functions, E); } static ExprResult buildOperatorCoawaitCall(Sema &SemaRef, Scope *S, SourceLocation Loc, Expr *E) { ExprResult R = SemaRef.BuildOperatorCoawaitLookupExpr(S, Loc); if (R.isInvalid()) return ExprError(); return SemaRef.BuildOperatorCoawaitCall(Loc, E, cast(R.get())); } static ExprResult buildCoroutineHandle(Sema &S, QualType PromiseType, SourceLocation Loc) { QualType CoroHandleType = lookupCoroutineHandleType(S, PromiseType, Loc); if (CoroHandleType.isNull()) return ExprError(); DeclContext *LookupCtx = S.computeDeclContext(CoroHandleType); LookupResult Found(S, &S.PP.getIdentifierTable().get("from_address"), Loc, Sema::LookupOrdinaryName); if (!S.LookupQualifiedName(Found, LookupCtx)) { S.Diag(Loc, diag::err_coroutine_handle_missing_member) << "from_address"; return ExprError(); } Expr *FramePtr = S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {}); CXXScopeSpec SS; ExprResult FromAddr = S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false); if (FromAddr.isInvalid()) return ExprError(); return S.BuildCallExpr(nullptr, FromAddr.get(), Loc, FramePtr, Loc); } struct ReadySuspendResumeResult { enum AwaitCallType { ACT_Ready, ACT_Suspend, ACT_Resume }; Expr *Results[3]; OpaqueValueExpr *OpaqueValue; bool IsInvalid; }; static ExprResult buildMemberCall(Sema &S, Expr *Base, SourceLocation Loc, StringRef Name, MultiExprArg Args) { DeclarationNameInfo NameInfo(&S.PP.getIdentifierTable().get(Name), Loc); // FIXME: Fix BuildMemberReferenceExpr to take a const CXXScopeSpec&. CXXScopeSpec SS; ExprResult Result = S.BuildMemberReferenceExpr( Base, Base->getType(), Loc, /*IsPtr=*/false, SS, SourceLocation(), nullptr, NameInfo, /*TemplateArgs=*/nullptr, /*Scope=*/nullptr); if (Result.isInvalid()) return ExprError(); // We meant exactly what we asked for. No need for typo correction. if (auto *TE = dyn_cast(Result.get())) { S.clearDelayedTypo(TE); S.Diag(Loc, diag::err_no_member) << NameInfo.getName() << Base->getType()->getAsCXXRecordDecl() << Base->getSourceRange(); return ExprError(); } return S.BuildCallExpr(nullptr, Result.get(), Loc, Args, Loc, nullptr); } // See if return type is coroutine-handle and if so, invoke builtin coro-resume // on its address. This is to enable experimental support for coroutine-handle // returning await_suspend that results in a guaranteed tail call to the target // coroutine. static Expr *maybeTailCall(Sema &S, QualType RetType, Expr *E, SourceLocation Loc) { if (RetType->isReferenceType()) return nullptr; Type const *T = RetType.getTypePtr(); if (!T->isClassType() && !T->isStructureType()) return nullptr; // FIXME: Add convertability check to coroutine_handle<>. Possibly via // EvaluateBinaryTypeTrait(BTT_IsConvertible, ...) which is at the moment // a private function in SemaExprCXX.cpp ExprResult AddressExpr = buildMemberCall(S, E, Loc, "address", std::nullopt); if (AddressExpr.isInvalid()) return nullptr; Expr *JustAddress = AddressExpr.get(); // Check that the type of AddressExpr is void* if (!JustAddress->getType().getTypePtr()->isVoidPointerType()) S.Diag(cast(JustAddress)->getCalleeDecl()->getLocation(), diag::warn_coroutine_handle_address_invalid_return_type) << JustAddress->getType(); // Clean up temporary objects so that they don't live across suspension points // unnecessarily. We choose to clean up before the call to // __builtin_coro_resume so that the cleanup code are not inserted in-between // the resume call and return instruction, which would interfere with the // musttail call contract. JustAddress = S.MaybeCreateExprWithCleanups(JustAddress); return S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_resume, JustAddress); } /// Build calls to await_ready, await_suspend, and await_resume for a co_await /// expression. /// The generated AST tries to clean up temporary objects as early as /// possible so that they don't live across suspension points if possible. /// Having temporary objects living across suspension points unnecessarily can /// lead to large frame size, and also lead to memory corruptions if the /// coroutine frame is destroyed after coming back from suspension. This is done /// by wrapping both the await_ready call and the await_suspend call with /// ExprWithCleanups. In the end of this function, we also need to explicitly /// set cleanup state so that the CoawaitExpr is also wrapped with an /// ExprWithCleanups to clean up the awaiter associated with the co_await /// expression. static ReadySuspendResumeResult buildCoawaitCalls(Sema &S, VarDecl *CoroPromise, SourceLocation Loc, Expr *E) { OpaqueValueExpr *Operand = new (S.Context) OpaqueValueExpr(Loc, E->getType(), VK_LValue, E->getObjectKind(), E); // Assume valid until we see otherwise. // Further operations are responsible for setting IsInalid to true. ReadySuspendResumeResult Calls = {{}, Operand, /*IsInvalid=*/false}; using ACT = ReadySuspendResumeResult::AwaitCallType; auto BuildSubExpr = [&](ACT CallType, StringRef Func, MultiExprArg Arg) -> Expr * { ExprResult Result = buildMemberCall(S, Operand, Loc, Func, Arg); if (Result.isInvalid()) { Calls.IsInvalid = true; return nullptr; } Calls.Results[CallType] = Result.get(); return Result.get(); }; CallExpr *AwaitReady = cast_or_null( BuildSubExpr(ACT::ACT_Ready, "await_ready", std::nullopt)); if (!AwaitReady) return Calls; if (!AwaitReady->getType()->isDependentType()) { // [expr.await]p3 [...] // — await-ready is the expression e.await_ready(), contextually converted // to bool. ExprResult Conv = S.PerformContextuallyConvertToBool(AwaitReady); if (Conv.isInvalid()) { S.Diag(AwaitReady->getDirectCallee()->getBeginLoc(), diag::note_await_ready_no_bool_conversion); S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) << AwaitReady->getDirectCallee() << E->getSourceRange(); Calls.IsInvalid = true; } else Calls.Results[ACT::ACT_Ready] = S.MaybeCreateExprWithCleanups(Conv.get()); } ExprResult CoroHandleRes = buildCoroutineHandle(S, CoroPromise->getType(), Loc); if (CoroHandleRes.isInvalid()) { Calls.IsInvalid = true; return Calls; } Expr *CoroHandle = CoroHandleRes.get(); CallExpr *AwaitSuspend = cast_or_null( BuildSubExpr(ACT::ACT_Suspend, "await_suspend", CoroHandle)); if (!AwaitSuspend) return Calls; if (!AwaitSuspend->getType()->isDependentType()) { // [expr.await]p3 [...] // - await-suspend is the expression e.await_suspend(h), which shall be // a prvalue of type void, bool, or std::coroutine_handle for some // type Z. QualType RetType = AwaitSuspend->getCallReturnType(S.Context); // Experimental support for coroutine_handle returning await_suspend. if (Expr *TailCallSuspend = maybeTailCall(S, RetType, AwaitSuspend, Loc)) // Note that we don't wrap the expression with ExprWithCleanups here // because that might interfere with tailcall contract (e.g. inserting // clean up instructions in-between tailcall and return). Instead // ExprWithCleanups is wrapped within maybeTailCall() prior to the resume // call. Calls.Results[ACT::ACT_Suspend] = TailCallSuspend; else { // non-class prvalues