xref: /freebsd/contrib/llvm-project/clang/lib/Rewrite/RewriteRope.cpp (revision 0b57cec536236d46e3dba9bd041533462f33dbb7)
1 //===- RewriteRope.cpp - Rope specialized for rewriter --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the RewriteRope class, which is a powerful string.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Rewrite/Core/RewriteRope.h"
14 #include "clang/Basic/LLVM.h"
15 #include "llvm/Support/Casting.h"
16 #include <algorithm>
17 #include <cassert>
18 #include <cstring>
19 
20 using namespace clang;
21 
22 /// RewriteRope is a "strong" string class, designed to make insertions and
23 /// deletions in the middle of the string nearly constant time (really, they are
24 /// O(log N), but with a very low constant factor).
25 ///
26 /// The implementation of this datastructure is a conceptual linear sequence of
27 /// RopePiece elements.  Each RopePiece represents a view on a separately
28 /// allocated and reference counted string.  This means that splitting a very
29 /// long string can be done in constant time by splitting a RopePiece that
30 /// references the whole string into two rope pieces that reference each half.
31 /// Once split, another string can be inserted in between the two halves by
32 /// inserting a RopePiece in between the two others.  All of this is very
33 /// inexpensive: it takes time proportional to the number of RopePieces, not the
34 /// length of the strings they represent.
35 ///
36 /// While a linear sequences of RopePieces is the conceptual model, the actual
37 /// implementation captures them in an adapted B+ Tree.  Using a B+ tree (which
38 /// is a tree that keeps the values in the leaves and has where each node
39 /// contains a reasonable number of pointers to children/values) allows us to
40 /// maintain efficient operation when the RewriteRope contains a *huge* number
41 /// of RopePieces.  The basic idea of the B+ Tree is that it allows us to find
42 /// the RopePiece corresponding to some offset very efficiently, and it
43 /// automatically balances itself on insertions of RopePieces (which can happen
44 /// for both insertions and erases of string ranges).
45 ///
46 /// The one wrinkle on the theory is that we don't attempt to keep the tree
47 /// properly balanced when erases happen.  Erases of string data can both insert
48 /// new RopePieces (e.g. when the middle of some other rope piece is deleted,
49 /// which results in two rope pieces, which is just like an insert) or it can
50 /// reduce the number of RopePieces maintained by the B+Tree.  In the case when
51 /// the number of RopePieces is reduced, we don't attempt to maintain the
52 /// standard 'invariant' that each node in the tree contains at least
53 /// 'WidthFactor' children/values.  For our use cases, this doesn't seem to
54 /// matter.
55 ///
56 /// The implementation below is primarily implemented in terms of three classes:
57 ///   RopePieceBTreeNode - Common base class for:
58 ///
59 ///     RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
60 ///          nodes.  This directly represents a chunk of the string with those
61 ///          RopePieces concatenated.
62 ///     RopePieceBTreeInterior - An interior node in the B+ Tree, which manages
63 ///          up to '2*WidthFactor' other nodes in the tree.
64 
65 namespace {
66 
67 //===----------------------------------------------------------------------===//
68 // RopePieceBTreeNode Class
69 //===----------------------------------------------------------------------===//
70 
71   /// RopePieceBTreeNode - Common base class of RopePieceBTreeLeaf and
72   /// RopePieceBTreeInterior.  This provides some 'virtual' dispatching methods
73   /// and a flag that determines which subclass the instance is.  Also
74   /// important, this node knows the full extend of the node, including any
75   /// children that it has.  This allows efficient skipping over entire subtrees
76   /// when looking for an offset in the BTree.
77   class RopePieceBTreeNode {
78   protected:
79     /// WidthFactor - This controls the number of K/V slots held in the BTree:
80     /// how wide it is.  Each level of the BTree is guaranteed to have at least
81     /// 'WidthFactor' elements in it (either ropepieces or children), (except
82     /// the root, which may have less) and may have at most 2*WidthFactor
83     /// elements.
84     enum { WidthFactor = 8 };
85 
86     /// Size - This is the number of bytes of file this node (including any
87     /// potential children) covers.
88     unsigned Size = 0;
89 
90     /// IsLeaf - True if this is an instance of RopePieceBTreeLeaf, false if it
91     /// is an instance of RopePieceBTreeInterior.
