1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides C++ code generation targeting the Microsoft Visual C++ ABI. 10 // The class in this file generates structures that follow the Microsoft 11 // Visual C++ ABI, which is actually not very well documented at all outside 12 // of Microsoft. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CGVTables.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenTypes.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/CXXInheritance.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/VTableBuilder.h" 29 #include "clang/CodeGen/ConstantInitBuilder.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/ADT/StringSet.h" 32 #include "llvm/IR/Intrinsics.h" 33 34 using namespace clang; 35 using namespace CodeGen; 36 37 namespace { 38 39 /// Holds all the vbtable globals for a given class. 40 struct VBTableGlobals { 41 const VPtrInfoVector *VBTables; 42 SmallVector<llvm::GlobalVariable *, 2> Globals; 43 }; 44 45 class MicrosoftCXXABI : public CGCXXABI { 46 public: 47 MicrosoftCXXABI(CodeGenModule &CGM) 48 : CGCXXABI(CGM), BaseClassDescriptorType(nullptr), 49 ClassHierarchyDescriptorType(nullptr), 50 CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr), 51 ThrowInfoType(nullptr) { 52 assert(!(CGM.getLangOpts().isExplicitDefaultVisibilityExportMapping() || 53 CGM.getLangOpts().isAllDefaultVisibilityExportMapping()) && 54 "visibility export mapping option unimplemented in this ABI"); 55 } 56 57 bool HasThisReturn(GlobalDecl GD) const override; 58 bool hasMostDerivedReturn(GlobalDecl GD) const override; 59 60 bool classifyReturnType(CGFunctionInfo &FI) const override; 61 62 RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override; 63 64 bool isSRetParameterAfterThis() const override { return true; } 65 66 bool isThisCompleteObject(GlobalDecl GD) const override { 67 // The Microsoft ABI doesn't use separate complete-object vs. 68 // base-object variants of constructors, but it does of destructors. 69 if (isa<CXXDestructorDecl>(GD.getDecl())) { 70 switch (GD.getDtorType()) { 71 case Dtor_Complete: 72 case Dtor_Deleting: 73 return true; 74 75 case Dtor_Base: 76 return false; 77 78 case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?"); 79 } 80 llvm_unreachable("bad dtor kind"); 81 } 82 83 // No other kinds. 84 return false; 85 } 86 87 size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD, 88 FunctionArgList &Args) const override { 89 assert(Args.size() >= 2 && 90 "expected the arglist to have at least two args!"); 91 // The 'most_derived' parameter goes second if the ctor is variadic and 92 // has v-bases. 93 if (CD->getParent()->getNumVBases() > 0 && 94 CD->getType()->castAs<FunctionProtoType>()->isVariadic()) 95 return 2; 96 return 1; 97 } 98 99 std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override { 100 std::vector<CharUnits> VBPtrOffsets; 101 const ASTContext &Context = getContext(); 102 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 103 104 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 105 for (const std::unique_ptr<VPtrInfo> &VBT : *VBGlobals.VBTables) { 106 const ASTRecordLayout &SubobjectLayout = 107 Context.getASTRecordLayout(VBT->IntroducingObject); 108 CharUnits Offs = VBT->NonVirtualOffset; 109 Offs += SubobjectLayout.getVBPtrOffset(); 110 if (VBT->getVBaseWithVPtr()) 111 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); 112 VBPtrOffsets.push_back(Offs); 113 } 114 llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end()); 115 return VBPtrOffsets; 116 } 117 118 StringRef GetPureVirtualCallName() override { return "_purecall"; } 119 StringRef GetDeletedVirtualCallName() override { return "_purecall"; } 120 121 void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, 122 Address Ptr, QualType ElementType, 123 const CXXDestructorDecl *Dtor) override; 124 125 void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override; 126 void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override; 127 128 void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; 129 130 llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD, 131 const VPtrInfo &Info); 132 133 llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; 134 CatchTypeInfo 135 getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override; 136 137 /// MSVC needs an extra flag to indicate a catchall. 138 CatchTypeInfo getCatchAllTypeInfo() override { 139 // For -EHa catch(...) must handle HW exception 140 // Adjective = HT_IsStdDotDot (0x40), only catch C++ exceptions 141 if (getContext().getLangOpts().EHAsynch) 142 return CatchTypeInfo{nullptr, 0}; 143 else 144 return CatchTypeInfo{nullptr, 0x40}; 145 } 146 147 bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override; 148 void EmitBadTypeidCall(CodeGenFunction &CGF) override; 149 llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, 150 Address ThisPtr, 151 llvm::Type *StdTypeInfoPtrTy) override; 152 153 bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 154 QualType SrcRecordTy) override; 155 156 bool shouldEmitExactDynamicCast(QualType DestRecordTy) override { 157 // TODO: Add support for exact dynamic_casts. 158 return false; 159 } 160 llvm::Value *emitExactDynamicCast(CodeGenFunction &CGF, Address Value, 161 QualType SrcRecordTy, QualType DestTy, 162 QualType DestRecordTy, 163 llvm::BasicBlock *CastSuccess, 164 llvm::BasicBlock *CastFail) override { 165 llvm_unreachable("unsupported"); 166 } 167 168 llvm::Value *emitDynamicCastCall(CodeGenFunction &CGF, Address Value, 169 QualType SrcRecordTy, QualType DestTy, 170 QualType DestRecordTy, 171 llvm::BasicBlock *CastEnd) override; 172 173 llvm::Value *emitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, 174 QualType SrcRecordTy) override; 175 176 bool EmitBadCastCall(CodeGenFunction &CGF) override; 177 bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override { 178 return false; 179 } 180 181 llvm::Value * 182 GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This, 183 const CXXRecordDecl *ClassDecl, 184 const CXXRecordDecl *BaseClassDecl) override; 185 186 llvm::BasicBlock * 187 EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 188 const CXXRecordDecl *RD) override; 189 190 llvm::BasicBlock * 191 EmitDtorCompleteObjectHandler(CodeGenFunction &CGF); 192 193 void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF, 194 const CXXRecordDecl *RD) override; 195 196 void EmitCXXConstructors(const CXXConstructorDecl *D) override; 197 198 // Background on MSVC destructors 199 // ============================== 200 // 201 // Both Itanium and MSVC ABIs have destructor variants. The variant names 202 // roughly correspond in the following way: 203 // Itanium Microsoft 204 // Base -> no name, just ~Class 205 // Complete -> vbase destructor 206 // Deleting -> scalar deleting destructor 207 // vector deleting destructor 208 // 209 // The base and complete destructors are the same as in Itanium, although the 210 // complete destructor does not accept a VTT parameter when there are virtual 211 // bases. A separate mechanism involving vtordisps is used to ensure that 212 // virtual methods of destroyed subobjects are not called. 213 // 214 // The deleting destructors accept an i32 bitfield as a second parameter. Bit 215 // 1 indicates if the memory should be deleted. Bit 2 indicates if the this 216 // pointer points to an array. The scalar deleting destructor assumes that 217 // bit 2 is zero, and therefore does not contain a loop. 218 // 219 // For virtual destructors, only one entry is reserved in the vftable, and it 220 // always points to the vector deleting destructor. The vector deleting 221 // destructor is the most general, so it can be used to destroy objects in 222 // place, delete single heap objects, or delete arrays. 223 // 224 // A TU defining a non-inline destructor is only guaranteed to emit a base 225 // destructor, and all of the other variants are emitted on an as-needed basis 226 // in COMDATs. Because a non-base destructor can be emitted in a TU that 227 // lacks a definition for the destructor, non-base destructors must always 228 // delegate to or alias the base destructor. 229 230 AddedStructorArgCounts 231 buildStructorSignature(GlobalDecl GD, 232 SmallVectorImpl<CanQualType> &ArgTys) override; 233 234 /// Non-base dtors should be emitted as delegating thunks in this ABI. 235 bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, 236 CXXDtorType DT) const override { 237 return DT != Dtor_Base; 238 } 239 240 void setCXXDestructorDLLStorage(llvm::GlobalValue *GV, 241 const CXXDestructorDecl *Dtor, 242 CXXDtorType DT) const override; 243 244 llvm::GlobalValue::LinkageTypes 245 getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor, 246 CXXDtorType DT) const override; 247 248 void EmitCXXDestructors(const CXXDestructorDecl *D) override; 249 250 const CXXRecordDecl *getThisArgumentTypeForMethod(GlobalDecl GD) override { 251 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 252 253 if (MD->isVirtual()) { 254 GlobalDecl LookupGD = GD; 255 if (const auto *DD = dyn_cast<CXXDestructorDecl>(MD)) { 256 // Complete dtors take a pointer to the complete object, 257 // thus don't need adjustment. 258 if (GD.getDtorType() == Dtor_Complete) 259 return MD->getParent(); 260 261 // There's only Dtor_Deleting in vftable but it shares the this 262 // adjustment with the base one, so look up the deleting one instead. 263 LookupGD = GlobalDecl(DD, Dtor_Deleting); 264 } 265 MethodVFTableLocation ML = 266 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD); 267 268 // The vbases might be ordered differently in the final overrider object 269 // and the complete object, so the "this" argument may sometimes point to 270 // memory that has no particular type (e.g. past the complete object). 271 // In this case, we just use a generic pointer type. 272 // FIXME: might want to have a more precise type in the non-virtual 273 // multiple inheritance case. 274 if (ML.VBase || !ML.VFPtrOffset.isZero()) 275 return nullptr; 276 } 277 return MD->getParent(); 278 } 279 280 Address 281 adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD, 282 Address This, 283 bool VirtualCall) override; 284 285 void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, 286 FunctionArgList &Params) override; 287 288 void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; 289 290 AddedStructorArgs getImplicitConstructorArgs(CodeGenFunction &CGF, 291 const CXXConstructorDecl *D, 292 CXXCtorType Type, 293 bool ForVirtualBase, 294 bool Delegating) override; 295 296 llvm::Value *getCXXDestructorImplicitParam(CodeGenFunction &CGF, 297 const CXXDestructorDecl *DD, 298 CXXDtorType Type, 299 bool ForVirtualBase, 300 bool Delegating) override; 301 302 void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, 303 CXXDtorType Type, bool ForVirtualBase, 304 bool Delegating, Address This, 305 QualType ThisTy) override; 306 307 void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD, 308 llvm::GlobalVariable *VTable); 309 310 void emitVTableDefinitions(CodeGenVTables &CGVT, 311 const CXXRecordDecl *RD) override; 312 313 bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF, 314 CodeGenFunction::VPtr Vptr) override; 315 316 /// Don't initialize vptrs if dynamic class 317 /// is marked with the 'novtable' attribute. 318 bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override { 319 return !VTableClass->hasAttr<MSNoVTableAttr>(); 320 } 321 322 llvm::Constant * 323 getVTableAddressPoint(BaseSubobject Base, 324 const CXXRecordDecl *VTableClass) override; 325 326 llvm::Value *getVTableAddressPointInStructor( 327 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, 328 BaseSubobject Base, const CXXRecordDecl *NearestVBase) override; 329 330 llvm::Constant * 331 getVTableAddressPointForConstExpr(BaseSubobject Base, 332 const CXXRecordDecl *VTableClass) override; 333 334 llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, 335 CharUnits VPtrOffset) override; 336 337 CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, 338 Address This, llvm::Type *Ty, 339 SourceLocation Loc) override; 340 341 llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF, 342 const CXXDestructorDecl *Dtor, 343 CXXDtorType DtorType, Address This, 344 DeleteOrMemberCallExpr E) override; 345 346 void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD, 347 CallArgList &CallArgs) override { 348 assert(GD.getDtorType() == Dtor_Deleting && 349 "Only deleting destructor thunks are available in this ABI"); 350 CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)), 351 getContext().IntTy); 352 } 353 354 void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; 355 356 llvm::GlobalVariable * 357 getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 358 llvm::GlobalVariable::LinkageTypes Linkage); 359 360 llvm::GlobalVariable * 361 getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD, 362 const CXXRecordDecl *DstRD) { 363 SmallString<256> OutName; 364 llvm::raw_svector_ostream Out(OutName); 365 getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out); 366 StringRef MangledName = OutName.str(); 367 368 if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName)) 369 return VDispMap; 370 371 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); 372 unsigned NumEntries = 1 + SrcRD->getNumVBases(); 373 SmallVector<llvm::Constant *, 4> Map(NumEntries, 374 llvm::UndefValue::get(CGM.IntTy)); 375 Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0); 376 bool AnyDifferent = false; 377 for (const auto &I : SrcRD->vbases()) { 378 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); 379 if (!DstRD->isVirtuallyDerivedFrom(VBase)) 380 continue; 381 382 unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase); 383 unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase); 384 Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4); 385 AnyDifferent |= SrcVBIndex != DstVBIndex; 386 } 387 // This map would be useless, don't use it. 388 if (!AnyDifferent) 389 return nullptr; 390 391 llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size()); 392 llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map); 393 llvm::GlobalValue::LinkageTypes Linkage = 394 SrcRD->isExternallyVisible() && DstRD->isExternallyVisible() 395 ? llvm::GlobalValue::LinkOnceODRLinkage 396 : llvm::GlobalValue::InternalLinkage; 397 auto *VDispMap = new llvm::GlobalVariable( 398 CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage, 399 /*Initializer=*/Init, MangledName); 400 return VDispMap; 401 } 402 403 void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD, 404 llvm::GlobalVariable *GV) const; 405 406 void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, 407 GlobalDecl GD, bool ReturnAdjustment) override { 408 GVALinkage Linkage = 409 getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl())); 410 411 if (Linkage == GVA_Internal) 412 Thunk->setLinkage(llvm::GlobalValue::InternalLinkage); 413 else if (ReturnAdjustment) 414 Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage); 415 else 416 Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 417 } 418 419 bool exportThunk() override { return false; } 420 421 llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This, 422 const ThisAdjustment &TA) override; 423 424 llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret, 425 const ReturnAdjustment &RA) override; 426 427 void EmitThreadLocalInitFuncs( 428 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, 429 ArrayRef<llvm::Function *> CXXThreadLocalInits, 430 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override; 431 432 bool usesThreadWrapperFunction(const VarDecl *VD) const override { 433 return getContext().getLangOpts().isCompatibleWithMSVC( 434 LangOptions::MSVC2019_5) && 435 (!isEmittedWithConstantInitializer(VD) || mayNeedDestruction(VD)); 436 } 437 LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, 438 QualType LValType) override; 439 440 void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 441 llvm::GlobalVariable *DeclPtr, 442 bool PerformInit) override; 443 void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, 444 llvm::FunctionCallee Dtor, 445 llvm::Constant *Addr) override; 446 447 // ==== Notes on array cookies ========= 448 // 449 // MSVC seems to only use cookies when the class has a destructor; a 450 // two-argument usual array deallocation function isn't sufficient. 