always have cv-unqualified types if (RetType->isReferenceType() || (!RetType->isBooleanType() && !RetType->isVoidType())) { S.Diag(AwaitSuspend->getCalleeDecl()->getLocation(), diag::err_await_suspend_invalid_return_type) << RetType; S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) << AwaitSuspend->getDirectCallee(); Calls.IsInvalid = true; } else Calls.Results[ACT::ACT_Suspend] = S.MaybeCreateExprWithCleanups(AwaitSuspend); } } BuildSubExpr(ACT::ACT_Resume, "await_resume", std::nullopt); // Make sure the awaiter object gets a chance to be cleaned up. S.Cleanup.setExprNeedsCleanups(true); return Calls; } static ExprResult buildPromiseCall(Sema &S, VarDecl *Promise, SourceLocation Loc, StringRef Name, MultiExprArg Args) { // Form a reference to the promise. ExprResult PromiseRef = S.BuildDeclRefExpr( Promise, Promise->getType().getNonReferenceType(), VK_LValue, Loc); if (PromiseRef.isInvalid()) return ExprError(); return buildMemberCall(S, PromiseRef.get(), Loc, Name, Args); } VarDecl *Sema::buildCoroutinePromise(SourceLocation Loc) { assert(isa(CurContext) && "not in a function scope"); auto *FD = cast(CurContext); bool IsThisDependentType = [&] { if (auto *MD = dyn_cast_or_null(FD)) return MD->isInstance() && MD->getThisType()->isDependentType(); else return false; }(); QualType T = FD->getType()->isDependentType() || IsThisDependentType ? Context.DependentTy : lookupPromiseType(*this, FD, Loc); if (T.isNull()) return nullptr; auto *VD = VarDecl::Create(Context, FD, FD->getLocation(), FD->getLocation(), &PP.getIdentifierTable().get("__promise"), T, Context.getTrivialTypeSourceInfo(T, Loc), SC_None); VD->setImplicit(); CheckVariableDeclarationType(VD); if (VD->isInvalidDecl()) return nullptr; auto *ScopeInfo = getCurFunction(); // Build a list of arguments, based on the coroutine function's arguments, // that if present will be passed to the promise type's constructor. llvm::SmallVector CtorArgExprs; // Add implicit object parameter. if (auto *MD = dyn_cast(FD)) { if (MD->isInstance() && !isLambdaCallOperator(MD)) { ExprResult ThisExpr = ActOnCXXThis(Loc); if (ThisExpr.isInvalid()) return nullptr; ThisExpr = CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get()); if (ThisExpr.isInvalid()) return nullptr; CtorArgExprs.push_back(ThisExpr.get()); } } // Add the coroutine function's parameters. auto &Moves = ScopeInfo->CoroutineParameterMoves; for (auto *PD : FD->parameters()) { if (PD->getType()->isDependentType()) continue; auto RefExpr = ExprEmpty(); auto Move = Moves.find(PD); assert(Move != Moves.end() && "Coroutine function parameter not inserted into move map"); // If a reference to the function parameter exists in the coroutine // frame, use that reference. auto *MoveDecl = cast(cast(Move->second)->getSingleDecl()); RefExpr = BuildDeclRefExpr(MoveDecl, MoveDecl->getType().getNonReferenceType(), ExprValueKind::VK_LValue, FD->getLocation()); if (RefExpr.isInvalid()) return nullptr; CtorArgExprs.push_back(RefExpr.get()); } // If we have a non-zero number of constructor arguments, try to use them. // Otherwise, fall back to the promise type's default constructor. if (!CtorArgExprs.empty()) { // Create an initialization sequence for the promise type using the // constructor arguments, wrapped in a parenthesized list expression. Expr *PLE = ParenListExpr::Create(Context, FD->getLocation(), CtorArgExprs, FD->getLocation()); InitializedEntity Entity = InitializedEntity::InitializeVariable(VD); InitializationKind Kind = InitializationKind::CreateForInit( VD->getLocation(), /*DirectInit=*/true, PLE); InitializationSequence InitSeq(*this, Entity, Kind, CtorArgExprs, /*TopLevelOfInitList=*/false, /*TreatUnavailableAsInvalid=*/false); // [dcl.fct.def.coroutine]5.7 // promise-constructor-arguments is determined as follows: overload // resolution is performed on a promise constructor call created by // assembling an argument list q_1 ... q_n . If a viable constructor is // found ([over.match.viable]), then promise-constructor-arguments is ( q_1 // , ..., q_n ), otherwise promise-constructor-arguments is empty. if (InitSeq) { ExprResult Result = InitSeq.Perform(*this, Entity, Kind, CtorArgExprs); if (Result.isInvalid()) { VD->setInvalidDecl(); } else if (Result.get()) { VD->setInit(MaybeCreateExprWithCleanups(Result.get())); VD->setInitStyle(VarDecl::CallInit); CheckCompleteVariableDeclaration(VD); } } else ActOnUninitializedDecl(VD); } else ActOnUninitializedDecl(VD); FD->addDecl(VD); return VD; } /// Check that this is a context in which a coroutine suspension can appear. static FunctionScopeInfo *checkCoroutineContext(Sema &S, SourceLocation Loc, StringRef Keyword, bool IsImplicit = false) { if (!isValidCoroutineContext(S, Loc, Keyword)) return nullptr; assert(isa(S.CurContext) && "not in a function scope"); auto *ScopeInfo = S.getCurFunction(); assert(ScopeInfo && "missing function scope for function"); if (ScopeInfo->FirstCoroutineStmtLoc.isInvalid() && !IsImplicit) ScopeInfo->setFirstCoroutineStmt(Loc, Keyword); if (ScopeInfo->CoroutinePromise) return ScopeInfo; if (!S.buildCoroutineParameterMoves(Loc)) return nullptr; ScopeInfo->CoroutinePromise = S.buildCoroutinePromise(Loc); if (!ScopeInfo->CoroutinePromise) return nullptr; return ScopeInfo; } /// Recursively check \p E and all its children to see if any call target /// (including constructor call) is declared noexcept. Also any value returned /// from the call has a noexcept destructor. static void checkNoThrow(Sema &S, const Stmt *E, llvm::SmallPtrSetImpl &ThrowingDecls) { auto checkDeclNoexcept = [&](const Decl *D, bool IsDtor = false) { // In the case of dtor, the call to dtor is implicit and hence we should // pass nullptr to canCalleeThrow. if (Sema::canCalleeThrow(S, IsDtor ? nullptr : cast(E), D)) { if (const auto *FD = dyn_cast(D)) { // co_await promise.final_suspend() could end up calling // __builtin_coro_resume for symmetric transfer if await_suspend() // returns a handle. In that case, even __builtin_coro_resume is not // declared as noexcept and may throw, it does not throw _into_ the // coroutine that just suspended, but rather throws back out from // whoever called coroutine_handle::resume(), hence we claim that // logically it does not throw. if (FD->getBuiltinID() == Builtin::BI__builtin_coro_resume) return; } if (ThrowingDecls.empty()) { // [dcl.fct.def.coroutine]p15 // The expression co_await promise.final_suspend() shall not be // potentially-throwing ([except.spec]). // // First time seeing an error, emit the error message. S.Diag(cast(S.CurContext)->getLocation(), diag::err_coroutine_promise_final_suspend_requires_nothrow); } ThrowingDecls.insert(D); } }; if (auto *CE = dyn_cast(E)) { CXXConstructorDecl *Ctor = CE->getConstructor(); checkDeclNoexcept(Ctor); // Check the corresponding destructor of the constructor. checkDeclNoexcept(Ctor->getParent()->getDestructor(), /*IsDtor=*/true); } else if (auto *CE = dyn_cast(E)) { if (CE->isTypeDependent()) return; checkDeclNoexcept(CE->getCalleeDecl()); QualType