92     bool IsLeaf;
93 
RopePieceBTreeNode(bool isLeaf)94     RopePieceBTreeNode(bool isLeaf) : IsLeaf(isLeaf) {}
95     ~RopePieceBTreeNode() = default;
96 
97   public:
isLeaf() const98     bool isLeaf() const { return IsLeaf; }
size() const99     unsigned size() const { return Size; }
100 
101     void Destroy();
102 
103     /// split - Split the range containing the specified offset so that we are
104     /// guaranteed that there is a place to do an insertion at the specified
105     /// offset.  The offset is relative, so "0" is the start of the node.
106     ///
107     /// If there is no space in this subtree for the extra piece, the extra tree
108     /// node is returned and must be inserted into a parent.
109     RopePieceBTreeNode *split(unsigned Offset);
110 
111     /// insert - Insert the specified ropepiece into this tree node at the
112     /// specified offset.  The offset is relative, so "0" is the start of the
113     /// node.
114     ///
115     /// If there is no space in this subtree for the extra piece, the extra tree
116     /// node is returned and must be inserted into a parent.
117     RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
118 
119     /// erase - Remove NumBytes from this node at the specified offset.  We are
120     /// guaranteed that there is a split at Offset.
121     void erase(unsigned Offset, unsigned NumBytes);
122   };
123 
124 //===----------------------------------------------------------------------===//
125 // RopePieceBTreeLeaf Class
126 //===----------------------------------------------------------------------===//
127 
128   /// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
129   /// nodes.  This directly represents a chunk of the string with those
130   /// RopePieces concatenated.  Since this is a B+Tree, all values (in this case
131   /// instances of RopePiece) are stored in leaves like this.  To make iteration
132   /// over the leaves efficient, they maintain a singly linked list through the
133   /// NextLeaf field.  This allows the B+Tree forward iterator to be constant
134   /// time for all increments.
135   class RopePieceBTreeLeaf : public RopePieceBTreeNode {
136     /// NumPieces - This holds the number of rope pieces currently active in the
137     /// Pieces array.
138     unsigned char NumPieces = 0;
139 
140     /// Pieces - This tracks the file chunks currently in this leaf.
141     RopePiece Pieces[2*WidthFactor];
142 
143     /// NextLeaf - This is a pointer to the next leaf in the tree, allowing
144     /// efficient in-order forward iteration of the tree without traversal.
145     RopePieceBTreeLeaf **PrevLeaf = nullptr;
146     RopePieceBTreeLeaf *NextLeaf = nullptr;
147 
148   public:
RopePieceBTreeLeaf()149     RopePieceBTreeLeaf() : RopePieceBTreeNode(true) {}
150 
~RopePieceBTreeLeaf()151     ~RopePieceBTreeLeaf() {
152       if (PrevLeaf || NextLeaf)
153         removeFromLeafInOrder();
154       clear();
155     }
156 
isFull() const157     bool isFull() const { return NumPieces == 2*WidthFactor; }
158 
159     /// clear - Remove all rope pieces from this leaf.
clear()160     void clear() {
161       while (NumPieces)
162         Pieces[--NumPieces] = RopePiece();
163       Size = 0;
164     }
165 
getNumPieces() const166     unsigned getNumPieces() const { return NumPieces; }
167 
getPiece(unsigned i) const168     const RopePiece &getPiece(unsigned i) const {
169       assert(i < getNumPieces() && "Invalid piece ID");
170       return Pieces[i];
171     }
172 
getNextLeafInOrder() const173     const RopePieceBTreeLeaf *getNextLeafInOrder() const { return NextLeaf; }
174 
insertAfterLeafInOrder(RopePieceBTreeLeaf * Node)175     void insertAfterLeafInOrder(RopePieceBTreeLeaf *Node) {
176       assert(!PrevLeaf && !NextLeaf && "Already in ordering");
177 
178       NextLeaf = Node->NextLeaf;
179       if (NextLeaf)
180         NextLeaf->PrevLeaf = &NextLeaf;
181       PrevLeaf = &Node->NextLeaf;
182       Node->NextLeaf = this;
183     }
184 
removeFromLeafInOrder()185     void removeFromLeafInOrder() {
186       if (PrevLeaf) {
187         *PrevLeaf = NextLeaf;
188         if (NextLeaf)
189           NextLeaf->PrevLeaf = PrevLeaf;
190       } else if (NextLeaf) {
191         NextLeaf->PrevLeaf = nullptr;
192       }
193     }
194 
195     /// FullRecomputeSizeLocally - This method recomputes the 'Size' field by
196     /// summing the size of all RopePieces.