451 // 452 // For example, this code prints "100" and "1": 453 // struct A { 454 // char x; 455 // void *operator new[](size_t sz) { 456 // printf("%u\n", sz); 457 // return malloc(sz); 458 // } 459 // void operator delete[](void *p, size_t sz) { 460 // printf("%u\n", sz); 461 // free(p); 462 // } 463 // }; 464 // int main() { 465 // A *p = new A[100]; 466 // delete[] p; 467 // } 468 // Whereas it prints "104" and "104" if you give A a destructor. 469 470 bool requiresArrayCookie(const CXXDeleteExpr *expr, 471 QualType elementType) override; 472 bool requiresArrayCookie(const CXXNewExpr *expr) override; 473 CharUnits getArrayCookieSizeImpl(QualType type) override; 474 Address InitializeArrayCookie(CodeGenFunction &CGF, 475 Address NewPtr, 476 llvm::Value *NumElements, 477 const CXXNewExpr *expr, 478 QualType ElementType) override; 479 llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, 480 Address allocPtr, 481 CharUnits cookieSize) override; 482 483 friend struct MSRTTIBuilder; 484 485 bool isImageRelative() const { 486 return CGM.getTarget().getPointerWidth(LangAS::Default) == 64; 487 } 488 489 // 5 routines for constructing the llvm types for MS RTTI structs. 490 llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) { 491 llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor"); 492 TDTypeName += llvm::utostr(TypeInfoString.size()); 493 llvm::StructType *&TypeDescriptorType = 494 TypeDescriptorTypeMap[TypeInfoString.size()]; 495 if (TypeDescriptorType) 496 return TypeDescriptorType; 497 llvm::Type *FieldTypes[] = { 498 CGM.Int8PtrPtrTy, 499 CGM.Int8PtrTy, 500 llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)}; 501 TypeDescriptorType = 502 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName); 503 return TypeDescriptorType; 504 } 505 506 llvm::Type *getImageRelativeType(llvm::Type *PtrType) { 507 if (!isImageRelative()) 508 return PtrType; 509 return CGM.IntTy; 510 } 511 512 llvm::StructType *getBaseClassDescriptorType() { 513 if (BaseClassDescriptorType) 514 return BaseClassDescriptorType; 515 llvm::Type *FieldTypes[] = { 516 getImageRelativeType(CGM.Int8PtrTy), 517 CGM.IntTy, 518 CGM.IntTy, 519 CGM.IntTy, 520 CGM.IntTy, 521 CGM.IntTy, 522 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), 523 }; 524 BaseClassDescriptorType = llvm::StructType::create( 525 CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor"); 526 return BaseClassDescriptorType; 527 } 528 529 llvm::StructType *getClassHierarchyDescriptorType() { 530 if (ClassHierarchyDescriptorType) 531 return ClassHierarchyDescriptorType; 532 // Forward-declare RTTIClassHierarchyDescriptor to break a cycle. 533 ClassHierarchyDescriptorType = llvm::StructType::create( 534 CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor"); 535 llvm::Type *FieldTypes[] = { 536 CGM.IntTy, 537 CGM.IntTy, 538 CGM.IntTy, 539 getImageRelativeType( 540 getBaseClassDescriptorType()->getPointerTo()->getPointerTo()), 541 }; 542 ClassHierarchyDescriptorType->setBody(FieldTypes); 543 return ClassHierarchyDescriptorType; 544 } 545 546 llvm::StructType *getCompleteObjectLocatorType() { 547 if (CompleteObjectLocatorType) 548 return CompleteObjectLocatorType; 549 CompleteObjectLocatorType = llvm::StructType::create( 550 CGM.getLLVMContext(), "rtti.CompleteObjectLocator"); 551 llvm::Type *FieldTypes[] = { 552 CGM.IntTy, 553 CGM.IntTy, 554 CGM.IntTy, 555 getImageRelativeType(CGM.Int8PtrTy), 556 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), 557 getImageRelativeType(CompleteObjectLocatorType), 558 }; 559 llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes); 560 if (!isImageRelative()) 561 FieldTypesRef = FieldTypesRef.drop_back(); 562 CompleteObjectLocatorType->setBody(FieldTypesRef); 563 return CompleteObjectLocatorType; 564 } 565 566 llvm::GlobalVariable *getImageBase() { 567 StringRef Name = "__ImageBase"; 568 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name)) 569 return GV; 570 571 auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, 572 /*isConstant=*/true, 573 llvm::GlobalValue::ExternalLinkage, 574 /*Initializer=*/nullptr, Name); 575 CGM.setDSOLocal(GV); 576 return GV; 577 } 578 579 llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) { 580 if (!isImageRelative()) 581 return PtrVal; 582 583 if (PtrVal->isNullValue()) 584 return llvm::Constant::getNullValue(CGM.IntTy); 585 586 llvm::Constant *ImageBaseAsInt = 587 llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy); 588 llvm::Constant *PtrValAsInt = 589 llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy); 590 llvm::Constant *Diff = 591 llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt, 592 /*HasNUW=*/true, /*HasNSW=*/true); 593 return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy); 594 } 595 596 private: 597 MicrosoftMangleContext &getMangleContext() { 598 return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext()); 599 } 600 601 llvm::Constant *getZeroInt() { 602 return llvm::ConstantInt::get(CGM.IntTy, 0); 603 } 604 605 llvm::Constant *getAllOnesInt() { 606 return llvm::Constant::getAllOnesValue(CGM.IntTy); 607 } 608 609 CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override; 610 611 void 612 GetNullMemberPointerFields(const MemberPointerType *MPT, 613 llvm::SmallVectorImpl<llvm::Constant *> &fields); 614 615 /// Shared code for virtual base adjustment. Returns the offset from 616 /// the vbptr to the virtual base. Optionally returns the address of the 617 /// vbptr itself. 618 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 619 Address Base, 620 llvm::Value *VBPtrOffset, 621 llvm::Value *VBTableOffset, 622 llvm::Value **VBPtr = nullptr); 623 624 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 625 Address Base, 626 int32_t VBPtrOffset, 627 int32_t VBTableOffset, 628 llvm::Value **VBPtr = nullptr) { 629 assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s"); 630 llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 631 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset); 632 return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr); 633 } 634 635 std::tuple<Address, llvm::Value *, const CXXRecordDecl *> 636 performBaseAdjustment(CodeGenFunction &CGF, Address Value, 637 QualType SrcRecordTy); 638 639 /// Performs a full virtual base adjustment. Used to dereference 640 /// pointers to members of virtual bases. 641 llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E, 642 const CXXRecordDecl *RD, Address Base, 643 llvm::Value *VirtualBaseAdjustmentOffset, 644 llvm::Value *VBPtrOffset /* optional */); 645 646 /// Emits a full member pointer with the fields common to data and 647 /// function member pointers. 648 llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField, 649 bool IsMemberFunction, 650 const CXXRecordDecl *RD, 651 CharUnits NonVirtualBaseAdjustment, 652 unsigned VBTableIndex); 653 654 bool MemberPointerConstantIsNull(const MemberPointerType *MPT, 655 llvm::Constant *MP); 656 657 /// - Initialize all vbptrs of 'this' with RD as the complete type. 658 void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD); 659 660 /// Caching wrapper around VBTableBuilder::enumerateVBTables(). 661 const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD); 662 663 /// Generate a thunk for calling a virtual member function MD. 664 llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, 665 const MethodVFTableLocation &ML); 666 667 llvm::Constant *EmitMemberDataPointer(const CXXRecordDecl *RD, 668 CharUnits offset); 669 670 public: 671 llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; 672 673 bool isZeroInitializable(const MemberPointerType *MPT) override; 674 675 bool isMemberPointerConvertible(const MemberPointerType *MPT) const override { 676 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 677 return RD->hasAttr<MSInheritanceAttr>(); 678 } 679 680 llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; 681 682 llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, 683 CharUnits offset) override; 684 llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override; 685 llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; 686 687 llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, 688 llvm::Value *L, 689 llvm::Value *R, 690 const MemberPointerType *MPT, 691 bool Inequality) override; 692 693 llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 694 llvm::Value *MemPtr, 695 const MemberPointerType *MPT) override; 696 697 llvm::Value * 698 EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, 699 Address Base, llvm::Value *MemPtr, 700 const MemberPointerType *MPT) override; 701 702 llvm::Value *EmitNonNullMemberPointerConversion( 703 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, 704 CastKind CK, CastExpr::path_const_iterator PathBegin, 705 CastExpr::path_const_iterator PathEnd, llvm::Value *Src, 706 CGBuilderTy &Builder); 707 708 llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, 709 const CastExpr *E, 710 llvm::Value *Src) override; 711 712 llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, 713 llvm::Constant *Src) override; 714 715 llvm::Constant *EmitMemberPointerConversion( 716 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, 717 CastKind CK, CastExpr::path_const_iterator PathBegin, 718 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src); 719 720 CGCallee 721 EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E, 722 Address This, llvm::Value *&ThisPtrForCall, 723 llvm::Value *MemPtr, 724 const MemberPointerType *MPT) override; 725 726 void emitCXXStructor(GlobalDecl GD) override; 727 728 llvm::StructType *getCatchableTypeType() { 729 if (CatchableTypeType) 730 return CatchableTypeType; 731 llvm::Type *FieldTypes[] = { 732 CGM.IntTy, // Flags 733 getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor 734 CGM.IntTy, // NonVirtualAdjustment 735 CGM.IntTy, // OffsetToVBPtr 736 CGM.IntTy, // VBTableIndex 737 CGM.IntTy, // Size 738 getImageRelativeType(CGM.Int8PtrTy) // CopyCtor 739 }; 740 CatchableTypeType = llvm::StructType::create( 741 CGM.getLLVMContext(), FieldTypes, "eh.CatchableType"); 742 return CatchableTypeType; 743 } 744 745 llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) { 746 llvm::StructType *&CatchableTypeArrayType = 747 CatchableTypeArrayTypeMap[NumEntries]; 748 if (CatchableTypeArrayType) 749 return CatchableTypeArrayType; 750 751 llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray."); 752 CTATypeName += llvm::utostr(NumEntries); 753 llvm::Type *CTType = 754 getImageRelativeType(getCatchableTypeType()->getPointerTo()); 755 llvm::Type *FieldTypes[] = { 756 CGM.IntTy, // NumEntries 757 llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes 758 }; 759 CatchableTypeArrayType = 760 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName); 761 return CatchableTypeArrayType; 762 } 763 764 llvm::StructType *getThrowInfoType() { 765 if (ThrowInfoType) 766 return ThrowInfoType; 767 llvm::Type *FieldTypes[] = { 768 CGM.IntTy, // Flags 769 getImageRelativeType(CGM.Int8PtrTy), // CleanupFn 770 getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat 771 getImageRelativeType(CGM.Int8PtrTy) // CatchableTypeArray 772 }; 773 ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, 774 "eh.ThrowInfo"); 775 return ThrowInfoType; 776 } 777 778 llvm::FunctionCallee getThrowFn() { 779 // _CxxThrowException is passed an exception object and a ThrowInfo object 780 // which describes the exception. 781 llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()}; 782 llvm::FunctionType *FTy = 783 llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false); 784 llvm::FunctionCallee Throw = 785 CGM.CreateRuntimeFunction(FTy, "_CxxThrowException"); 786 // _CxxThrowException is stdcall on 32-bit x86 platforms. 787 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) { 788 if (auto *Fn = dyn_cast<llvm::Function>(Throw.getCallee())) 789 Fn->setCallingConv(llvm::CallingConv::X86_StdCall); 790 } 791 return Throw; 792 } 793 794 llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, 795 CXXCtorType CT); 796 797 llvm::Constant *getCatchableType(QualType T, 798 uint32_t NVOffset = 0, 799 int32_t VBPtrOffset = -1, 800 uint32_t VBIndex = 0); 801 802 llvm::GlobalVariable *getCatchableTypeArray(QualType T); 803 804 llvm::GlobalVariable *getThrowInfo(QualType T) override; 805 806 std::pair<llvm::Value *, const CXXRecordDecl *> 807 LoadVTablePtr(CodeGenFunction &CGF, Address This, 808 const CXXRecordDecl *RD) override; 809 810 bool 811 isPermittedToBeHomogeneousAggregate(const CXXRecordDecl *RD) const override; 812 813 private: 814 typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy; 815 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy; 816 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy; 817 /// All the vftables that have been referenced. 818 VFTablesMapTy VFTablesMap; 819 VTablesMapTy VTablesMap; 820 821 /// This set holds the record decls we've deferred vtable emission for. 822 llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables; 823 824 825 /// All the vbtables which have been referenced. 826 llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap; 827 828 /// Info on the global variable used to guard initialization of static locals. 829 /// The BitIndex field is only used for externally invisible declarations. 