1 //===--- Sema.cpp - AST Builder and Semantic Analysis Implementation ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the actions class which performs semantic analysis and
10 // builds an AST out of a parse stream.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "UsedDeclVisitor.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclFriend.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/PrettyDeclStackTrace.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/Basic/DarwinSDKInfo.h"
26 #include "clang/Basic/DiagnosticOptions.h"
27 #include "clang/Basic/PartialDiagnostic.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/Basic/Stack.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Lex/HeaderSearch.h"
32 #include "clang/Lex/HeaderSearchOptions.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "clang/Sema/CXXFieldCollector.h"
35 #include "clang/Sema/DelayedDiagnostic.h"
36 #include "clang/Sema/EnterExpressionEvaluationContext.h"
37 #include "clang/Sema/ExternalSemaSource.h"
38 #include "clang/Sema/Initialization.h"
39 #include "clang/Sema/MultiplexExternalSemaSource.h"
40 #include "clang/Sema/ObjCMethodList.h"
41 #include "clang/Sema/RISCVIntrinsicManager.h"
42 #include "clang/Sema/Scope.h"
43 #include "clang/Sema/ScopeInfo.h"
44 #include "clang/Sema/SemaAMDGPU.h"
45 #include "clang/Sema/SemaARM.h"
46 #include "clang/Sema/SemaAVR.h"
47 #include "clang/Sema/SemaBPF.h"
48 #include "clang/Sema/SemaCUDA.h"
49 #include "clang/Sema/SemaCodeCompletion.h"
50 #include "clang/Sema/SemaConsumer.h"
51 #include "clang/Sema/SemaHLSL.h"
52 #include "clang/Sema/SemaHexagon.h"
53 #include "clang/Sema/SemaInternal.h"
54 #include "clang/Sema/SemaLoongArch.h"
55 #include "clang/Sema/SemaM68k.h"
56 #include "clang/Sema/SemaMIPS.h"
57 #include "clang/Sema/SemaMSP430.h"
58 #include "clang/Sema/SemaNVPTX.h"
59 #include "clang/Sema/SemaObjC.h"
60 #include "clang/Sema/SemaOpenACC.h"
61 #include "clang/Sema/SemaOpenCL.h"
62 #include "clang/Sema/SemaOpenMP.h"
63 #include "clang/Sema/SemaPPC.h"
64 #include "clang/Sema/SemaPseudoObject.h"
65 #include "clang/Sema/SemaRISCV.h"
66 #include "clang/Sema/SemaSYCL.h"
67 #include "clang/Sema/SemaSwift.h"
68 #include "clang/Sema/SemaSystemZ.h"
69 #include "clang/Sema/SemaWasm.h"
70 #include "clang/Sema/SemaX86.h"
71 #include "clang/Sema/TemplateDeduction.h"
72 #include "clang/Sema/TemplateInstCallback.h"
73 #include "clang/Sema/TypoCorrection.h"
74 #include "llvm/ADT/DenseMap.h"
75 #include "llvm/ADT/STLExtras.h"
76 #include "llvm/ADT/SmallPtrSet.h"
77 #include "llvm/Support/TimeProfiler.h"
78 #include <optional>
79
80 using namespace clang;
81 using namespace sema;
82
getLocForEndOfToken(SourceLocation Loc,unsigned Offset)83 SourceLocation Sema::getLocForEndOfToken(SourceLocation Loc, unsigned Offset) {
84 return Lexer::getLocForEndOfToken(Loc, Offset, SourceMgr, LangOpts);
85 }
86
getModuleLoader() const87 ModuleLoader &Sema::getModuleLoader() const { return PP.getModuleLoader(); }
88
89 DarwinSDKInfo *
getDarwinSDKInfoForAvailabilityChecking(SourceLocation Loc,StringRef Platform)90 Sema::getDarwinSDKInfoForAvailabilityChecking(SourceLocation Loc,
91 StringRef Platform) {
92 auto *SDKInfo = getDarwinSDKInfoForAvailabilityChecking();
93 if (!SDKInfo && !WarnedDarwinSDKInfoMissing) {
94 Diag(Loc, diag::warn_missing_sdksettings_for_availability_checking)
95 << Platform;
96 WarnedDarwinSDKInfoMissing = true;
97 }
98 return SDKInfo;
99 }
100
getDarwinSDKInfoForAvailabilityChecking()101 DarwinSDKInfo *Sema::getDarwinSDKInfoForAvailabilityChecking() {
102 if (CachedDarwinSDKInfo)
103 return CachedDarwinSDKInfo->get();
104 auto SDKInfo = parseDarwinSDKInfo(
105 PP.getFileManager().getVirtualFileSystem(),
106 PP.getHeaderSearchInfo().getHeaderSearchOpts().Sysroot);
107 if (SDKInfo && *SDKInfo) {
108 CachedDarwinSDKInfo = std::make_unique<DarwinSDKInfo>(std::move(**SDKInfo));
109 return CachedDarwinSDKInfo->get();
110 }
111 if (!SDKInfo)
112 llvm::consumeError(SDKInfo.takeError());
113 CachedDarwinSDKInfo = std::unique_ptr<DarwinSDKInfo>();
114 return nullptr;
115 }
116
InventAbbreviatedTemplateParameterTypeName(const IdentifierInfo * ParamName,unsigned int Index)117 IdentifierInfo *Sema::InventAbbreviatedTemplateParameterTypeName(
118 const IdentifierInfo *ParamName, unsigned int Index) {
119 std::string InventedName;
120 llvm::raw_string_ostream OS(InventedName);
121
122 if (!ParamName)
123 OS << "auto:" << Index + 1;
124 else
125 OS << ParamName->getName() << ":auto";
126
127 OS.flush();
128 return &Context.Idents.get(OS.str());
129 }
130
getPrintingPolicy(const ASTContext & Context,const Preprocessor & PP)131 PrintingPolicy Sema::getPrintingPolicy(const ASTContext &Context,
132 const Preprocessor &PP) {
133 PrintingPolicy Policy = Context.getPrintingPolicy();
134 // In diagnostics, we print _Bool as bool if the latter is defined as the
135 // former.
136 Policy.Bool = Context.getLangOpts().Bool;
137 if (!Policy.Bool) {
138 if (const MacroInfo *BoolMacro = PP.getMacroInfo(Context.getBoolName())) {
139 Policy.Bool = BoolMacro->isObjectLike() &&
140 BoolMacro->getNumTokens() == 1 &&
141 BoolMacro->getReplacementToken(0).is(tok::kw__Bool);
142 }
143 }
144
145 // Shorten the data output if needed
146 Policy.EntireContentsOfLargeArray = false;
147
148 return Policy;
149 }
150
ActOnTranslationUnitScope(Scope * S)151 void Sema::ActOnTranslationUnitScope(Scope *S) {
152 TUScope = S;
153 PushDeclContext(S, Context.getTranslationUnitDecl());
154 }
155
156 namespace clang {
157 namespace sema {
158
159 class SemaPPCallbacks : public PPCallbacks {
160 Sema *S = nullptr;
161 llvm::SmallVector<SourceLocation, 8> IncludeStack;
162 llvm::SmallVector<llvm::TimeTraceProfilerEntry *, 8> ProfilerStack;
163
164 public:
set(Sema & S)165 void set(Sema &S) { this->S = &S; }
166
reset()167 void reset() { S = nullptr; }
168
FileChanged(SourceLocation Loc,FileChangeReason Reason,SrcMgr::CharacteristicKind FileType,FileID PrevFID)169 void FileChanged(SourceLocation Loc, FileChangeReason Reason,
170 SrcMgr::CharacteristicKind FileType,
171 FileID PrevFID) override {
172 if (!S)
173 return;
174 switch (Reason) {
175 case EnterFile: {
176 SourceManager &SM = S->getSourceManager();
177 SourceLocation IncludeLoc = SM.getIncludeLoc(SM.getFileID(Loc));
178 if (IncludeLoc.isValid()) {
179 if (llvm::timeTraceProfilerEnabled()) {
180 OptionalFileEntryRef FE = SM.getFileEntryRefForID(SM.getFileID(Loc));
181 ProfilerStack.push_back(llvm::timeTraceAsyncProfilerBegin(
182 "Source", FE ? FE->getName() : StringRef("<unknown>")));
183 }
184
185 IncludeStack.push_back(IncludeLoc);
186 S->DiagnoseNonDefaultPragmaAlignPack(
187 Sema::PragmaAlignPackDiagnoseKind::NonDefaultStateAtInclude,
188 IncludeLoc);
189 }
190 break;
191 }
192 case ExitFile:
193 if (!IncludeStack.empty()) {
194 if (llvm::timeTraceProfilerEnabled())
195 llvm::timeTraceProfilerEnd(ProfilerStack.pop_back_val());
196
197 S->DiagnoseNonDefaultPragmaAlignPack(
198 Sema::PragmaAlignPackDiagnoseKind::ChangedStateAtExit,
199 IncludeStack.pop_back_val());
200 }
201 break;
202 default:
203 break;
204 }
205 }
206 };
207
208 } // end namespace sema
209 } // end namespace clang
210
211 const unsigned Sema::MaxAlignmentExponent;
212 const uint64_t Sema::MaximumAlignment;
213
Sema(Preprocessor & pp,ASTContext & ctxt,ASTConsumer & consumer,TranslationUnitKind TUKind,CodeCompleteConsumer * CodeCompleter)214 Sema::Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
215 TranslationUnitKind TUKind, CodeCompleteConsumer *CodeCompleter)
216 : SemaBase(*this), CollectStats(false), TUKind(TUKind),
217 CurFPFeatures(pp.getLangOpts()), LangOpts(pp.getLangOpts()), PP(pp),
218 Context(ctxt), Consumer(consumer), Diags(PP.getDiagnostics()),
219 SourceMgr(PP.getSourceManager()), APINotes(SourceMgr, LangOpts),
220 AnalysisWarnings(*this), ThreadSafetyDeclCache(nullptr),
221 LateTemplateParser(nullptr), LateTemplateParserCleanup(nullptr),
222 OpaqueParser(nullptr), CurContext(nullptr), ExternalSource(nullptr),
223 CurScope(nullptr), Ident_super(nullptr),
224 AMDGPUPtr(std::make_unique<SemaAMDGPU>(*this)),
225 ARMPtr(std::make_unique<SemaARM>(*this)),
226 AVRPtr(std::make_unique<SemaAVR>(*this)),
227 BPFPtr(std::make_unique<SemaBPF>(*this)),
228 CodeCompletionPtr(
229 std::make_unique<SemaCodeCompletion>(*this, CodeCompleter)),
230 CUDAPtr(std::make_unique<SemaCUDA>(*this)),
231 HLSLPtr(std::make_unique<SemaHLSL>(*this)),
232 HexagonPtr(std::make_unique<SemaHexagon>(*this)),
233 LoongArchPtr(std::make_unique<SemaLoongArch>(*this)),
234 M68kPtr(std::make_unique<SemaM68k>(*this)),
235 MIPSPtr(std::make_unique<SemaMIPS>(*this)),
236 MSP430Ptr(std::make_unique<SemaMSP430>(*this)),
237 NVPTXPtr(std::make_unique<SemaNVPTX>(*this)),
238 ObjCPtr(std::make_unique<SemaObjC>(*this)),
239 OpenACCPtr(std::make_unique<SemaOpenACC>(*this)),
240 OpenCLPtr(std::make_unique<SemaOpenCL>(*this)),
241 OpenMPPtr(std::make_unique<SemaOpenMP>(*this)),
242 PPCPtr(std::make_unique<SemaPPC>(*this)),
243 PseudoObjectPtr(std::make_unique<SemaPseudoObject>(*this)),
244 RISCVPtr(std::make_unique<SemaRISCV>(*this)),
245 SYCLPtr(std::make_unique<SemaSYCL>(*this)),
246 SwiftPtr(std::make_unique<SemaSwift>(*this)),
247 SystemZPtr(std::make_unique<SemaSystemZ>(*this)),
248 WasmPtr(std::make_unique<SemaWasm>(*this)),
249 X86Ptr(std::make_unique<SemaX86>(*this)),
250 MSPointerToMemberRepresentationMethod(
251 LangOpts.getMSPointerToMemberRepresentationMethod()),
252 MSStructPragmaOn(false), VtorDispStack(LangOpts.getVtorDispMode()),
253 AlignPackStack(AlignPackInfo(getLangOpts().XLPragmaPack)),
254 DataSegStack(nullptr), BSSSegStack(nullptr), ConstSegStack(nullptr),
255 CodeSegStack(nullptr), StrictGuardStackCheckStack(false),
256 FpPragmaStack(FPOptionsOverride()), CurInitSeg(nullptr),
257 VisContext(nullptr), PragmaAttributeCurrentTargetDecl(nullptr),
258 StdCoroutineTraitsCache(nullptr), IdResolver(pp),
259 OriginalLexicalContext(nullptr), StdInitializerList(nullptr),
260 FullyCheckedComparisonCategories(
261 static_cast<unsigned>(ComparisonCategoryType::Last) + 1),
262 StdSourceLocationImplDecl(nullptr), CXXTypeInfoDecl(nullptr),
263 GlobalNewDeleteDeclared(false), DisableTypoCorrection(false),
264 TyposCorrected(0), IsBuildingRecoveryCallExpr(false), NumSFINAEErrors(0),
265 AccessCheckingSFINAE(false), CurrentInstantiationScope(nullptr),
266 InNonInstantiationSFINAEContext(false), NonInstantiationEntries(0),
267 ArgumentPackSubstitutionIndex(-1), SatisfactionCache(Context) {
268 assert(pp.TUKind == TUKind);
269 TUScope = nullptr;
270
271 LoadedExternalKnownNamespaces = false;
272 for (unsigned I = 0; I != NSAPI::NumNSNumberLiteralMethods; ++I)
273 ObjC().NSNumberLiteralMethods[I] = nullptr;
274
275 if (getLangOpts().ObjC)
276 ObjC().NSAPIObj.reset(new NSAPI(Context));
277
278 if (getLangOpts().CPlusPlus)
279 FieldCollector.reset(new CXXFieldCollector());
280
281 // Tell diagnostics how to render things from the AST library.
282 Diags.SetArgToStringFn(&FormatASTNodeDiagnosticArgument, &Context);
283
284 // This evaluation context exists to ensure that there's always at least one
285 // valid evaluation context available. It is never removed from the
286 // evaluation stack.
287 ExprEvalContexts.emplace_back(
288 ExpressionEvaluationContext::PotentiallyEvaluated, 0, CleanupInfo{},
289 nullptr, ExpressionEvaluationContextRecord::EK_Other);
290
291 // Initialization of data sharing attributes stack for OpenMP
292 OpenMP().InitDataSharingAttributesStack();
293
294 std::unique_ptr<sema::SemaPPCallbacks> Callbacks =
295 std::make_unique<sema::SemaPPCallbacks>();
296 SemaPPCallbackHandler = Callbacks.get();
297 PP.addPPCallbacks(std::move(Callbacks));
298 SemaPPCallbackHandler->set(*this);
299
300 CurFPFeatures.setFPEvalMethod(PP.getCurrentFPEvalMethod());
301 }
302
303 // Anchor Sema's type info to this TU.
anchor()304 void Sema::anchor() {}
305
addImplicitTypedef(StringRef Name,QualType T)306 void Sema::addImplicitTypedef(StringRef Name, QualType T) {
307 DeclarationName DN = &Context.Idents.get(Name);
308 if (IdResolver.begin(DN) == IdResolver.end())
309 PushOnScopeChains(Context.buildImplicitTypedef(T, Name), TUScope);
310 }
311
Initialize()312 void Sema::Initialize() {
313 if (SemaConsumer *SC = dyn_cast<SemaConsumer>(&Consumer))
314 SC->InitializeSema(*this);
315
316 // Tell the external Sema source about this Sema object.
317 if (ExternalSemaSource *ExternalSema
318 = dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource()))
319 ExternalSema->InitializeSema(*this);
320
321 // This needs to happen after ExternalSemaSource::InitializeSema(this) or we
322 // will not be able to merge any duplicate __va_list_tag decls correctly.
323 VAListTagName = PP.getIdentifierInfo("__va_list_tag");
324
325 if (!TUScope)
326 return;
327
328 // Initialize predefined 128-bit integer types, if needed.
329 if (Context.getTargetInfo().hasInt128Type() ||
330 (Context.getAuxTargetInfo() &&
331 Context.getAuxTargetInfo()->hasInt128Type())) {
332 // If either of the 128-bit integer types are unavailable to name lookup,
333 // define them now.
334 DeclarationName Int128 = &Context.Idents.get("__int128_t");
335 if (IdResolver.begin(Int128) == IdResolver.end())
336 PushOnScopeChains(Context.getInt128Decl(), TUScope);
337
338 DeclarationName UInt128 = &Context.Idents.get("__uint128_t");
339 if (IdResolver.begin(UInt128) == IdResolver.end())
340 PushOnScopeChains(Context.getUInt128Decl(), TUScope);
341 }
342
343
344 // Initialize predefined Objective-C types:
345 if (getLangOpts().ObjC) {
346 // If 'SEL' does not yet refer to any declarations, make it refer to the
347 // predefined 'SEL'.
348 DeclarationName SEL = &Context.Idents.get("SEL");
349 if (IdResolver.begin(SEL) == IdResolver.end())
350 PushOnScopeChains(Context.getObjCSelDecl(), TUScope);
351
352 // If 'id' does not yet refer to any declarations, make it refer to the
353 // predefined 'id'.