FullRecomputeSizeLocally()197     void FullRecomputeSizeLocally() {
198       Size = 0;
199       for (unsigned i = 0, e = getNumPieces(); i != e; ++i)
200         Size += getPiece(i).size();
201     }
202 
203     /// split - Split the range containing the specified offset so that we are
204     /// guaranteed that there is a place to do an insertion at the specified
205     /// offset.  The offset is relative, so "0" is the start of the node.
206     ///
207     /// If there is no space in this subtree for the extra piece, the extra tree
208     /// node is returned and must be inserted into a parent.
209     RopePieceBTreeNode *split(unsigned Offset);
210 
211     /// insert - Insert the specified ropepiece into this tree node at the
212     /// specified offset.  The offset is relative, so "0" is the start of the
213     /// node.
214     ///
215     /// If there is no space in this subtree for the extra piece, the extra tree
216     /// node is returned and must be inserted into a parent.
217     RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
218 
219     /// erase - Remove NumBytes from this node at the specified offset.  We are
220     /// guaranteed that there is a split at Offset.
221     void erase(unsigned Offset, unsigned NumBytes);
222 
classof(const RopePieceBTreeNode * N)223     static bool classof(const RopePieceBTreeNode *N) {
224       return N->isLeaf();
225     }
226   };
227 
228 } // namespace
229 
230 /// split - Split the range containing the specified offset so that we are
231 /// guaranteed that there is a place to do an insertion at the specified
232 /// offset.  The offset is relative, so "0" is the start of the node.
233 ///
234 /// If there is no space in this subtree for the extra piece, the extra tree
235 /// node is returned and must be inserted into a parent.
split(unsigned Offset)236 RopePieceBTreeNode *RopePieceBTreeLeaf::split(unsigned Offset) {
237   // Find the insertion point.  We are guaranteed that there is a split at the
238   // specified offset so find it.
239   if (Offset == 0 || Offset == size()) {
240     // Fastpath for a common case.  There is already a splitpoint at the end.
241     return nullptr;
242   }
243 
244   // Find the piece that this offset lands in.
245   unsigned PieceOffs = 0;
246   unsigned i = 0;
247   while (Offset >= PieceOffs+Pieces[i].size()) {
248     PieceOffs += Pieces[i].size();
249     ++i;
250   }
251 
252   // If there is already a split point at the specified offset, just return
253   // success.
254   if (PieceOffs == Offset)
255     return nullptr;
256 
257   // Otherwise, we need to split piece 'i' at Offset-PieceOffs.  Convert Offset
258   // to being Piece relative.
259   unsigned IntraPieceOffset = Offset-PieceOffs;
260 
261   // We do this by shrinking the RopePiece and then doing an insert of the tail.
262   RopePiece Tail(Pieces[i].StrData, Pieces[i].StartOffs+IntraPieceOffset,
263                  Pieces[i].EndOffs);
264   Size -= Pieces[i].size();
265   Pieces[i].EndOffs = Pieces[i].StartOffs+IntraPieceOffset;
266   Size += Pieces[i].size();
267 
268   return insert(Offset, Tail);
269 }
270 
271 /// insert - Insert the specified RopePiece into this tree node at the
272 /// specified offset.  The offset is relative, so "0" is the start of the node.
273 ///
274 /// If there is no space in this subtree for the extra piece, the extra tree
275 /// node is returned and must be inserted into a parent.
insert(unsigned Offset,const RopePiece & R)276 RopePieceBTreeNode *RopePieceBTreeLeaf::insert(unsigned Offset,
277                                                const RopePiece &R) {
278   // If this node is not full, insert the piece.
279   if (!isFull()) {
280     // Find the insertion point.  We are guaranteed that there is a split at the
281     // specified offset so find it.
282     unsigned i = 0, e = getNumPieces();
283     if (Offset == size()) {
284       // Fastpath for a common case.
285       i = e;
286     } else {
287       unsigned SlotOffs = 0;
288       for (; Offset > SlotOffs; ++i)
289         SlotOffs += getPiece(i).size();
290       assert(SlotOffs == Offset && "Split didn't occur before insertion!");
291     }
292 
293     // For an insertion into a non-full leaf node, just insert the value in
294     // its sorted position.  This requires moving later values over.