830 struct GuardInfo { 831 GuardInfo() = default; 832 llvm::GlobalVariable *Guard = nullptr; 833 unsigned BitIndex = 0; 834 }; 835 836 /// Map from DeclContext to the current guard variable. We assume that the 837 /// AST is visited in source code order. 838 llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap; 839 llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap; 840 llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap; 841 842 llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap; 843 llvm::StructType *BaseClassDescriptorType; 844 llvm::StructType *ClassHierarchyDescriptorType; 845 llvm::StructType *CompleteObjectLocatorType; 846 847 llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays; 848 849 llvm::StructType *CatchableTypeType; 850 llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap; 851 llvm::StructType *ThrowInfoType; 852 }; 853 854 } 855 856 CGCXXABI::RecordArgABI 857 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const { 858 // Use the default C calling convention rules for things that can be passed in 859 // registers, i.e. non-trivially copyable records or records marked with 860 // [[trivial_abi]]. 861 if (RD->canPassInRegisters()) 862 return RAA_Default; 863 864 switch (CGM.getTarget().getTriple().getArch()) { 865 default: 866 // FIXME: Implement for other architectures. 867 return RAA_Indirect; 868 869 case llvm::Triple::thumb: 870 // Pass things indirectly for now because it is simple. 871 // FIXME: This is incompatible with MSVC for arguments with a dtor and no 872 // copy ctor. 873 return RAA_Indirect; 874 875 case llvm::Triple::x86: { 876 // If the argument has *required* alignment greater than four bytes, pass 877 // it indirectly. Prior to MSVC version 19.14, passing overaligned 878 // arguments was not supported and resulted in a compiler error. In 19.14 879 // and later versions, such arguments are now passed indirectly. 880 TypeInfo Info = getContext().getTypeInfo(RD->getTypeForDecl()); 881 if (Info.isAlignRequired() && Info.Align > 4) 882 return RAA_Indirect; 883 884 // If C++ prohibits us from making a copy, construct the arguments directly 885 // into argument memory. 886 return RAA_DirectInMemory; 887 } 888 889 case llvm::Triple::x86_64: 890 case llvm::Triple::aarch64: 891 return RAA_Indirect; 892 } 893 894 llvm_unreachable("invalid enum"); 895 } 896 897 void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF, 898 const CXXDeleteExpr *DE, 899 Address Ptr, 900 QualType ElementType, 901 const CXXDestructorDecl *Dtor) { 902 // FIXME: Provide a source location here even though there's no 903 // CXXMemberCallExpr for dtor call. 904 bool UseGlobalDelete = DE->isGlobalDelete(); 905 CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; 906 llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE); 907 if (UseGlobalDelete) 908 CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType); 909 } 910 911 void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) { 912 llvm::Value *Args[] = { 913 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), 914 llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())}; 915 llvm::FunctionCallee Fn = getThrowFn(); 916 if (isNoReturn) 917 CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args); 918 else 919 CGF.EmitRuntimeCallOrInvoke(Fn, Args); 920 } 921 922 void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF, 923 const CXXCatchStmt *S) { 924 // In the MS ABI, the runtime handles the copy, and the catch handler is 925 // responsible for destruction. 926 VarDecl *CatchParam = S->getExceptionDecl(); 927 llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock(); 928 llvm::CatchPadInst *CPI = 929 cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI()); 930 CGF.CurrentFuncletPad = CPI; 931 932 // If this is a catch-all or the catch parameter is unnamed, we don't need to 933 // emit an alloca to the object. 934 if (!CatchParam || !CatchParam->getDeclName()) { 935 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); 936 return; 937 } 938 939 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); 940 CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer()); 941 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); 942 CGF.EmitAutoVarCleanups(var); 943 } 944 945 /// We need to perform a generic polymorphic operation (like a typeid 946 /// or a cast), which requires an object with a vfptr. Adjust the 947 /// address to point to an object with a vfptr. 948 std::tuple<Address, llvm::Value *, const CXXRecordDecl *> 949 MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value, 950 QualType SrcRecordTy) { 951 Value = Value.withElementType(CGF.Int8Ty); 952 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 953 const ASTContext &Context = getContext(); 954 955 // If the class itself has a vfptr, great. This check implicitly 956 // covers non-virtual base subobjects: a class with its own virtual 957 // functions would be a candidate to be a primary base. 958 if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr()) 959 return std::make_tuple(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0), 960 SrcDecl); 961 962 // Okay, one of the vbases must have a vfptr, or else this isn't 963 // actually a polymorphic class. 964 const CXXRecordDecl *PolymorphicBase = nullptr; 965 for (auto &Base : SrcDecl->vbases()) { 966 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 967 if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) { 968 PolymorphicBase = BaseDecl; 969 break; 970 } 971 } 972 assert(PolymorphicBase && "polymorphic class has no apparent vfptr?"); 973 974 llvm::Value *Offset = 975 GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase); 976 llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP( 977 Value.getElementType(), Value.getPointer(), Offset); 978 CharUnits VBaseAlign = 979 CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase); 980 return std::make_tuple(Address(Ptr, CGF.Int8Ty, VBaseAlign), Offset, 981 PolymorphicBase); 982 } 983 984 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref, 985 QualType SrcRecordTy) { 986 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 987 return IsDeref && 988 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 989 } 990 991 static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF, 992 llvm::Value *Argument) { 993 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 994 llvm::FunctionType *FTy = 995 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false); 996 llvm::Value *Args[] = {Argument}; 997 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid"); 998 return CGF.EmitRuntimeCallOrInvoke(Fn, Args); 999 } 1000 1001 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { 1002 llvm::CallBase *Call = 1003 emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy)); 1004 Call->setDoesNotReturn(); 1005 CGF.Builder.CreateUnreachable(); 1006 } 1007 1008 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF, 1009 QualType SrcRecordTy, 1010 Address ThisPtr, 1011 llvm::Type *StdTypeInfoPtrTy) { 1012 std::tie(ThisPtr, std::ignore, std::ignore) = 1013 performBaseAdjustment(CGF, ThisPtr, SrcRecordTy); 1014 llvm::CallBase *Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer()); 1015 return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy); 1016 } 1017 1018 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 1019 QualType SrcRecordTy) { 1020 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 1021 return SrcIsPtr && 1022 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 1023 } 1024 1025 llvm::Value *MicrosoftCXXABI::emitDynamicCastCall( 1026 CodeGenFunction &CGF, Address This, QualType SrcRecordTy, QualType DestTy, 1027 QualType DestRecordTy, llvm::BasicBlock *CastEnd) { 1028 llvm::Value *SrcRTTI = 1029 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1030 llvm::Value *DestRTTI = 1031 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1032 1033 llvm::Value *Offset; 1034 std::tie(This, Offset, std::ignore) = 1035 performBaseAdjustment(CGF, This, SrcRecordTy); 1036 llvm::Value *ThisPtr = This.getPointer(); 1037 Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty); 1038 1039 // PVOID __RTDynamicCast( 1040 // PVOID inptr, 1041 // LONG VfDelta, 1042 // PVOID SrcType, 1043 // PVOID TargetType, 1044 // BOOL isReference) 1045 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy, 1046 CGF.Int8PtrTy, CGF.Int32Ty}; 1047 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( 1048 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 1049 "__RTDynamicCast"); 1050 llvm::Value *Args[] = { 1051 ThisPtr, Offset, SrcRTTI, DestRTTI, 1052 llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())}; 1053 return CGF.EmitRuntimeCallOrInvoke(Function, Args); 1054 } 1055 1056 llvm::Value *MicrosoftCXXABI::emitDynamicCastToVoid(CodeGenFunction &CGF, 1057 Address Value, 1058 QualType SrcRecordTy) { 1059 std::tie(Value, std::ignore, std::ignore) = 1060 performBaseAdjustment(CGF, Value, SrcRecordTy); 1061 1062 // PVOID __RTCastToVoid( 1063 // PVOID inptr) 1064 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 1065 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( 1066 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 1067 "__RTCastToVoid"); 1068 llvm::Value *Args[] = {Value.getPointer()}; 1069 return CGF.EmitRuntimeCall(Function, Args); 1070 } 1071 1072 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { 1073 return false; 1074 } 1075 1076 llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset( 1077 CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl, 1078 const CXXRecordDecl *BaseClassDecl) { 1079 const ASTContext &Context = getContext(); 1080 int64_t VBPtrChars = 1081 Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity(); 1082 llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars); 1083 CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy); 1084 CharUnits VBTableChars = 1085 IntSize * 1086 CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl); 1087 llvm::Value *VBTableOffset = 1088 llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity()); 1089 1090 llvm::Value *VBPtrToNewBase = 1091 GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset); 1092 VBPtrToNewBase = 1093 CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy); 1094 return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase); 1095 } 1096 1097 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const { 1098 return isa<CXXConstructorDecl>(GD.getDecl()); 1099 } 1100 1101 static bool isDeletingDtor(GlobalDecl GD) { 1102 return isa<CXXDestructorDecl>(GD.getDecl()) && 1103 GD.getDtorType() == Dtor_Deleting; 1104 } 1105 1106 bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const { 1107 return isDeletingDtor(GD); 1108 } 1109 1110 static bool isTrivialForMSVC(const CXXRecordDecl *RD, QualType Ty, 1111 CodeGenModule &CGM) { 1112 // On AArch64, HVAs that can be passed in registers can also be returned 1113 // in registers. (Note this is using the MSVC definition of an HVA; see 1114 // isPermittedToBeHomogeneousAggregate().) 1115 const Type *Base = nullptr; 1116 uint64_t NumElts = 0; 1117 if (CGM.getTarget().getTriple().isAArch64() && 1118 CGM.getTypes().getABIInfo().isHomogeneousAggregate(Ty, Base, NumElts) && 1119 isa<VectorType>(Base)) { 1120 return true; 1121 } 1122 1123 // We use the C++14 definition of an aggregate, so we also 1124 // check for: 1125 // No private or protected non static data members. 1126 // No base classes 1127 // No virtual functions 1128 // Additionally, we need to ensure that there is a trivial copy assignment 1129 // operator, a trivial destructor and no user-provided constructors. 1130 if (RD->hasProtectedFields() || RD->hasPrivateFields()) 1131 return false; 1132 if (RD->getNumBases() > 0) 1133 return false; 1134 if (RD->isPolymorphic()) 1135 return false; 1136 if (RD->hasNonTrivialCopyAssignment()) 1137 return false; 1138 for (const CXXConstructorDecl *Ctor : RD->ctors()) 1139 if (Ctor->isUserProvided()) 1140 return false; 1141 if (RD->hasNonTrivialDestructor()) 1142 return false; 1143 return true; 1144 } 1145 1146 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const { 1147 const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); 1148 if (!RD) 1149 return false; 1150 1151 bool isTrivialForABI = RD->canPassInRegisters() && 1152 isTrivialForMSVC(RD, FI.getReturnType(), CGM); 1153 1154 // MSVC always returns structs indirectly from C++ instance methods. 1155 bool isIndirectReturn = !isTrivialForABI || FI.isInstanceMethod(); 1156 1157 if (isIndirectReturn) { 1158 CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType()); 1159 FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 1160 1161 // MSVC always passes `this` before the `sret` parameter. 1162 FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod()); 1163 1164 // On AArch64, use the `inreg` attribute if the object is considered to not 1165 // be trivially copyable, or if this is an instance method struct return. 1166 FI.getReturnInfo().setInReg(CGM.getTarget().getTriple().isAArch64()); 1167 1168 return true; 1169 } 1170 1171 // Otherwise, use the C ABI rules. 1172 return false; 1173 } 1174 1175 llvm::BasicBlock * 1176 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 1177 const CXXRecordDecl *RD) { 1178 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); 1179 assert(IsMostDerivedClass && 1180 "ctor for a class with virtual bases must have an implicit parameter"); 1181 llvm::Value *IsCompleteObject = 1182 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); 1183 1184 llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases"); 1185 llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases"); 1186 CGF.Builder.CreateCondBr(IsCompleteObject, 1187 CallVbaseCtorsBB, SkipVbaseCtorsBB); 1188 1189 CGF.EmitBlock(CallVbaseCtorsBB); 1190 1191 // Fill in the vbtable pointers here. 1192 EmitVBPtrStores(CGF, RD); 1193 1194 // CGF will put the base ctor calls in this basic block for us later. 1195 1196 return SkipVbaseCtorsBB; 1197 } 1198 1199 llvm::BasicBlock * 1200 MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) { 1201 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); 1202 assert(IsMostDerivedClass && 1203 "ctor for a class with virtual bases must have an implicit parameter"); 1204 llvm::Value *IsCompleteObject = 1205 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); 1206 1207 llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock("Dtor.dtor_vbases"); 1208 llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock("Dtor.skip_vbases"); 1209 CGF.Builder.CreateCondBr(IsCompleteObject, 1210 CallVbaseDtorsBB, SkipVbaseDtorsBB); 1211 1212 CGF.EmitBlock(CallVbaseDtorsBB); 1213 // CGF will put the base dtor calls in this basic block for us later. 1214 1215 return SkipVbaseDtorsBB; 1216 } 1217 1218 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers( 1219 CodeGenFunction &CGF, const CXXRecordDecl *RD) { 1220 // In most cases, an override for a vbase virtual method can adjust 1221 // the "this" parameter by applying a constant offset. 