354 DeclarationName Id = &Context.Idents.get("id");
355 if (IdResolver.begin(Id) == IdResolver.end())
356 PushOnScopeChains(Context.getObjCIdDecl(), TUScope);
357
358 // Create the built-in typedef for 'Class'.
359 DeclarationName Class = &Context.Idents.get("Class");
360 if (IdResolver.begin(Class) == IdResolver.end())
361 PushOnScopeChains(Context.getObjCClassDecl(), TUScope);
362
363 // Create the built-in forward declaratino for 'Protocol'.
364 DeclarationName Protocol = &Context.Idents.get("Protocol");
365 if (IdResolver.begin(Protocol) == IdResolver.end())
366 PushOnScopeChains(Context.getObjCProtocolDecl(), TUScope);
367 }
368
369 // Create the internal type for the *StringMakeConstantString builtins.
370 DeclarationName ConstantString = &Context.Idents.get("__NSConstantString");
371 if (IdResolver.begin(ConstantString) == IdResolver.end())
372 PushOnScopeChains(Context.getCFConstantStringDecl(), TUScope);
373
374 // Initialize Microsoft "predefined C++ types".
375 if (getLangOpts().MSVCCompat) {
376 if (getLangOpts().CPlusPlus &&
377 IdResolver.begin(&Context.Idents.get("type_info")) == IdResolver.end())
378 PushOnScopeChains(
379 Context.buildImplicitRecord("type_info", TagTypeKind::Class),
380 TUScope);
381
382 addImplicitTypedef("size_t", Context.getSizeType());
383 }
384
385 // Initialize predefined OpenCL types and supported extensions and (optional)
386 // core features.
387 if (getLangOpts().OpenCL) {
388 getOpenCLOptions().addSupport(
389 Context.getTargetInfo().getSupportedOpenCLOpts(), getLangOpts());
390 addImplicitTypedef("sampler_t", Context.OCLSamplerTy);
391 addImplicitTypedef("event_t", Context.OCLEventTy);
392 auto OCLCompatibleVersion = getLangOpts().getOpenCLCompatibleVersion();
393 if (OCLCompatibleVersion >= 200) {
394 if (getLangOpts().OpenCLCPlusPlus || getLangOpts().Blocks) {
395 addImplicitTypedef("clk_event_t", Context.OCLClkEventTy);
396 addImplicitTypedef("queue_t", Context.OCLQueueTy);
397 }
398 if (getLangOpts().OpenCLPipes)
399 addImplicitTypedef("reserve_id_t", Context.OCLReserveIDTy);
400 addImplicitTypedef("atomic_int", Context.getAtomicType(Context.IntTy));
401 addImplicitTypedef("atomic_uint",
402 Context.getAtomicType(Context.UnsignedIntTy));
403 addImplicitTypedef("atomic_float",
404 Context.getAtomicType(Context.FloatTy));
405 // OpenCLC v2.0, s6.13.11.6 requires that atomic_flag is implemented as
406 // 32-bit integer and OpenCLC v2.0, s6.1.1 int is always 32-bit wide.
407 addImplicitTypedef("atomic_flag", Context.getAtomicType(Context.IntTy));
408
409
410 // OpenCL v2.0 s6.13.11.6:
411 // - The atomic_long and atomic_ulong types are supported if the
412 // cl_khr_int64_base_atomics and cl_khr_int64_extended_atomics
413 // extensions are supported.
414 // - The atomic_double type is only supported if double precision
415 // is supported and the cl_khr_int64_base_atomics and
416 // cl_khr_int64_extended_atomics extensions are supported.
417 // - If the device address space is 64-bits, the data types
418 // atomic_intptr_t, atomic_uintptr_t, atomic_size_t and
419 // atomic_ptrdiff_t are supported if the cl_khr_int64_base_atomics and
420 // cl_khr_int64_extended_atomics extensions are supported.
421
422 auto AddPointerSizeDependentTypes = [&]() {
423 auto AtomicSizeT = Context.getAtomicType(Context.getSizeType());
424 auto AtomicIntPtrT = Context.getAtomicType(Context.getIntPtrType());
425 auto AtomicUIntPtrT = Context.getAtomicType(Context.getUIntPtrType());
426 auto AtomicPtrDiffT =
427 Context.getAtomicType(Context.getPointerDiffType());
428 addImplicitTypedef("atomic_size_t", AtomicSizeT);
429 addImplicitTypedef("atomic_intptr_t", AtomicIntPtrT);
430 addImplicitTypedef("atomic_uintptr_t", AtomicUIntPtrT);
431 addImplicitTypedef("atomic_ptrdiff_t", AtomicPtrDiffT);
432 };
433
434 if (Context.getTypeSize(Context.getSizeType()) == 32) {
435 AddPointerSizeDependentTypes();
436 }
437
438 if (getOpenCLOptions().isSupported("cl_khr_fp16", getLangOpts())) {
439 auto AtomicHalfT = Context.getAtomicType(Context.HalfTy);
440 addImplicitTypedef("atomic_half", AtomicHalfT);
441 }
442
443 std::vector<QualType> Atomic64BitTypes;
444 if (getOpenCLOptions().isSupported("cl_khr_int64_base_atomics",
445 getLangOpts()) &&
446 getOpenCLOptions().isSupported("cl_khr_int64_extended_atomics",
447 getLangOpts())) {
448 if (getOpenCLOptions().isSupported("cl_khr_fp64", getLangOpts())) {
449 auto AtomicDoubleT = Context.getAtomicType(Context.DoubleTy);
450 addImplicitTypedef("atomic_double", AtomicDoubleT);
451 Atomic64BitTypes.push_back(AtomicDoubleT);
452 }
453 auto AtomicLongT = Context.getAtomicType(Context.LongTy);
454 auto AtomicULongT = Context.getAtomicType(Context.UnsignedLongTy);
455 addImplicitTypedef("atomic_long", AtomicLongT);
456 addImplicitTypedef("atomic_ulong", AtomicULongT);
457
458
459 if (Context.getTypeSize(Context.getSizeType()) == 64) {
460 AddPointerSizeDependentTypes();
461 }
462 }
463 }
464
465 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
466 if (getOpenCLOptions().isSupported(#Ext, getLangOpts())) { \
467 addImplicitTypedef(#ExtType, Context.Id##Ty); \
468 }
469 #include "clang/Basic/OpenCLExtensionTypes.def"
470 }
471
472 if (Context.getTargetInfo().hasAArch64SVETypes() ||
473 (Context.getAuxTargetInfo() &&
474 Context.getAuxTargetInfo()->hasAArch64SVETypes())) {
475 #define SVE_TYPE(Name, Id, SingletonId) \
476 addImplicitTypedef(Name, Context.SingletonId);
477 #include "clang/Basic/AArch64SVEACLETypes.def"
478 }
479
480 if (Context.getTargetInfo().getTriple().isPPC64()) {
481 #define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \
482 addImplicitTypedef(#Name, Context.Id##Ty);
483 #include "clang/Basic/PPCTypes.def"
484 #define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \
485 addImplicitTypedef(#Name, Context.Id##Ty);
486 #include "clang/Basic/PPCTypes.def"
487 }
488
489 if (Context.getTargetInfo().hasRISCVVTypes()) {
490 #define RVV_TYPE(Name, Id, SingletonId) \
491 addImplicitTypedef(Name, Context.SingletonId);
492 #include "clang/Basic/RISCVVTypes.def"
493 }
494
495 if (Context.getTargetInfo().getTriple().isWasm() &&
496 Context.getTargetInfo().hasFeature("reference-types")) {
497 #define WASM_TYPE(Name, Id, SingletonId) \
498 addImplicitTypedef(Name, Context.SingletonId);
499 #include "clang/Basic/WebAssemblyReferenceTypes.def"
500 }
501
502 if (Context.getTargetInfo().getTriple().isAMDGPU() ||
503 (Context.getAuxTargetInfo() &&
504 Context.getAuxTargetInfo()->getTriple().isAMDGPU())) {
505 #define AMDGPU_TYPE(Name, Id, SingletonId) \
506 addImplicitTypedef(Name, Context.SingletonId);
507 #include "clang/Basic/AMDGPUTypes.def"
508 }
509
510 if (Context.getTargetInfo().hasBuiltinMSVaList()) {
511 DeclarationName MSVaList = &Context.Idents.get("__builtin_ms_va_list");
512 if (IdResolver.begin(MSVaList) == IdResolver.end())
513 PushOnScopeChains(Context.getBuiltinMSVaListDecl(), TUScope);
514 }
515
516 DeclarationName BuiltinVaList = &Context.Idents.get("__builtin_va_list");
517 if (IdResolver.begin(BuiltinVaList) == IdResolver.end())
518 PushOnScopeChains(Context.getBuiltinVaListDecl(), TUScope);
519 }
520
~Sema()521 Sema::~Sema() {
522 assert(InstantiatingSpecializations.empty() &&
523 "failed to clean up an InstantiatingTemplate?");
524
525 if (VisContext) FreeVisContext();
526
527 // Kill all the active scopes.
528 for (sema::FunctionScopeInfo *FSI : FunctionScopes)
529 delete FSI;
530
531 // Tell the SemaConsumer to forget about us; we're going out of scope.
532 if (SemaConsumer *SC = dyn_cast<SemaConsumer>(&Consumer))
533 SC->ForgetSema();
534
535 // Detach from the external Sema source.
536 if (ExternalSemaSource *ExternalSema
537 = dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource()))
538 ExternalSema->ForgetSema();
539
540 // Delete cached satisfactions.
541 std::vector<ConstraintSatisfaction *> Satisfactions;
542 Satisfactions.reserve(SatisfactionCache.size());
543 for (auto &Node : SatisfactionCache)
544 Satisfactions.push_back(&Node);
545 for (auto *Node : Satisfactions)
546 delete Node;
547
548 threadSafety::threadSafetyCleanup(ThreadSafetyDeclCache);
549
550 // Destroys data sharing attributes stack for OpenMP
551 OpenMP().DestroyDataSharingAttributesStack();
552
553 // Detach from the PP callback handler which outlives Sema since it's owned
554 // by the preprocessor.
555 SemaPPCallbackHandler->reset();
556 }
557
warnStackExhausted(SourceLocation Loc)558 void Sema::warnStackExhausted(SourceLocation Loc) {
559 // Only warn about this once.
560 if (!WarnedStackExhausted) {
561 Diag(Loc, diag::warn_stack_exhausted);
562 WarnedStackExhausted = true;
563 }
564 }
565
runWithSufficientStackSpace(SourceLocation Loc,llvm::function_ref<void ()> Fn)566 void Sema::runWithSufficientStackSpace(SourceLocation Loc,
567 llvm::function_ref<void()> Fn) {
568 clang::runWithSufficientStackSpace([&] { warnStackExhausted(Loc); }, Fn);
569 }
570
makeUnavailableInSystemHeader(SourceLocation loc,UnavailableAttr::ImplicitReason reason)571 bool Sema::makeUnavailableInSystemHeader(SourceLocation loc,
572 UnavailableAttr::ImplicitReason reason) {
573 // If we're not in a function, it's an error.
574 FunctionDecl *fn = dyn_cast<FunctionDecl>(CurContext);
575 if (!fn) return false;
576
577 // If we're in template instantiation, it's an error.
578 if (inTemplateInstantiation())
579 return false;
580
581 // If that function's not in a system header, it's an error.
582 if (!Context.getSourceManager().isInSystemHeader(loc))
583 return false;
584
585 // If the function is already unavailable, it's not an error.
586 if (fn->hasAttr<UnavailableAttr>()) return true;
587
588 fn->addAttr(UnavailableAttr::CreateImplicit(Context, "", reason, loc));
589 return true;
590 }
591
getASTMutationListener() const592 ASTMutationListener *Sema::getASTMutationListener() const {
593 return getASTConsumer().GetASTMutationListener();
594 }
595
addExternalSource(ExternalSemaSource * E)596 void Sema::addExternalSource(ExternalSemaSource *E) {
597 assert(E && "Cannot use with NULL ptr");
598
599 if (!ExternalSource) {
600 ExternalSource = E;
601 return;
602 }
603
604 if (auto *Ex = dyn_cast<MultiplexExternalSemaSource>(ExternalSource))
605 Ex->AddSource(E);
606 else
607 ExternalSource = new MultiplexExternalSemaSource(ExternalSource.get(), E);
608 }
609
PrintStats() const610 void Sema::PrintStats() const {
611 llvm::errs() << "\n*** Semantic Analysis Stats:\n";
612 llvm::errs() << NumSFINAEErrors << " SFINAE diagnostics trapped.\n";
613
614 BumpAlloc.PrintStats();
615 AnalysisWarnings.PrintStats();
616 }
617
diagnoseNullableToNonnullConversion(QualType DstType,QualType SrcType,SourceLocation Loc)618 void Sema::diagnoseNullableToNonnullConversion(QualType DstType,
619 QualType SrcType,
620 SourceLocation Loc) {
621 std::optional<NullabilityKind> ExprNullability = SrcType->getNullability();
622 if (!ExprNullability || (*ExprNullability != NullabilityKind::Nullable &&
623 *ExprNullability != NullabilityKind::NullableResult))
624 return;
625
626 std::optional<NullabilityKind> TypeNullability = DstType->getNullability();
627 if (!TypeNullability || *TypeNullability != NullabilityKind::NonNull)
628 return;
629
630 Diag(Loc, diag::warn_nullability_lost) << SrcType << DstType;
631 }
632
633 // Generate diagnostics when adding or removing effects in a type conversion.
diagnoseFunctionEffectConversion(QualType DstType,QualType SrcType,SourceLocation Loc)634 void Sema::diagnoseFunctionEffectConversion(QualType DstType, QualType SrcType,
635 SourceLocation Loc) {
636 const auto SrcFX = FunctionEffectsRef::get(SrcType);
637 const auto DstFX = FunctionEffectsRef::get(DstType);
638 if (SrcFX != DstFX) {
639 for (const auto &Diff : FunctionEffectDifferences(SrcFX, DstFX)) {
640 if (Diff.shouldDiagnoseConversion(SrcType, SrcFX, DstType, DstFX))
641 Diag(Loc, diag::warn_invalid_add_func_effects) << Diff.effectName();
642 }
643 }
644 }
645
diagnoseZeroToNullptrConversion(CastKind Kind,const Expr * E)646 void Sema::diagnoseZeroToNullptrConversion(CastKind Kind, const Expr *E) {
647 // nullptr only exists from C++11 on, so don't warn on its absence earlier.
648 if (!getLangOpts().CPlusPlus11)
649 return;
650
651 if (Kind != CK_NullToPointer && Kind != CK_NullToMemberPointer)
652 return;
653
654 const Expr *EStripped = E->IgnoreParenImpCasts();
655 if (EStripped->getType()->isNullPtrType())
656 return;
657 if (isa<GNUNullExpr>(EStripped))
658 return;
659
660 if (Diags.isIgnored(diag::warn_zero_as_null_pointer_constant,
661 E->getBeginLoc()))
662 return;
663
664 // Don't diagnose the conversion from a 0 literal to a null pointer argument
665 // in a synthesized call to operator<=>.
666 if (!CodeSynthesisContexts.empty() &&
667 CodeSynthesisContexts.back().Kind ==
668 CodeSynthesisContext::RewritingOperatorAsSpaceship)
669 return;
670
671 // Ignore null pointers in defaulted comparison operators.
672 FunctionDecl *FD = getCurFunctionDecl();
673 if (FD && FD->isDefaulted()) {
674 return;
675 }
676
677 // If it is a macro from system header, and if the macro name is not "NULL",
678 // do not warn.
679 // Note that uses of "NULL" will be ignored above on systems that define it
680 // as __null.
681 SourceLocation MaybeMacroLoc = E->getBeginLoc();
682 if (Diags.getSuppressSystemWarnings() &&
683 SourceMgr.isInSystemMacro(MaybeMacroLoc) &&
684 !findMacroSpelling(MaybeMacroLoc, "NULL"))
685 return;
686
687 Diag(E->getBeginLoc(), diag::warn_zero_as_null_pointer_constant)
688 << FixItHint::CreateReplacement(E->getSourceRange(), "nullptr");
689 }
690
691 /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit cast.
692 /// If there is already an implicit cast, merge into the existing one.
693 /// The result is of the given category.