295     for (; i != e; --e)
296       Pieces[e] = Pieces[e-1];
297     Pieces[i] = R;
298     ++NumPieces;
299     Size += R.size();
300     return nullptr;
301   }
302 
303   // Otherwise, if this is leaf is full, split it in two halves.  Since this
304   // node is full, it contains 2*WidthFactor values.  We move the first
305   // 'WidthFactor' values to the LHS child (which we leave in this node) and
306   // move the last 'WidthFactor' values into the RHS child.
307 
308   // Create the new node.
309   RopePieceBTreeLeaf *NewNode = new RopePieceBTreeLeaf();
310 
311   // Move over the last 'WidthFactor' values from here to NewNode.
312   std::copy(&Pieces[WidthFactor], &Pieces[2*WidthFactor],
313             &NewNode->Pieces[0]);
314   // Replace old pieces with null RopePieces to drop refcounts.
315   std::fill(&Pieces[WidthFactor], &Pieces[2*WidthFactor], RopePiece());
316 
317   // Decrease the number of values in the two nodes.
318   NewNode->NumPieces = NumPieces = WidthFactor;
319 
320   // Recompute the two nodes' size.
321   NewNode->FullRecomputeSizeLocally();
322   FullRecomputeSizeLocally();
323 
324   // Update the list of leaves.
325   NewNode->insertAfterLeafInOrder(this);
326 
327   // These insertions can't fail.
328   if (this->size() >= Offset)
329     this->insert(Offset, R);
330   else
331     NewNode->insert(Offset - this->size(), R);
332   return NewNode;
333 }
334 
335 /// erase - Remove NumBytes from this node at the specified offset.  We are
336 /// guaranteed that there is a split at Offset.
erase(unsigned Offset,unsigned NumBytes)337 void RopePieceBTreeLeaf::erase(unsigned Offset, unsigned NumBytes) {
338   // Since we are guaranteed that there is a split at Offset, we start by
339   // finding the Piece that starts there.
340   unsigned PieceOffs = 0;
341   unsigned i = 0;
342   for (; Offset > PieceOffs; ++i)
343     PieceOffs += getPiece(i).size();
344   assert(PieceOffs == Offset && "Split didn't occur before erase!");
345 
346   unsigned StartPiece = i;
347 
348   // Figure out how many pieces completely cover 'NumBytes'.  We want to remove
349   // all of them.
350   for (; Offset+NumBytes > PieceOffs+getPiece(i).size(); ++i)
351     PieceOffs += getPiece(i).size();
352 
353   // If we exactly include the last one, include it in the region to delete.
354   if (Offset+NumBytes == PieceOffs+getPiece(i).size()) {
355     PieceOffs += getPiece(i).size();
356     ++i;
357   }
358 
359   // If we completely cover some RopePieces, erase them now.
360   if (i != StartPiece) {
361     unsigned NumDeleted = i-StartPiece;
362     for (; i != getNumPieces(); ++i)
363       Pieces[i-NumDeleted] = Pieces[i];
364 
365     // Drop references to dead rope pieces.
366     std::fill(&Pieces[getNumPieces()-NumDeleted], &Pieces[getNumPieces()],
367               RopePiece());
368     NumPieces -= NumDeleted;
369 
370     unsigned CoverBytes = PieceOffs-Offset;
371     NumBytes -= CoverBytes;
372     Size -= CoverBytes;
373   }
374 
375   // If we completely removed some stuff, we could be done.
376   if (NumBytes == 0) return;
377 
378   // Okay, now might be erasing part of some Piece.  If this is the case, then
379   // move the start point of the piece.
380   assert(getPiece(StartPiece).size() > NumBytes);
381   Pieces[StartPiece].StartOffs += NumBytes;
382 
383   // The size of this node just shrunk by NumBytes.
384   Size -= NumBytes;
385 }
386 
387 //===----------------------------------------------------------------------===//
388 // RopePieceBTreeInterior Class
389 //===----------------------------------------------------------------------===//
390 
391 namespace {
392 
393   /// RopePieceBTreeInterior - This represents an interior node in the B+Tree,
394   /// which holds up to 2*WidthFactor pointers to child nodes.