1222 // However, this is not enough while a constructor or a destructor of some 1223 // class X is being executed if all the following conditions are met: 1224 // - X has virtual bases, (1) 1225 // - X overrides a virtual method M of a vbase Y, (2) 1226 // - X itself is a vbase of the most derived class. 1227 // 1228 // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X 1229 // which holds the extra amount of "this" adjustment we must do when we use 1230 // the X vftables (i.e. during X ctor or dtor). 1231 // Outside the ctors and dtors, the values of vtorDisps are zero. 1232 1233 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1234 typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets; 1235 const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap(); 1236 CGBuilderTy &Builder = CGF.Builder; 1237 1238 llvm::Value *Int8This = nullptr; // Initialize lazily. 1239 1240 for (const CXXBaseSpecifier &S : RD->vbases()) { 1241 const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl(); 1242 auto I = VBaseMap.find(VBase); 1243 assert(I != VBaseMap.end()); 1244 if (!I->second.hasVtorDisp()) 1245 continue; 1246 1247 llvm::Value *VBaseOffset = 1248 GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, VBase); 1249 uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity(); 1250 1251 // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase). 1252 llvm::Value *VtorDispValue = Builder.CreateSub( 1253 VBaseOffset, llvm::ConstantInt::get(CGM.PtrDiffTy, ConstantVBaseOffset), 1254 "vtordisp.value"); 1255 VtorDispValue = Builder.CreateTruncOrBitCast(VtorDispValue, CGF.Int32Ty); 1256 1257 if (!Int8This) 1258 Int8This = getThisValue(CGF); 1259 1260 llvm::Value *VtorDispPtr = 1261 Builder.CreateInBoundsGEP(CGF.Int8Ty, Int8This, VBaseOffset); 1262 // vtorDisp is always the 32-bits before the vbase in the class layout. 1263 VtorDispPtr = Builder.CreateConstGEP1_32(CGF.Int8Ty, VtorDispPtr, -4); 1264 1265 Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr, 1266 CharUnits::fromQuantity(4)); 1267 } 1268 } 1269 1270 static bool hasDefaultCXXMethodCC(ASTContext &Context, 1271 const CXXMethodDecl *MD) { 1272 CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention( 1273 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 1274 CallingConv ActualCallingConv = 1275 MD->getType()->castAs<FunctionProtoType>()->getCallConv(); 1276 return ExpectedCallingConv == ActualCallingConv; 1277 } 1278 1279 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { 1280 // There's only one constructor type in this ABI. 1281 CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete)); 1282 1283 // Exported default constructors either have a simple call-site where they use 1284 // the typical calling convention and have a single 'this' pointer for an 1285 // argument -or- they get a wrapper function which appropriately thunks to the 1286 // real default constructor. This thunk is the default constructor closure. 1287 if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor() && 1288 D->isDefined()) { 1289 if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) { 1290 llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure); 1291 Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage); 1292 CGM.setGVProperties(Fn, D); 1293 } 1294 } 1295 } 1296 1297 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF, 1298 const CXXRecordDecl *RD) { 1299 Address This = getThisAddress(CGF); 1300 This = This.withElementType(CGM.Int8Ty); 1301 const ASTContext &Context = getContext(); 1302 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1303 1304 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 1305 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 1306 const std::unique_ptr<VPtrInfo> &VBT = (*VBGlobals.VBTables)[I]; 1307 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 1308 const ASTRecordLayout &SubobjectLayout = 1309 Context.getASTRecordLayout(VBT->IntroducingObject); 1310 CharUnits Offs = VBT->NonVirtualOffset; 1311 Offs += SubobjectLayout.getVBPtrOffset(); 1312 if (VBT->getVBaseWithVPtr()) 1313 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); 1314 Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs); 1315 llvm::Value *GVPtr = 1316 CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0); 1317 VBPtr = VBPtr.withElementType(GVPtr->getType()); 1318 CGF.Builder.CreateStore(GVPtr, VBPtr); 1319 } 1320 } 1321 1322 CGCXXABI::AddedStructorArgCounts 1323 MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD, 1324 SmallVectorImpl<CanQualType> &ArgTys) { 1325 AddedStructorArgCounts Added; 1326 // TODO: 'for base' flag 1327 if (isa<CXXDestructorDecl>(GD.getDecl()) && 1328 GD.getDtorType() == Dtor_Deleting) { 1329 // The scalar deleting destructor takes an implicit int parameter. 1330 ArgTys.push_back(getContext().IntTy); 1331 ++Added.Suffix; 1332 } 1333 auto *CD = dyn_cast<CXXConstructorDecl>(GD.getDecl()); 1334 if (!CD) 1335 return Added; 1336 1337 // All parameters are already in place except is_most_derived, which goes 1338 // after 'this' if it's variadic and last if it's not. 1339 1340 const CXXRecordDecl *Class = CD->getParent(); 1341 const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>(); 1342 if (Class->getNumVBases()) { 1343 if (FPT->isVariadic()) { 1344 ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy); 1345 ++Added.Prefix; 1346 } else { 1347 ArgTys.push_back(getContext().IntTy); 1348 ++Added.Suffix; 1349 } 1350 } 1351 1352 return Added; 1353 } 1354 1355 void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV, 1356 const CXXDestructorDecl *Dtor, 1357 CXXDtorType DT) const { 1358 // Deleting destructor variants are never imported or exported. Give them the 1359 // default storage class. 1360 if (DT == Dtor_Deleting) { 1361 GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1362 } else { 1363 const NamedDecl *ND = Dtor; 1364 CGM.setDLLImportDLLExport(GV, ND); 1365 } 1366 } 1367 1368 llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage( 1369 GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const { 1370 // Internal things are always internal, regardless of attributes. After this, 1371 // we know the thunk is externally visible. 1372 if (Linkage == GVA_Internal) 1373 return llvm::GlobalValue::InternalLinkage; 1374 1375 switch (DT) { 1376 case Dtor_Base: 1377 // The base destructor most closely tracks the user-declared constructor, so 1378 // we delegate back to the normal declarator case. 1379 return CGM.getLLVMLinkageForDeclarator(Dtor, Linkage); 1380 case Dtor_Complete: 1381 // The complete destructor is like an inline function, but it may be 1382 // imported and therefore must be exported as well. This requires changing 1383 // the linkage if a DLL attribute is present. 1384 if (Dtor->hasAttr<DLLExportAttr>()) 1385 return llvm::GlobalValue::WeakODRLinkage; 1386 if (Dtor->hasAttr<DLLImportAttr>()) 1387 return llvm::GlobalValue::AvailableExternallyLinkage; 1388 return llvm::GlobalValue::LinkOnceODRLinkage; 1389 case Dtor_Deleting: 1390 // Deleting destructors are like inline functions. They have vague linkage 1391 // and are emitted everywhere they are used. They are internal if the class 1392 // is internal. 1393 return llvm::GlobalValue::LinkOnceODRLinkage; 1394 case Dtor_Comdat: 1395 llvm_unreachable("MS C++ ABI does not support comdat dtors"); 1396 } 1397 llvm_unreachable("invalid dtor type"); 1398 } 1399 1400 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { 1401 // The TU defining a dtor is only guaranteed to emit a base destructor. All 1402 // other destructor variants are delegating thunks. 1403 CGM.EmitGlobal(GlobalDecl(D, Dtor_Base)); 1404 1405 // If the class is dllexported, emit the complete (vbase) destructor wherever 1406 // the base dtor is emitted. 1407 // FIXME: To match MSVC, this should only be done when the class is exported 1408 // with -fdllexport-inlines enabled. 1409 if (D->getParent()->getNumVBases() > 0 && D->hasAttr<DLLExportAttr>()) 1410 CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete)); 1411 } 1412 1413 CharUnits 1414 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) { 1415 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1416 1417 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1418 // Complete destructors take a pointer to the complete object as a 1419 // parameter, thus don't need this adjustment. 1420 if (GD.getDtorType() == Dtor_Complete) 1421 return CharUnits(); 1422 1423 // There's no Dtor_Base in vftable but it shares the this adjustment with 1424 // the deleting one, so look it up instead. 1425 GD = GlobalDecl(DD, Dtor_Deleting); 1426 } 1427 1428 MethodVFTableLocation ML = 1429 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); 1430 CharUnits Adjustment = ML.VFPtrOffset; 1431 1432 // Normal virtual instance methods need to adjust from the vfptr that first 1433 // defined the virtual method to the virtual base subobject, but destructors 1434 // do not. The vector deleting destructor thunk applies this adjustment for 1435 // us if necessary. 1436 if (isa<CXXDestructorDecl>(MD)) 1437 Adjustment = CharUnits::Zero(); 1438 1439 if (ML.VBase) { 1440 const ASTRecordLayout &DerivedLayout = 1441 getContext().getASTRecordLayout(MD->getParent()); 1442 Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase); 1443 } 1444 1445 return Adjustment; 1446 } 1447 1448 Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall( 1449 CodeGenFunction &CGF, GlobalDecl GD, Address This, 1450 bool VirtualCall) { 1451 if (!VirtualCall) { 1452 // If the call of a virtual function is not virtual, we just have to 1453 // compensate for the adjustment the virtual function does in its prologue. 1454 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD); 1455 if (Adjustment.isZero()) 1456 return This; 1457 1458 This = This.withElementType(CGF.Int8Ty); 1459 assert(Adjustment.isPositive()); 1460 return CGF.Builder.CreateConstByteGEP(This, Adjustment); 1461 } 1462 1463 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1464 1465 GlobalDecl LookupGD = GD; 1466 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1467 // Complete dtors take a pointer to the complete object, 1468 // thus don't need adjustment. 1469 if (GD.getDtorType() == Dtor_Complete) 1470 return This; 1471 1472 // There's only Dtor_Deleting in vftable but it shares the this adjustment 1473 // with the base one, so look up the deleting one instead. 1474 LookupGD = GlobalDecl(DD, Dtor_Deleting); 1475 } 1476 MethodVFTableLocation ML = 1477 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD); 1478 1479 CharUnits StaticOffset = ML.VFPtrOffset; 1480 1481 // Base destructors expect 'this' to point to the beginning of the base 1482 // subobject, not the first vfptr that happens to contain the virtual dtor. 1483 // However, we still need to apply the virtual base adjustment. 1484 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 1485 StaticOffset = CharUnits::Zero(); 1486 1487 Address Result = This; 1488 if (ML.VBase) { 1489 Result = Result.withElementType(CGF.Int8Ty); 1490 1491 const CXXRecordDecl *Derived = MD->getParent(); 1492 const CXXRecordDecl *VBase = ML.VBase; 1493 llvm::Value *VBaseOffset = 1494 GetVirtualBaseClassOffset(CGF, Result, Derived, VBase); 1495 llvm::Value *VBasePtr = CGF.Builder.CreateInBoundsGEP( 1496 Result.getElementType(), Result.getPointer(), VBaseOffset); 1497 CharUnits VBaseAlign = 1498 CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase); 1499 Result = Address(VBasePtr, CGF.Int8Ty, VBaseAlign); 1500 } 1501 if (!StaticOffset.isZero()) { 1502 assert(StaticOffset.isPositive()); 1503 Result = Result.withElementType(CGF.Int8Ty); 1504 if (ML.VBase) { 1505 // Non-virtual adjustment might result in a pointer outside the allocated 1506 // object, e.g. if the final overrider class is laid out after the virtual 1507 // base that declares a method in the most derived class. 1508 // FIXME: Update the code that emits this adjustment in thunks prologues. 1509 Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset); 1510 } else { 1511 Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset); 1512 } 1513 } 1514 return Result; 1515 } 1516 1517 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, 1518 QualType &ResTy, 1519 FunctionArgList &Params) { 1520 ASTContext &Context = getContext(); 1521 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1522 assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)); 1523 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1524 auto *IsMostDerived = ImplicitParamDecl::Create( 1525 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), 1526 &Context.Idents.get("is_most_derived"), Context.IntTy, 1527 ImplicitParamKind::Other); 1528 // The 'most_derived' parameter goes second if the ctor is variadic and last 1529 // if it's not. Dtors can't be variadic. 1530 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 1531 if (FPT->isVariadic()) 1532 Params.insert(Params.begin() + 1, IsMostDerived); 1533 else 1534 Params.push_back(IsMostDerived); 1535 getStructorImplicitParamDecl(CGF) = IsMostDerived; 1536 } else if (isDeletingDtor(CGF.CurGD)) { 1537 auto *ShouldDelete = ImplicitParamDecl::Create( 1538 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), 1539 &Context.Idents.get("should_call_delete"), Context.IntTy, 1540 ImplicitParamKind::Other); 1541 Params.push_back(ShouldDelete); 1542 getStructorImplicitParamDecl(CGF) = ShouldDelete; 1543 } 1544 } 1545 1546 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { 1547 // Naked functions have no prolog. 1548 if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>()) 1549 return; 1550 1551 // Overridden virtual methods of non-primary bases need to adjust the incoming 1552 // 'this' pointer in the prologue. In this hierarchy, C::b will subtract 1553 // sizeof(void*) to adjust from B* to C*: 1554 // struct A { virtual void a(); }; 1555 // struct B { virtual void b(); }; 1556 // struct C : A, B { virtual void b(); }; 1557 // 1558 // Leave the value stored in the 'this' alloca unadjusted, so that the 1559 // debugger sees the unadjusted value. Microsoft debuggers require this, and 1560 // will apply the ThisAdjustment in the method type information. 1561 // FIXME: Do something better for DWARF debuggers, which won't expect this, 1562 // without making our codegen depend on debug info settings. 1563 llvm::Value *This = loadIncomingCXXThis(CGF); 1564 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1565 if (!CGF.CurFuncIsThunk && MD->isVirtual()) { 1566 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(CGF.CurGD); 1567 if (!Adjustment.isZero()) { 1568 assert(Adjustment.isPositive()); 1569 This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This, 1570 -Adjustment.getQuantity()); 1571 } 1572 } 1573 setCXXABIThisValue(CGF, This); 1574 1575 // If this is a function that the ABI specifies returns 'this', initialize 1576 // the return slot to 'this' at the start of the function. 