ImpCastExprToType(Expr * E,QualType Ty,CastKind Kind,ExprValueKind VK,const CXXCastPath * BasePath,CheckedConversionKind CCK)694 ExprResult Sema::ImpCastExprToType(Expr *E, QualType Ty,
695 CastKind Kind, ExprValueKind VK,
696 const CXXCastPath *BasePath,
697 CheckedConversionKind CCK) {
698 #ifndef NDEBUG
699 if (VK == VK_PRValue && !E->isPRValue()) {
700 switch (Kind) {
701 default:
702 llvm_unreachable(
703 ("can't implicitly cast glvalue to prvalue with this cast "
704 "kind: " +
705 std::string(CastExpr::getCastKindName(Kind)))
706 .c_str());
707 case CK_Dependent:
708 case CK_LValueToRValue:
709 case CK_ArrayToPointerDecay:
710 case CK_FunctionToPointerDecay:
711 case CK_ToVoid:
712 case CK_NonAtomicToAtomic:
713 case CK_HLSLArrayRValue:
714 break;
715 }
716 }
717 assert((VK == VK_PRValue || Kind == CK_Dependent || !E->isPRValue()) &&
718 "can't cast prvalue to glvalue");
719 #endif
720
721 diagnoseNullableToNonnullConversion(Ty, E->getType(), E->getBeginLoc());
722 diagnoseZeroToNullptrConversion(Kind, E);
723 if (Context.hasAnyFunctionEffects() && !isCast(CCK) &&
724 Kind != CK_NullToPointer && Kind != CK_NullToMemberPointer)
725 diagnoseFunctionEffectConversion(Ty, E->getType(), E->getBeginLoc());
726
727 QualType ExprTy = Context.getCanonicalType(E->getType());
728 QualType TypeTy = Context.getCanonicalType(Ty);
729
730 if (ExprTy == TypeTy)
731 return E;
732
733 if (Kind == CK_ArrayToPointerDecay) {
734 // C++1z [conv.array]: The temporary materialization conversion is applied.
735 // We also use this to fuel C++ DR1213, which applies to C++11 onwards.
736 if (getLangOpts().CPlusPlus && E->isPRValue()) {
737 // The temporary is an lvalue in C++98 and an xvalue otherwise.
738 ExprResult Materialized = CreateMaterializeTemporaryExpr(
739 E->getType(), E, !getLangOpts().CPlusPlus11);
740 if (Materialized.isInvalid())
741 return ExprError();
742 E = Materialized.get();
743 }
744 // C17 6.7.1p6 footnote 124: The implementation can treat any register
745 // declaration simply as an auto declaration. However, whether or not
746 // addressable storage is actually used, the address of any part of an
747 // object declared with storage-class specifier register cannot be
748 // computed, either explicitly(by use of the unary & operator as discussed
749 // in 6.5.3.2) or implicitly(by converting an array name to a pointer as
750 // discussed in 6.3.2.1).Thus, the only operator that can be applied to an
751 // array declared with storage-class specifier register is sizeof.
752 if (VK == VK_PRValue && !getLangOpts().CPlusPlus && !E->isPRValue()) {
753 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
754 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
755 if (VD->getStorageClass() == SC_Register) {
756 Diag(E->getExprLoc(), diag::err_typecheck_address_of)
757 << /*register variable*/ 3 << E->getSourceRange();
758 return ExprError();
759 }
760 }
761 }
762 }
763 }
764
765 if (ImplicitCastExpr *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
766 if (ImpCast->getCastKind() == Kind && (!BasePath || BasePath->empty())) {
767 ImpCast->setType(Ty);
768 ImpCast->setValueKind(VK);
769 return E;
770 }
771 }
772
773 return ImplicitCastExpr::Create(Context, Ty, Kind, E, BasePath, VK,
774 CurFPFeatureOverrides());
775 }
776
ScalarTypeToBooleanCastKind(QualType ScalarTy)777 CastKind Sema::ScalarTypeToBooleanCastKind(QualType ScalarTy) {
778 switch (ScalarTy->getScalarTypeKind()) {
779 case Type::STK_Bool: return CK_NoOp;
780 case Type::STK_CPointer: return CK_PointerToBoolean;
781 case Type::STK_BlockPointer: return CK_PointerToBoolean;
782 case Type::STK_ObjCObjectPointer: return CK_PointerToBoolean;
783 case Type::STK_MemberPointer: return CK_MemberPointerToBoolean;
784 case Type::STK_Integral: return CK_IntegralToBoolean;
785 case Type::STK_Floating: return CK_FloatingToBoolean;
786 case Type::STK_IntegralComplex: return CK_IntegralComplexToBoolean;
787 case Type::STK_FloatingComplex: return CK_FloatingComplexToBoolean;
788 case Type::STK_FixedPoint: return CK_FixedPointToBoolean;
789 }
790 llvm_unreachable("unknown scalar type kind");
791 }
792
793 /// Used to prune the decls of Sema's UnusedFileScopedDecls vector.
ShouldRemoveFromUnused(Sema * SemaRef,const DeclaratorDecl * D)794 static bool ShouldRemoveFromUnused(Sema *SemaRef, const DeclaratorDecl *D) {
795 if (D->getMostRecentDecl()->isUsed())
796 return true;
797
798 if (D->isExternallyVisible())
799 return true;
800
801 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
802 // If this is a function template and none of its specializations is used,
803 // we should warn.
804 if (FunctionTemplateDecl *Template = FD->getDescribedFunctionTemplate())
805 for (const auto *Spec : Template->specializations())
806 if (ShouldRemoveFromUnused(SemaRef, Spec))
807 return true;
808
809 // UnusedFileScopedDecls stores the first declaration.
810 // The declaration may have become definition so check again.
811 const FunctionDecl *DeclToCheck;
812 if (FD->hasBody(DeclToCheck))
813 return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
814
815 // Later redecls may add new information resulting in not having to warn,
816 // so check again.
817 DeclToCheck = FD->getMostRecentDecl();
818 if (DeclToCheck != FD)
819 return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
820 }
821
822 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
823 // If a variable usable in constant expressions is referenced,
824 // don't warn if it isn't used: if the value of a variable is required
825 // for the computation of a constant expression, it doesn't make sense to
826 // warn even if the variable isn't odr-used. (isReferenced doesn't
827 // precisely reflect that, but it's a decent approximation.)
828 if (VD->isReferenced() &&
829 VD->mightBeUsableInConstantExpressions(SemaRef->Context))
830 return true;
831
832 if (VarTemplateDecl *Template = VD->getDescribedVarTemplate())
833 // If this is a variable template and none of its specializations is used,
834 // we should warn.
835 for (const auto *Spec : Template->specializations())
836 if (ShouldRemoveFromUnused(SemaRef, Spec))
837 return true;
838
839 // UnusedFileScopedDecls stores the first declaration.
840 // The declaration may have become definition so check again.
841 const VarDecl *DeclToCheck = VD->getDefinition();
842 if (DeclToCheck)
843 return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
844
845 // Later redecls may add new information resulting in not having to warn,
846 // so check again.
847 DeclToCheck = VD->getMostRecentDecl();
848 if (DeclToCheck != VD)
849 return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
850 }
851
852 return false;
853 }
854
isFunctionOrVarDeclExternC(const NamedDecl * ND)855 static bool isFunctionOrVarDeclExternC(const NamedDecl *ND) {
856 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
857 return FD->isExternC();
858 return cast<VarDecl>(ND)->isExternC();
859 }
860
861 /// Determine whether ND is an external-linkage function or variable whose
862 /// type has no linkage.
isExternalWithNoLinkageType(const ValueDecl * VD) const863 bool Sema::isExternalWithNoLinkageType(const ValueDecl *VD) const {
864 // Note: it's not quite enough to check whether VD has UniqueExternalLinkage,
865 // because we also want to catch the case where its type has VisibleNoLinkage,
866 // which does not affect the linkage of VD.
867 return getLangOpts().CPlusPlus && VD->hasExternalFormalLinkage() &&
868 !isExternalFormalLinkage(VD->getType()->getLinkage()) &&
869 !isFunctionOrVarDeclExternC(VD);
870 }
871
872 /// Obtains a sorted list of functions and variables that are undefined but
873 /// ODR-used.
getUndefinedButUsed(SmallVectorImpl<std::pair<NamedDecl *,SourceLocation>> & Undefined)874 void Sema::getUndefinedButUsed(
875 SmallVectorImpl<std::pair<NamedDecl *, SourceLocation> > &Undefined) {
876 for (const auto &UndefinedUse : UndefinedButUsed) {
877 NamedDecl *ND = UndefinedUse.first;
878
879 // Ignore attributes that have become invalid.
880 if (ND->isInvalidDecl()) continue;
881
882 // __attribute__((weakref)) is basically a definition.
883 if (ND->hasAttr<WeakRefAttr>()) continue;
884
885 if (isa<CXXDeductionGuideDecl>(ND))
886 continue;
887
888 if (ND->hasAttr<DLLImportAttr>() || ND->hasAttr<DLLExportAttr>()) {
889 // An exported function will always be emitted when defined, so even if
890 // the function is inline, it doesn't have to be emitted in this TU. An
891 // imported function implies that it has been exported somewhere else.
892 continue;
893 }
894
895 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
896 if (FD->isDefined())
897 continue;
898 if (FD->isExternallyVisible() &&
899 !isExternalWithNoLinkageType(FD) &&
900 !FD->getMostRecentDecl()->isInlined() &&
901 !FD->hasAttr<ExcludeFromExplicitInstantiationAttr>())
902 continue;
903 if (FD->getBuiltinID())
904 continue;
905 } else {
906 const auto *VD = cast<VarDecl>(ND);
907 if (VD->hasDefinition() != VarDecl::DeclarationOnly)
908 continue;
909 if (VD->isExternallyVisible() &&
910 !isExternalWithNoLinkageType(VD) &&
911 !VD->getMostRecentDecl()->isInline() &&
912 !VD->hasAttr<ExcludeFromExplicitInstantiationAttr>())
913 continue;
914
915 // Skip VarDecls that lack formal definitions but which we know are in
916 // fact defined somewhere.
917 if (VD->isKnownToBeDefined())
918 continue;
919 }
920
921 Undefined.push_back(std::make_pair(ND, UndefinedUse.second));
922 }
923 }
924
925 /// checkUndefinedButUsed - Check for undefined objects with internal linkage
926 /// or that are inline.
checkUndefinedButUsed(Sema & S)927 static void checkUndefinedButUsed(Sema &S) {
928 if (S.UndefinedButUsed.empty()) return;
929
930 // Collect all the still-undefined entities with internal linkage.
931 SmallVector<std::pair<NamedDecl *, SourceLocation>, 16> Undefined;
932 S.getUndefinedButUsed(Undefined);
933 S.UndefinedButUsed.clear();
934 if (Undefined.empty()) return;
935
936 for (const auto &Undef : Undefined) {
937 ValueDecl *VD = cast<ValueDecl>(Undef.first);
938 SourceLocation UseLoc = Undef.second;
939
940 if (S.isExternalWithNoLinkageType(VD)) {
941 // C++ [basic.link]p8:
942 // A type without linkage shall not be used as the type of a variable
943 // or function with external linkage unless
944 // -- the entity has C language linkage
945 // -- the entity is not odr-used or is defined in the same TU
946 //
947 // As an extension, accept this in cases where the type is externally
948 // visible, since the function or variable actually can be defined in
949 // another translation unit in that case.
950 S.Diag(VD->getLocation(), isExternallyVisible(VD->getType()->getLinkage())
951 ? diag::ext_undefined_internal_type
952 : diag::err_undefined_internal_type)
953 << isa<VarDecl>(VD) << VD;
954 } else if (!VD->isExternallyVisible()) {
955 // FIXME: We can promote this to an error. The function or variable can't
956 // be defined anywhere else, so the program must necessarily violate the
957 // one definition rule.
958 bool IsImplicitBase = false;
959 if (const auto *BaseD = dyn_cast<FunctionDecl>(VD)) {
960 auto *DVAttr = BaseD->getAttr<OMPDeclareVariantAttr>();
961 if (DVAttr && !DVAttr->getTraitInfo().isExtensionActive(
962 llvm::omp::TraitProperty::
963 implementation_extension_disable_implicit_base)) {
964 const auto *Func = cast<FunctionDecl>(
965 cast<DeclRefExpr>(DVAttr->getVariantFuncRef())->getDecl());
966 IsImplicitBase = BaseD->isImplicit() &&
967 Func->getIdentifier()->isMangledOpenMPVariantName();
968 }
969 }
970 if (!S.getLangOpts().OpenMP || !IsImplicitBase)
971 S.Diag(VD->getLocation(), diag::warn_undefined_internal)
972 << isa<VarDecl>(VD) << VD;
973 } else if (auto *FD = dyn_cast<FunctionDecl>(VD)) {
974 (void)FD;
975 assert(FD->getMostRecentDecl()->isInlined() &&
976 "used object requires definition but isn't inline or internal?");
977 // FIXME: This is ill-formed; we should reject.
978 S.Diag(VD->getLocation(), diag::warn_undefined_inline) << VD;
979 } else {
980 assert(cast<VarDecl>(VD)->getMostRecentDecl()->isInline() &&
981 "used var requires definition but isn't inline or internal?");
982 S.Diag(VD->getLocation(), diag::err_undefined_inline_var) << VD;
983 }
984 if (UseLoc.isValid())
985 S.Diag(UseLoc, diag::note_used_here);
986 }
987 }
988
LoadExternalWeakUndeclaredIdentifiers()989 void Sema::LoadExternalWeakUndeclaredIdentifiers() {
990 if (!ExternalSource)
991 return;
992
993 SmallVector<std::pair<IdentifierInfo *, WeakInfo>, 4> WeakIDs;
994 ExternalSource->ReadWeakUndeclaredIdentifiers(WeakIDs);
995 for (auto &WeakID : WeakIDs)
996 (void)WeakUndeclaredIdentifiers[WeakID.first].insert(WeakID.second);
997 }
998
999
1000 typedef llvm::DenseMap<const CXXRecordDecl*, bool> RecordCompleteMap;
1001
1002 /// Returns true, if all methods and nested classes of the given
1003 /// CXXRecordDecl are defined in this translation unit.
1004 ///
1005 /// Should only be called from ActOnEndOfTranslationUnit so that all
1006 /// definitions are actually read.
MethodsAndNestedClassesComplete(const CXXRecordDecl * RD,RecordCompleteMap & MNCComplete)1007 static bool MethodsAndNestedClassesComplete(const CXXRecordDecl *RD,
1008 RecordCompleteMap &MNCComplete) {
1009 RecordCompleteMap::iterator Cache = MNCComplete.find(RD);
1010 if (Cache != MNCComplete.end())
1011 return Cache->second;
1012 if (!RD->isCompleteDefinition())
1013 return false;
1014 bool Complete = true;
1015 for (DeclContext::decl_iterator I = RD->decls_begin(),
1016 E = RD->decls_end();
1017 I != E && Complete; ++I) {
1018 if (const CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(*I))
1019 Complete = M->isDefined() || M->isDefaulted() ||
1020 (M->isPureVirtual() && !isa<CXXDestructorDecl>(M));
1021 else if (const FunctionTemplateDecl *F = dyn_cast<FunctionTemplateDecl>(*I))
1022 // If the template function is marked as late template parsed at this
1023 // point, it has not been instantiated and therefore we have not
1024 // performed semantic analysis on it yet, so we cannot know if the type
1025 // can be considered complete.
1026 Complete = !F->getTemplatedDecl()->isLateTemplateParsed() &&
1027 F->getTemplatedDecl()->isDefined();
1028 else if (const CXXRecordDecl *R = dyn_cast<CXXRecordDecl>(*I)) {
1029 if (R->isInjectedClassName())
1030 continue;
1031 if (R->hasDefinition())
1032 Complete = MethodsAndNestedClassesComplete(R->getDefinition(),
1033 MNCComplete);
1034 else
1035 Complete = false;
1036 }
1037 }
1038 MNCComplete[RD] = Complete;
1039 return Complete;
1040 }
1041
1042 /// Returns true, if the given CXXRecordDecl is fully defined in this
1043 /// translation unit, i.e. all methods are defined or pure virtual and all
1044 /// friends, friend functions and nested classes are fully defined in this
1045 /// translation unit.
1046 ///
1047 /// Should only be called from ActOnEndOfTranslationUnit so that all
1048 /// definitions are actually read.
IsRecordFullyDefined(const CXXRecordDecl * RD,RecordCompleteMap & RecordsComplete,RecordCompleteMap & MNCComplete)1049 static bool IsRecordFullyDefined(const CXXRecordDecl *RD,
1050 RecordCompleteMap &RecordsComplete,
1051 RecordCompleteMap &MNCComplete) {
1052 RecordCompleteMap::iterator Cache = RecordsComplete.find(RD);
1053 if (Cache != RecordsComplete.end())
1054 return Cache->second;
1055 bool Complete = MethodsAndNestedClassesComplete(RD, MNCComplete);
1056 for (CXXRecordDecl::friend_iterator I = RD->friend_begin(),
1057 E = RD->friend_end();
1058 I != E && Complete; ++I) {
1059 // Check if friend classes and methods are complete.
1060 if (TypeSourceInfo *TSI = (*I)->getFriendType()) {
1061 // Friend classes are available as the TypeSourceInfo of the FriendDecl.
1062 if (CXXRecordDecl *FriendD = TSI->getType()->getAsCXXRecordDecl())
1063 Complete = MethodsAndNestedClassesComplete(FriendD, MNCComplete);
1064 else
1065 Complete = false;
1066 } else {
1067 // Friend functions are available through the NamedDecl of FriendDecl.
1068 if (const FunctionDecl *FD =
1069 dyn_cast<FunctionDecl>((*I)->getFriendDecl()))
1070 Complete = FD->isDefined();
1071 else
1072 // This is a template friend, give up.