395   class RopePieceBTreeInterior : public RopePieceBTreeNode {
396     /// NumChildren - This holds the number of children currently active in the
397     /// Children array.
398     unsigned char NumChildren = 0;
399 
400     RopePieceBTreeNode *Children[2*WidthFactor];
401 
402   public:
RopePieceBTreeInterior()403     RopePieceBTreeInterior() : RopePieceBTreeNode(false) {}
404 
RopePieceBTreeInterior(RopePieceBTreeNode * LHS,RopePieceBTreeNode * RHS)405     RopePieceBTreeInterior(RopePieceBTreeNode *LHS, RopePieceBTreeNode *RHS)
406         : RopePieceBTreeNode(false) {
407       Children[0] = LHS;
408       Children[1] = RHS;
409       NumChildren = 2;
410       Size = LHS->size() + RHS->size();
411     }
412 
~RopePieceBTreeInterior()413     ~RopePieceBTreeInterior() {
414       for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
415         Children[i]->Destroy();
416     }
417 
isFull() const418     bool isFull() const { return NumChildren == 2*WidthFactor; }
419 
getNumChildren() const420     unsigned getNumChildren() const { return NumChildren; }
421 
getChild(unsigned i) const422     const RopePieceBTreeNode *getChild(unsigned i) const {
423       assert(i < NumChildren && "invalid child #");
424       return Children[i];
425     }
426 
getChild(unsigned i)427     RopePieceBTreeNode *getChild(unsigned i) {
428       assert(i < NumChildren && "invalid child #");
429       return Children[i];
430     }
431 
432     /// FullRecomputeSizeLocally - Recompute the Size field of this node by
433     /// summing up the sizes of the child nodes.
FullRecomputeSizeLocally()434     void FullRecomputeSizeLocally() {
435       Size = 0;
436       for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
437         Size += getChild(i)->size();
438     }
439 
440     /// split - Split the range containing the specified offset so that we are
441     /// guaranteed that there is a place to do an insertion at the specified
442     /// offset.  The offset is relative, so "0" is the start of the node.
443     ///
444     /// If there is no space in this subtree for the extra piece, the extra tree
445     /// node is returned and must be inserted into a parent.
446     RopePieceBTreeNode *split(unsigned Offset);
447 
448     /// insert - Insert the specified ropepiece into this tree node at the
449     /// specified offset.  The offset is relative, so "0" is the start of the
450     /// node.
451     ///
452     /// If there is no space in this subtree for the extra piece, the extra tree
453     /// node is returned and must be inserted into a parent.
454     RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
455 
456     /// HandleChildPiece - A child propagated an insertion result up to us.
457     /// Insert the new child, and/or propagate the result further up the tree.
458     RopePieceBTreeNode *HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS);
459 
460     /// erase - Remove NumBytes from this node at the specified offset.  We are
461     /// guaranteed that there is a split at Offset.
462     void erase(unsigned Offset, unsigned NumBytes);
463 
classof(const RopePieceBTreeNode * N)464     static bool classof(const RopePieceBTreeNode *N) {
465       return !N->isLeaf();
466     }
467   };
468 
469 } // namespace
470 
471 /// split - Split the range containing the specified offset so that we are
472 /// guaranteed that there is a place to do an insertion at the specified
473 /// offset.  The offset is relative, so "0" is the start of the node.
474 ///
475 /// If there is no space in this subtree for the extra piece, the extra tree
476 /// node is returned and must be inserted into a parent.
split(unsigned Offset)477 RopePieceBTreeNode *RopePieceBTreeInterior::split(unsigned Offset) {
478   // Figure out which child to split.
479   if (Offset == 0 || Offset == size())
480     return nullptr; // If we have an exact offset, we're already split.
481 
482   unsigned ChildOffset = 0;
483   unsigned i = 0;
484   for (; Offset >= ChildOffset+getChild(i)->size(); ++i)
485     ChildOffset += getChild(i)->size();
486 
487   // If already split there, we're done.
488   if (ChildOffset == Offset)
489     return nullptr;
490 
491   // Otherwise, recursively split the child.
492   if (RopePieceBTreeNode *RHS = getChild(i)->split(Offset-ChildOffset))
493     return HandleChildPiece(i, RHS);
494   return nullptr; // Done!
495 }
496 
497 /// insert - Insert the specified ropepiece into this tree node at the
498 /// specified offset.  The offset is relative, so "0" is the start of the
499 /// node.