1577 // 1578 // Unlike the setting of return types, this is done within the ABI 1579 // implementation instead of by clients of CGCXXABI because: 1580 // 1) getThisValue is currently protected 1581 // 2) in theory, an ABI could implement 'this' returns some other way; 1582 // HasThisReturn only specifies a contract, not the implementation 1583 if (HasThisReturn(CGF.CurGD) || hasMostDerivedReturn(CGF.CurGD)) 1584 CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); 1585 1586 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1587 assert(getStructorImplicitParamDecl(CGF) && 1588 "no implicit parameter for a constructor with virtual bases?"); 1589 getStructorImplicitParamValue(CGF) 1590 = CGF.Builder.CreateLoad( 1591 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1592 "is_most_derived"); 1593 } 1594 1595 if (isDeletingDtor(CGF.CurGD)) { 1596 assert(getStructorImplicitParamDecl(CGF) && 1597 "no implicit parameter for a deleting destructor?"); 1598 getStructorImplicitParamValue(CGF) 1599 = CGF.Builder.CreateLoad( 1600 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1601 "should_call_delete"); 1602 } 1603 } 1604 1605 CGCXXABI::AddedStructorArgs MicrosoftCXXABI::getImplicitConstructorArgs( 1606 CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, 1607 bool ForVirtualBase, bool Delegating) { 1608 assert(Type == Ctor_Complete || Type == Ctor_Base); 1609 1610 // Check if we need a 'most_derived' parameter. 1611 if (!D->getParent()->getNumVBases()) 1612 return AddedStructorArgs{}; 1613 1614 // Add the 'most_derived' argument second if we are variadic or last if not. 1615 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1616 llvm::Value *MostDerivedArg; 1617 if (Delegating) { 1618 MostDerivedArg = getStructorImplicitParamValue(CGF); 1619 } else { 1620 MostDerivedArg = llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete); 1621 } 1622 if (FPT->isVariadic()) { 1623 return AddedStructorArgs::prefix({{MostDerivedArg, getContext().IntTy}}); 1624 } 1625 return AddedStructorArgs::suffix({{MostDerivedArg, getContext().IntTy}}); 1626 } 1627 1628 llvm::Value *MicrosoftCXXABI::getCXXDestructorImplicitParam( 1629 CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type, 1630 bool ForVirtualBase, bool Delegating) { 1631 return nullptr; 1632 } 1633 1634 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF, 1635 const CXXDestructorDecl *DD, 1636 CXXDtorType Type, bool ForVirtualBase, 1637 bool Delegating, Address This, 1638 QualType ThisTy) { 1639 // Use the base destructor variant in place of the complete destructor variant 1640 // if the class has no virtual bases. This effectively implements some of the 1641 // -mconstructor-aliases optimization, but as part of the MS C++ ABI. 1642 if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0) 1643 Type = Dtor_Base; 1644 1645 GlobalDecl GD(DD, Type); 1646 CGCallee Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD); 1647 1648 if (DD->isVirtual()) { 1649 assert(Type != CXXDtorType::Dtor_Deleting && 1650 "The deleting destructor should only be called via a virtual call"); 1651 This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type), 1652 This, false); 1653 } 1654 1655 llvm::BasicBlock *BaseDtorEndBB = nullptr; 1656 if (ForVirtualBase && isa<CXXConstructorDecl>(CGF.CurCodeDecl)) { 1657 BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF); 1658 } 1659 1660 llvm::Value *Implicit = 1661 getCXXDestructorImplicitParam(CGF, DD, Type, ForVirtualBase, 1662 Delegating); // = nullptr 1663 CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, 1664 /*ImplicitParam=*/Implicit, 1665 /*ImplicitParamTy=*/QualType(), nullptr); 1666 if (BaseDtorEndBB) { 1667 // Complete object handler should continue to be the remaining 1668 CGF.Builder.CreateBr(BaseDtorEndBB); 1669 CGF.EmitBlock(BaseDtorEndBB); 1670 } 1671 } 1672 1673 void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info, 1674 const CXXRecordDecl *RD, 1675 llvm::GlobalVariable *VTable) { 1676 // Emit type metadata on vtables with LTO or IR instrumentation. 1677 // In IR instrumentation, the type metadata could be used to find out vtable 1678 // definitions (for type profiling) among all global variables. 1679 if (!CGM.getCodeGenOpts().LTOUnit && 1680 !CGM.getCodeGenOpts().hasProfileIRInstr()) 1681 return; 1682 1683 // TODO: Should VirtualFunctionElimination also be supported here? 1684 // See similar handling in CodeGenModule::EmitVTableTypeMetadata. 1685 if (CGM.getCodeGenOpts().WholeProgramVTables) { 1686 llvm::DenseSet<const CXXRecordDecl *> Visited; 1687 llvm::GlobalObject::VCallVisibility TypeVis = 1688 CGM.GetVCallVisibilityLevel(RD, Visited); 1689 if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic) 1690 VTable->setVCallVisibilityMetadata(TypeVis); 1691 } 1692 1693 // The location of the first virtual function pointer in the virtual table, 1694 // aka the "address point" on Itanium. This is at offset 0 if RTTI is 1695 // disabled, or sizeof(void*) if RTTI is enabled. 1696 CharUnits AddressPoint = 1697 getContext().getLangOpts().RTTIData 1698 ? getContext().toCharUnitsFromBits( 1699 getContext().getTargetInfo().getPointerWidth(LangAS::Default)) 1700 : CharUnits::Zero(); 1701 1702 if (Info.PathToIntroducingObject.empty()) { 1703 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); 1704 return; 1705 } 1706 1707 // Add a bitset entry for the least derived base belonging to this vftable. 1708 CGM.AddVTableTypeMetadata(VTable, AddressPoint, 1709 Info.PathToIntroducingObject.back()); 1710 1711 // Add a bitset entry for each derived class that is laid out at the same 1712 // offset as the least derived base. 1713 for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) { 1714 const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1]; 1715 const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I]; 1716 1717 const ASTRecordLayout &Layout = 1718 getContext().getASTRecordLayout(DerivedRD); 1719 CharUnits Offset; 1720 auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD); 1721 if (VBI == Layout.getVBaseOffsetsMap().end()) 1722 Offset = Layout.getBaseClassOffset(BaseRD); 1723 else 1724 Offset = VBI->second.VBaseOffset; 1725 if (!Offset.isZero()) 1726 return; 1727 CGM.AddVTableTypeMetadata(VTable, AddressPoint, DerivedRD); 1728 } 1729 1730 // Finally do the same for the most derived class. 1731 if (Info.FullOffsetInMDC.isZero()) 1732 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); 1733 } 1734 1735 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, 1736 const CXXRecordDecl *RD) { 1737 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); 1738 const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD); 1739 1740 for (const std::unique_ptr<VPtrInfo>& Info : VFPtrs) { 1741 llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC); 1742 if (VTable->hasInitializer()) 1743 continue; 1744 1745 const VTableLayout &VTLayout = 1746 VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC); 1747 1748 llvm::Constant *RTTI = nullptr; 1749 if (any_of(VTLayout.vtable_components(), 1750 [](const VTableComponent &VTC) { return VTC.isRTTIKind(); })) 1751 RTTI = getMSCompleteObjectLocator(RD, *Info); 1752 1753 ConstantInitBuilder builder(CGM); 1754 auto components = builder.beginStruct(); 1755 CGVT.createVTableInitializer(components, VTLayout, RTTI, 1756 VTable->hasLocalLinkage()); 1757 components.finishAndSetAsInitializer(VTable); 1758 1759 emitVTableTypeMetadata(*Info, RD, VTable); 1760 } 1761 } 1762 1763 bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField( 1764 CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) { 1765 return Vptr.NearestVBase != nullptr; 1766 } 1767 1768 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor( 1769 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, 1770 const CXXRecordDecl *NearestVBase) { 1771 llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass); 1772 if (!VTableAddressPoint) { 1773 assert(Base.getBase()->getNumVBases() && 1774 !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr()); 1775 } 1776 return VTableAddressPoint; 1777 } 1778 1779 static void mangleVFTableName(MicrosoftMangleContext &MangleContext, 1780 const CXXRecordDecl *RD, const VPtrInfo &VFPtr, 1781 SmallString<256> &Name) { 1782 llvm::raw_svector_ostream Out(Name); 1783 MangleContext.mangleCXXVFTable(RD, VFPtr.MangledPath, Out); 1784 } 1785 1786 llvm::Constant * 1787 MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base, 1788 const CXXRecordDecl *VTableClass) { 1789 (void)getAddrOfVTable(VTableClass, Base.getBaseOffset()); 1790 VFTableIdTy ID(VTableClass, Base.getBaseOffset()); 1791 return VFTablesMap[ID]; 1792 } 1793 1794 llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr( 1795 BaseSubobject Base, const CXXRecordDecl *VTableClass) { 1796 llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass); 1797 assert(VFTable && "Couldn't find a vftable for the given base?"); 1798 return VFTable; 1799 } 1800 1801 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, 1802 CharUnits VPtrOffset) { 1803 // getAddrOfVTable may return 0 if asked to get an address of a vtable which 1804 // shouldn't be used in the given record type. We want to cache this result in 1805 // VFTablesMap, thus a simple zero check is not sufficient. 1806 1807 VFTableIdTy ID(RD, VPtrOffset); 1808 VTablesMapTy::iterator I; 1809 bool Inserted; 1810 std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr)); 1811 if (!Inserted) 1812 return I->second; 1813 1814 llvm::GlobalVariable *&VTable = I->second; 1815 1816 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); 1817 const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD); 1818 1819 if (DeferredVFTables.insert(RD).second) { 1820 // We haven't processed this record type before. 1821 // Queue up this vtable for possible deferred emission. 1822 CGM.addDeferredVTable(RD); 1823 1824 #ifndef NDEBUG 1825 // Create all the vftables at once in order to make sure each vftable has 1826 // a unique mangled name. 1827 llvm::StringSet<> ObservedMangledNames; 1828 for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) { 1829 SmallString<256> Name; 1830 mangleVFTableName(getMangleContext(), RD, *VFPtrs[J], Name); 1831 if (!ObservedMangledNames.insert(Name.str()).second) 1832 llvm_unreachable("Already saw this mangling before?"); 1833 } 1834 #endif 1835 } 1836 1837 const std::unique_ptr<VPtrInfo> *VFPtrI = 1838 llvm::find_if(VFPtrs, [&](const std::unique_ptr<VPtrInfo> &VPI) { 1839 return VPI->FullOffsetInMDC == VPtrOffset; 1840 }); 1841 if (VFPtrI == VFPtrs.end()) { 1842 VFTablesMap[ID] = nullptr; 1843 return nullptr; 1844 } 1845 const std::unique_ptr<VPtrInfo> &VFPtr = *VFPtrI; 1846 1847 SmallString<256> VFTableName; 1848 mangleVFTableName(getMangleContext(), RD, *VFPtr, VFTableName); 1849 1850 // Classes marked __declspec(dllimport) need vftables generated on the 1851 // import-side in order to support features like constexpr. No other 1852 // translation unit relies on the emission of the local vftable, translation 1853 // units are expected to generate them as needed. 1854 // 1855 // Because of this unique behavior, we maintain this logic here instead of 1856 // getVTableLinkage. 1857 llvm::GlobalValue::LinkageTypes VFTableLinkage = 1858 RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage 1859 : CGM.getVTableLinkage(RD); 1860 bool VFTableComesFromAnotherTU = 1861 llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) || 1862 llvm::GlobalValue::isExternalLinkage(VFTableLinkage); 1863 bool VTableAliasIsRequred = 1864 !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData; 1865 1866 if (llvm::GlobalValue *VFTable = 1867 CGM.getModule().getNamedGlobal(VFTableName)) { 1868 VFTablesMap[ID] = VFTable; 1869 VTable = VTableAliasIsRequred 1870 ? cast<llvm::GlobalVariable>( 1871 cast<llvm::GlobalAlias>(VFTable)->getAliaseeObject()) 1872 : cast<llvm::GlobalVariable>(VFTable); 1873 return VTable; 1874 } 1875 1876 const VTableLayout &VTLayout = 1877 VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC); 1878 llvm::GlobalValue::LinkageTypes VTableLinkage = 1879 VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage; 1880 1881 StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str(); 1882 1883 llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout); 1884 1885 // Create a backing variable for the contents of VTable. The VTable may 1886 // or may not include space for a pointer to RTTI data. 1887 llvm::GlobalValue *VFTable; 1888 VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType, 1889 /*isConstant=*/true, VTableLinkage, 1890 /*Initializer=*/nullptr, VTableName); 1891 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1892 1893 llvm::Comdat *C = nullptr; 1894 if (!VFTableComesFromAnotherTU && 1895 llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) 1896 C = CGM.getModule().getOrInsertComdat(VFTableName.str()); 1897 1898 // Only insert a pointer into the VFTable for RTTI data if we are not 1899 // importing it. We never reference the RTTI data directly so there is no 1900 // need to make room for it. 1901 if (VTableAliasIsRequred) { 1902 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.Int32Ty, 0), 1903 llvm::ConstantInt::get(CGM.Int32Ty, 0), 1904 llvm::ConstantInt::get(CGM.Int32Ty, 1)}; 1905 // Create a GEP which points just after the first entry in the VFTable, 1906 // this should be the location of the first virtual method. 1907 llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr( 1908 VTable->getValueType(), VTable, GEPIndices); 1909 if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) { 1910 VFTableLinkage = llvm::GlobalValue::ExternalLinkage; 1911 if (C) 1912 C->setSelectionKind(llvm::Comdat::Largest); 1913 } 1914 VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy, 1915 /*AddressSpace=*/0, VFTableLinkage, 1916 VFTableName.str(), VTableGEP, 1917 &CGM.getModule()); 1918 VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1919 } else { 1920 // We don't need a GlobalAlias to be a symbol for the VTable if we won't 1921 // be referencing any RTTI data. 1922 // The GlobalVariable will end up being an appropriate definition of the 1923 // VFTable. 