1073 Complete = false;
1074 }
1075 }
1076 RecordsComplete[RD] = Complete;
1077 return Complete;
1078 }
1079
emitAndClearUnusedLocalTypedefWarnings()1080 void Sema::emitAndClearUnusedLocalTypedefWarnings() {
1081 if (ExternalSource)
1082 ExternalSource->ReadUnusedLocalTypedefNameCandidates(
1083 UnusedLocalTypedefNameCandidates);
1084 for (const TypedefNameDecl *TD : UnusedLocalTypedefNameCandidates) {
1085 if (TD->isReferenced())
1086 continue;
1087 Diag(TD->getLocation(), diag::warn_unused_local_typedef)
1088 << isa<TypeAliasDecl>(TD) << TD->getDeclName();
1089 }
1090 UnusedLocalTypedefNameCandidates.clear();
1091 }
1092
ActOnStartOfTranslationUnit()1093 void Sema::ActOnStartOfTranslationUnit() {
1094 if (getLangOpts().CPlusPlusModules &&
1095 getLangOpts().getCompilingModule() == LangOptions::CMK_HeaderUnit)
1096 HandleStartOfHeaderUnit();
1097 }
1098
ActOnEndOfTranslationUnitFragment(TUFragmentKind Kind)1099 void Sema::ActOnEndOfTranslationUnitFragment(TUFragmentKind Kind) {
1100 // No explicit actions are required at the end of the global module fragment.
1101 if (Kind == TUFragmentKind::Global)
1102 return;
1103
1104 // Transfer late parsed template instantiations over to the pending template
1105 // instantiation list. During normal compilation, the late template parser
1106 // will be installed and instantiating these templates will succeed.
1107 //
1108 // If we are building a TU prefix for serialization, it is also safe to
1109 // transfer these over, even though they are not parsed. The end of the TU
1110 // should be outside of any eager template instantiation scope, so when this
1111 // AST is deserialized, these templates will not be parsed until the end of
1112 // the combined TU.
1113 PendingInstantiations.insert(PendingInstantiations.end(),
1114 LateParsedInstantiations.begin(),
1115 LateParsedInstantiations.end());
1116 LateParsedInstantiations.clear();
1117
1118 // If DefinedUsedVTables ends up marking any virtual member functions it
1119 // might lead to more pending template instantiations, which we then need
1120 // to instantiate.
1121 DefineUsedVTables();
1122
1123 // C++: Perform implicit template instantiations.
1124 //
1125 // FIXME: When we perform these implicit instantiations, we do not
1126 // carefully keep track of the point of instantiation (C++ [temp.point]).
1127 // This means that name lookup that occurs within the template
1128 // instantiation will always happen at the end of the translation unit,
1129 // so it will find some names that are not required to be found. This is
1130 // valid, but we could do better by diagnosing if an instantiation uses a
1131 // name that was not visible at its first point of instantiation.
1132 if (ExternalSource) {
1133 // Load pending instantiations from the external source.
1134 SmallVector<PendingImplicitInstantiation, 4> Pending;
1135 ExternalSource->ReadPendingInstantiations(Pending);
1136 for (auto PII : Pending)
1137 if (auto Func = dyn_cast<FunctionDecl>(PII.first))
1138 Func->setInstantiationIsPending(true);
1139 PendingInstantiations.insert(PendingInstantiations.begin(),
1140 Pending.begin(), Pending.end());
1141 }
1142
1143 {
1144 llvm::TimeTraceScope TimeScope("PerformPendingInstantiations");
1145 PerformPendingInstantiations();
1146 }
1147
1148 emitDeferredDiags();
1149
1150 assert(LateParsedInstantiations.empty() &&
1151 "end of TU template instantiation should not create more "
1152 "late-parsed templates");
1153
1154 // Report diagnostics for uncorrected delayed typos. Ideally all of them
1155 // should have been corrected by that time, but it is very hard to cover all
1156 // cases in practice.
1157 for (const auto &Typo : DelayedTypos) {
1158 // We pass an empty TypoCorrection to indicate no correction was performed.
1159 Typo.second.DiagHandler(TypoCorrection());
1160 }
1161 DelayedTypos.clear();
1162 }
1163
ActOnEndOfTranslationUnit()1164 void Sema::ActOnEndOfTranslationUnit() {
1165 assert(DelayedDiagnostics.getCurrentPool() == nullptr
1166 && "reached end of translation unit with a pool attached?");
1167
1168 // If code completion is enabled, don't perform any end-of-translation-unit
1169 // work.
1170 if (PP.isCodeCompletionEnabled())
1171 return;
1172
1173 // Complete translation units and modules define vtables and perform implicit
1174 // instantiations. PCH files do not.
1175 if (TUKind != TU_Prefix) {
1176 ObjC().DiagnoseUseOfUnimplementedSelectors();
1177
1178 ActOnEndOfTranslationUnitFragment(
1179 !ModuleScopes.empty() && ModuleScopes.back().Module->Kind ==
1180 Module::PrivateModuleFragment
1181 ? TUFragmentKind::Private
1182 : TUFragmentKind::Normal);
1183
1184 if (LateTemplateParserCleanup)
1185 LateTemplateParserCleanup(OpaqueParser);
1186
1187 CheckDelayedMemberExceptionSpecs();
1188 } else {
1189 // If we are building a TU prefix for serialization, it is safe to transfer
1190 // these over, even though they are not parsed. The end of the TU should be
1191 // outside of any eager template instantiation scope, so when this AST is
1192 // deserialized, these templates will not be parsed until the end of the
1193 // combined TU.
1194 PendingInstantiations.insert(PendingInstantiations.end(),
1195 LateParsedInstantiations.begin(),
1196 LateParsedInstantiations.end());
1197 LateParsedInstantiations.clear();
1198
1199 if (LangOpts.PCHInstantiateTemplates) {
1200 llvm::TimeTraceScope TimeScope("PerformPendingInstantiations");
1201 PerformPendingInstantiations();
1202 }
1203 }
1204
1205 DiagnoseUnterminatedPragmaAlignPack();
1206 DiagnoseUnterminatedPragmaAttribute();
1207 OpenMP().DiagnoseUnterminatedOpenMPDeclareTarget();
1208
1209 // All delayed member exception specs should be checked or we end up accepting
1210 // incompatible declarations.
1211 assert(DelayedOverridingExceptionSpecChecks.empty());
1212 assert(DelayedEquivalentExceptionSpecChecks.empty());
1213
1214 // All dllexport classes should have been processed already.
1215 assert(DelayedDllExportClasses.empty());
1216 assert(DelayedDllExportMemberFunctions.empty());
1217
1218 // Remove file scoped decls that turned out to be used.
1219 UnusedFileScopedDecls.erase(
1220 std::remove_if(UnusedFileScopedDecls.begin(nullptr, true),
1221 UnusedFileScopedDecls.end(),
1222 [this](const DeclaratorDecl *DD) {
1223 return ShouldRemoveFromUnused(this, DD);
1224 }),
1225 UnusedFileScopedDecls.end());
1226
1227 if (TUKind == TU_Prefix) {
1228 // Translation unit prefixes don't need any of the checking below.
1229 if (!PP.isIncrementalProcessingEnabled())
1230 TUScope = nullptr;
1231 return;
1232 }
1233
1234 // Check for #pragma weak identifiers that were never declared
1235 LoadExternalWeakUndeclaredIdentifiers();
1236 for (const auto &WeakIDs : WeakUndeclaredIdentifiers) {
1237 if (WeakIDs.second.empty())
1238 continue;
1239
1240 Decl *PrevDecl = LookupSingleName(TUScope, WeakIDs.first, SourceLocation(),
1241 LookupOrdinaryName);
1242 if (PrevDecl != nullptr &&
1243 !(isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl)))
1244 for (const auto &WI : WeakIDs.second)
1245 Diag(WI.getLocation(), diag::warn_attribute_wrong_decl_type)
1246 << "'weak'" << /*isRegularKeyword=*/0 << ExpectedVariableOrFunction;
1247 else
1248 for (const auto &WI : WeakIDs.second)
1249 Diag(WI.getLocation(), diag::warn_weak_identifier_undeclared)
1250 << WeakIDs.first;
1251 }
1252
1253 if (LangOpts.CPlusPlus11 &&
1254 !Diags.isIgnored(diag::warn_delegating_ctor_cycle, SourceLocation()))
1255 CheckDelegatingCtorCycles();
1256
1257 if (!Diags.hasErrorOccurred()) {
1258 if (ExternalSource)
1259 ExternalSource->ReadUndefinedButUsed(UndefinedButUsed);
1260 checkUndefinedButUsed(*this);
1261 }
1262
1263 // A global-module-fragment is only permitted within a module unit.
1264 if (!ModuleScopes.empty() && ModuleScopes.back().Module->Kind ==
1265 Module::ExplicitGlobalModuleFragment) {
1266 Diag(ModuleScopes.back().BeginLoc,
1267 diag::err_module_declaration_missing_after_global_module_introducer);
1268 }
1269
1270 // Now we can decide whether the modules we're building need an initializer.
1271 if (Module *CurrentModule = getCurrentModule();
1272 CurrentModule && CurrentModule->isInterfaceOrPartition()) {
1273 auto DoesModNeedInit = [this](Module *M) {
1274 if (!getASTContext().getModuleInitializers(M).empty())
1275 return true;
1276 for (auto [Exported, _] : M->Exports)
1277 if (Exported->isNamedModuleInterfaceHasInit())
1278 return true;
1279 for (Module *I : M->Imports)
1280 if (I->isNamedModuleInterfaceHasInit())
1281 return true;
1282
1283 return false;
1284 };
1285
1286 CurrentModule->NamedModuleHasInit =
1287 DoesModNeedInit(CurrentModule) ||
1288 llvm::any_of(CurrentModule->submodules(),
1289 [&](auto *SubM) { return DoesModNeedInit(SubM); });
1290 }
1291
1292 if (TUKind == TU_ClangModule) {
1293 // If we are building a module, resolve all of the exported declarations
1294 // now.
1295 if (Module *CurrentModule = PP.getCurrentModule()) {
1296 ModuleMap &ModMap = PP.getHeaderSearchInfo().getModuleMap();
1297
1298 SmallVector<Module *, 2> Stack;
1299 Stack.push_back(CurrentModule);
1300 while (!Stack.empty()) {
1301 Module *Mod = Stack.pop_back_val();
1302
1303 // Resolve the exported declarations and conflicts.
1304 // FIXME: Actually complain, once we figure out how to teach the
1305 // diagnostic client to deal with complaints in the module map at this
1306 // point.
1307 ModMap.resolveExports(Mod, /*Complain=*/false);
1308 ModMap.resolveUses(Mod, /*Complain=*/false);
1309 ModMap.resolveConflicts(Mod, /*Complain=*/false);
1310
1311 // Queue the submodules, so their exports will also be resolved.
1312 auto SubmodulesRange = Mod->submodules();
1313 Stack.append(SubmodulesRange.begin(), SubmodulesRange.end());
1314 }
1315 }
1316
1317 // Warnings emitted in ActOnEndOfTranslationUnit() should be emitted for
1318 // modules when they are built, not every time they are used.
1319 emitAndClearUnusedLocalTypedefWarnings();
1320 }
1321
1322 // C++ standard modules. Diagnose cases where a function is declared inline
1323 // in the module purview but has no definition before the end of the TU or
1324 // the start of a Private Module Fragment (if one is present).
1325 if (!PendingInlineFuncDecls.empty()) {
1326 for (auto *D : PendingInlineFuncDecls) {
1327 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1328 bool DefInPMF = false;
1329 if (auto *FDD = FD->getDefinition()) {
1330 DefInPMF = FDD->getOwningModule()->isPrivateModule();
1331 if (!DefInPMF)
1332 continue;
1333 }
1334 Diag(FD->getLocation(), diag::err_export_inline_not_defined)
1335 << DefInPMF;
1336 // If we have a PMF it should be at the end of the ModuleScopes.
1337 if (DefInPMF &&
1338 ModuleScopes.back().Module->Kind == Module::PrivateModuleFragment) {
1339 Diag(ModuleScopes.back().BeginLoc,
1340 diag::note_private_module_fragment);
1341 }
1342 }
1343 }
1344 PendingInlineFuncDecls.clear();
1345 }
1346
1347 // C99 6.9.2p2:
1348 // A declaration of an identifier for an object that has file
1349 // scope without an initializer, and without a storage-class
1350 // specifier or with the storage-class specifier static,
1351 // constitutes a tentative definition. If a translation unit
1352 // contains one or more tentative definitions for an identifier,
1353 // and the translation unit contains no external definition for
1354 // that identifier, then the behavior is exactly as if the
1355 // translation unit contains a file scope declaration of that
1356 // identifier, with the composite type as of the end of the
1357 // translation unit, with an initializer equal to 0.
1358 llvm::SmallSet<VarDecl *, 32> Seen;
1359 for (TentativeDefinitionsType::iterator
1360 T = TentativeDefinitions.begin(ExternalSource.get()),
1361 TEnd = TentativeDefinitions.end();
1362 T != TEnd; ++T) {
1363 VarDecl *VD = (*T)->getActingDefinition();
1364
1365 // If the tentative definition was completed, getActingDefinition() returns
1366 // null. If we've already seen this variable before, insert()'s second
1367 // return value is false.
1368 if (!VD || VD->isInvalidDecl() || !Seen.insert(VD).second)
1369 continue;
1370
1371 if (const IncompleteArrayType *ArrayT
1372 = Context.getAsIncompleteArrayType(VD->getType())) {
1373 // Set the length of the array to 1 (C99 6.9.2p5).
1374 Diag(VD->getLocation(), diag::warn_tentative_incomplete_array);
1375 llvm::APInt One(Context.getTypeSize(Context.getSizeType()), true);
1376 QualType T = Context.getConstantArrayType(
1377 ArrayT->getElementType(), One, nullptr, ArraySizeModifier::Normal, 0);
1378 VD->setType(T);
1379 } else if (RequireCompleteType(VD->getLocation(), VD->getType(),
1380 diag::err_tentative_def_incomplete_type))
1381 VD->setInvalidDecl();
1382
1383 // No initialization is performed for a tentative definition.
1384 CheckCompleteVariableDeclaration(VD);
1385
1386 // Notify the consumer that we've completed a tentative definition.
1387 if (!VD->isInvalidDecl())
1388 Consumer.CompleteTentativeDefinition(VD);
1389 }
1390
1391 for (auto *D : ExternalDeclarations) {
1392 if (!D || D->isInvalidDecl() || D->getPreviousDecl() || !D->isUsed())
1393 continue;
1394
1395 Consumer.CompleteExternalDeclaration(D);
1396 }
1397
1398 if (LangOpts.HLSL)
1399 HLSL().DiagnoseAvailabilityViolations(
1400 getASTContext().getTranslationUnitDecl());
1401
1402 // If there were errors, disable 'unused' warnings since they will mostly be
1403 // noise. Don't warn for a use from a module: either we should warn on all
1404 // file-scope declarations in modules or not at all, but whether the
1405 // declaration is used is immaterial.
1406 if (!Diags.hasErrorOccurred() && TUKind != TU_ClangModule) {
1407 // Output warning for unused file scoped decls.
1408 for (UnusedFileScopedDeclsType::iterator
1409 I = UnusedFileScopedDecls.begin(ExternalSource.get()),
1410 E = UnusedFileScopedDecls.end();
1411 I != E; ++I) {
1412 if (ShouldRemoveFromUnused(this, *I))
1413 continue;
1414
1415 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
1416 const FunctionDecl *DiagD;
1417 if (!FD->hasBody(DiagD))
1418 DiagD = FD;
1419 if (DiagD->isDeleted())
1420 continue; // Deleted functions are supposed to be unused.
1421 SourceRange DiagRange = DiagD->getLocation();
1422 if (const ASTTemplateArgumentListInfo *ASTTAL =
1423 DiagD->getTemplateSpecializationArgsAsWritten())
1424 DiagRange.setEnd(ASTTAL->RAngleLoc);
1425 if (DiagD->isReferenced()) {
1426 if (isa<CXXMethodDecl>(DiagD))
1427 Diag(DiagD->getLocation(), diag::warn_unneeded_member_function)
1428 << DiagD << DiagRange;
1429 else {
1430 if (FD->getStorageClass() == SC_Static &&
1431 !FD->isInlineSpecified() &&
1432 !SourceMgr.isInMainFile(
1433 SourceMgr.getExpansionLoc(FD->getLocation())))
1434 Diag(DiagD->getLocation(),
1435 diag::warn_unneeded_static_internal_decl)
1436 << DiagD << DiagRange;
1437 else
1438 Diag(DiagD->getLocation(), diag::warn_unneeded_internal_decl)
1439 << /*function=*/0 << DiagD << DiagRange;
1440 }
1441 } else if (!FD->isTargetMultiVersion() ||
1442 FD->isTargetMultiVersionDefault()) {
1443 if (FD->getDescribedFunctionTemplate())
1444 Diag(DiagD->getLocation(), diag::warn_unused_template)
1445 << /*function=*/0 << DiagD << DiagRange;
1446 else
1447 Diag(DiagD->getLocation(), isa<CXXMethodDecl>(DiagD)
1448 ? diag::warn_unused_member_function
1449 : diag::warn_unused_function)
1450 << DiagD << DiagRange;
1451 }
1452 } else {
1453 const VarDecl *DiagD = cast<VarDecl>(*I)->getDefinition();
1454 if (!DiagD)
1455 DiagD = cast<VarDecl>(*I);
1456 SourceRange DiagRange = DiagD->getLocation();
1457 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(DiagD)) {
1458 if (const ASTTemplateArgumentListInfo *ASTTAL =
1459 VTSD->getTemplateArgsAsWritten())
1460 DiagRange.setEnd(ASTTAL->RAngleLoc);
1461 }
1462 if (DiagD->isReferenced()) {
1463 Diag(DiagD->getLocation(), diag::warn_unneeded_internal_decl)
1464 << /*variable=*/1 << DiagD << DiagRange;
1465 } else if (DiagD->getDescribedVarTemplate()) {
1466 Diag(DiagD->getLocation(), diag::warn_unused_template)
1467 << /*variable=*/1 << DiagD << DiagRange;
1468 } else if (DiagD->getType().isConstQualified()) {
1469 const SourceManager &SM = SourceMgr;
1470 if (SM.getMainFileID() != SM.getFileID(DiagD->getLocation()) ||
1471 !PP.getLangOpts().IsHeaderFile)
1472 Diag(DiagD->getLocation(), diag::warn_unused_const_variable)
1473 << DiagD << DiagRange;
1474 } else {
1475 Diag(DiagD->getLocation(), diag::warn_unused_variable)
1476 << DiagD << DiagRange;
1477 }
1478 }
1479 }
1480
1481 emitAndClearUnusedLocalTypedefWarnings();
1482 }
1483
1484 if (!Diags.isIgnored(diag::warn_unused_private_field, SourceLocation())) {
1485 // FIXME: Load additional unused private field candidates from the external
1486 // source.