ReturnType = CE->getCallReturnType(S.getASTContext()); // Check the destructor of the call return type, if any. if (ReturnType.isDestructedType() == QualType::DestructionKind::DK_cxx_destructor) { const auto *T = cast(ReturnType.getCanonicalType().getTypePtr()); checkDeclNoexcept(cast(T->getDecl())->getDestructor(), /*IsDtor=*/true); } } else for (const auto *Child : E->children()) { if (!Child) continue; checkNoThrow(S, Child, ThrowingDecls); } } bool Sema::checkFinalSuspendNoThrow(const Stmt *FinalSuspend) { llvm::SmallPtrSet ThrowingDecls; // We first collect all declarations that should not throw but not declared // with noexcept. We then sort them based on the location before printing. // This is to avoid emitting the same note multiple times on the same // declaration, and also provide a deterministic order for the messages. checkNoThrow(*this, FinalSuspend, ThrowingDecls); auto SortedDecls = llvm::SmallVector{ThrowingDecls.begin(), ThrowingDecls.end()}; sort(SortedDecls, [](const Decl *A, const Decl *B) { return A->getEndLoc() < B->getEndLoc(); }); for (const auto *D : SortedDecls) { Diag(D->getEndLoc(), diag::note_coroutine_function_declare_noexcept); } return ThrowingDecls.empty(); } bool Sema::ActOnCoroutineBodyStart(Scope *SC, SourceLocation KWLoc, StringRef Keyword) { if (!checkCoroutineContext(*this, KWLoc, Keyword)) return false; auto *ScopeInfo = getCurFunction(); assert(ScopeInfo->CoroutinePromise); // If we have existing coroutine statements then we have already built // the initial and final suspend points. if (!ScopeInfo->NeedsCoroutineSuspends) return true; ScopeInfo->setNeedsCoroutineSuspends(false); auto *Fn = cast(CurContext); SourceLocation Loc = Fn->getLocation(); // Build the initial suspend point auto buildSuspends = [&](StringRef Name) mutable -> StmtResult { ExprResult Operand = buildPromiseCall(*this, ScopeInfo->CoroutinePromise, Loc, Name, std::nullopt); if (Operand.isInvalid()) return StmtError(); ExprResult Suspend = buildOperatorCoawaitCall(*this, SC, Loc, Operand.get()); if (Suspend.isInvalid()) return StmtError(); Suspend = BuildResolvedCoawaitExpr(Loc, Operand.get(), Suspend.get(), /*IsImplicit*/ true); Suspend = ActOnFinishFullExpr(Suspend.get(), /*DiscardedValue*/ false); if (Suspend.isInvalid()) { Diag(Loc, diag::note_coroutine_promise_suspend_implicitly_required) << ((Name == "initial_suspend") ? 0 : 1); Diag(KWLoc, diag::note_declared_coroutine_here) << Keyword; return StmtError(); } return cast(Suspend.get()); }; StmtResult InitSuspend = buildSuspends("initial_suspend"); if (InitSuspend.isInvalid()) return true; StmtResult FinalSuspend = buildSuspends("final_suspend"); if (FinalSuspend.isInvalid() || !checkFinalSuspendNoThrow(FinalSuspend.get())) return true; ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get()); return true; } // Recursively walks up the scope hierarchy until either a 'catch' or a function // scope is found, whichever comes first. static bool isWithinCatchScope(Scope *S) { // 'co_await' and 'co_yield' keywords are disallowed within catch blocks, but // lambdas that use 'co_await' are allowed. The loop below ends when a // function scope is found in order to ensure the following behavior: // // void foo() { // <- function scope // try { // // co_await x; // <- 'co_await' is OK within a function scope // } catch { // <- catch scope // co_await x; // <- 'co_await' is not OK within a catch scope // []() { // <- function scope // co_await x; // <- 'co_await' is OK within a function scope // }(); // } // } while (S && !S->isFunctionScope()) { if (S->isCatchScope()) return true; S = S->getParent(); } return false; } // [expr.await]p2, emphasis added: "An await-expression shall appear only in // a *potentially evaluated* expression within the compound-statement of a // function-body *outside of a handler* [...] A context within a function // where an await-expression can appear is called a suspension context of the // function." static bool checkSuspensionContext(Sema &S, SourceLocation Loc, StringRef Keyword) { // First emphasis of [expr.await]p2: must be a potentially evaluated context. // That is, 'co_await' and 'co_yield' cannot appear in subexpressions of // \c sizeof. if (S.isUnevaluatedContext()) { S.Diag(Loc, diag::err_coroutine_unevaluated_context) << Keyword; return false; } // Second emphasis of [expr.await]p2: must be outside of an exception handler. if (isWithinCatchScope(S.getCurScope())) { S.Diag(Loc, diag::err_coroutine_within_handler) << Keyword; return false; } return true; } ExprResult Sema::ActOnCoawaitExpr(Scope *S, SourceLocation Loc, Expr *E) { if (!checkSuspensionContext(*this, Loc, "co_await")) return ExprError(); if (!ActOnCoroutineBodyStart(S, Loc, "co_await")) { CorrectDelayedTyposInExpr(E); return ExprError(); } if (E->hasPlaceholderType()) { ExprResult R = CheckPlaceholderExpr(E); if (R.isInvalid()) return ExprError(); E = R.get(); } ExprResult Lookup = BuildOperatorCoawaitLookupExpr(S, Loc); if (Lookup.isInvalid()) return ExprError(); return BuildUnresolvedCoawaitExpr(Loc, E, cast(Lookup.get())); } ExprResult Sema::BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc) { DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Coawait); LookupResult Operators(*this, OpName, SourceLocation(), Sema::LookupOperatorName); LookupName(Operators, S); assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); const auto &Functions = Operators.asUnresolvedSet(); bool IsOverloaded = Functions.size() > 1 || (Functions.size() == 1 && isa(*Functions.begin())); Expr *CoawaitOp = UnresolvedLookupExpr::Create( Context, /*NamingClass*/ nullptr, NestedNameSpecifierLoc(), DeclarationNameInfo(OpName, Loc), /*RequiresADL*/ true, IsOverloaded, Functions.begin(), Functions.end()); assert(CoawaitOp); return CoawaitOp; } // Attempts to resolve and build a CoawaitExpr from "raw" inputs, bailing out to // DependentCoawaitExpr if needed. ExprResult Sema::BuildUnresolvedCoawaitExpr(SourceLocation Loc, Expr *Operand, UnresolvedLookupExpr *Lookup) { auto *FSI = checkCoroutineContext(*this, Loc, "co_await"); if (!FSI) return ExprError(); if (Operand->hasPlaceholderType()) { ExprResult R = CheckPlaceholderExpr(Operand); if (R.isInvalid()) return ExprError(); Operand = R.get(); } auto *Promise = FSI->CoroutinePromise; if (Promise->getType()->isDependentType()) { Expr *Res = new (Context) DependentCoawaitExpr(Loc, Context.DependentTy, Operand, Lookup); return Res; } auto *RD = Promise->getType()->getAsCXXRecordDecl(); auto *Transformed = Operand; if (lookupMember(*this, "await_transform", RD, Loc)) { ExprResult R = buildPromiseCall(*this, Promise, Loc, "await_transform", Operand); if (R.isInvalid()) { Diag(Loc, diag::note_coroutine_promise_implicit_await_transform_required_here) << Operand->getSourceRange(); return ExprError(); } Transformed = R.get(); } ExprResult Awaiter = BuildOperatorCoawaitCall(Loc, Transformed, Lookup); if (Awaiter.isInvalid()) return ExprError(); return