1924 VFTable = VTable; 1925 } 1926 if (C) 1927 VTable->setComdat(C); 1928 1929 if (RD->hasAttr<DLLExportAttr>()) 1930 VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1931 1932 VFTablesMap[ID] = VFTable; 1933 return VTable; 1934 } 1935 1936 CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, 1937 GlobalDecl GD, 1938 Address This, 1939 llvm::Type *Ty, 1940 SourceLocation Loc) { 1941 CGBuilderTy &Builder = CGF.Builder; 1942 1943 Ty = Ty->getPointerTo(); 1944 Address VPtr = 1945 adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 1946 1947 auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl()); 1948 llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty->getPointerTo(), 1949 MethodDecl->getParent()); 1950 1951 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); 1952 MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD); 1953 1954 // Compute the identity of the most derived class whose virtual table is 1955 // located at the MethodVFTableLocation ML. 1956 auto getObjectWithVPtr = [&] { 1957 return llvm::find_if(VFTContext.getVFPtrOffsets( 1958 ML.VBase ? ML.VBase : MethodDecl->getParent()), 1959 [&](const std::unique_ptr<VPtrInfo> &Info) { 1960 return Info->FullOffsetInMDC == ML.VFPtrOffset; 1961 }) 1962 ->get() 1963 ->ObjectWithVPtr; 1964 }; 1965 1966 llvm::Value *VFunc; 1967 if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) { 1968 VFunc = CGF.EmitVTableTypeCheckedLoad( 1969 getObjectWithVPtr(), VTable, Ty, 1970 ML.Index * 1971 CGM.getContext().getTargetInfo().getPointerWidth(LangAS::Default) / 1972 8); 1973 } else { 1974 if (CGM.getCodeGenOpts().PrepareForLTO) 1975 CGF.EmitTypeMetadataCodeForVCall(getObjectWithVPtr(), VTable, Loc); 1976 1977 llvm::Value *VFuncPtr = 1978 Builder.CreateConstInBoundsGEP1_64(Ty, VTable, ML.Index, "vfn"); 1979 VFunc = Builder.CreateAlignedLoad(Ty, VFuncPtr, CGF.getPointerAlign()); 1980 } 1981 1982 CGCallee Callee(GD, VFunc); 1983 return Callee; 1984 } 1985 1986 llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall( 1987 CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, 1988 Address This, DeleteOrMemberCallExpr E) { 1989 auto *CE = E.dyn_cast<const CXXMemberCallExpr *>(); 1990 auto *D = E.dyn_cast<const CXXDeleteExpr *>(); 1991 assert((CE != nullptr) ^ (D != nullptr)); 1992 assert(CE == nullptr || CE->arg_begin() == CE->arg_end()); 1993 assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); 1994 1995 // We have only one destructor in the vftable but can get both behaviors 1996 // by passing an implicit int parameter. 1997 GlobalDecl GD(Dtor, Dtor_Deleting); 1998 const CGFunctionInfo *FInfo = 1999 &CGM.getTypes().arrangeCXXStructorDeclaration(GD); 2000 llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo); 2001 CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty); 2002 2003 ASTContext &Context = getContext(); 2004 llvm::Value *ImplicitParam = llvm::ConstantInt::get( 2005 llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()), 2006 DtorType == Dtor_Deleting); 2007 2008 QualType ThisTy; 2009 if (CE) { 2010 ThisTy = CE->getObjectType(); 2011 } else { 2012 ThisTy = D->getDestroyedType(); 2013 } 2014 2015 This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 2016 RValue RV = CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, 2017 ImplicitParam, Context.IntTy, CE); 2018 return RV.getScalarVal(); 2019 } 2020 2021 const VBTableGlobals & 2022 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) { 2023 // At this layer, we can key the cache off of a single class, which is much 2024 // easier than caching each vbtable individually. 2025 llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry; 2026 bool Added; 2027 std::tie(Entry, Added) = 2028 VBTablesMap.insert(std::make_pair(RD, VBTableGlobals())); 2029 VBTableGlobals &VBGlobals = Entry->second; 2030 if (!Added) 2031 return VBGlobals; 2032 2033 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 2034 VBGlobals.VBTables = &Context.enumerateVBTables(RD); 2035 2036 // Cache the globals for all vbtables so we don't have to recompute the 2037 // mangled names. 2038 llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); 2039 for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(), 2040 E = VBGlobals.VBTables->end(); 2041 I != E; ++I) { 2042 VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage)); 2043 } 2044 2045 return VBGlobals; 2046 } 2047 2048 llvm::Function * 2049 MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, 2050 const MethodVFTableLocation &ML) { 2051 assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) && 2052 "can't form pointers to ctors or virtual dtors"); 2053 2054 // Calculate the mangled name. 2055 SmallString<256> ThunkName; 2056 llvm::raw_svector_ostream Out(ThunkName); 2057 getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out); 2058 2059 // If the thunk has been generated previously, just return it. 2060 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) 2061 return cast<llvm::Function>(GV); 2062 2063 // Create the llvm::Function. 2064 const CGFunctionInfo &FnInfo = 2065 CGM.getTypes().arrangeUnprototypedMustTailThunk(MD); 2066 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); 2067 llvm::Function *ThunkFn = 2068 llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage, 2069 ThunkName.str(), &CGM.getModule()); 2070 assert(ThunkFn->getName() == ThunkName && "name was uniqued!"); 2071 2072 ThunkFn->setLinkage(MD->isExternallyVisible() 2073 ? llvm::GlobalValue::LinkOnceODRLinkage 2074 : llvm::GlobalValue::InternalLinkage); 2075 if (MD->isExternallyVisible()) 2076 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 2077 2078 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false); 2079 CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn); 2080 2081 // Add the "thunk" attribute so that LLVM knows that the return type is 2082 // meaningless. These thunks can be used to call functions with differing 2083 // return types, and the caller is required to cast the prototype 2084 // appropriately to extract the correct value. 2085 ThunkFn->addFnAttr("thunk"); 2086 2087 // These thunks can be compared, so they are not unnamed. 2088 ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); 2089 2090 // Start codegen. 2091 CodeGenFunction CGF(CGM); 2092 CGF.CurGD = GlobalDecl(MD); 2093 CGF.CurFuncIsThunk = true; 2094 2095 // Build FunctionArgs, but only include the implicit 'this' parameter 2096 // declaration. 2097 FunctionArgList FunctionArgs; 2098 buildThisParam(CGF, FunctionArgs); 2099 2100 // Start defining the function. 2101 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, 2102 FunctionArgs, MD->getLocation(), SourceLocation()); 2103 2104 ApplyDebugLocation AL(CGF, MD->getLocation()); 2105 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); 2106 2107 // Load the vfptr and then callee from the vftable. The callee should have 2108 // adjusted 'this' so that the vfptr is at offset zero. 2109 llvm::Type *ThunkPtrTy = ThunkTy->getPointerTo(); 2110 llvm::Value *VTable = CGF.GetVTablePtr( 2111 getThisAddress(CGF), ThunkPtrTy->getPointerTo(), MD->getParent()); 2112 2113 llvm::Value *VFuncPtr = CGF.Builder.CreateConstInBoundsGEP1_64( 2114 ThunkPtrTy, VTable, ML.Index, "vfn"); 2115 llvm::Value *Callee = 2116 CGF.Builder.CreateAlignedLoad(ThunkPtrTy, VFuncPtr, CGF.getPointerAlign()); 2117 2118 CGF.EmitMustTailThunk(MD, getThisValue(CGF), {ThunkTy, Callee}); 2119 2120 return ThunkFn; 2121 } 2122 2123 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { 2124 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 2125 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 2126 const std::unique_ptr<VPtrInfo>& VBT = (*VBGlobals.VBTables)[I]; 2127 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 2128 if (GV->isDeclaration()) 2129 emitVBTableDefinition(*VBT, RD, GV); 2130 } 2131 } 2132 2133 llvm::GlobalVariable * 2134 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 2135 llvm::GlobalVariable::LinkageTypes Linkage) { 2136 SmallString<256> OutName; 2137 llvm::raw_svector_ostream Out(OutName); 2138 getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out); 2139 StringRef Name = OutName.str(); 2140 2141 llvm::ArrayType *VBTableType = 2142 llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ObjectWithVPtr->getNumVBases()); 2143 2144 assert(!CGM.getModule().getNamedGlobal(Name) && 2145 "vbtable with this name already exists: mangling bug?"); 2146 CharUnits Alignment = 2147 CGM.getContext().getTypeAlignInChars(CGM.getContext().IntTy); 2148 llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable( 2149 Name, VBTableType, Linkage, Alignment.getAsAlign()); 2150 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2151 2152 if (RD->hasAttr<DLLImportAttr>()) 2153 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2154 else if (RD->hasAttr<DLLExportAttr>()) 2155 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2156 2157 if (!GV->hasExternalLinkage()) 2158 emitVBTableDefinition(VBT, RD, GV); 2159 2160 return GV; 2161 } 2162 2163 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT, 2164 const CXXRecordDecl *RD, 2165 llvm::GlobalVariable *GV) const { 2166 const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr; 2167 2168 assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() && 2169 "should only emit vbtables for classes with vbtables"); 2170 2171 const ASTRecordLayout &BaseLayout = 2172 getContext().getASTRecordLayout(VBT.IntroducingObject); 2173 const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD); 2174 2175 SmallVector<llvm::Constant *, 4> Offsets(1 + ObjectWithVPtr->getNumVBases(), 2176 nullptr); 2177 2178 // The offset from ObjectWithVPtr's vbptr to itself always leads. 2179 CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset(); 2180 Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity()); 2181 2182 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 2183 for (const auto &I : ObjectWithVPtr->vbases()) { 2184 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); 2185 CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase); 2186 assert(!Offset.isNegative()); 2187 2188 // Make it relative to the subobject vbptr. 2189 CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset; 2190 if (VBT.getVBaseWithVPtr()) 2191 CompleteVBPtrOffset += 2192 DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr()); 2193 Offset -= CompleteVBPtrOffset; 2194 2195 unsigned VBIndex = Context.getVBTableIndex(ObjectWithVPtr, VBase); 2196 assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?"); 2197 Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity()); 2198 } 2199 2200 assert(Offsets.size() == 2201 cast<llvm::ArrayType>(GV->getValueType())->getNumElements()); 2202 llvm::ArrayType *VBTableType = 2203 llvm::ArrayType::get(CGM.IntTy, Offsets.size()); 2204 llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets); 2205 GV->setInitializer(Init); 2206 2207 if (RD->hasAttr<DLLImportAttr>()) 2208 GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage); 2209 } 2210 2211 llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF, 2212 Address This, 2213 const ThisAdjustment &TA) { 2214 if (TA.isEmpty()) 2215 return This.getPointer(); 2216 2217 This = This.withElementType(CGF.Int8Ty); 2218 2219 llvm::Value *V; 2220 if (TA.Virtual.isEmpty()) { 2221 V = This.getPointer(); 2222 } else { 2223 assert(TA.Virtual.Microsoft.VtordispOffset < 0); 2224 // Adjust the this argument based on the vtordisp value. 2225 Address VtorDispPtr = 2226 CGF.Builder.CreateConstInBoundsByteGEP(This, 2227 CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset)); 2228 VtorDispPtr = VtorDispPtr.withElementType(CGF.Int32Ty); 2229 llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp"); 2230 V = CGF.Builder.CreateGEP(This.getElementType(), This.getPointer(), 2231 CGF.Builder.CreateNeg(VtorDisp)); 2232 2233 // Unfortunately, having applied the vtordisp means that we no 2234 // longer really have a known alignment for the vbptr step. 2235 // We'll assume the vbptr is pointer-aligned. 2236 2237 if (TA.Virtual.Microsoft.VBPtrOffset) { 2238 // If the final overrider is defined in a virtual base other than the one 2239 // that holds the vfptr, we have to use a vtordispex thunk which looks up 2240 // the vbtable of the derived class. 2241 assert(TA.Virtual.Microsoft.VBPtrOffset > 0); 2242 assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0); 2243 llvm::Value *VBPtr; 2244 llvm::Value *VBaseOffset = GetVBaseOffsetFromVBPtr( 2245 CGF, Address(V, CGF.Int8Ty, CGF.getPointerAlign()), 2246 -TA.Virtual.Microsoft.VBPtrOffset, 2247 TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr); 2248 V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, VBPtr, VBaseOffset); 2249 } 2250 } 2251 2252 if (TA.NonVirtual) { 2253 // Non-virtual adjustment might result in a pointer outside the allocated 2254 // object, e.g. if the final overrider class is laid out after the virtual 2255 // base that declares a method in the most derived class. 2256 V = CGF.Builder.CreateConstGEP1_32(CGF.Int8Ty, V, TA.NonVirtual); 2257 } 2258 2259 // Don't need to bitcast back, the call CodeGen will handle this. 2260 return V; 2261 } 2262 2263 llvm::Value * 2264 MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret, 2265 const ReturnAdjustment &RA) { 2266 if (RA.isEmpty()) 2267 return Ret.getPointer(); 2268 2269 Ret = Ret.withElementType(CGF.Int8Ty); 2270 2271 llvm::Value *V = Ret.getPointer(); 2272 if (RA.Virtual.Microsoft.VBIndex) { 2273 assert(RA.Virtual.Microsoft.VBIndex > 0); 2274 int32_t IntSize = CGF.getIntSize().getQuantity(); 2275 llvm::Value *VBPtr; 2276 llvm::Value *VBaseOffset = 2277 GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset, 2278 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr); 2279 V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, VBPtr, VBaseOffset); 2280 } 2281 2282 if (RA.NonVirtual) 2283 V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual); 2284 2285 return V; 2286 } 2287 2288 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr, 2289 QualType elementType) { 2290 // Microsoft seems to completely ignore the possibility of a 2291 // two-argument usual deallocation function. 2292 return elementType.isDestructedType(); 2293 } 2294 2295 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) { 2296 // Microsoft seems to completely ignore the possibility of a 2297 // two-argument usual deallocation function. 2298 return expr->getAllocatedType().isDestructedType(); 2299 } 2300 2301 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) { 2302 // The array cookie is always a size_t; we then pad that out to the 2303 // alignment of the element type. 2304 ASTContext &Ctx = getContext(); 2305 return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()), 2306 Ctx.getTypeAlignInChars(type)); 2307 } 2308 2309 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, 2310 Address allocPtr, 2311 CharUnits cookieSize) { 2312 Address numElementsPtr = allocPtr.withElementType(CGF.SizeTy); 2313 return CGF.Builder.CreateLoad(numElementsPtr); 2314 } 2315 2316 Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, 2317 Address newPtr, 2318 llvm::Value *numElements, 2319 const CXXNewExpr *expr, 2320 QualType elementType) { 2321 assert(requiresArrayCookie(expr)); 2322 2323 // The size of the cookie. 2324 CharUnits cookieSize = getArrayCookieSizeImpl(elementType); 2325 2326 // Compute an offset to the cookie. 2327 Address cookiePtr = newPtr; 2328 2329 // Write the number of elements into the appropriate slot. 2330 Address numElementsPtr = cookiePtr.withElementType(CGF.SizeTy); 2331 CGF.Builder.CreateStore(numElements, numElementsPtr); 2332 2333 // Finally, compute a pointer to the actual data buffer by skipping 2334 // over the cookie completely. 