1487 RecordCompleteMap RecordsComplete;
1488 RecordCompleteMap MNCComplete;
1489 for (const NamedDecl *D : UnusedPrivateFields) {
1490 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext());
1491 if (RD && !RD->isUnion() &&
1492 IsRecordFullyDefined(RD, RecordsComplete, MNCComplete)) {
1493 Diag(D->getLocation(), diag::warn_unused_private_field)
1494 << D->getDeclName();
1495 }
1496 }
1497 }
1498
1499 if (!Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) {
1500 if (ExternalSource)
1501 ExternalSource->ReadMismatchingDeleteExpressions(DeleteExprs);
1502 for (const auto &DeletedFieldInfo : DeleteExprs) {
1503 for (const auto &DeleteExprLoc : DeletedFieldInfo.second) {
1504 AnalyzeDeleteExprMismatch(DeletedFieldInfo.first, DeleteExprLoc.first,
1505 DeleteExprLoc.second);
1506 }
1507 }
1508 }
1509
1510 AnalysisWarnings.IssueWarnings(Context.getTranslationUnitDecl());
1511
1512 // Check we've noticed that we're no longer parsing the initializer for every
1513 // variable. If we miss cases, then at best we have a performance issue and
1514 // at worst a rejects-valid bug.
1515 assert(ParsingInitForAutoVars.empty() &&
1516 "Didn't unmark var as having its initializer parsed");
1517
1518 if (!PP.isIncrementalProcessingEnabled())
1519 TUScope = nullptr;
1520 }
1521
1522
1523 //===----------------------------------------------------------------------===//
1524 // Helper functions.
1525 //===----------------------------------------------------------------------===//
1526
getFunctionLevelDeclContext(bool AllowLambda) const1527 DeclContext *Sema::getFunctionLevelDeclContext(bool AllowLambda) const {
1528 DeclContext *DC = CurContext;
1529
1530 while (true) {
1531 if (isa<BlockDecl>(DC) || isa<EnumDecl>(DC) || isa<CapturedDecl>(DC) ||
1532 isa<RequiresExprBodyDecl>(DC)) {
1533 DC = DC->getParent();
1534 } else if (!AllowLambda && isa<CXXMethodDecl>(DC) &&
1535 cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
1536 cast<CXXRecordDecl>(DC->getParent())->isLambda()) {
1537 DC = DC->getParent()->getParent();
1538 } else break;
1539 }
1540
1541 return DC;
1542 }
1543
1544 /// getCurFunctionDecl - If inside of a function body, this returns a pointer
1545 /// to the function decl for the function being parsed. If we're currently
1546 /// in a 'block', this returns the containing context.
getCurFunctionDecl(bool AllowLambda) const1547 FunctionDecl *Sema::getCurFunctionDecl(bool AllowLambda) const {
1548 DeclContext *DC = getFunctionLevelDeclContext(AllowLambda);
1549 return dyn_cast<FunctionDecl>(DC);
1550 }
1551
getCurMethodDecl()1552 ObjCMethodDecl *Sema::getCurMethodDecl() {
1553 DeclContext *DC = getFunctionLevelDeclContext();
1554 while (isa<RecordDecl>(DC))
1555 DC = DC->getParent();
1556 return dyn_cast<ObjCMethodDecl>(DC);
1557 }
1558
getCurFunctionOrMethodDecl() const1559 NamedDecl *Sema::getCurFunctionOrMethodDecl() const {
1560 DeclContext *DC = getFunctionLevelDeclContext();
1561 if (isa<ObjCMethodDecl>(DC) || isa<FunctionDecl>(DC))
1562 return cast<NamedDecl>(DC);
1563 return nullptr;
1564 }
1565
getDefaultCXXMethodAddrSpace() const1566 LangAS Sema::getDefaultCXXMethodAddrSpace() const {
1567 if (getLangOpts().OpenCL)
1568 return getASTContext().getDefaultOpenCLPointeeAddrSpace();
1569 return LangAS::Default;
1570 }
1571
EmitCurrentDiagnostic(unsigned DiagID)1572 void Sema::EmitCurrentDiagnostic(unsigned DiagID) {
1573 // FIXME: It doesn't make sense to me that DiagID is an incoming argument here
1574 // and yet we also use the current diag ID on the DiagnosticsEngine. This has
1575 // been made more painfully obvious by the refactor that introduced this
1576 // function, but it is possible that the incoming argument can be
1577 // eliminated. If it truly cannot be (for example, there is some reentrancy
1578 // issue I am not seeing yet), then there should at least be a clarifying
1579 // comment somewhere.
1580 if (std::optional<TemplateDeductionInfo *> Info = isSFINAEContext()) {
1581 switch (DiagnosticIDs::getDiagnosticSFINAEResponse(
1582 Diags.getCurrentDiagID())) {
1583 case DiagnosticIDs::SFINAE_Report:
1584 // We'll report the diagnostic below.
1585 break;
1586
1587 case DiagnosticIDs::SFINAE_SubstitutionFailure:
1588 // Count this failure so that we know that template argument deduction
1589 // has failed.
1590 ++NumSFINAEErrors;
1591
1592 // Make a copy of this suppressed diagnostic and store it with the
1593 // template-deduction information.
1594 if (*Info && !(*Info)->hasSFINAEDiagnostic()) {
1595 Diagnostic DiagInfo(&Diags);
1596 (*Info)->addSFINAEDiagnostic(DiagInfo.getLocation(),
1597 PartialDiagnostic(DiagInfo, Context.getDiagAllocator()));
1598 }
1599
1600 Diags.setLastDiagnosticIgnored(true);
1601 Diags.Clear();
1602 return;
1603
1604 case DiagnosticIDs::SFINAE_AccessControl: {
1605 // Per C++ Core Issue 1170, access control is part of SFINAE.
1606 // Additionally, the AccessCheckingSFINAE flag can be used to temporarily
1607 // make access control a part of SFINAE for the purposes of checking
1608 // type traits.
1609 if (!AccessCheckingSFINAE && !getLangOpts().CPlusPlus11)
1610 break;
1611
1612 SourceLocation Loc = Diags.getCurrentDiagLoc();
1613
1614 // Suppress this diagnostic.
1615 ++NumSFINAEErrors;
1616
1617 // Make a copy of this suppressed diagnostic and store it with the
1618 // template-deduction information.
1619 if (*Info && !(*Info)->hasSFINAEDiagnostic()) {
1620 Diagnostic DiagInfo(&Diags);
1621 (*Info)->addSFINAEDiagnostic(DiagInfo.getLocation(),
1622 PartialDiagnostic(DiagInfo, Context.getDiagAllocator()));
1623 }
1624
1625 Diags.setLastDiagnosticIgnored(true);
1626 Diags.Clear();
1627
1628 // Now the diagnostic state is clear, produce a C++98 compatibility
1629 // warning.
1630 Diag(Loc, diag::warn_cxx98_compat_sfinae_access_control);
1631
1632 // The last diagnostic which Sema produced was ignored. Suppress any
1633 // notes attached to it.
1634 Diags.setLastDiagnosticIgnored(true);
1635 return;
1636 }
1637
1638 case DiagnosticIDs::SFINAE_Suppress:
1639 // Make a copy of this suppressed diagnostic and store it with the
1640 // template-deduction information;
1641 if (*Info) {
1642 Diagnostic DiagInfo(&Diags);
1643 (*Info)->addSuppressedDiagnostic(DiagInfo.getLocation(),
1644 PartialDiagnostic(DiagInfo, Context.getDiagAllocator()));
1645 }
1646
1647 // Suppress this diagnostic.
1648 Diags.setLastDiagnosticIgnored(true);
1649 Diags.Clear();
1650 return;
1651 }
1652 }
1653
1654 // Copy the diagnostic printing policy over the ASTContext printing policy.
1655 // TODO: Stop doing that. See: https://reviews.llvm.org/D45093#1090292
1656 Context.setPrintingPolicy(getPrintingPolicy());
1657
1658 // Emit the diagnostic.
1659 if (!Diags.EmitCurrentDiagnostic())
1660 return;
1661
1662 // If this is not a note, and we're in a template instantiation
1663 // that is different from the last template instantiation where
1664 // we emitted an error, print a template instantiation
1665 // backtrace.
1666 if (!DiagnosticIDs::isBuiltinNote(DiagID))
1667 PrintContextStack();
1668 }
1669
hasUncompilableErrorOccurred() const1670 bool Sema::hasUncompilableErrorOccurred() const {
1671 if (getDiagnostics().hasUncompilableErrorOccurred())
1672 return true;
1673 auto *FD = dyn_cast<FunctionDecl>(CurContext);
1674 if (!FD)
1675 return false;
1676 auto Loc = DeviceDeferredDiags.find(FD);
1677 if (Loc == DeviceDeferredDiags.end())
1678 return false;
1679 for (auto PDAt : Loc->second) {
1680 if (DiagnosticIDs::isDefaultMappingAsError(PDAt.second.getDiagID()))
1681 return true;
1682 }
1683 return false;
1684 }
1685
1686 // Print notes showing how we can reach FD starting from an a priori
1687 // known-callable function.
emitCallStackNotes(Sema & S,const FunctionDecl * FD)1688 static void emitCallStackNotes(Sema &S, const FunctionDecl *FD) {
1689 auto FnIt = S.CUDA().DeviceKnownEmittedFns.find(FD);
1690 while (FnIt != S.CUDA().DeviceKnownEmittedFns.end()) {
1691 // Respect error limit.
1692 if (S.Diags.hasFatalErrorOccurred())
1693 return;
1694 DiagnosticBuilder Builder(
1695 S.Diags.Report(FnIt->second.Loc, diag::note_called_by));
1696 Builder << FnIt->second.FD;
1697 FnIt = S.CUDA().DeviceKnownEmittedFns.find(FnIt->second.FD);
1698 }
1699 }
1700
1701 namespace {
1702
1703 /// Helper class that emits deferred diagnostic messages if an entity directly
1704 /// or indirectly using the function that causes the deferred diagnostic
1705 /// messages is known to be emitted.
1706 ///
1707 /// During parsing of AST, certain diagnostic messages are recorded as deferred
1708 /// diagnostics since it is unknown whether the functions containing such
1709 /// diagnostics will be emitted. A list of potentially emitted functions and
1710 /// variables that may potentially trigger emission of functions are also
1711 /// recorded. DeferredDiagnosticsEmitter recursively visits used functions
1712 /// by each function to emit deferred diagnostics.
1713 ///
1714 /// During the visit, certain OpenMP directives or initializer of variables
1715 /// with certain OpenMP attributes will cause subsequent visiting of any
1716 /// functions enter a state which is called OpenMP device context in this
1717 /// implementation. The state is exited when the directive or initializer is
1718 /// exited. This state can change the emission states of subsequent uses
1719 /// of functions.
1720 ///
1721 /// Conceptually the functions or variables to be visited form a use graph
1722 /// where the parent node uses the child node. At any point of the visit,
1723 /// the tree nodes traversed from the tree root to the current node form a use
1724 /// stack. The emission state of the current node depends on two factors:
1725 /// 1. the emission state of the root node
1726 /// 2. whether the current node is in OpenMP device context
1727 /// If the function is decided to be emitted, its contained deferred diagnostics
1728 /// are emitted, together with the information about the use stack.
1729 ///
1730 class DeferredDiagnosticsEmitter
1731 : public UsedDeclVisitor<DeferredDiagnosticsEmitter> {
1732 public:
1733 typedef UsedDeclVisitor<DeferredDiagnosticsEmitter> Inherited;
1734
1735 // Whether the function is already in the current use-path.
1736 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 4> InUsePath;
1737
1738 // The current use-path.
1739 llvm::SmallVector<CanonicalDeclPtr<FunctionDecl>, 4> UsePath;
1740
1741 // Whether the visiting of the function has been done. Done[0] is for the
1742 // case not in OpenMP device context. Done[1] is for the case in OpenMP
1743 // device context. We need two sets because diagnostics emission may be
1744 // different depending on whether it is in OpenMP device context.
1745 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 4> DoneMap[2];
1746
1747 // Emission state of the root node of the current use graph.
1748 bool ShouldEmitRootNode;
1749
1750 // Current OpenMP device context level. It is initialized to 0 and each
1751 // entering of device context increases it by 1 and each exit decreases
1752 // it by 1. Non-zero value indicates it is currently in device context.
1753 unsigned InOMPDeviceContext;
1754
DeferredDiagnosticsEmitter(Sema & S)1755 DeferredDiagnosticsEmitter(Sema &S)
1756 : Inherited(S), ShouldEmitRootNode(false), InOMPDeviceContext(0) {}
1757
shouldVisitDiscardedStmt() const1758 bool shouldVisitDiscardedStmt() const { return false; }
1759
VisitOMPTargetDirective(OMPTargetDirective * Node)1760 void VisitOMPTargetDirective(OMPTargetDirective *Node) {
1761 ++InOMPDeviceContext;
1762 Inherited::VisitOMPTargetDirective(Node);
1763 --InOMPDeviceContext;
1764 }
1765
visitUsedDecl(SourceLocation Loc,Decl * D)1766 void visitUsedDecl(SourceLocation Loc, Decl *D) {
1767 if (isa<VarDecl>(D))
1768 return;
1769 if (auto *FD = dyn_cast<FunctionDecl>(D))
1770 checkFunc(Loc, FD);
1771 else
1772 Inherited::visitUsedDecl(Loc, D);
1773 }
1774
checkVar(VarDecl * VD)1775 void checkVar(VarDecl *VD) {
1776 assert(VD->isFileVarDecl() &&
1777 "Should only check file-scope variables");
1778 if (auto *Init = VD->getInit()) {
1779 auto DevTy = OMPDeclareTargetDeclAttr::getDeviceType(VD);
1780 bool IsDev = DevTy && (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost ||
1781 *DevTy == OMPDeclareTargetDeclAttr::DT_Any);
1782 if (IsDev)
1783 ++InOMPDeviceContext;
1784 this->Visit(Init);
1785 if (IsDev)
1786 --InOMPDeviceContext;
1787 }
1788 }
1789
checkFunc(SourceLocation Loc,FunctionDecl * FD)1790 void checkFunc(SourceLocation Loc, FunctionDecl *FD) {
1791 auto &Done = DoneMap[InOMPDeviceContext > 0 ? 1 : 0];
1792 FunctionDecl *Caller = UsePath.empty() ? nullptr : UsePath.back();
1793 if ((!ShouldEmitRootNode && !S.getLangOpts().OpenMP && !Caller) ||
1794 S.shouldIgnoreInHostDeviceCheck(FD) || InUsePath.count(FD))
1795 return;
1796 // Finalize analysis of OpenMP-specific constructs.
1797 if (Caller && S.LangOpts.OpenMP && UsePath.size() == 1 &&
1798 (ShouldEmitRootNode || InOMPDeviceContext))
1799 S.OpenMP().finalizeOpenMPDelayedAnalysis(Caller, FD, Loc);
1800 if (Caller)
1801 S.CUDA().DeviceKnownEmittedFns[FD] = {Caller, Loc};
1802 // Always emit deferred diagnostics for the direct users. This does not
1803 // lead to explosion of diagnostics since each user is visited at most
1804 // twice.
1805 if (ShouldEmitRootNode || InOMPDeviceContext)
1806 emitDeferredDiags(FD, Caller);
1807 // Do not revisit a function if the function body has been completely
1808 // visited before.
1809 if (!Done.insert(FD).second)
1810 return;
1811 InUsePath.insert(FD);
1812 UsePath.push_back(FD);
1813 if (auto *S = FD->getBody()) {
1814 this->Visit(S);
1815 }
1816 UsePath.pop_back();
1817 InUsePath.erase(FD);
1818 }
1819
checkRecordedDecl(Decl * D)1820 void checkRecordedDecl(Decl *D) {
1821 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1822 ShouldEmitRootNode = S.getEmissionStatus(FD, /*Final=*/true) ==
1823 Sema::FunctionEmissionStatus::Emitted;
1824 checkFunc(SourceLocation(), FD);
1825 } else
1826 checkVar(cast<VarDecl>(D));
1827 }
1828
1829 // Emit any deferred diagnostics for FD
emitDeferredDiags(FunctionDecl * FD,bool ShowCallStack)1830 void emitDeferredDiags(FunctionDecl *FD, bool ShowCallStack) {
1831 auto It = S.DeviceDeferredDiags.find(FD);
1832 if (It == S.DeviceDeferredDiags.end())
1833 return;
1834 bool HasWarningOrError = false;
1835 bool FirstDiag = true;
1836 for (PartialDiagnosticAt &PDAt : It->second) {
1837 // Respect error limit.