BuildResolvedCoawaitExpr(Loc, Operand, Awaiter.get()); } ExprResult Sema::BuildResolvedCoawaitExpr(SourceLocation Loc, Expr *Operand, Expr *Awaiter, bool IsImplicit) { auto *Coroutine = checkCoroutineContext(*this, Loc, "co_await", IsImplicit); if (!Coroutine) return ExprError(); if (Awaiter->hasPlaceholderType()) { ExprResult R = CheckPlaceholderExpr(Awaiter); if (R.isInvalid()) return ExprError(); Awaiter = R.get(); } if (Awaiter->getType()->isDependentType()) { Expr *Res = new (Context) CoawaitExpr(Loc, Context.DependentTy, Operand, Awaiter, IsImplicit); return Res; } // If the expression is a temporary, materialize it as an lvalue so that we // can use it multiple times. if (Awaiter->isPRValue()) Awaiter = CreateMaterializeTemporaryExpr(Awaiter->getType(), Awaiter, true); // The location of the `co_await` token cannot be used when constructing // the member call expressions since it's before the location of `Expr`, which // is used as the start of the member call expression. SourceLocation CallLoc = Awaiter->getExprLoc(); // Build the await_ready, await_suspend, await_resume calls. ReadySuspendResumeResult RSS = buildCoawaitCalls(*this, Coroutine->CoroutinePromise, CallLoc, Awaiter); if (RSS.IsInvalid) return ExprError(); Expr *Res = new (Context) CoawaitExpr(Loc, Operand, Awaiter, RSS.Results[0], RSS.Results[1], RSS.Results[2], RSS.OpaqueValue, IsImplicit); return Res; } ExprResult Sema::ActOnCoyieldExpr(Scope *S, SourceLocation Loc, Expr *E) { if (!checkSuspensionContext(*this, Loc, "co_yield")) return ExprError(); if (!ActOnCoroutineBodyStart(S, Loc, "co_yield")) { CorrectDelayedTyposInExpr(E); return ExprError(); } // Build yield_value call. ExprResult Awaitable = buildPromiseCall( *this, getCurFunction()->CoroutinePromise, Loc, "yield_value", E); if (Awaitable.isInvalid()) return ExprError(); // Build 'operator co_await' call. Awaitable = buildOperatorCoawaitCall(*this, S, Loc, Awaitable.get()); if (Awaitable.isInvalid()) return ExprError(); return BuildCoyieldExpr(Loc, Awaitable.get()); } ExprResult Sema::BuildCoyieldExpr(SourceLocation Loc, Expr *E) { auto *Coroutine = checkCoroutineContext(*this, Loc, "co_yield"); if (!Coroutine) return ExprError(); if (E->hasPlaceholderType()) { ExprResult R = CheckPlaceholderExpr(E); if (R.isInvalid()) return ExprError(); E = R.get(); } Expr *Operand = E; if (E->getType()->isDependentType()) { Expr *Res = new (Context) CoyieldExpr(Loc, Context.DependentTy, Operand, E); return Res; } // If the expression is a temporary, materialize it as an lvalue so that we // can use it multiple times. if (E->isPRValue()) E = CreateMaterializeTemporaryExpr(E->getType(), E, true); // Build the await_ready, await_suspend, await_resume calls. ReadySuspendResumeResult RSS = buildCoawaitCalls( *this, Coroutine->CoroutinePromise, Loc, E); if (RSS.IsInvalid) return ExprError(); Expr *Res = new (Context) CoyieldExpr(Loc, Operand, E, RSS.Results[0], RSS.Results[1], RSS.Results[2], RSS.OpaqueValue); return Res; } StmtResult Sema::ActOnCoreturnStmt(Scope *S, SourceLocation Loc, Expr *E) { if (!ActOnCoroutineBodyStart(S, Loc, "co_return")) { CorrectDelayedTyposInExpr(E); return StmtError(); } return BuildCoreturnStmt(Loc, E); } StmtResult Sema::BuildCoreturnStmt(SourceLocation Loc, Expr *E, bool IsImplicit) { auto *FSI = checkCoroutineContext(*this, Loc, "co_return", IsImplicit); if (!FSI) return StmtError(); if (E && E->hasPlaceholderType() && !E->hasPlaceholderType(BuiltinType::Overload)) { ExprResult R = CheckPlaceholderExpr(E); if (R.isInvalid()) return StmtError(); E = R.get(); } VarDecl *Promise = FSI->CoroutinePromise; ExprResult PC; if (E && (isa(E) || !E->getType()->isVoidType())) { getNamedReturnInfo(E, SimplerImplicitMoveMode::ForceOn); PC = buildPromiseCall(*this, Promise, Loc, "return_value", E); } else { E = MakeFullDiscardedValueExpr(E).get(); PC = buildPromiseCall(*this, Promise, Loc, "return_void", std::nullopt); } if (PC.isInvalid()) return StmtError(); Expr *PCE = ActOnFinishFullExpr(PC.get(), /*DiscardedValue*/ false).get(); Stmt *Res = new (Context) CoreturnStmt(Loc, E, PCE, IsImplicit); return Res; } /// Look up the std::nothrow object. static Expr *buildStdNoThrowDeclRef(Sema &S, SourceLocation Loc) { NamespaceDecl *Std = S.getStdNamespace(); assert(Std && "Should already be diagnosed"); LookupResult Result(S, &S.PP.getIdentifierTable().get("nothrow"), Loc, Sema::LookupOrdinaryName); if (!S.LookupQualifiedName(Result, Std)) { // is not requred to include , so we couldn't omit // the check here. S.Diag(Loc, diag::err_implicit_coroutine_std_nothrow_type_not_found); return nullptr; } auto *VD = Result.getAsSingle(); if (!VD) { Result.suppressDiagnostics(); // We found something weird. Complain about the first thing we found. NamedDecl *Found = *Result.begin(); S.Diag(Found->getLocation(), diag::err_malformed_std_nothrow); return nullptr; } ExprResult DR = S.BuildDeclRefExpr(VD, VD->getType(), VK_LValue, Loc); if (DR.isInvalid()) return nullptr; return DR.get(); } static TypeSourceInfo *getTypeSourceInfoForStdAlignValT(Sema &S, SourceLocation Loc) { EnumDecl *StdAlignValT = S.getStdAlignValT(); QualType StdAlignValDecl = S.Context.getTypeDeclType(StdAlignValT); return S.Context.getTrivialTypeSourceInfo(StdAlignValDecl); } // Find an appropriate delete for the promise. static bool findDeleteForPromise(Sema &S, SourceLocation Loc, QualType PromiseType, FunctionDecl *&OperatorDelete) { DeclarationName DeleteName = S.Context.DeclarationNames.getCXXOperatorName(OO_Delete); auto *PointeeRD = PromiseType->getAsCXXRecordDecl(); assert(PointeeRD && "PromiseType must be a CxxRecordDecl type"); const bool Overaligned = S.getLangOpts().CoroAlignedAllocation; // [dcl.fct.def.coroutine]p12 // The deallocation function's name is looked up by searching for it in the // scope of the promise type. If nothing is found, a search is performed in // the global scope. if (S.FindDeallocationFunction(Loc, PointeeRD, DeleteName, OperatorDelete, /*Diagnose*/ true, /*WantSize*/ true, /*WantAligned*/ Overaligned)) return false; // [dcl.fct.def.coroutine]p12 // If both a usual deallocation function with only a pointer parameter and a // usual deallocation function with both a pointer parameter and a size // parameter are found, then the selected deallocation function shall be the // one with two parameters. Otherwise, the selected deallocation function // shall be the function with one parameter. if (!OperatorDelete) { // Look for a global declaration. // Coroutines can always provide their required size. const bool CanProvideSize = true; // Sema::FindUsualDeallocationFunction will try to find the one with two // parameters first. It will return the deallocation function with one // parameter if failed. OperatorDelete = S.FindUsualDeallocationFunction(Loc, CanProvideSize, Overaligned, DeleteName); if (!OperatorDelete) return false; } S.MarkFunctionReferenced(Loc, OperatorDelete); return true; } void Sema::CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body) { FunctionScopeInfo *Fn = getCurFunction(); assert(Fn && Fn->isCoroutine() && "not a coroutine"); if (!Body) { assert(FD->isInvalidDecl() && "a null body is only allowed for invalid declarations"); return; } // We have a function that uses coroutine keywords, but we failed to build // the promise type. if (!Fn->CoroutinePromise) return FD->setInvalidDecl(); if (isa(Body)) { // Nothing todo. the body is already a transformed coroutine body statement. return; } // The always_inline attribute doesn't reliably apply to a coroutine, // because the coroutine will be split into pieces and some pieces // might be called indirectly, as in a virtual call. Even the ramp // function cannot be inlined at -O0, due to pipeline ordering // problems (see https://llvm.org/PR53413). Tell the user about it. if (FD->hasAttr()) Diag(FD->getLocation(), diag::warn_always_inline_coroutine); // [stmt.return.coroutine]p1: // A coroutine shall not enclose a return statement ([stmt.return]). if (Fn->FirstReturnLoc.isValid()) { assert(Fn->FirstCoroutineStmtLoc.isValid() && "first coroutine location not set"); Diag(Fn->FirstReturnLoc, diag::err_return_in_coroutine); Diag(Fn->FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) << Fn->getFirstCoroutineStmtKeyword(); } // Coroutines will get splitted into pieces. The GNU address of label // extension wouldn't be meaningful in coroutines. for (AddrLabelExpr *ALE : Fn->AddrLabels) Diag(ALE->getBeginLoc(), diag::err_coro_invalid_addr_of_label); CoroutineStmtBuilder Builder(*this, *FD, *Fn, Body); if (Builder.isInvalid() || !Builder.buildStatements()) return FD->setInvalidDecl(); // Build body for the coroutine wrapper statement. Body = CoroutineBodyStmt::Create(Context, Builder); } CoroutineStmtBuilder::CoroutineStmtBuilder(Sema &S, FunctionDecl &FD, sema::FunctionScopeInfo &Fn, Stmt *Body) : S(S), FD(FD), Fn(Fn), Loc(FD.getLocation()), IsPromiseDependentType( !Fn.CoroutinePromise || Fn.CoroutinePromise->getType()->isDependentType()) { this->Body = Body; for (auto KV : Fn.CoroutineParameterMoves) this->ParamMovesVector.push_back(KV.second); this->ParamMoves = this->ParamMovesVector; if (!IsPromiseDependentType) { PromiseRecordDecl = Fn.CoroutinePromise->getType()->getAsCXXRecordDecl(); assert(PromiseRecordDecl && "Type should have already been checked"); } this->IsValid = makePromiseStmt() && makeInitialAndFinalSuspend(); } bool CoroutineStmtBuilder::buildStatements() { assert(this->IsValid && "coroutine already invalid"); this->IsValid = makeReturnObject(); if (this->IsValid && !IsPromiseDependentType) buildDependentStatements(); return this->IsValid; } bool CoroutineStmtBuilder::buildDependentStatements() { assert(this->IsValid && "coroutine already invalid"); assert(!this->IsPromiseDependentType && "coroutine cannot have a dependent promise type"); this->IsValid = makeOnException() && makeOnFallthrough() && makeGroDeclAndReturnStmt() && makeReturnOnAllocFailure() && makeNewAndDeleteExpr(); return this->IsValid; } bool CoroutineStmtBuilder::makePromiseStmt() { // Form a declaration statement for the promise declaration, so that AST // visitors can more easily find it. StmtResult PromiseStmt = S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(Fn.CoroutinePromise), Loc, Loc); if (PromiseStmt.isInvalid()) return false; this->Promise = PromiseStmt.get(); return true; } bool CoroutineStmtBuilder::makeInitialAndFinalSuspend() { if (Fn.hasInvalidCoroutineSuspends()) return false; this->InitialSuspend = cast(Fn.CoroutineSuspends.first); this->FinalSuspend = cast(Fn.CoroutineSuspends.second); return true; } static bool diagReturnOnAllocFailure(Sema &S, Expr *E, CXXRecordDecl *PromiseRecordDecl, FunctionScopeInfo &Fn) { auto Loc = E->getExprLoc(); if (auto *DeclRef = dyn_cast_or_null(E)) { auto *Decl = DeclRef->getDecl(); if (CXXMethodDecl *Method = dyn_cast_or_null(Decl)) { if (Method->isStatic()) return true; else Loc = Decl->getLocation(); } } S.Diag( Loc, diag::err_coroutine_promise_get_return_object_on_allocation_failure) << PromiseRecordDecl; S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) << Fn.getFirstCoroutineStmtKeyword(); return false; } bool CoroutineStmtBuilder::makeReturnOnAllocFailure() { assert(!IsPromiseDependentType && "cannot make statement while the promise type is dependent"); // [dcl.fct.def.coroutine]p10 // If a search for the name get_return_object_on_allocation_failure in // the scope of the promise type ([class.member.lookup]) finds any // declarations, then the result of a call to an allocation function used to // obtain storage for the coroutine state is assumed to return nullptr if it // fails to obtain storage, ... If the allocation function returns nullptr, // ... and the return value is obtained by a call to // T::get_return_object_on_allocation_failure(), where T is the // promise type. DeclarationName DN = S.PP.getIdentifierInfo("get_return_object_on_allocation_failure"); LookupResult Found(S, DN, Loc, Sema::LookupMemberName); if (!S.LookupQualifiedName(Found, PromiseRecordDecl)) return true; CXXScopeSpec SS; ExprResult DeclNameExpr = S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false); if (DeclNameExpr.isInvalid()) return false; if (!diagReturnOnAllocFailure(S, DeclNameExpr.get(), PromiseRecordDecl, Fn)) return false; ExprResult ReturnObjectOnAllocationFailure = S.BuildCallExpr(nullptr, DeclNameExpr.get(), Loc, {}, Loc); if (ReturnObjectOnAllocationFailure.isInvalid()) return false; StmtResult ReturnStmt = S.BuildReturnStmt(Loc, ReturnObjectOnAllocationFailure.get()); if (ReturnStmt.isInvalid()) { S.Diag(Found.getFoundDecl()->getLocation(), diag::note_member_declared_here) << DN; S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) << Fn.getFirstCoroutineStmtKeyword(); return false; } this->ReturnStmtOnAllocFailure = ReturnStmt.get(); return true; } // Collect placement arguments for allocation function of coroutine FD. // Return true if we collect placement arguments succesfully. Return false, // otherwise. static bool collectPlacementArgs(Sema &S, FunctionDecl &FD, SourceLocation Loc, SmallVectorImpl &PlacementArgs) { if (auto *MD = dyn_cast(&FD)) { if (MD->isInstance() && !isLambdaCallOperator(MD)) { ExprResult ThisExpr = S.ActOnCXXThis(Loc); if (ThisExpr.isInvalid()) return false; ThisExpr = S.CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get()); if (ThisExpr.isInvalid()) return false; PlacementArgs.push_back(ThisExpr.get()); } } for (auto *PD : FD.parameters()) { if (PD->getType()->isDependentType()) continue; // Build a reference to the parameter. auto PDLoc = PD->getLocation(); ExprResult PDRefExpr = S.BuildDeclRefExpr(PD, PD->getOriginalType().getNonReferenceType(), ExprValueKind::VK_LValue, PDLoc); if (PDRefExpr.isInvalid()) return false; PlacementArgs.push_back(PDRefExpr.get()); } return true; } bool CoroutineStmtBuilder::makeNewAndDeleteExpr() { // Form and check allocation and deallocation calls. assert(!IsPromiseDependentType && "cannot make statement while the promise type is dependent"); QualType