2335 return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize); 2336 } 2337 2338 static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD, 2339 llvm::FunctionCallee Dtor, 2340 llvm::Constant *Addr) { 2341 // Create a function which calls the destructor. 2342 llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr); 2343 2344 // extern "C" int __tlregdtor(void (*f)(void)); 2345 llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get( 2346 CGF.IntTy, DtorStub->getType(), /*isVarArg=*/false); 2347 2348 llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction( 2349 TLRegDtorTy, "__tlregdtor", llvm::AttributeList(), /*Local=*/true); 2350 if (llvm::Function *TLRegDtorFn = 2351 dyn_cast<llvm::Function>(TLRegDtor.getCallee())) 2352 TLRegDtorFn->setDoesNotThrow(); 2353 2354 CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub); 2355 } 2356 2357 void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, 2358 llvm::FunctionCallee Dtor, 2359 llvm::Constant *Addr) { 2360 if (D.isNoDestroy(CGM.getContext())) 2361 return; 2362 2363 if (D.getTLSKind()) 2364 return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr); 2365 2366 // HLSL doesn't support atexit. 2367 if (CGM.getLangOpts().HLSL) 2368 return CGM.AddCXXDtorEntry(Dtor, Addr); 2369 2370 // The default behavior is to use atexit. 2371 CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr); 2372 } 2373 2374 void MicrosoftCXXABI::EmitThreadLocalInitFuncs( 2375 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, 2376 ArrayRef<llvm::Function *> CXXThreadLocalInits, 2377 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) { 2378 if (CXXThreadLocalInits.empty()) 2379 return; 2380 2381 CGM.AppendLinkerOptions(CGM.getTarget().getTriple().getArch() == 2382 llvm::Triple::x86 2383 ? "/include:___dyn_tls_init@12" 2384 : "/include:__dyn_tls_init"); 2385 2386 // This will create a GV in the .CRT$XDU section. It will point to our 2387 // initialization function. The CRT will call all of these function 2388 // pointers at start-up time and, eventually, at thread-creation time. 2389 auto AddToXDU = [&CGM](llvm::Function *InitFunc) { 2390 llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable( 2391 CGM.getModule(), InitFunc->getType(), /*isConstant=*/true, 2392 llvm::GlobalVariable::InternalLinkage, InitFunc, 2393 Twine(InitFunc->getName(), "$initializer$")); 2394 InitFuncPtr->setSection(".CRT$XDU"); 2395 // This variable has discardable linkage, we have to add it to @llvm.used to 2396 // ensure it won't get discarded. 2397 CGM.addUsedGlobal(InitFuncPtr); 2398 return InitFuncPtr; 2399 }; 2400 2401 std::vector<llvm::Function *> NonComdatInits; 2402 for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) { 2403 llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>( 2404 CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I]))); 2405 llvm::Function *F = CXXThreadLocalInits[I]; 2406 2407 // If the GV is already in a comdat group, then we have to join it. 2408 if (llvm::Comdat *C = GV->getComdat()) 2409 AddToXDU(F)->setComdat(C); 2410 else 2411 NonComdatInits.push_back(F); 2412 } 2413 2414 if (!NonComdatInits.empty()) { 2415 llvm::FunctionType *FTy = 2416 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 2417 llvm::Function *InitFunc = CGM.CreateGlobalInitOrCleanUpFunction( 2418 FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(), 2419 SourceLocation(), /*TLS=*/true); 2420 CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits); 2421 2422 AddToXDU(InitFunc); 2423 } 2424 } 2425 2426 static llvm::GlobalValue *getTlsGuardVar(CodeGenModule &CGM) { 2427 // __tls_guard comes from the MSVC runtime and reflects 2428 // whether TLS has been initialized for a particular thread. 2429 // It is set from within __dyn_tls_init by the runtime. 2430 // Every library and executable has its own variable. 2431 llvm::Type *VTy = llvm::Type::getInt8Ty(CGM.getLLVMContext()); 2432 llvm::Constant *TlsGuardConstant = 2433 CGM.CreateRuntimeVariable(VTy, "__tls_guard"); 2434 llvm::GlobalValue *TlsGuard = cast<llvm::GlobalValue>(TlsGuardConstant); 2435 2436 TlsGuard->setThreadLocal(true); 2437 2438 return TlsGuard; 2439 } 2440 2441 static llvm::FunctionCallee getDynTlsOnDemandInitFn(CodeGenModule &CGM) { 2442 // __dyn_tls_on_demand_init comes from the MSVC runtime and triggers 2443 // dynamic TLS initialization by calling __dyn_tls_init internally. 2444 llvm::FunctionType *FTy = 2445 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), {}, 2446 /*isVarArg=*/false); 2447 return CGM.CreateRuntimeFunction( 2448 FTy, "__dyn_tls_on_demand_init", 2449 llvm::AttributeList::get(CGM.getLLVMContext(), 2450 llvm::AttributeList::FunctionIndex, 2451 llvm::Attribute::NoUnwind), 2452 /*Local=*/true); 2453 } 2454 2455 static void emitTlsGuardCheck(CodeGenFunction &CGF, llvm::GlobalValue *TlsGuard, 2456 llvm::BasicBlock *DynInitBB, 2457 llvm::BasicBlock *ContinueBB) { 2458 llvm::LoadInst *TlsGuardValue = 2459 CGF.Builder.CreateLoad(Address(TlsGuard, CGF.Int8Ty, CharUnits::One())); 2460 llvm::Value *CmpResult = 2461 CGF.Builder.CreateICmpEQ(TlsGuardValue, CGF.Builder.getInt8(0)); 2462 CGF.Builder.CreateCondBr(CmpResult, DynInitBB, ContinueBB); 2463 } 2464 2465 static void emitDynamicTlsInitializationCall(CodeGenFunction &CGF, 2466 llvm::GlobalValue *TlsGuard, 2467 llvm::BasicBlock *ContinueBB) { 2468 llvm::FunctionCallee Initializer = getDynTlsOnDemandInitFn(CGF.CGM); 2469 llvm::Function *InitializerFunction = 2470 cast<llvm::Function>(Initializer.getCallee()); 2471 llvm::CallInst *CallVal = CGF.Builder.CreateCall(InitializerFunction); 2472 CallVal->setCallingConv(InitializerFunction->getCallingConv()); 2473 2474 CGF.Builder.CreateBr(ContinueBB); 2475 } 2476 2477 static void emitDynamicTlsInitialization(CodeGenFunction &CGF) { 2478 llvm::BasicBlock *DynInitBB = 2479 CGF.createBasicBlock("dyntls.dyn_init", CGF.CurFn); 2480 llvm::BasicBlock *ContinueBB = 2481 CGF.createBasicBlock("dyntls.continue", CGF.CurFn); 2482 2483 llvm::GlobalValue *TlsGuard = getTlsGuardVar(CGF.CGM); 2484 2485 emitTlsGuardCheck(CGF, TlsGuard, DynInitBB, ContinueBB); 2486 CGF.Builder.SetInsertPoint(DynInitBB); 2487 emitDynamicTlsInitializationCall(CGF, TlsGuard, ContinueBB); 2488 CGF.Builder.SetInsertPoint(ContinueBB); 2489 } 2490 2491 LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, 2492 const VarDecl *VD, 2493 QualType LValType) { 2494 // Dynamic TLS initialization works by checking the state of a 2495 // guard variable (__tls_guard) to see whether TLS initialization 2496 // for a thread has happend yet. 2497 // If not, the initialization is triggered on-demand 2498 // by calling __dyn_tls_on_demand_init. 2499 emitDynamicTlsInitialization(CGF); 2500 2501 // Emit the variable just like any regular global variable. 2502 2503 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2504 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2505 2506 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2507 Address Addr(V, RealVarTy, Alignment); 2508 2509 LValue LV = VD->getType()->isReferenceType() 2510 ? CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2511 AlignmentSource::Decl) 2512 : CGF.MakeAddrLValue(Addr, LValType, AlignmentSource::Decl); 2513 return LV; 2514 } 2515 2516 static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) { 2517 StringRef VarName("_Init_thread_epoch"); 2518 CharUnits Align = CGM.getIntAlign(); 2519 if (auto *GV = CGM.getModule().getNamedGlobal(VarName)) 2520 return ConstantAddress(GV, GV->getValueType(), Align); 2521 auto *GV = new llvm::GlobalVariable( 2522 CGM.getModule(), CGM.IntTy, 2523 /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage, 2524 /*Initializer=*/nullptr, VarName, 2525 /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel); 2526 GV->setAlignment(Align.getAsAlign()); 2527 return ConstantAddress(GV, GV->getValueType(), Align); 2528 } 2529 2530 static llvm::FunctionCallee getInitThreadHeaderFn(CodeGenModule &CGM) { 2531 llvm::FunctionType *FTy = 2532 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2533 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2534 return CGM.CreateRuntimeFunction( 2535 FTy, "_Init_thread_header", 2536 llvm::AttributeList::get(CGM.getLLVMContext(), 2537 llvm::AttributeList::FunctionIndex, 2538 llvm::Attribute::NoUnwind), 2539 /*Local=*/true); 2540 } 2541 2542 static llvm::FunctionCallee getInitThreadFooterFn(CodeGenModule &CGM) { 2543 llvm::FunctionType *FTy = 2544 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2545 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2546 return CGM.CreateRuntimeFunction( 2547 FTy, "_Init_thread_footer", 2548 llvm::AttributeList::get(CGM.getLLVMContext(), 2549 llvm::AttributeList::FunctionIndex, 2550 llvm::Attribute::NoUnwind), 2551 /*Local=*/true); 2552 } 2553 2554 static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) { 2555 llvm::FunctionType *FTy = 2556 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2557 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2558 return CGM.CreateRuntimeFunction( 2559 FTy, "_Init_thread_abort", 2560 llvm::AttributeList::get(CGM.getLLVMContext(), 2561 llvm::AttributeList::FunctionIndex, 2562 llvm::Attribute::NoUnwind), 2563 /*Local=*/true); 2564 } 2565 2566 namespace { 2567 struct ResetGuardBit final : EHScopeStack::Cleanup { 2568 Address Guard; 2569 unsigned GuardNum; 2570 ResetGuardBit(Address Guard, unsigned GuardNum) 2571 : Guard(Guard), GuardNum(GuardNum) {} 2572 2573 void Emit(CodeGenFunction &CGF, Flags flags) override { 2574 // Reset the bit in the mask so that the static variable may be 2575 // reinitialized. 2576 CGBuilderTy &Builder = CGF.Builder; 2577 llvm::LoadInst *LI = Builder.CreateLoad(Guard); 2578 llvm::ConstantInt *Mask = 2579 llvm::ConstantInt::get(CGF.IntTy, ~(1ULL << GuardNum)); 2580 Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard); 2581 } 2582 }; 2583 2584 struct CallInitThreadAbort final : EHScopeStack::Cleanup { 2585 llvm::Value *Guard; 2586 CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {} 2587 2588 void Emit(CodeGenFunction &CGF, Flags flags) override { 2589 // Calling _Init_thread_abort will reset the guard's state. 2590 CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard); 2591 } 2592 }; 2593 } 2594 2595 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 2596 llvm::GlobalVariable *GV, 2597 bool PerformInit) { 2598 // MSVC only uses guards for static locals. 2599 if (!D.isStaticLocal()) { 2600 assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()); 2601 // GlobalOpt is allowed to discard the initializer, so use linkonce_odr. 2602 llvm::Function *F = CGF.CurFn; 2603 F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 2604 F->setComdat(CGM.getModule().getOrInsertComdat(F->getName())); 2605 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2606 return; 2607 } 2608 2609 bool ThreadlocalStatic = D.getTLSKind(); 2610 bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics; 2611 2612 // Thread-safe static variables which aren't thread-specific have a 2613 // per-variable guard. 2614 bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic; 2615 2616 CGBuilderTy &Builder = CGF.Builder; 2617 llvm::IntegerType *GuardTy = CGF.Int32Ty; 2618 llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0); 2619 CharUnits GuardAlign = CharUnits::fromQuantity(4); 2620 2621 // Get the guard variable for this function if we have one already. 2622 GuardInfo *GI = nullptr; 2623 if (ThreadlocalStatic) 2624 GI = &ThreadLocalGuardVariableMap[D.getDeclContext()]; 2625 else if (!ThreadsafeStatic) 2626 GI = &GuardVariableMap[D.getDeclContext()]; 2627 2628 llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr; 2629 unsigned GuardNum; 2630 if (D.isExternallyVisible()) { 2631 // Externally visible variables have to be numbered in Sema to properly 2632 // handle unreachable VarDecls. 2633 GuardNum = getContext().getStaticLocalNumber(&D); 2634 assert(GuardNum > 0); 2635 GuardNum--; 2636 } else if (HasPerVariableGuard) { 2637 GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++; 2638 } else { 2639 // Non-externally visible variables are numbered here in CodeGen. 2640 GuardNum = GI->BitIndex++; 2641 } 2642 2643 if (!HasPerVariableGuard && GuardNum >= 32) { 2644 if (D.isExternallyVisible()) 2645 ErrorUnsupportedABI(CGF, "more than 32 guarded initializations"); 2646 GuardNum %= 32; 2647 GuardVar = nullptr; 2648 } 2649 2650 if (!GuardVar) { 2651 // Mangle the name for the guard. 2652 SmallString<256> GuardName; 2653 { 2654 llvm::raw_svector_ostream Out(GuardName); 2655 if (HasPerVariableGuard) 2656 getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum, 2657 Out); 2658 else 2659 getMangleContext().mangleStaticGuardVariable(&D, Out); 2660 } 2661 2662 // Create the guard variable with a zero-initializer. Just absorb linkage, 2663 // visibility and dll storage class from the guarded variable. 2664 GuardVar = 2665 new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false, 2666 GV->getLinkage(), Zero, GuardName.str()); 2667 GuardVar->setVisibility(GV->getVisibility()); 2668 GuardVar->setDLLStorageClass(GV->getDLLStorageClass()); 2669 GuardVar->setAlignment(GuardAlign.getAsAlign()); 2670 if (GuardVar->isWeakForLinker()) 2671 GuardVar->setComdat( 2672 CGM.getModule().getOrInsertComdat(GuardVar->getName())); 2673 if (D.getTLSKind()) 2674 CGM.setTLSMode(GuardVar, D); 2675 if (GI && !HasPerVariableGuard) 2676 GI->Guard = GuardVar; 2677 } 2678 2679 ConstantAddress GuardAddr(GuardVar, GuardTy, GuardAlign); 2680 2681 assert(GuardVar->getLinkage() == GV->getLinkage() && 2682 "static local from the same function had different linkage"); 2683 2684 if (!HasPerVariableGuard) { 2685 // Pseudo code for the test: 2686 // if (!(GuardVar & MyGuardBit)) { 2687 // GuardVar |= MyGuardBit; 2688 // ... initialize the object ...; 2689 // } 2690 2691 // Test our bit from the guard variable. 2692 llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1ULL << GuardNum); 2693 llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr); 2694 llvm::Value *NeedsInit = 2695 Builder.CreateICmpEQ(Builder.CreateAnd(LI, Bit), Zero); 2696 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 2697 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 2698 CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, EndBlock, 2699 CodeGenFunction::GuardKind::VariableGuard, &D); 2700 2701 // Set our bit in the guard variable and emit the initializer and add a global 2702 // destructor if appropriate. 2703 CGF.EmitBlock(InitBlock); 2704 Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr); 2705 CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum); 2706 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2707 CGF.PopCleanupBlock(); 2708 Builder.CreateBr(EndBlock); 2709 2710 // Continue. 