500 ///
501 /// If there is no space in this subtree for the extra piece, the extra tree
502 /// node is returned and must be inserted into a parent.
insert(unsigned Offset,const RopePiece & R)503 RopePieceBTreeNode *RopePieceBTreeInterior::insert(unsigned Offset,
504                                                    const RopePiece &R) {
505   // Find the insertion point.  We are guaranteed that there is a split at the
506   // specified offset so find it.
507   unsigned i = 0, e = getNumChildren();
508 
509   unsigned ChildOffs = 0;
510   if (Offset == size()) {
511     // Fastpath for a common case.  Insert at end of last child.
512     i = e-1;
513     ChildOffs = size()-getChild(i)->size();
514   } else {
515     for (; Offset > ChildOffs+getChild(i)->size(); ++i)
516       ChildOffs += getChild(i)->size();
517   }
518 
519   Size += R.size();
520 
521   // Insert at the end of this child.
522   if (RopePieceBTreeNode *RHS = getChild(i)->insert(Offset-ChildOffs, R))
523     return HandleChildPiece(i, RHS);
524 
525   return nullptr;
526 }
527 
528 /// HandleChildPiece - A child propagated an insertion result up to us.
529 /// Insert the new child, and/or propagate the result further up the tree.
530 RopePieceBTreeNode *
HandleChildPiece(unsigned i,RopePieceBTreeNode * RHS)531 RopePieceBTreeInterior::HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS) {
532   // Otherwise the child propagated a subtree up to us as a new child.  See if
533   // we have space for it here.
534   if (!isFull()) {
535     // Insert RHS after child 'i'.
536     if (i + 1 != getNumChildren())
537       memmove(&Children[i+2], &Children[i+1],
538               (getNumChildren()-i-1)*sizeof(Children[0]));
539     Children[i+1] = RHS;
540     ++NumChildren;
541     return nullptr;
542   }
543 
544   // Okay, this node is full.  Split it in half, moving WidthFactor children to
545   // a newly allocated interior node.
546 
547   // Create the new node.
548   RopePieceBTreeInterior *NewNode = new RopePieceBTreeInterior();
549 
550   // Move over the last 'WidthFactor' values from here to NewNode.
551   memcpy(&NewNode->Children[0], &Children[WidthFactor],
552          WidthFactor*sizeof(Children[0]));
553 
554   // Decrease the number of values in the two nodes.
555   NewNode->NumChildren = NumChildren = WidthFactor;
556 
557   // Finally, insert the two new children in the side the can (now) hold them.
558   // These insertions can't fail.
559   if (i < WidthFactor)
560     this->HandleChildPiece(i, RHS);
561   else
562     NewNode->HandleChildPiece(i-WidthFactor, RHS);
563 
564   // Recompute the two nodes' size.
565   NewNode->FullRecomputeSizeLocally();
566   FullRecomputeSizeLocally();
567   return NewNode;
568 }
569 
570 /// erase - Remove NumBytes from this node at the specified offset.  We are
571 /// guaranteed that there is a split at Offset.
erase(unsigned Offset,unsigned NumBytes)572 void RopePieceBTreeInterior::erase(unsigned Offset, unsigned NumBytes) {
573   // This will shrink this node by NumBytes.
574   Size -= NumBytes;
575 
576   // Find the first child that overlaps with Offset.
577   unsigned i = 0;
578   for (; Offset >= getChild(i)->size(); ++i)
579     Offset -= getChild(i)->size();
580 
581   // Propagate the delete request into overlapping children, or completely
582   // delete the children as appropriate.
583   while (NumBytes) {
584     RopePieceBTreeNode *CurChild = getChild(i);
585 
586     // If we are deleting something contained entirely in the child, pass on the
587     // request.
588     if (Offset+NumBytes < CurChild->size()) {
589       CurChild->erase(Offset, NumBytes);
590       return;
591     }
592 
593     // If this deletion request starts somewhere in the middle of the child, it
594     // must be deleting to the end of the child.
595     if (Offset) {
596       unsigned BytesFromChild = CurChild->size()-Offset;
597       CurChild->erase(Offset, BytesFromChild);
598       NumBytes -= BytesFromChild;
599       // Start at the beginning of the next child.