1838 if (S.Diags.hasFatalErrorOccurred())
1839 return;
1840 const SourceLocation &Loc = PDAt.first;
1841 const PartialDiagnostic &PD = PDAt.second;
1842 HasWarningOrError |=
1843 S.getDiagnostics().getDiagnosticLevel(PD.getDiagID(), Loc) >=
1844 DiagnosticsEngine::Warning;
1845 {
1846 DiagnosticBuilder Builder(S.Diags.Report(Loc, PD.getDiagID()));
1847 PD.Emit(Builder);
1848 }
1849 // Emit the note on the first diagnostic in case too many diagnostics
1850 // cause the note not emitted.
1851 if (FirstDiag && HasWarningOrError && ShowCallStack) {
1852 emitCallStackNotes(S, FD);
1853 FirstDiag = false;
1854 }
1855 }
1856 }
1857 };
1858 } // namespace
1859
emitDeferredDiags()1860 void Sema::emitDeferredDiags() {
1861 if (ExternalSource)
1862 ExternalSource->ReadDeclsToCheckForDeferredDiags(
1863 DeclsToCheckForDeferredDiags);
1864
1865 if ((DeviceDeferredDiags.empty() && !LangOpts.OpenMP) ||
1866 DeclsToCheckForDeferredDiags.empty())
1867 return;
1868
1869 DeferredDiagnosticsEmitter DDE(*this);
1870 for (auto *D : DeclsToCheckForDeferredDiags)
1871 DDE.checkRecordedDecl(D);
1872 }
1873
1874 // In CUDA, there are some constructs which may appear in semantically-valid
1875 // code, but trigger errors if we ever generate code for the function in which
1876 // they appear. Essentially every construct you're not allowed to use on the
1877 // device falls into this category, because you are allowed to use these
1878 // constructs in a __host__ __device__ function, but only if that function is
1879 // never codegen'ed on the device.
1880 //
1881 // To handle semantic checking for these constructs, we keep track of the set of
1882 // functions we know will be emitted, either because we could tell a priori that
1883 // they would be emitted, or because they were transitively called by a
1884 // known-emitted function.
1885 //
1886 // We also keep a partial call graph of which not-known-emitted functions call
1887 // which other not-known-emitted functions.
1888 //
1889 // When we see something which is illegal if the current function is emitted
1890 // (usually by way of DiagIfDeviceCode, DiagIfHostCode, or
1891 // CheckCall), we first check if the current function is known-emitted. If
1892 // so, we immediately output the diagnostic.
1893 //
1894 // Otherwise, we "defer" the diagnostic. It sits in Sema::DeviceDeferredDiags
1895 // until we discover that the function is known-emitted, at which point we take
1896 // it out of this map and emit the diagnostic.
1897
SemaDiagnosticBuilder(Kind K,SourceLocation Loc,unsigned DiagID,const FunctionDecl * Fn,Sema & S)1898 Sema::SemaDiagnosticBuilder::SemaDiagnosticBuilder(Kind K, SourceLocation Loc,
1899 unsigned DiagID,
1900 const FunctionDecl *Fn,
1901 Sema &S)
1902 : S(S), Loc(Loc), DiagID(DiagID), Fn(Fn),
1903 ShowCallStack(K == K_ImmediateWithCallStack || K == K_Deferred) {
1904 switch (K) {
1905 case K_Nop:
1906 break;
1907 case K_Immediate:
1908 case K_ImmediateWithCallStack:
1909 ImmediateDiag.emplace(
1910 ImmediateDiagBuilder(S.Diags.Report(Loc, DiagID), S, DiagID));
1911 break;
1912 case K_Deferred:
1913 assert(Fn && "Must have a function to attach the deferred diag to.");
1914 auto &Diags = S.DeviceDeferredDiags[Fn];
1915 PartialDiagId.emplace(Diags.size());
1916 Diags.emplace_back(Loc, S.PDiag(DiagID));
1917 break;
1918 }
1919 }
1920
SemaDiagnosticBuilder(SemaDiagnosticBuilder && D)1921 Sema::SemaDiagnosticBuilder::SemaDiagnosticBuilder(SemaDiagnosticBuilder &&D)
1922 : S(D.S), Loc(D.Loc), DiagID(D.DiagID), Fn(D.Fn),
1923 ShowCallStack(D.ShowCallStack), ImmediateDiag(D.ImmediateDiag),
1924 PartialDiagId(D.PartialDiagId) {
1925 // Clean the previous diagnostics.
1926 D.ShowCallStack = false;
1927 D.ImmediateDiag.reset();
1928 D.PartialDiagId.reset();
1929 }
1930
~SemaDiagnosticBuilder()1931 Sema::SemaDiagnosticBuilder::~SemaDiagnosticBuilder() {
1932 if (ImmediateDiag) {
1933 // Emit our diagnostic and, if it was a warning or error, output a callstack
1934 // if Fn isn't a priori known-emitted.
1935 bool IsWarningOrError = S.getDiagnostics().getDiagnosticLevel(
1936 DiagID, Loc) >= DiagnosticsEngine::Warning;
1937 ImmediateDiag.reset(); // Emit the immediate diag.
1938 if (IsWarningOrError && ShowCallStack)
1939 emitCallStackNotes(S, Fn);
1940 } else {
1941 assert((!PartialDiagId || ShowCallStack) &&
1942 "Must always show call stack for deferred diags.");
1943 }
1944 }
1945
1946 Sema::SemaDiagnosticBuilder
targetDiag(SourceLocation Loc,unsigned DiagID,const FunctionDecl * FD)1947 Sema::targetDiag(SourceLocation Loc, unsigned DiagID, const FunctionDecl *FD) {
1948 FD = FD ? FD : getCurFunctionDecl();
1949 if (LangOpts.OpenMP)
1950 return LangOpts.OpenMPIsTargetDevice
1951 ? OpenMP().diagIfOpenMPDeviceCode(Loc, DiagID, FD)
1952 : OpenMP().diagIfOpenMPHostCode(Loc, DiagID, FD);
1953 if (getLangOpts().CUDA)
1954 return getLangOpts().CUDAIsDevice ? CUDA().DiagIfDeviceCode(Loc, DiagID)
1955 : CUDA().DiagIfHostCode(Loc, DiagID);
1956
1957 if (getLangOpts().SYCLIsDevice)
1958 return SYCL().DiagIfDeviceCode(Loc, DiagID);
1959
1960 return SemaDiagnosticBuilder(SemaDiagnosticBuilder::K_Immediate, Loc, DiagID,
1961 FD, *this);
1962 }
1963
checkTypeSupport(QualType Ty,SourceLocation Loc,ValueDecl * D)1964 void Sema::checkTypeSupport(QualType Ty, SourceLocation Loc, ValueDecl *D) {
1965 if (isUnevaluatedContext() || Ty.isNull())
1966 return;
1967
1968 // The original idea behind checkTypeSupport function is that unused
1969 // declarations can be replaced with an array of bytes of the same size during
1970 // codegen, such replacement doesn't seem to be possible for types without
1971 // constant byte size like zero length arrays. So, do a deep check for SYCL.
1972 if (D && LangOpts.SYCLIsDevice) {
1973 llvm::DenseSet<QualType> Visited;
1974 SYCL().deepTypeCheckForDevice(Loc, Visited, D);
1975 }
1976
1977 Decl *C = cast<Decl>(getCurLexicalContext());
1978
1979 // Memcpy operations for structs containing a member with unsupported type
1980 // are ok, though.
1981 if (const auto *MD = dyn_cast<CXXMethodDecl>(C)) {
1982 if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
1983 MD->isTrivial())
1984 return;
1985
1986 if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(MD))
1987 if (Ctor->isCopyOrMoveConstructor() && Ctor->isTrivial())
1988 return;
1989 }
1990
1991 // Try to associate errors with the lexical context, if that is a function, or
1992 // the value declaration otherwise.
1993 const FunctionDecl *FD = isa<FunctionDecl>(C)
1994 ? cast<FunctionDecl>(C)
1995 : dyn_cast_or_null<FunctionDecl>(D);
1996
1997 auto CheckDeviceType = [&](QualType Ty) {
1998 if (Ty->isDependentType())
1999 return;
2000
2001 if (Ty->isBitIntType()) {
2002 if (!Context.getTargetInfo().hasBitIntType()) {
2003 PartialDiagnostic PD = PDiag(diag::err_target_unsupported_type);
2004 if (D)
2005 PD << D;
2006 else
2007 PD << "expression";
2008 targetDiag(Loc, PD, FD)
2009 << false /*show bit size*/ << 0 /*bitsize*/ << false /*return*/
2010 << Ty << Context.getTargetInfo().getTriple().str();
2011 }
2012 return;
2013 }
2014
2015 // Check if we are dealing with two 'long double' but with different
2016 // semantics.
2017 bool LongDoubleMismatched = false;
2018 if (Ty->isRealFloatingType() && Context.getTypeSize(Ty) == 128) {
2019 const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(Ty);
2020 if ((&Sem != &llvm::APFloat::PPCDoubleDouble() &&
2021 !Context.getTargetInfo().hasFloat128Type()) ||
2022 (&Sem == &llvm::APFloat::PPCDoubleDouble() &&
2023 !Context.getTargetInfo().hasIbm128Type()))
2024 LongDoubleMismatched = true;
2025 }
2026
2027 if ((Ty->isFloat16Type() && !Context.getTargetInfo().hasFloat16Type()) ||
2028 (Ty->isFloat128Type() && !Context.getTargetInfo().hasFloat128Type()) ||
2029 (Ty->isIbm128Type() && !Context.getTargetInfo().hasIbm128Type()) ||
2030 (Ty->isIntegerType() && Context.getTypeSize(Ty) == 128 &&
2031 !Context.getTargetInfo().hasInt128Type()) ||
2032 (Ty->isBFloat16Type() && !Context.getTargetInfo().hasBFloat16Type() &&
2033 !LangOpts.CUDAIsDevice) ||
2034 LongDoubleMismatched) {
2035 PartialDiagnostic PD = PDiag(diag::err_target_unsupported_type);
2036 if (D)
2037 PD << D;
2038 else
2039 PD << "expression";
2040
2041 if (targetDiag(Loc, PD, FD)
2042 << true /*show bit size*/
2043 << static_cast<unsigned>(Context.getTypeSize(Ty)) << Ty
2044 << false /*return*/ << Context.getTargetInfo().getTriple().str()) {
2045 if (D)
2046 D->setInvalidDecl();
2047 }
2048 if (D)
2049 targetDiag(D->getLocation(), diag::note_defined_here, FD) << D;
2050 }
2051 };
2052
2053 auto CheckType = [&](QualType Ty, bool IsRetTy = false) {
2054 if (LangOpts.SYCLIsDevice ||
2055 (LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice) ||
2056 LangOpts.CUDAIsDevice)
2057 CheckDeviceType(Ty);
2058
2059 QualType UnqualTy = Ty.getCanonicalType().getUnqualifiedType();
2060 const TargetInfo &TI = Context.getTargetInfo();
2061 if (!TI.hasLongDoubleType() && UnqualTy == Context.LongDoubleTy) {
2062 PartialDiagnostic PD = PDiag(diag::err_target_unsupported_type);
2063 if (D)
2064 PD << D;
2065 else
2066 PD << "expression";
2067
2068 if (Diag(Loc, PD, FD)
2069 << false /*show bit size*/ << 0 << Ty << false /*return*/
2070 << TI.getTriple().str()) {
2071 if (D)
2072 D->setInvalidDecl();
2073 }
2074 if (D)
2075 targetDiag(D->getLocation(), diag::note_defined_here, FD) << D;
2076 }
2077
2078 bool IsDouble = UnqualTy == Context.DoubleTy;
2079 bool IsFloat = UnqualTy == Context.FloatTy;
2080 if (IsRetTy && !TI.hasFPReturn() && (IsDouble || IsFloat)) {
2081 PartialDiagnostic PD = PDiag(diag::err_target_unsupported_type);
2082 if (D)
2083 PD << D;
2084 else
2085 PD << "expression";
2086
2087 if (Diag(Loc, PD, FD)
2088 << false /*show bit size*/ << 0 << Ty << true /*return*/
2089 << TI.getTriple().str()) {
2090 if (D)
2091 D->setInvalidDecl();
2092 }
2093 if (D)
2094 targetDiag(D->getLocation(), diag::note_defined_here, FD) << D;
2095 }
2096
2097 if (TI.hasRISCVVTypes() && Ty->isRVVSizelessBuiltinType() && FD) {
2098 llvm::StringMap<bool> CallerFeatureMap;
2099 Context.getFunctionFeatureMap(CallerFeatureMap, FD);
2100 RISCV().checkRVVTypeSupport(Ty, Loc, D, CallerFeatureMap);
2101 }
2102
2103 // Don't allow SVE types in functions without a SVE target.
2104 if (Ty->isSVESizelessBuiltinType() && FD) {
2105 llvm::StringMap<bool> CallerFeatureMap;
2106 Context.getFunctionFeatureMap(CallerFeatureMap, FD);
2107 if (!Builtin::evaluateRequiredTargetFeatures("sve", CallerFeatureMap)) {
2108 if (!Builtin::evaluateRequiredTargetFeatures("sme", CallerFeatureMap))
2109 Diag(Loc, diag::err_sve_vector_in_non_sve_target) << Ty;
2110 else if (!IsArmStreamingFunction(FD,
2111 /*IncludeLocallyStreaming=*/true)) {
2112 Diag(Loc, diag::err_sve_vector_in_non_streaming_function) << Ty;
2113 }
2114 }
2115 }
2116 };
2117
2118 CheckType(Ty);
2119 if (const auto *FPTy = dyn_cast<FunctionProtoType>(Ty)) {
2120 for (const auto &ParamTy : FPTy->param_types())
2121 CheckType(ParamTy);
2122 CheckType(FPTy->getReturnType(), /*IsRetTy=*/true);
2123 }
2124 if (const auto *FNPTy = dyn_cast<FunctionNoProtoType>(Ty))
2125 CheckType(FNPTy->getReturnType(), /*IsRetTy=*/true);
2126 }
2127
findMacroSpelling(SourceLocation & locref,StringRef name)2128 bool Sema::findMacroSpelling(SourceLocation &locref, StringRef name) {
2129 SourceLocation loc = locref;
2130 if (!loc.isMacroID()) return false;
2131
2132 // There's no good way right now to look at the intermediate
2133 // expansions, so just jump to the expansion location.
2134 loc = getSourceManager().getExpansionLoc(loc);
2135
2136 // If that's written with the name, stop here.
2137 SmallString<16> buffer;
2138 if (getPreprocessor().getSpelling(loc, buffer) == name) {
2139 locref = loc;
2140 return true;
2141 }
2142 return false;
2143 }
2144
getScopeForContext(DeclContext * Ctx)2145 Scope *Sema::getScopeForContext(DeclContext *Ctx) {
2146
2147 if (!Ctx)
2148 return nullptr;
2149
2150 Ctx = Ctx->getPrimaryContext();
2151 for (Scope *S = getCurScope(); S; S = S->getParent()) {
2152 // Ignore scopes that cannot have declarations. This is important for
2153 // out-of-line definitions of static class members.
2154 if (S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope))
2155 if (DeclContext *Entity = S->getEntity())
2156 if (Ctx == Entity->getPrimaryContext())
2157 return S;
2158 }
2159
2160 return nullptr;
2161 }
2162
2163 /// Enter a new function scope
PushFunctionScope()2164 void Sema::PushFunctionScope() {
2165 if (FunctionScopes.empty() && CachedFunctionScope) {
2166 // Use CachedFunctionScope to avoid allocating memory when possible.
2167 CachedFunctionScope->Clear();
2168 FunctionScopes.push_back(CachedFunctionScope.release());
2169 } else {
2170 FunctionScopes.push_back(new FunctionScopeInfo(getDiagnostics()));
2171 }
2172 if (LangOpts.OpenMP)
2173 OpenMP().pushOpenMPFunctionRegion();
2174 }
2175
PushBlockScope(Scope * BlockScope,BlockDecl * Block)2176 void Sema::PushBlockScope(Scope *BlockScope, BlockDecl *Block) {
2177 FunctionScopes.push_back(new BlockScopeInfo(getDiagnostics(),
2178 BlockScope, Block));
2179 CapturingFunctionScopes++;
2180 }
2181
PushLambdaScope()2182 LambdaScopeInfo *Sema::PushLambdaScope() {
2183 LambdaScopeInfo *const LSI = new LambdaScopeInfo(getDiagnostics());
2184 FunctionScopes.push_back(LSI);
2185 CapturingFunctionScopes++;
2186 return LSI;
2187 }
2188
RecordParsingTemplateParameterDepth(unsigned Depth)2189 void Sema::RecordParsingTemplateParameterDepth(unsigned Depth) {
2190 if (LambdaScopeInfo *const LSI = getCurLambda()) {
2191 LSI->AutoTemplateParameterDepth = Depth;
2192 return;
2193 }
2194 llvm_unreachable(
2195 "Remove assertion if intentionally called in a non-lambda context.");
2196 }
2197
2198 // Check that the type of the VarDecl has an accessible copy constructor and
2199 // resolve its destructor's exception specification.