PromiseType = Fn.CoroutinePromise->getType(); if (S.RequireCompleteType(Loc, PromiseType, diag::err_incomplete_type)) return false; const bool RequiresNoThrowAlloc = ReturnStmtOnAllocFailure != nullptr; // According to [dcl.fct.def.coroutine]p9, Lookup allocation functions using a // parameter list composed of the requested size of the coroutine state being // allocated, followed by the coroutine function's arguments. If a matching // allocation function exists, use it. Otherwise, use an allocation function // that just takes the requested size. // // [dcl.fct.def.coroutine]p9 // An implementation may need to allocate additional storage for a // coroutine. // This storage is known as the coroutine state and is obtained by calling a // non-array allocation function ([basic.stc.dynamic.allocation]). The // allocation function's name is looked up by searching for it in the scope of // the promise type. // - If any declarations are found, overload resolution is performed on a // function call created by assembling an argument list. The first argument is // the amount of space requested, and has type std::size_t. The // lvalues p1 ... pn are the succeeding arguments. // // ...where "p1 ... pn" are defined earlier as: // // [dcl.fct.def.coroutine]p3 // The promise type of a coroutine is `std::coroutine_traits` // , where R is the return type of the function, and `P1, ..., Pn` are the // sequence of types of the non-object function parameters, preceded by the // type of the object parameter ([dcl.fct]) if the coroutine is a non-static // member function. [dcl.fct.def.coroutine]p4 In the following, p_i is an // lvalue of type P_i, where p1 denotes the object parameter and p_i+1 denotes // the i-th non-object function parameter for a non-static member function, // and p_i denotes the i-th function parameter otherwise. For a non-static // member function, q_1 is an lvalue that denotes *this; any other q_i is an // lvalue that denotes the parameter copy corresponding to p_i. FunctionDecl *OperatorNew = nullptr; SmallVector PlacementArgs; const bool PromiseContainsNew = [this, &PromiseType]() -> bool { DeclarationName NewName = S.getASTContext().DeclarationNames.getCXXOperatorName(OO_New); LookupResult R(S, NewName, Loc, Sema::LookupOrdinaryName); if (PromiseType->isRecordType()) S.LookupQualifiedName(R, PromiseType->getAsCXXRecordDecl()); return !R.empty() && !R.isAmbiguous(); }(); // Helper function to indicate whether the last lookup found the aligned // allocation function. bool PassAlignment = S.getLangOpts().CoroAlignedAllocation; auto LookupAllocationFunction = [&](Sema::AllocationFunctionScope NewScope = Sema::AFS_Both, bool WithoutPlacementArgs = false, bool ForceNonAligned = false) { // [dcl.fct.def.coroutine]p9 // The allocation function's name is looked up by searching for it in the // scope of the promise type. // - If any declarations are found, ... // - If no declarations are found in the scope of the promise type, a search // is performed in the global scope. if (NewScope == Sema::AFS_Both) NewScope = PromiseContainsNew ? Sema::AFS_Class : Sema::AFS_Global; PassAlignment = !ForceNonAligned && S.getLangOpts().CoroAlignedAllocation; FunctionDecl *UnusedResult = nullptr; S.FindAllocationFunctions(Loc, SourceRange(), NewScope, /*DeleteScope*/ Sema::AFS_Both, PromiseType, /*isArray*/ false, PassAlignment, WithoutPlacementArgs ? MultiExprArg{} : PlacementArgs, OperatorNew, UnusedResult, /*Diagnose*/ false); }; // We don't expect to call to global operator new with (size, p0, …, pn). // So if we choose to lookup the allocation function in global scope, we // shouldn't lookup placement arguments. if (PromiseContainsNew && !collectPlacementArgs(S, FD, Loc, PlacementArgs)) return false; LookupAllocationFunction(); if (PromiseContainsNew && !PlacementArgs.empty()) { // [dcl.fct.def.coroutine]p9 // If no viable function is found ([over.match.viable]), overload // resolution // is performed again on a function call created by passing just the amount // of space required as an argument of type std::size_t. // // Proposed Change of [dcl.fct.def.coroutine]p9 in P2014R0: // Otherwise, overload resolution is performed again on a function call // created // by passing the amount of space requested as an argument of type // std::size_t as the first argument, and the requested alignment as // an argument of type std:align_val_t as the second argument. if (!OperatorNew || (S.getLangOpts().CoroAlignedAllocation && !PassAlignment)) LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, /*WithoutPlacementArgs*/ true); } // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0: // Otherwise, overload resolution is performed again on a function call // created // by passing the amount of space requested as an argument of type // std::size_t as the first argument, and the lvalues p1 ... pn as the // succeeding arguments. Otherwise, overload resolution is performed again // on a function call created by passing just the amount of space required as // an argument of type std::size_t. // // So within the proposed change in P2014RO, the priority order of aligned // allocation functions wiht promise_type is: // // void* operator new( std::size_t, std::align_val_t, placement_args... ); // void* operator new( std::size_t, std::align_val_t); // void* operator new( std::size_t, placement_args... ); // void* operator new( std::size_t); // Helper variable to emit warnings. bool FoundNonAlignedInPromise = false; if (PromiseContainsNew && S.getLangOpts().CoroAlignedAllocation) if (!OperatorNew || !PassAlignment) { FoundNonAlignedInPromise = OperatorNew; LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, /*WithoutPlacementArgs*/ false, /*ForceNonAligned*/ true); if (!OperatorNew && !PlacementArgs.empty()) LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, /*WithoutPlacementArgs*/ true, /*ForceNonAligned*/ true); } bool IsGlobalOverload = OperatorNew && !isa(OperatorNew->getDeclContext()); // If we didn't find a class-local new declaration and non-throwing new // was is required then we need to lookup the non-throwing global operator // instead. if (RequiresNoThrowAlloc && (!OperatorNew || IsGlobalOverload)) { auto *StdNoThrow = buildStdNoThrowDeclRef(S, Loc); if (!StdNoThrow) return false; PlacementArgs = {StdNoThrow}; OperatorNew = nullptr; LookupAllocationFunction(Sema::AFS_Global); } // If we found a non-aligned allocation function in the promise_type, // it indicates the user forgot to update the allocation function. Let's emit // a warning here. if (FoundNonAlignedInPromise) { S.Diag(OperatorNew->getLocation(), diag::warn_non_aligned_allocation_function) << &FD; } if (!OperatorNew) { if (PromiseContainsNew) S.Diag(Loc, diag::err_coroutine_unusable_new) << PromiseType << &FD; else if (RequiresNoThrowAlloc) S.Diag(Loc, diag::err_coroutine_unfound_nothrow_new) << &FD << S.getLangOpts().CoroAlignedAllocation; return false; } if (RequiresNoThrowAlloc) { const auto *FT = OperatorNew->getType()->castAs(); if (!FT->isNothrow(/*ResultIfDependent*/ false)) { S.Diag(OperatorNew->getLocation(), diag::err_coroutine_promise_new_requires_nothrow) << OperatorNew; S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) << OperatorNew; return false; } } FunctionDecl *OperatorDelete = nullptr; if (!findDeleteForPromise(S, Loc, PromiseType, OperatorDelete)) { // FIXME: We should add an error here. According to: // [dcl.fct.def.coroutine]p12 // If no usual deallocation function is found, the program is ill-formed. return false; } Expr *FramePtr = S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {}); Expr *FrameSize = S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_size, {}); Expr *FrameAlignment = nullptr; if (S.getLangOpts().CoroAlignedAllocation) { FrameAlignment = S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_align, {}); TypeSourceInfo *AlignValTy = getTypeSourceInfoForStdAlignValT(S, Loc); if (!AlignValTy) return false; FrameAlignment = S.BuildCXXNamedCast(Loc, tok::kw_static_cast, AlignValTy, FrameAlignment, SourceRange(Loc, Loc), SourceRange(Loc, Loc)) .get(); } // Make new call. ExprResult NewRef = S.BuildDeclRefExpr(OperatorNew, OperatorNew->getType(), VK_LValue, Loc); if (NewRef.isInvalid()) return false; SmallVector NewArgs(1, FrameSize); if (S.getLangOpts().CoroAlignedAllocation && PassAlignment) NewArgs.push_back(FrameAlignment); if (OperatorNew->getNumParams() > NewArgs.size()) llvm::append_range(NewArgs, PlacementArgs); ExprResult NewExpr = S.BuildCallExpr(S.getCurScope(), NewRef.get(), Loc, NewArgs, Loc); NewExpr = S.ActOnFinishFullExpr(NewExpr.get(), /*DiscardedValue*/ false); if (NewExpr.isInvalid()) return false; // Make delete call. QualType OpDeleteQualType = OperatorDelete->getType(); ExprResult DeleteRef = S.BuildDeclRefExpr(OperatorDelete, OpDeleteQualType, VK_LValue, Loc); if (DeleteRef.isInvalid()) return false; Expr *CoroFree = S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_free, {FramePtr}); SmallVector DeleteArgs{CoroFree}; // [dcl.fct.def.coroutine]p12 // The selected deallocation function shall be called with the address of // the block of storage to be reclaimed as its first argument. If a // deallocation function with a parameter of type std::size_t is // used, the size of the block is passed as the corresponding argument. const auto *OpDeleteType = OpDeleteQualType.getTypePtr()->castAs(); if (OpDeleteType->getNumParams() > DeleteArgs.size() && S.getASTContext().hasSameUnqualifiedType( OpDeleteType->getParamType(DeleteArgs.size()), FrameSize->getType())) DeleteArgs.push_back(FrameSize); // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0: // If deallocation function lookup finds a usual deallocation function with // a pointer parameter, size parameter and alignment parameter then this // will be the selected deallocation function, otherwise if lookup finds a // usual deallocation function with both a pointer parameter and a size // parameter, then this will be the selected deallocation function. // Otherwise, if lookup finds a usual deallocation function with only a // pointer parameter, then this will be the selected deallocation // function. // // So we are not forced to pass alignment to the deallocation function. if (S.getLangOpts().CoroAlignedAllocation && OpDeleteType->getNumParams() > DeleteArgs.size() && S.getASTContext().hasSameUnqualifiedType( OpDeleteType->getParamType(DeleteArgs.size()), FrameAlignment->getType())) DeleteArgs.push_back(FrameAlignment); ExprResult DeleteExpr = S.BuildCallExpr(S.getCurScope(), DeleteRef.get(), Loc, DeleteArgs, Loc); DeleteExpr = S.ActOnFinishFullExpr(DeleteExpr.get(), /*DiscardedValue*/ false); if (DeleteExpr.isInvalid()) return false; this->Allocate = NewExpr.get(); this->Deallocate = DeleteExpr.get(); return true; } bool CoroutineStmtBuilder::makeOnFallthrough() { assert(!IsPromiseDependentType && "cannot make statement while the promise type is dependent"); // [dcl.fct.def.coroutine]/p6 // If searches for the names return_void and return_value in the scope of // the promise type each find any declarations, the program is ill-formed. // [Note 1: If return_void is found, flowing off the end of a coroutine is // equivalent to a co_return with no operand. Otherwise, flowing off the end // of a coroutine results in undefined behavior ([stmt.return.coroutine]). — // end note] bool HasRVoid, HasRValue; LookupResult LRVoid = lookupMember(S, "return_void", PromiseRecordDecl, Loc, HasRVoid); LookupResult LRValue = lookupMember(S, "return_value", PromiseRecordDecl, Loc, HasRValue); StmtResult Fallthrough; if (HasRVoid && HasRValue) { // FIXME Improve this diagnostic S.Diag(FD.getLocation(), diag::err_coroutine_promise_incompatible_return_functions) << PromiseRecordDecl; S.Diag(LRVoid.getRepresentativeDecl()->getLocation(), diag::note_member_first_declared_here) << LRVoid.getLookupName(); S.Diag(LRValue.getRepresentativeDecl()->getLocation(), diag::note_member_first_declared_here) << LRValue.getLookupName(); return false; } else if (!HasRVoid && !HasRValue) { // We need to set 'Fallthrough'. Otherwise the other analysis part might // think the coroutine has defined a return_value method. So it might emit // **false** positive warning. e.g., // // promise_without_return_func foo() { // co_await something(); // } // // Then AnalysisBasedWarning would emit a warning about `foo()` lacking a // co_return statements, which isn't correct. Fallthrough = S.ActOnNullStmt(PromiseRecordDecl->getLocation()); if (Fallthrough.isInvalid()) return false; } else if (HasRVoid) { Fallthrough = S.BuildCoreturnStmt(FD.getLocation(), nullptr, /*IsImplicit*/false); Fallthrough = S.ActOnFinishFullStmt(Fallthrough.get()); if (Fallthrough.isInvalid()) return false; } this->OnFallthrough = Fallthrough.get(); return true; } bool CoroutineStmtBuilder::makeOnException() { // Try to form 'p.unhandled_exception();' assert(!IsPromiseDependentType && "cannot make statement while the promise type is dependent"); const bool RequireUnhandledException = S.getLangOpts().CXXExceptions; if (!lookupMember(S, "unhandled_exception", PromiseRecordDecl, Loc)) { auto DiagID = RequireUnhandledException ? diag::err_coroutine_promise_unhandled_exception_required : diag:: warn_coroutine_promise_unhandled_exception_required_with_exceptions; S.Diag(Loc, DiagID) << PromiseRecordDecl; S.Diag(PromiseRecordDecl->getLocation(), diag::note_defined_here) << PromiseRecordDecl; return !RequireUnhandledException; } // If exceptions are disabled, don't try to build OnException. if (!S.getLangOpts().CXXExceptions) return true; ExprResult UnhandledException = buildPromiseCall( S, Fn.CoroutinePromise, Loc, "unhandled_exception", std::nullopt); UnhandledException = S.ActOnFinishFullExpr(UnhandledException.get(), Loc, /*DiscardedValue*/ false); if (UnhandledException.isInvalid()) return false; // Since the body of the coroutine will be wrapped in try-catch, it will // be incompatible with SEH __try if present in a function. if (!S.getLangOpts().Borland && Fn.FirstSEHTryLoc.isValid()) { S.Diag(Fn.FirstSEHTryLoc, diag::err_seh_in_a_coroutine_with_cxx_exceptions); S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) << Fn.getFirstCoroutineStmtKeyword(); return false; } this->OnException = UnhandledException.get(); return true; } bool CoroutineStmtBuilder::makeReturnObject() { // [dcl.fct.def.coroutine]p7 // The expression promise.get_return_object() is used to initialize the // returned reference or prvalue result object of a call to a coroutine. ExprResult ReturnObject = buildPromiseCall(S, Fn.CoroutinePromise, Loc, "get_return_object", std::nullopt); if (ReturnObject.isInvalid()) return false; this->ReturnValue = ReturnObject.get(); return true; } static void noteMemberDeclaredHere(Sema &S, Expr *E, FunctionScopeInfo &Fn) { if (auto *MbrRef = dyn_cast(E)) { auto *MethodDecl = MbrRef->getMethodDecl(); S.Diag(MethodDecl->getLocation(), diag::note_member_declared_here) << MethodDecl; } S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) << Fn.getFirstCoroutineStmtKeyword(); } bool CoroutineStmtBuilder::makeGroDeclAndReturnStmt() { assert(!IsPromiseDependentType && "cannot make statement while the promise type is dependent"); assert(this->ReturnValue && "ReturnValue must be already formed"); QualType const GroType = this->ReturnValue->getType(); assert(!GroType->isDependentType() && "get_return_object type must no longer be dependent"); QualType const FnRetType = FD.getReturnType(); assert(!FnRetType->isDependentType() && "get_return_object type must no longer be dependent"); if (FnRetType->isVoidType()) { ExprResult Res = S.ActOnFinishFullExpr(this->ReturnValue, Loc, /*DiscardedValue*/ false); if (Res.isInvalid()) return false; return true; } if (GroType->isVoidType()) { // Trigger a nice error message. InitializedEntity Entity = InitializedEntity::InitializeResult(Loc, FnRetType); S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue); noteMemberDeclaredHere(S, ReturnValue, Fn); return false; } StmtResult ReturnStmt = S.BuildReturnStmt(Loc, ReturnValue); if (ReturnStmt.isInvalid()) { noteMemberDeclaredHere(S, ReturnValue, Fn); return false; } this->ReturnStmt = ReturnStmt.get(); return true; } // Create a static_cast\(expr). static Expr *castForMoving(Sema &S, Expr *E, QualType T = QualType()) { if (T.isNull()) T = E->getType(); QualType TargetType = S.BuildReferenceType( T, /*SpelledAsLValue*/ false, SourceLocation(), DeclarationName()); SourceLocation ExprLoc = E->getBeginLoc(); TypeSourceInfo *TargetLoc = S.Context.getTrivialTypeSourceInfo(TargetType, ExprLoc); return S .BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, SourceRange(ExprLoc, ExprLoc), E->getSourceRange()) .get(); } /// Build a variable declaration for move parameter. static VarDecl *buildVarDecl(Sema &S, SourceLocation Loc, QualType Type, IdentifierInfo *II) { TypeSourceInfo *TInfo = S.Context.getTrivialTypeSourceInfo(Type, Loc); VarDecl *Decl = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, II, Type, TInfo, SC_None); Decl->setImplicit(); return Decl; } // Build statements that move coroutine function parameters to the coroutine // frame, and store them on the function scope info. bool Sema::buildCoroutineParameterMoves(SourceLocation Loc) { assert(isa(CurContext) && "not in a function scope"); auto *FD = cast(CurContext); auto *ScopeInfo = getCurFunction(); if (!ScopeInfo->CoroutineParameterMoves.empty()) return false; // [dcl.fct.def.coroutine]p13 // When a coroutine is invoked, after initializing its parameters // ([expr.call]), a copy is created for each coroutine parameter. For a // parameter of type cv T, the copy is a variable of type cv T with // automatic storage duration that is direct-initialized from an xvalue of // type T referring to the parameter. for (auto *PD : FD->parameters()) { if (PD->getType()->isDependentType()) continue; ExprResult PDRefExpr = BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(), ExprValueKind::VK_LValue, Loc); // FIXME: scope? if (PDRefExpr.isInvalid()) return false; Expr *CExpr = nullptr; if (PD->getType()->getAsCXXRecordDecl() || PD->getType()->isRValueReferenceType()) CExpr = castForMoving(*this, PDRefExpr.get()); else CExpr = PDRefExpr.get(); // [dcl.fct.def.coroutine]p13 // The initialization and destruction of each parameter copy occurs in the // context of the called coroutine. auto *D = buildVarDecl(*this, Loc, PD->getType(), PD->getIdentifier()); AddInitializerToDecl(D, CExpr, /*DirectInit=*/true); // Convert decl to a statement. StmtResult Stmt = ActOnDeclStmt(ConvertDeclToDeclGroup(D), Loc, Loc); if (Stmt.isInvalid()) return false; ScopeInfo->CoroutineParameterMoves.insert(std::make_pair(PD, Stmt.get())); } return true; } StmtResult Sema::BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) { CoroutineBodyStmt *Res = CoroutineBodyStmt::Create(Context, Args); if (!Res) return StmtError(); return Res; } ClassTemplateDecl *Sema::lookupCoroutineTraits(SourceLocation KwLoc, SourceLocation FuncLoc, NamespaceDecl *&Namespace) { if (!StdCoroutineTraitsCache) { // Because coroutines moved from std::experimental in the TS to std in // C++20, we look in both places to give users time to transition their // TS-specific code to C++20. Diagnostics are given when the TS usage is // discovered. // TODO: Become stricter when is removed. IdentifierInfo const &TraitIdent = PP.getIdentifierTable().get("coroutine_traits"); NamespaceDecl *StdSpace = getStdNamespace(); LookupResult ResStd(*this, &TraitIdent, FuncLoc, LookupOrdinaryName); bool InStd = StdSpace && LookupQualifiedName(ResStd, StdSpace); NamespaceDecl *ExpSpace = lookupStdExperimentalNamespace(); LookupResult ResExp(*this, &TraitIdent, FuncLoc, LookupOrdinaryName); bool InExp = ExpSpace && LookupQualifiedName(ResExp, ExpSpace); if (!InStd && !InExp) { // The goggles, they found nothing! Diag(KwLoc, diag::err_implied_coroutine_type_not_found) << "std::coroutine_traits"; return nullptr; } // Prefer ::std to std::experimental. LookupResult &Result = InStd ? ResStd : ResExp; CoroTraitsNamespaceCache = InStd ? StdSpace : ExpSpace; // coroutine_traits is required to be a class template. StdCoroutineTraitsCache = Result.getAsSingle(); if (!StdCoroutineTraitsCache) { Result.suppressDiagnostics(); NamedDecl *Found = *Result.begin(); Diag(Found->getLocation(), diag::err_malformed_std_coroutine_traits); return nullptr; } if (InExp) { // Found in std::experimental Diag(KwLoc, diag::warn_deprecated_coroutine_namespace) << "coroutine_traits"; ResExp.suppressDiagnostics(); NamedDecl *Found = *ResExp.begin(); Diag(Found->getLocation(), diag::note_entity_declared_at) << Found; if (InStd && StdCoroutineTraitsCache != ResExp.getAsSingle()) { // Also found something different in std Diag(KwLoc, diag::err_mixed_use_std_and_experimental_namespace_for_coroutine); Diag(StdCoroutineTraitsCache->getLocation(), diag::note_entity_declared_at) << StdCoroutineTraitsCache; return nullptr; } } } Namespace = CoroTraitsNamespaceCache; return StdCoroutineTraitsCache; }