600       Offset = 0;
601       ++i;
602       continue;
603     }
604 
605     // If the deletion request completely covers the child, delete it and move
606     // the rest down.
607     NumBytes -= CurChild->size();
608     CurChild->Destroy();
609     --NumChildren;
610     if (i != getNumChildren())
611       memmove(&Children[i], &Children[i+1],
612               (getNumChildren()-i)*sizeof(Children[0]));
613   }
614 }
615 
616 //===----------------------------------------------------------------------===//
617 // RopePieceBTreeNode Implementation
618 //===----------------------------------------------------------------------===//
619 
Destroy()620 void RopePieceBTreeNode::Destroy() {
621   if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
622     delete Leaf;
623   else
624     delete cast<RopePieceBTreeInterior>(this);
625 }
626 
627 /// split - Split the range containing the specified offset so that we are
628 /// guaranteed that there is a place to do an insertion at the specified
629 /// offset.  The offset is relative, so "0" is the start of the node.
630 ///
631 /// If there is no space in this subtree for the extra piece, the extra tree
632 /// node is returned and must be inserted into a parent.
split(unsigned Offset)633 RopePieceBTreeNode *RopePieceBTreeNode::split(unsigned Offset) {
634   assert(Offset <= size() && "Invalid offset to split!");
635   if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
636     return Leaf->split(Offset);
637   return cast<RopePieceBTreeInterior>(this)->split(Offset);
638 }
639 
640 /// insert - Insert the specified ropepiece into this tree node at the
641 /// specified offset.  The offset is relative, so "0" is the start of the
642 /// node.
643 ///
644 /// If there is no space in this subtree for the extra piece, the extra tree
645 /// node is returned and must be inserted into a parent.
insert(unsigned Offset,const RopePiece & R)646 RopePieceBTreeNode *RopePieceBTreeNode::insert(unsigned Offset,
647                                                const RopePiece &R) {
648   assert(Offset <= size() && "Invalid offset to insert!");
649   if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
650     return Leaf->insert(Offset, R);
651   return cast<RopePieceBTreeInterior>(this)->insert(Offset, R);
652 }
653 
654 /// erase - Remove NumBytes from this node at the specified offset.  We are
655 /// guaranteed that there is a split at Offset.
erase(unsigned Offset,unsigned NumBytes)656 void RopePieceBTreeNode::erase(unsigned Offset, unsigned NumBytes) {
657   assert(Offset+NumBytes <= size() && "Invalid offset to erase!");
658   if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
659     return Leaf->erase(Offset, NumBytes);
660   return cast<RopePieceBTreeInterior>(this)->erase(Offset, NumBytes);
661 }
662 
663 //===----------------------------------------------------------------------===//
664 // RopePieceBTreeIterator Implementation
665 //===----------------------------------------------------------------------===//
666 
getCN(const void * P)667 static const RopePieceBTreeLeaf *getCN(const void *P) {
668   return static_cast<const RopePieceBTreeLeaf*>(P);
669 }
670 
671 // begin iterator.
RopePieceBTreeIterator(const void * n)672 RopePieceBTreeIterator::RopePieceBTreeIterator(const void *n) {
673   const auto *N = static_cast<const RopePieceBTreeNode *>(n);
674 
675   // Walk down the left side of the tree until we get to a leaf.
676   while (const auto *IN = dyn_cast<RopePieceBTreeInterior>(N))
677     N = IN->getChild(0);
678 
679   // We must have at least one leaf.
680   CurNode = cast<RopePieceBTreeLeaf>(N);
681 
682   // If we found a leaf that happens to be empty, skip over it until we get
683   // to something full.
684   while (CurNode && getCN(CurNode)->getNumPieces() == 0)
685     CurNode = getCN(CurNode)->getNextLeafInOrder();
686 
687   if (CurNode)
688     CurPiece = &getCN(CurNode)->getPiece(0);
689   else  // Empty tree, this is an end() iterator.
690     CurPiece = nullptr;
691   CurChar = 0;
692 }
693 
MoveToNextPiece()694 void RopePieceBTreeIterator::MoveToNextPiece() {
695   if (CurPiece != &getCN(CurNode)->getPiece(getCN(CurNode)->getNumPieces()-1)) {
696     CurChar = 0;
697     ++CurPiece;
698     return;
699   }
700 
701   // Find the next non-empty leaf node.