2200 // This also performs initialization of block variables when they are moved
2201 // to the heap. It uses the same rules as applicable for implicit moves
2202 // according to the C++ standard in effect ([class.copy.elision]p3).
checkEscapingByref(VarDecl * VD,Sema & S)2203 static void checkEscapingByref(VarDecl *VD, Sema &S) {
2204 QualType T = VD->getType();
2205 EnterExpressionEvaluationContext scope(
2206 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
2207 SourceLocation Loc = VD->getLocation();
2208 Expr *VarRef =
2209 new (S.Context) DeclRefExpr(S.Context, VD, false, T, VK_LValue, Loc);
2210 ExprResult Result;
2211 auto IE = InitializedEntity::InitializeBlock(Loc, T);
2212 if (S.getLangOpts().CPlusPlus23) {
2213 auto *E = ImplicitCastExpr::Create(S.Context, T, CK_NoOp, VarRef, nullptr,
2214 VK_XValue, FPOptionsOverride());
2215 Result = S.PerformCopyInitialization(IE, SourceLocation(), E);
2216 } else {
2217 Result = S.PerformMoveOrCopyInitialization(
2218 IE, Sema::NamedReturnInfo{VD, Sema::NamedReturnInfo::MoveEligible},
2219 VarRef);
2220 }
2221
2222 if (!Result.isInvalid()) {
2223 Result = S.MaybeCreateExprWithCleanups(Result);
2224 Expr *Init = Result.getAs<Expr>();
2225 S.Context.setBlockVarCopyInit(VD, Init, S.canThrow(Init));
2226 }
2227
2228 // The destructor's exception specification is needed when IRGen generates
2229 // block copy/destroy functions. Resolve it here.
2230 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2231 if (CXXDestructorDecl *DD = RD->getDestructor()) {
2232 auto *FPT = DD->getType()->castAs<FunctionProtoType>();
2233 S.ResolveExceptionSpec(Loc, FPT);
2234 }
2235 }
2236
markEscapingByrefs(const FunctionScopeInfo & FSI,Sema & S)2237 static void markEscapingByrefs(const FunctionScopeInfo &FSI, Sema &S) {
2238 // Set the EscapingByref flag of __block variables captured by
2239 // escaping blocks.
2240 for (const BlockDecl *BD : FSI.Blocks) {
2241 for (const BlockDecl::Capture &BC : BD->captures()) {
2242 VarDecl *VD = BC.getVariable();
2243 if (VD->hasAttr<BlocksAttr>()) {
2244 // Nothing to do if this is a __block variable captured by a
2245 // non-escaping block.
2246 if (BD->doesNotEscape())
2247 continue;
2248 VD->setEscapingByref();
2249 }
2250 // Check whether the captured variable is or contains an object of
2251 // non-trivial C union type.
2252 QualType CapType = BC.getVariable()->getType();
2253 if (CapType.hasNonTrivialToPrimitiveDestructCUnion() ||
2254 CapType.hasNonTrivialToPrimitiveCopyCUnion())
2255 S.checkNonTrivialCUnion(BC.getVariable()->getType(),
2256 BD->getCaretLocation(),
2257 Sema::NTCUC_BlockCapture,
2258 Sema::NTCUK_Destruct|Sema::NTCUK_Copy);
2259 }
2260 }
2261
2262 for (VarDecl *VD : FSI.ByrefBlockVars) {
2263 // __block variables might require us to capture a copy-initializer.
2264 if (!VD->isEscapingByref())
2265 continue;
2266 // It's currently invalid to ever have a __block variable with an
2267 // array type; should we diagnose that here?
2268 // Regardless, we don't want to ignore array nesting when
2269 // constructing this copy.
2270 if (VD->getType()->isStructureOrClassType())
2271 checkEscapingByref(VD, S);
2272 }
2273 }
2274
2275 Sema::PoppedFunctionScopePtr
PopFunctionScopeInfo(const AnalysisBasedWarnings::Policy * WP,const Decl * D,QualType BlockType)2276 Sema::PopFunctionScopeInfo(const AnalysisBasedWarnings::Policy *WP,
2277 const Decl *D, QualType BlockType) {
2278 assert(!FunctionScopes.empty() && "mismatched push/pop!");
2279
2280 markEscapingByrefs(*FunctionScopes.back(), *this);
2281
2282 PoppedFunctionScopePtr Scope(FunctionScopes.pop_back_val(),
2283 PoppedFunctionScopeDeleter(this));
2284
2285 if (LangOpts.OpenMP)
2286 OpenMP().popOpenMPFunctionRegion(Scope.get());
2287
2288 // Issue any analysis-based warnings.
2289 if (WP && D)
2290 AnalysisWarnings.IssueWarnings(*WP, Scope.get(), D, BlockType);
2291 else
2292 for (const auto &PUD : Scope->PossiblyUnreachableDiags)
2293 Diag(PUD.Loc, PUD.PD);
2294
2295 return Scope;
2296 }
2297
2298 void Sema::PoppedFunctionScopeDeleter::
operator ()(sema::FunctionScopeInfo * Scope) const2299 operator()(sema::FunctionScopeInfo *Scope) const {
2300 if (!Scope->isPlainFunction())
2301 Self->CapturingFunctionScopes--;
2302 // Stash the function scope for later reuse if it's for a normal function.
2303 if (Scope->isPlainFunction() && !Self->CachedFunctionScope)
2304 Self->CachedFunctionScope.reset(Scope);
2305 else
2306 delete Scope;
2307 }
2308
PushCompoundScope(bool IsStmtExpr)2309 void Sema::PushCompoundScope(bool IsStmtExpr) {
2310 getCurFunction()->CompoundScopes.push_back(
2311 CompoundScopeInfo(IsStmtExpr, getCurFPFeatures()));
2312 }
2313
PopCompoundScope()2314 void Sema::PopCompoundScope() {
2315 FunctionScopeInfo *CurFunction = getCurFunction();
2316 assert(!CurFunction->CompoundScopes.empty() && "mismatched push/pop");
2317
2318 CurFunction->CompoundScopes.pop_back();
2319 }
2320
hasAnyUnrecoverableErrorsInThisFunction() const2321 bool Sema::hasAnyUnrecoverableErrorsInThisFunction() const {
2322 return getCurFunction()->hasUnrecoverableErrorOccurred();
2323 }
2324
setFunctionHasBranchIntoScope()2325 void Sema::setFunctionHasBranchIntoScope() {
2326 if (!FunctionScopes.empty())
2327 FunctionScopes.back()->setHasBranchIntoScope();
2328 }
2329
setFunctionHasBranchProtectedScope()2330 void Sema::setFunctionHasBranchProtectedScope() {
2331 if (!FunctionScopes.empty())
2332 FunctionScopes.back()->setHasBranchProtectedScope();
2333 }
2334
setFunctionHasIndirectGoto()2335 void Sema::setFunctionHasIndirectGoto() {
2336 if (!FunctionScopes.empty())
2337 FunctionScopes.back()->setHasIndirectGoto();
2338 }
2339
setFunctionHasMustTail()2340 void Sema::setFunctionHasMustTail() {
2341 if (!FunctionScopes.empty())
2342 FunctionScopes.back()->setHasMustTail();
2343 }
2344
getCurBlock()2345 BlockScopeInfo *Sema::getCurBlock() {
2346 if (FunctionScopes.empty())
2347 return nullptr;
2348
2349 auto CurBSI = dyn_cast<BlockScopeInfo>(FunctionScopes.back());
2350 if (CurBSI && CurBSI->TheDecl &&
2351 !CurBSI->TheDecl->Encloses(CurContext)) {
2352 // We have switched contexts due to template instantiation.
2353 assert(!CodeSynthesisContexts.empty());
2354 return nullptr;
2355 }
2356
2357 return CurBSI;
2358 }
2359
getEnclosingFunction() const2360 FunctionScopeInfo *Sema::getEnclosingFunction() const {
2361 if (FunctionScopes.empty())
2362 return nullptr;
2363
2364 for (int e = FunctionScopes.size() - 1; e >= 0; --e) {
2365 if (isa<sema::BlockScopeInfo>(FunctionScopes[e]))
2366 continue;
2367 return FunctionScopes[e];
2368 }
2369 return nullptr;
2370 }
2371
getEnclosingLambda() const2372 LambdaScopeInfo *Sema::getEnclosingLambda() const {
2373 for (auto *Scope : llvm::reverse(FunctionScopes)) {
2374 if (auto *LSI = dyn_cast<sema::LambdaScopeInfo>(Scope)) {
2375 if (LSI->Lambda && !LSI->Lambda->Encloses(CurContext) &&
2376 LSI->AfterParameterList) {
2377 // We have switched contexts due to template instantiation.
2378 // FIXME: We should swap out the FunctionScopes during code synthesis
2379 // so that we don't need to check for this.
2380 assert(!CodeSynthesisContexts.empty());
2381 return nullptr;
2382 }
2383 return LSI;
2384 }
2385 }
2386 return nullptr;
2387 }
2388
getCurLambda(bool IgnoreNonLambdaCapturingScope)2389 LambdaScopeInfo *Sema::getCurLambda(bool IgnoreNonLambdaCapturingScope) {
2390 if (FunctionScopes.empty())
2391 return nullptr;
2392
2393 auto I = FunctionScopes.rbegin();
2394 if (IgnoreNonLambdaCapturingScope) {
2395 auto E = FunctionScopes.rend();
2396 while (I != E && isa<CapturingScopeInfo>(*I) && !isa<LambdaScopeInfo>(*I))
2397 ++I;
2398 if (I == E)
2399 return nullptr;
2400 }
2401 auto *CurLSI = dyn_cast<LambdaScopeInfo>(*I);
2402 if (CurLSI && CurLSI->Lambda && CurLSI->CallOperator &&
2403 !CurLSI->Lambda->Encloses(CurContext) && CurLSI->AfterParameterList) {
2404 // We have switched contexts due to template instantiation.
2405 assert(!CodeSynthesisContexts.empty());
2406 return nullptr;
2407 }
2408
2409 return CurLSI;
2410 }
2411
2412 // We have a generic lambda if we parsed auto parameters, or we have
2413 // an associated template parameter list.
getCurGenericLambda()2414 LambdaScopeInfo *Sema::getCurGenericLambda() {
2415 if (LambdaScopeInfo *LSI = getCurLambda()) {
2416 return (LSI->TemplateParams.size() ||
2417 LSI->GLTemplateParameterList) ? LSI : nullptr;
2418 }
2419 return nullptr;
2420 }
2421
2422
ActOnComment(SourceRange Comment)2423 void Sema::ActOnComment(SourceRange Comment) {
2424 if (!LangOpts.RetainCommentsFromSystemHeaders &&
2425 SourceMgr.isInSystemHeader(Comment.getBegin()))
2426 return;
2427 RawComment RC(SourceMgr, Comment, LangOpts.CommentOpts, false);
2428 if (RC.isAlmostTrailingComment() || RC.hasUnsupportedSplice(SourceMgr)) {
2429 SourceRange MagicMarkerRange(Comment.getBegin(),
2430 Comment.getBegin().getLocWithOffset(3));
2431 StringRef MagicMarkerText;
2432 switch (RC.getKind()) {
2433 case RawComment::RCK_OrdinaryBCPL:
2434 MagicMarkerText = "///<";
2435 break;
2436 case RawComment::RCK_OrdinaryC:
2437 MagicMarkerText = "/**<";
2438 break;
2439 case RawComment::RCK_Invalid:
2440 // FIXME: are there other scenarios that could produce an invalid
2441 // raw comment here?
2442 Diag(Comment.getBegin(), diag::warn_splice_in_doxygen_comment);
2443 return;
2444 default:
2445 llvm_unreachable("if this is an almost Doxygen comment, "
2446 "it should be ordinary");
2447 }
2448 Diag(Comment.getBegin(), diag::warn_not_a_doxygen_trailing_member_comment) <<
2449 FixItHint::CreateReplacement(MagicMarkerRange, MagicMarkerText);
2450 }
2451 Context.addComment(RC);
2452 }
2453
2454 // Pin this vtable to this file.
~ExternalSemaSource()2455 ExternalSemaSource::~ExternalSemaSource() {}
2456 char ExternalSemaSource::ID;
2457
ReadMethodPool(Selector Sel)2458 void ExternalSemaSource::ReadMethodPool(Selector Sel) { }
updateOutOfDateSelector(Selector Sel)2459 void ExternalSemaSource::updateOutOfDateSelector(Selector Sel) { }
2460
ReadKnownNamespaces(SmallVectorImpl<NamespaceDecl * > & Namespaces)2461 void ExternalSemaSource::ReadKnownNamespaces(
2462 SmallVectorImpl<NamespaceDecl *> &Namespaces) {
2463 }
2464
ReadUndefinedButUsed(llvm::MapVector<NamedDecl *,SourceLocation> & Undefined)2465 void ExternalSemaSource::ReadUndefinedButUsed(
2466 llvm::MapVector<NamedDecl *, SourceLocation> &Undefined) {}
2467
ReadMismatchingDeleteExpressions(llvm::MapVector<FieldDecl *,llvm::SmallVector<std::pair<SourceLocation,bool>,4>> &)2468 void ExternalSemaSource::ReadMismatchingDeleteExpressions(llvm::MapVector<
2469 FieldDecl *, llvm::SmallVector<std::pair<SourceLocation, bool>, 4>> &) {}
2470
tryExprAsCall(Expr & E,QualType & ZeroArgCallReturnTy,UnresolvedSetImpl & OverloadSet)2471 bool Sema::tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy,
2472 UnresolvedSetImpl &OverloadSet) {
2473 ZeroArgCallReturnTy = QualType();
2474 OverloadSet.clear();
2475
2476 const OverloadExpr *Overloads = nullptr;
2477 bool IsMemExpr = false;
2478 if (E.getType() == Context.OverloadTy) {
2479 OverloadExpr::FindResult FR = OverloadExpr::find(&E);
2480
2481 // Ignore overloads that are pointer-to-member constants.
2482 if (FR.HasFormOfMemberPointer)
2483 return false;
2484
2485 Overloads = FR.Expression;
2486 } else if (E.getType() == Context.BoundMemberTy) {
2487 Overloads = dyn_cast<UnresolvedMemberExpr>(E.IgnoreParens());
2488 IsMemExpr = true;
2489 }
2490
2491 bool Ambiguous = false;
2492 bool IsMV = false;
2493
2494 if (Overloads) {
2495 for (OverloadExpr::decls_iterator it = Overloads->decls_begin(),
2496 DeclsEnd = Overloads->decls_end(); it != DeclsEnd; ++it) {
2497 OverloadSet.addDecl(*it);
2498
2499 // Check whether the function is a non-template, non-member which takes no
2500 // arguments.
2501 if (IsMemExpr)
2502 continue;
2503 if (const FunctionDecl *OverloadDecl
2504 = dyn_cast<FunctionDecl>((*it)->getUnderlyingDecl())) {
2505 if (OverloadDecl->getMinRequiredArguments() == 0) {
2506 if (!ZeroArgCallReturnTy.isNull() && !Ambiguous &&
2507 (!IsMV || !(OverloadDecl->isCPUDispatchMultiVersion() ||
2508 OverloadDecl->isCPUSpecificMultiVersion()))) {
2509 ZeroArgCallReturnTy = QualType();
2510 Ambiguous = true;
2511 } else {
2512 ZeroArgCallReturnTy = OverloadDecl->getReturnType();
2513 IsMV = OverloadDecl->isCPUDispatchMultiVersion() ||
2514 OverloadDecl->isCPUSpecificMultiVersion();
2515 }
2516 }
2517 }
2518 }
2519
2520 // If it's not a member, use better machinery to try to resolve the call
2521 if (!IsMemExpr)
2522 return !ZeroArgCallReturnTy.isNull();
2523 }
2524
2525 // Attempt to call the member with no arguments - this will correctly handle
2526 // member templates with defaults/deduction of template arguments, overloads
2527 // with default arguments, etc.
2528 if (IsMemExpr && !E.isTypeDependent()) {
2529 Sema::TentativeAnalysisScope Trap(*this);
2530 ExprResult R = BuildCallToMemberFunction(nullptr, &E, SourceLocation(),
2531 std::nullopt, SourceLocation());
2532 if (R.isUsable()) {
2533 ZeroArgCallReturnTy = R.get()->getType();
2534 return true;
2535 }
2536 return false;
2537 }
2538
2539 if (const auto *DeclRef = dyn_cast<DeclRefExpr>(E.IgnoreParens())) {
2540 if (const auto *Fun = dyn_cast<FunctionDecl>(DeclRef->getDecl())) {
2541 if (Fun->getMinRequiredArguments() == 0)
2542 ZeroArgCallReturnTy = Fun->getReturnType();
2543 return true;
2544 }
2545 }
2546
2547 // We don't have an expression that's convenient to get a FunctionDecl from,
2548 // but we can at least check if the type is "function of 0 arguments".