702   do
703     CurNode = getCN(CurNode)->getNextLeafInOrder();
704   while (CurNode && getCN(CurNode)->getNumPieces() == 0);
705 
706   if (CurNode)
707     CurPiece = &getCN(CurNode)->getPiece(0);
708   else // Hit end().
709     CurPiece = nullptr;
710   CurChar = 0;
711 }
712 
713 //===----------------------------------------------------------------------===//
714 // RopePieceBTree Implementation
715 //===----------------------------------------------------------------------===//
716 
getRoot(void * P)717 static RopePieceBTreeNode *getRoot(void *P) {
718   return static_cast<RopePieceBTreeNode*>(P);
719 }
720 
RopePieceBTree()721 RopePieceBTree::RopePieceBTree() {
722   Root = new RopePieceBTreeLeaf();
723 }
724 
RopePieceBTree(const RopePieceBTree & RHS)725 RopePieceBTree::RopePieceBTree(const RopePieceBTree &RHS) {
726   assert(RHS.empty() && "Can't copy non-empty tree yet");
727   Root = new RopePieceBTreeLeaf();
728 }
729 
~RopePieceBTree()730 RopePieceBTree::~RopePieceBTree() {
731   getRoot(Root)->Destroy();
732 }
733 
size() const734 unsigned RopePieceBTree::size() const {
735   return getRoot(Root)->size();
736 }
737 
clear()738 void RopePieceBTree::clear() {
739   if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(getRoot(Root)))
740     Leaf->clear();
741   else {
742     getRoot(Root)->Destroy();
743     Root = new RopePieceBTreeLeaf();
744   }
745 }
746 
insert(unsigned Offset,const RopePiece & R)747 void RopePieceBTree::insert(unsigned Offset, const RopePiece &R) {
748   // #1. Split at Offset.
749   if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
750     Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
751 
752   // #2. Do the insertion.
753   if (RopePieceBTreeNode *RHS = getRoot(Root)->insert(Offset, R))
754     Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
755 }
756 
erase(unsigned Offset,unsigned NumBytes)757 void RopePieceBTree::erase(unsigned Offset, unsigned NumBytes) {
758   // #1. Split at Offset.
759   if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
760     Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
761 
762   // #2. Do the erasing.
763   getRoot(Root)->erase(Offset, NumBytes);
764 }
765 
766 //===----------------------------------------------------------------------===//
767 // RewriteRope Implementation
768 //===----------------------------------------------------------------------===//
769 
770 /// MakeRopeString - This copies the specified byte range into some instance of
771 /// RopeRefCountString, and return a RopePiece that represents it.  This uses
772 /// the AllocBuffer object to aggregate requests for small strings into one
773 /// allocation instead of doing tons of tiny allocations.
MakeRopeString(const char * Start,const char * End)774 RopePiece RewriteRope::MakeRopeString(const char *Start, const char *End) {
775   unsigned Len = End-Start;
776   assert(Len && "Zero length RopePiece is invalid!");
777 
778   // If we have space for this string in the current alloc buffer, use it.
779   if (AllocOffs+Len <= AllocChunkSize) {
780     memcpy(AllocBuffer->Data+AllocOffs, Start, Len);
781     AllocOffs += Len;
782     return RopePiece(AllocBuffer, AllocOffs-Len, AllocOffs);
783   }
784 
785   // If we don't have enough room because this specific allocation is huge,
786   // just allocate a new rope piece for it alone.
787   if (Len > AllocChunkSize) {
788     unsigned Size = End-Start+sizeof(RopeRefCountString)-1;
789     auto *Res = reinterpret_cast<RopeRefCountString *>(new char[Size]);
790     Res->RefCount = 0;
791     memcpy(Res->Data, Start, End-Start);
792     return RopePiece(Res, 0, End-Start);
793   }
794 
795   // Otherwise, this was a small request but we just don't have space for it
796   // Make a new chunk and share it with later allocations.
797 
798   unsigned AllocSize = offsetof(RopeRefCountString, Data) + AllocChunkSize;
799   auto *Res = reinterpret_cast<RopeRefCountString *>(new char[AllocSize]);
800   Res->RefCount = 0;
801   memcpy(Res->Data, Start, Len);
802   AllocBuffer = Res;
803   AllocOffs = Len;
804 
805   return RopePiece(AllocBuffer, 0, Len);
806 }
807