2549 QualType ExprTy = E.getType();
2550 const FunctionType *FunTy = nullptr;
2551 QualType PointeeTy = ExprTy->getPointeeType();
2552 if (!PointeeTy.isNull())
2553 FunTy = PointeeTy->getAs<FunctionType>();
2554 if (!FunTy)
2555 FunTy = ExprTy->getAs<FunctionType>();
2556
2557 if (const auto *FPT = dyn_cast_if_present<FunctionProtoType>(FunTy)) {
2558 if (FPT->getNumParams() == 0)
2559 ZeroArgCallReturnTy = FunTy->getReturnType();
2560 return true;
2561 }
2562 return false;
2563 }
2564
2565 /// Give notes for a set of overloads.
2566 ///
2567 /// A companion to tryExprAsCall. In cases when the name that the programmer
2568 /// wrote was an overloaded function, we may be able to make some guesses about
2569 /// plausible overloads based on their return types; such guesses can be handed
2570 /// off to this method to be emitted as notes.
2571 ///
2572 /// \param Overloads - The overloads to note.
2573 /// \param FinalNoteLoc - If we've suppressed printing some overloads due to
2574 /// -fshow-overloads=best, this is the location to attach to the note about too
2575 /// many candidates. Typically this will be the location of the original
2576 /// ill-formed expression.
noteOverloads(Sema & S,const UnresolvedSetImpl & Overloads,const SourceLocation FinalNoteLoc)2577 static void noteOverloads(Sema &S, const UnresolvedSetImpl &Overloads,
2578 const SourceLocation FinalNoteLoc) {
2579 unsigned ShownOverloads = 0;
2580 unsigned SuppressedOverloads = 0;
2581 for (UnresolvedSetImpl::iterator It = Overloads.begin(),
2582 DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) {
2583 if (ShownOverloads >= S.Diags.getNumOverloadCandidatesToShow()) {
2584 ++SuppressedOverloads;
2585 continue;
2586 }
2587
2588 const NamedDecl *Fn = (*It)->getUnderlyingDecl();
2589 // Don't print overloads for non-default multiversioned functions.
2590 if (const auto *FD = Fn->getAsFunction()) {
2591 if (FD->isMultiVersion() && FD->hasAttr<TargetAttr>() &&
2592 !FD->getAttr<TargetAttr>()->isDefaultVersion())
2593 continue;
2594 if (FD->isMultiVersion() && FD->hasAttr<TargetVersionAttr>() &&
2595 !FD->getAttr<TargetVersionAttr>()->isDefaultVersion())
2596 continue;
2597 }
2598 S.Diag(Fn->getLocation(), diag::note_possible_target_of_call);
2599 ++ShownOverloads;
2600 }
2601
2602 S.Diags.overloadCandidatesShown(ShownOverloads);
2603
2604 if (SuppressedOverloads)
2605 S.Diag(FinalNoteLoc, diag::note_ovl_too_many_candidates)
2606 << SuppressedOverloads;
2607 }
2608
notePlausibleOverloads(Sema & S,SourceLocation Loc,const UnresolvedSetImpl & Overloads,bool (* IsPlausibleResult)(QualType))2609 static void notePlausibleOverloads(Sema &S, SourceLocation Loc,
2610 const UnresolvedSetImpl &Overloads,
2611 bool (*IsPlausibleResult)(QualType)) {
2612 if (!IsPlausibleResult)
2613 return noteOverloads(S, Overloads, Loc);
2614
2615 UnresolvedSet<2> PlausibleOverloads;
2616 for (OverloadExpr::decls_iterator It = Overloads.begin(),
2617 DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) {
2618 const auto *OverloadDecl = cast<FunctionDecl>(*It);
2619 QualType OverloadResultTy = OverloadDecl->getReturnType();
2620 if (IsPlausibleResult(OverloadResultTy))
2621 PlausibleOverloads.addDecl(It.getDecl());
2622 }
2623 noteOverloads(S, PlausibleOverloads, Loc);
2624 }
2625
2626 /// Determine whether the given expression can be called by just
2627 /// putting parentheses after it. Notably, expressions with unary
2628 /// operators can't be because the unary operator will start parsing
2629 /// outside the call.
IsCallableWithAppend(const Expr * E)2630 static bool IsCallableWithAppend(const Expr *E) {
2631 E = E->IgnoreImplicit();
2632 return (!isa<CStyleCastExpr>(E) &&
2633 !isa<UnaryOperator>(E) &&
2634 !isa<BinaryOperator>(E) &&
2635 !isa<CXXOperatorCallExpr>(E));
2636 }
2637
IsCPUDispatchCPUSpecificMultiVersion(const Expr * E)2638 static bool IsCPUDispatchCPUSpecificMultiVersion(const Expr *E) {
2639 if (const auto *UO = dyn_cast<UnaryOperator>(E))
2640 E = UO->getSubExpr();
2641
2642 if (const auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
2643 if (ULE->getNumDecls() == 0)
2644 return false;
2645
2646 const NamedDecl *ND = *ULE->decls_begin();
2647 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2648 return FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion();
2649 }
2650 return false;
2651 }
2652
tryToRecoverWithCall(ExprResult & E,const PartialDiagnostic & PD,bool ForceComplain,bool (* IsPlausibleResult)(QualType))2653 bool Sema::tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD,
2654 bool ForceComplain,
2655 bool (*IsPlausibleResult)(QualType)) {
2656 SourceLocation Loc = E.get()->getExprLoc();
2657 SourceRange Range = E.get()->getSourceRange();
2658 UnresolvedSet<4> Overloads;
2659
2660 // If this is a SFINAE context, don't try anything that might trigger ADL
2661 // prematurely.
2662 if (!isSFINAEContext()) {
2663 QualType ZeroArgCallTy;
2664 if (tryExprAsCall(*E.get(), ZeroArgCallTy, Overloads) &&
2665 !ZeroArgCallTy.isNull() &&
2666 (!IsPlausibleResult || IsPlausibleResult(ZeroArgCallTy))) {
2667 // At this point, we know E is potentially callable with 0
2668 // arguments and that it returns something of a reasonable type,
2669 // so we can emit a fixit and carry on pretending that E was
2670 // actually a CallExpr.
2671 SourceLocation ParenInsertionLoc = getLocForEndOfToken(Range.getEnd());
2672 bool IsMV = IsCPUDispatchCPUSpecificMultiVersion(E.get());
2673 Diag(Loc, PD) << /*zero-arg*/ 1 << IsMV << Range
2674 << (IsCallableWithAppend(E.get())
2675 ? FixItHint::CreateInsertion(ParenInsertionLoc,
2676 "()")
2677 : FixItHint());
2678 if (!IsMV)
2679 notePlausibleOverloads(*this, Loc, Overloads, IsPlausibleResult);
2680
2681 // FIXME: Try this before emitting the fixit, and suppress diagnostics
2682 // while doing so.
2683 E = BuildCallExpr(nullptr, E.get(), Range.getEnd(), std::nullopt,
2684 Range.getEnd().getLocWithOffset(1));
2685 return true;
2686 }
2687 }
2688 if (!ForceComplain) return false;
2689
2690 bool IsMV = IsCPUDispatchCPUSpecificMultiVersion(E.get());
2691 Diag(Loc, PD) << /*not zero-arg*/ 0 << IsMV << Range;
2692 if (!IsMV)
2693 notePlausibleOverloads(*this, Loc, Overloads, IsPlausibleResult);
2694 E = ExprError();
2695 return true;
2696 }
2697
getSuperIdentifier() const2698 IdentifierInfo *Sema::getSuperIdentifier() const {
2699 if (!Ident_super)
2700 Ident_super = &Context.Idents.get("super");
2701 return Ident_super;
2702 }
2703
PushCapturedRegionScope(Scope * S,CapturedDecl * CD,RecordDecl * RD,CapturedRegionKind K,unsigned OpenMPCaptureLevel)2704 void Sema::PushCapturedRegionScope(Scope *S, CapturedDecl *CD, RecordDecl *RD,
2705 CapturedRegionKind K,
2706 unsigned OpenMPCaptureLevel) {
2707 auto *CSI = new CapturedRegionScopeInfo(
2708 getDiagnostics(), S, CD, RD, CD->getContextParam(), K,
2709 (getLangOpts().OpenMP && K == CR_OpenMP)
2710 ? OpenMP().getOpenMPNestingLevel()
2711 : 0,
2712 OpenMPCaptureLevel);
2713 CSI->ReturnType = Context.VoidTy;
2714 FunctionScopes.push_back(CSI);
2715 CapturingFunctionScopes++;
2716 }
2717
getCurCapturedRegion()2718 CapturedRegionScopeInfo *Sema::getCurCapturedRegion() {
2719 if (FunctionScopes.empty())
2720 return nullptr;
2721
2722 return dyn_cast<CapturedRegionScopeInfo>(FunctionScopes.back());
2723 }
2724
2725 const llvm::MapVector<FieldDecl *, Sema::DeleteLocs> &
getMismatchingDeleteExpressions() const2726 Sema::getMismatchingDeleteExpressions() const {
2727 return DeleteExprs;
2728 }
2729
FPFeaturesStateRAII(Sema & S)2730 Sema::FPFeaturesStateRAII::FPFeaturesStateRAII(Sema &S)
2731 : S(S), OldFPFeaturesState(S.CurFPFeatures),
2732 OldOverrides(S.FpPragmaStack.CurrentValue),
2733 OldEvalMethod(S.PP.getCurrentFPEvalMethod()),
2734 OldFPPragmaLocation(S.PP.getLastFPEvalPragmaLocation()) {}
2735
~FPFeaturesStateRAII()2736 Sema::FPFeaturesStateRAII::~FPFeaturesStateRAII() {
2737 S.CurFPFeatures = OldFPFeaturesState;
2738 S.FpPragmaStack.CurrentValue = OldOverrides;
2739 S.PP.setCurrentFPEvalMethod(OldFPPragmaLocation, OldEvalMethod);
2740 }
2741
isDeclaratorFunctionLike(Declarator & D)2742 bool Sema::isDeclaratorFunctionLike(Declarator &D) {
2743 assert(D.getCXXScopeSpec().isSet() &&
2744 "can only be called for qualified names");
2745
2746 auto LR = LookupResult(*this, D.getIdentifier(), D.getBeginLoc(),
2747 LookupOrdinaryName, forRedeclarationInCurContext());
2748 DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(),
2749 !D.getDeclSpec().isFriendSpecified());
2750 if (!DC)
2751 return false;
2752
2753 LookupQualifiedName(LR, DC);
2754 bool Result = llvm::all_of(LR, [](Decl *Dcl) {
2755 if (NamedDecl *ND = dyn_cast<NamedDecl>(Dcl)) {
2756 ND = ND->getUnderlyingDecl();
2757 return isa<FunctionDecl>(ND) || isa<FunctionTemplateDecl>(ND) ||
2758 isa<UsingDecl>(ND);
2759 }
2760 return false;
2761 });
2762 return Result;
2763 }
2764
FunctionEffectDifferences(const FunctionEffectsRef & Old,const FunctionEffectsRef & New)2765 FunctionEffectDifferences::FunctionEffectDifferences(
2766 const FunctionEffectsRef &Old, const FunctionEffectsRef &New) {
2767
2768 FunctionEffectsRef::iterator POld = Old.begin();
2769 FunctionEffectsRef::iterator OldEnd = Old.end();
2770 FunctionEffectsRef::iterator PNew = New.begin();
2771 FunctionEffectsRef::iterator NewEnd = New.end();
2772
2773 while (true) {
2774 int cmp = 0;
2775 if (POld == OldEnd) {
2776 if (PNew == NewEnd)
2777 break;
2778 cmp = 1;
2779 } else if (PNew == NewEnd)
2780 cmp = -1;
2781 else {
2782 FunctionEffectWithCondition Old = *POld;
2783 FunctionEffectWithCondition New = *PNew;
2784 if (Old.Effect.kind() < New.Effect.kind())
2785 cmp = -1;
2786 else if (New.Effect.kind() < Old.Effect.kind())
2787 cmp = 1;
2788 else {
2789 cmp = 0;
2790 if (Old.Cond.getCondition() != New.Cond.getCondition()) {
2791 // FIXME: Cases where the expressions are equivalent but
2792 // don't have the same identity.
2793 push_back(FunctionEffectDiff{
2794 Old.Effect.kind(), FunctionEffectDiff::Kind::ConditionMismatch,
2795 Old, New});
2796 }
2797 }
2798 }
2799
2800 if (cmp < 0) {
2801 // removal
2802 FunctionEffectWithCondition Old = *POld;
2803 push_back(FunctionEffectDiff{
2804 Old.Effect.kind(), FunctionEffectDiff::Kind::Removed, Old, {}});
2805 ++POld;
2806 } else if (cmp > 0) {
2807 // addition
2808 FunctionEffectWithCondition New = *PNew;
2809 push_back(FunctionEffectDiff{
2810 New.Effect.kind(), FunctionEffectDiff::Kind::Added, {}, New});
2811 ++PNew;
2812 } else {
2813 ++POld;
2814 ++PNew;
2815 }
2816 }
2817 }
2818
shouldDiagnoseConversion(QualType SrcType,const FunctionEffectsRef & SrcFX,QualType DstType,const FunctionEffectsRef & DstFX) const2819 bool FunctionEffectDiff::shouldDiagnoseConversion(
2820 QualType SrcType, const FunctionEffectsRef &SrcFX, QualType DstType,
2821 const FunctionEffectsRef &DstFX) const {
2822
2823 switch (EffectKind) {
2824 case FunctionEffect::Kind::NonAllocating:
2825 // nonallocating can't be added (spoofed) during a conversion, unless we
2826 // have nonblocking.
2827 if (DiffKind == Kind::Added) {
2828 for (const auto &CFE : SrcFX) {
2829 if (CFE.Effect.kind() == FunctionEffect::Kind::NonBlocking)
2830 return false;
2831 }
2832 }
2833 [[fallthrough]];
2834 case FunctionEffect::Kind::NonBlocking:
2835 // nonblocking can't be added (spoofed) during a conversion.
2836 switch (DiffKind) {
2837 case Kind::Added:
2838 return true;
2839 case Kind::Removed:
2840 return false;
2841 case Kind::ConditionMismatch:
2842 // FIXME: Condition mismatches are too coarse right now -- expressions
2843 // which are equivalent but don't have the same identity are detected as
2844 // mismatches. We're going to diagnose those anyhow until expression
2845 // matching is better.
2846 return true;
2847 }
2848 case FunctionEffect::Kind::Blocking:
2849 case FunctionEffect::Kind::Allocating:
2850 return false;
2851 case FunctionEffect::Kind::None:
2852 break;
2853 }
2854 llvm_unreachable("unknown effect kind");
2855 }
2856
shouldDiagnoseRedeclaration(const FunctionDecl & OldFunction,const FunctionEffectsRef & OldFX,const FunctionDecl & NewFunction,const FunctionEffectsRef & NewFX) const2857 bool FunctionEffectDiff::shouldDiagnoseRedeclaration(
2858 const FunctionDecl &OldFunction, const FunctionEffectsRef &OldFX,
2859 const FunctionDecl &NewFunction, const FunctionEffectsRef &NewFX) const {
2860 switch (EffectKind) {
2861 case FunctionEffect::Kind::NonAllocating:
2862 case FunctionEffect::Kind::NonBlocking:
2863 // nonblocking/nonallocating can't be removed in a redeclaration.
2864 switch (DiffKind) {
2865 case Kind::Added:
2866 return false; // No diagnostic.
2867 case Kind::Removed:
2868 return true; // Issue diagnostic.
2869 case Kind::ConditionMismatch:
2870 // All these forms of mismatches are diagnosed.
2871 return true;
2872 }
2873 case FunctionEffect::Kind::Blocking:
2874 case FunctionEffect::Kind::Allocating:
2875 return false;
2876 case FunctionEffect::Kind::None:
2877 break;
2878 }
2879 llvm_unreachable("unknown effect kind");
2880 }
2881
2882 FunctionEffectDiff::OverrideResult
shouldDiagnoseMethodOverride(const CXXMethodDecl & OldMethod,const FunctionEffectsRef & OldFX,const CXXMethodDecl & NewMethod,const FunctionEffectsRef & NewFX) const2883 FunctionEffectDiff::shouldDiagnoseMethodOverride(
2884 const CXXMethodDecl &OldMethod, const FunctionEffectsRef &OldFX,
2885 const CXXMethodDecl &NewMethod, const FunctionEffectsRef &NewFX) const {
2886 switch (EffectKind) {
2887 case FunctionEffect::Kind::NonAllocating:
2888 case FunctionEffect::Kind::NonBlocking:
2889 switch (DiffKind) {
2890
2891 // If added on an override, that's fine and not diagnosed.
2892 case Kind::Added:
2893 return OverrideResult::NoAction;
2894
2895 // If missing from an override (removed), propagate from base to derived.
2896 case Kind::Removed:
2897 return OverrideResult::Merge;
2898
2899 // If there's a mismatch involving the effect's polarity or condition,
2900 // issue a warning.
2901 case Kind::ConditionMismatch:
2902 return OverrideResult::Warn;
2903 }
2904
2905 case FunctionEffect::Kind::Blocking:
2906 case FunctionEffect::Kind::Allocating:
2907 return OverrideResult::NoAction;
2908
2909 case FunctionEffect::Kind::None:
2910 break;
2911 }
2912 llvm_unreachable("unknown effect kind");
2913 }
2914