2711 CGF.EmitBlock(EndBlock); 2712 } else { 2713 // Pseudo code for the test: 2714 // if (TSS > _Init_thread_epoch) { 2715 // _Init_thread_header(&TSS); 2716 // if (TSS == -1) { 2717 // ... initialize the object ...; 2718 // _Init_thread_footer(&TSS); 2719 // } 2720 // } 2721 // 2722 // The algorithm is almost identical to what can be found in the appendix 2723 // found in N2325. 2724 2725 // This BasicBLock determines whether or not we have any work to do. 2726 llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr); 2727 FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); 2728 llvm::LoadInst *InitThreadEpoch = 2729 Builder.CreateLoad(getInitThreadEpochPtr(CGM)); 2730 llvm::Value *IsUninitialized = 2731 Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch); 2732 llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt"); 2733 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 2734 CGF.EmitCXXGuardedInitBranch(IsUninitialized, AttemptInitBlock, EndBlock, 2735 CodeGenFunction::GuardKind::VariableGuard, &D); 2736 2737 // This BasicBlock attempts to determine whether or not this thread is 2738 // responsible for doing the initialization. 2739 CGF.EmitBlock(AttemptInitBlock); 2740 CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM), 2741 GuardAddr.getPointer()); 2742 llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr); 2743 SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); 2744 llvm::Value *ShouldDoInit = 2745 Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt()); 2746 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 2747 Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock); 2748 2749 // Ok, we ended up getting selected as the initializing thread. 2750 CGF.EmitBlock(InitBlock); 2751 CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr); 2752 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2753 CGF.PopCleanupBlock(); 2754 CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM), 2755 GuardAddr.getPointer()); 2756 Builder.CreateBr(EndBlock); 2757 2758 CGF.EmitBlock(EndBlock); 2759 } 2760 } 2761 2762 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) { 2763 // Null-ness for function memptrs only depends on the first field, which is 2764 // the function pointer. The rest don't matter, so we can zero initialize. 2765 if (MPT->isMemberFunctionPointer()) 2766 return true; 2767 2768 // The virtual base adjustment field is always -1 for null, so if we have one 2769 // we can't zero initialize. The field offset is sometimes also -1 if 0 is a 2770 // valid field offset. 2771 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2772 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2773 return (!inheritanceModelHasVBTableOffsetField(Inheritance) && 2774 RD->nullFieldOffsetIsZero()); 2775 } 2776 2777 llvm::Type * 2778 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { 2779 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2780 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2781 llvm::SmallVector<llvm::Type *, 4> fields; 2782 if (MPT->isMemberFunctionPointer()) 2783 fields.push_back(CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk 2784 else 2785 fields.push_back(CGM.IntTy); // FieldOffset 2786 2787 if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(), 2788 Inheritance)) 2789 fields.push_back(CGM.IntTy); 2790 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 2791 fields.push_back(CGM.IntTy); 2792 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2793 fields.push_back(CGM.IntTy); // VirtualBaseAdjustmentOffset 2794 2795 if (fields.size() == 1) 2796 return fields[0]; 2797 return llvm::StructType::get(CGM.getLLVMContext(), fields); 2798 } 2799 2800 void MicrosoftCXXABI:: 2801 GetNullMemberPointerFields(const MemberPointerType *MPT, 2802 llvm::SmallVectorImpl<llvm::Constant *> &fields) { 2803 assert(fields.empty()); 2804 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2805 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2806 if (MPT->isMemberFunctionPointer()) { 2807 // FunctionPointerOrVirtualThunk 2808 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 2809 } else { 2810 if (RD->nullFieldOffsetIsZero()) 2811 fields.push_back(getZeroInt()); // FieldOffset 2812 else 2813 fields.push_back(getAllOnesInt()); // FieldOffset 2814 } 2815 2816 if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(), 2817 Inheritance)) 2818 fields.push_back(getZeroInt()); 2819 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 2820 fields.push_back(getZeroInt()); 2821 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2822 fields.push_back(getAllOnesInt()); 2823 } 2824 2825 llvm::Constant * 2826 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { 2827 llvm::SmallVector<llvm::Constant *, 4> fields; 2828 GetNullMemberPointerFields(MPT, fields); 2829 if (fields.size() == 1) 2830 return fields[0]; 2831 llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields); 2832 assert(Res->getType() == ConvertMemberPointerType(MPT)); 2833 return Res; 2834 } 2835 2836 llvm::Constant * 2837 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField, 2838 bool IsMemberFunction, 2839 const CXXRecordDecl *RD, 2840 CharUnits NonVirtualBaseAdjustment, 2841 unsigned VBTableIndex) { 2842 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2843 2844 // Single inheritance class member pointer are represented as scalars instead 2845 // of aggregates. 2846 if (inheritanceModelHasOnlyOneField(IsMemberFunction, Inheritance)) 2847 return FirstField; 2848 2849 llvm::SmallVector<llvm::Constant *, 4> fields; 2850 fields.push_back(FirstField); 2851 2852 if (inheritanceModelHasNVOffsetField(IsMemberFunction, Inheritance)) 2853 fields.push_back(llvm::ConstantInt::get( 2854 CGM.IntTy, NonVirtualBaseAdjustment.getQuantity())); 2855 2856 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) { 2857 CharUnits Offs = CharUnits::Zero(); 2858 if (VBTableIndex) 2859 Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 2860 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity())); 2861 } 2862 2863 // The rest of the fields are adjusted by conversions to a more derived class. 2864 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2865 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex)); 2866 2867 return llvm::ConstantStruct::getAnon(fields); 2868 } 2869 2870 llvm::Constant * 2871 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, 2872 CharUnits offset) { 2873 return EmitMemberDataPointer(MPT->getMostRecentCXXRecordDecl(), offset); 2874 } 2875 2876 llvm::Constant *MicrosoftCXXABI::EmitMemberDataPointer(const CXXRecordDecl *RD, 2877 CharUnits offset) { 2878 if (RD->getMSInheritanceModel() == 2879 MSInheritanceModel::Virtual) 2880 offset -= getContext().getOffsetOfBaseWithVBPtr(RD); 2881 llvm::Constant *FirstField = 2882 llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity()); 2883 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD, 2884 CharUnits::Zero(), /*VBTableIndex=*/0); 2885 } 2886 2887 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP, 2888 QualType MPType) { 2889 const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>(); 2890 const ValueDecl *MPD = MP.getMemberPointerDecl(); 2891 if (!MPD) 2892 return EmitNullMemberPointer(DstTy); 2893 2894 ASTContext &Ctx = getContext(); 2895 ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath(); 2896 2897 llvm::Constant *C; 2898 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) { 2899 C = EmitMemberFunctionPointer(MD); 2900 } else { 2901 // For a pointer to data member, start off with the offset of the field in 2902 // the class in which it was declared, and convert from there if necessary. 2903 // For indirect field decls, get the outermost anonymous field and use the 2904 // parent class. 2905 CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD)); 2906 const FieldDecl *FD = dyn_cast<FieldDecl>(MPD); 2907 if (!FD) 2908 FD = cast<FieldDecl>(*cast<IndirectFieldDecl>(MPD)->chain_begin()); 2909 const CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getParent()); 2910 RD = RD->getMostRecentNonInjectedDecl(); 2911 C = EmitMemberDataPointer(RD, FieldOffset); 2912 } 2913 2914 if (!MemberPointerPath.empty()) { 2915 const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext()); 2916 const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr(); 2917 const MemberPointerType *SrcTy = 2918 Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy) 2919 ->castAs<MemberPointerType>(); 2920 2921 bool DerivedMember = MP.isMemberPointerToDerivedMember(); 2922 SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath; 2923 const CXXRecordDecl *PrevRD = SrcRD; 2924 for (const CXXRecordDecl *PathElem : MemberPointerPath) { 2925 const CXXRecordDecl *Base = nullptr; 2926 const CXXRecordDecl *Derived = nullptr; 2927 if (DerivedMember) { 2928 Base = PathElem; 2929 Derived = PrevRD; 2930 } else { 2931 Base = PrevRD; 2932 Derived = PathElem; 2933 } 2934 for (const CXXBaseSpecifier &BS : Derived->bases()) 2935 if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() == 2936 Base->getCanonicalDecl()) 2937 DerivedToBasePath.push_back(&BS); 2938 PrevRD = PathElem; 2939 } 2940 assert(DerivedToBasePath.size() == MemberPointerPath.size()); 2941 2942 CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer 2943 : CK_BaseToDerivedMemberPointer; 2944 C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(), 2945 DerivedToBasePath.end(), C); 2946 } 2947 return C; 2948 } 2949 2950 llvm::Constant * 2951 MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) { 2952 assert(MD->isInstance() && "Member function must not be static!"); 2953 2954 CharUnits NonVirtualBaseAdjustment = CharUnits::Zero(); 2955 const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl(); 2956 CodeGenTypes &Types = CGM.getTypes(); 2957 2958 unsigned VBTableIndex = 0; 2959 llvm::Constant *FirstField; 2960 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 2961 if (!MD->isVirtual()) { 2962 llvm::Type *Ty; 2963 // Check whether the function has a computable LLVM signature. 2964 if (Types.isFuncTypeConvertible(FPT)) { 2965 // The function has a computable LLVM signature; use the correct type. 2966 Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); 2967 } else { 2968 // Use an arbitrary non-function type to tell GetAddrOfFunction that the 2969 // function type is incomplete. 2970 Ty = CGM.PtrDiffTy; 2971 } 2972 FirstField = CGM.GetAddrOfFunction(MD, Ty); 2973 } else { 2974 auto &VTableContext = CGM.getMicrosoftVTableContext(); 2975 MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(MD); 2976 FirstField = EmitVirtualMemPtrThunk(MD, ML); 2977 // Include the vfptr adjustment if the method is in a non-primary vftable. 2978 NonVirtualBaseAdjustment += ML.VFPtrOffset; 2979 if (ML.VBase) 2980 VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4; 2981 } 2982 2983 if (VBTableIndex == 0 && 2984 RD->getMSInheritanceModel() == 2985 MSInheritanceModel::Virtual) 2986 NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD); 2987 2988 // The rest of the fields are common with data member pointers. 2989 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD, 2990 NonVirtualBaseAdjustment, VBTableIndex); 2991 } 2992 2993 /// Member pointers are the same if they're either bitwise identical *or* both 2994 /// null. Null-ness for function members is determined by the first field, 2995 /// while for data member pointers we must compare all fields. 2996 llvm::Value * 2997 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, 2998 llvm::Value *L, 2999 llvm::Value *R, 3000 const MemberPointerType *MPT, 3001 bool Inequality) { 3002 CGBuilderTy &Builder = CGF.Builder; 3003 3004 // Handle != comparisons by switching the sense of all boolean operations. 3005 llvm::ICmpInst::Predicate Eq; 3006 llvm::Instruction::BinaryOps And, Or; 3007 if (Inequality) { 3008 Eq = llvm::ICmpInst::ICMP_NE; 3009 And = llvm::Instruction::Or; 3010 Or = llvm::Instruction::And; 3011 } else { 3012 Eq = llvm::ICmpInst::ICMP_EQ; 3013 And = llvm::Instruction::And; 3014 Or = llvm::Instruction::Or; 3015 } 3016 3017 // If this is a single field member pointer (single inheritance), this is a 3018 // single icmp. 3019 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3020 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3021 if (inheritanceModelHasOnlyOneField(MPT->isMemberFunctionPointer(), 3022 Inheritance)) 3023 return Builder.CreateICmp(Eq, L, R); 3024 3025 // Compare the first field. 3026 llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0"); 3027 llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0"); 3028 llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first"); 3029 3030 // Compare everything other than the first field. 3031 llvm::Value *Res = nullptr; 3032 llvm::StructType *LType = cast<llvm::StructType>(L->getType()); 3033 for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) { 3034 llvm::Value *LF = Builder.CreateExtractValue(L, I); 3035 llvm::Value *RF = Builder.CreateExtractValue(R, I); 3036 llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest"); 3037 if (Res) 3038 Res = Builder.CreateBinOp(And, Res, Cmp); 3039 else 3040 Res = Cmp; 3041 } 3042 3043 // Check if the first field is 0 if this is a function pointer. 3044 if (MPT->isMemberFunctionPointer()) { 3045 // (l1 == r1 && ...) || l0 == 0 3046 llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType()); 3047 llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero"); 3048 Res = Builder.CreateBinOp(Or, Res, IsZero); 3049 } 3050 3051 // Combine the comparison of the first field, which must always be true for 3052 // this comparison to succeeed. 3053 return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp"); 3054 } 3055 3056 llvm::Value * 3057 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 3058 llvm::Value *MemPtr, 3059 const MemberPointerType *MPT) { 3060 CGBuilderTy &Builder = CGF.Builder; 3061 llvm::SmallVector<llvm::Constant *, 4> fields; 3062 // We only need one field for member functions. 3063 if (MPT->isMemberFunctionPointer()) 3064 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 3065 else 3066 GetNullMemberPointerFields(MPT, fields); 3067 assert(!fields.empty()); 3068 llvm::Value *FirstField = MemPtr; 3069 if (MemPtr->getType()->isStructTy()) 3070 FirstField = Builder.CreateExtractValue(MemPtr, 0); 3071 llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0"); 3072 3073 // For function member pointers, we only need to test the function pointer 3074 // field. The other fields if any can be garbage. 3075 if (MPT->isMemberFunctionPointer()) 3076 return Res; 3077 3078 // Otherwise, emit a series of compares and combine the results. 3079 for (int I = 1, E = fields.size(); I < E; ++I) { 3080 llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I); 3081 llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp"); 3082 Res = Builder.CreateOr(Res, Next, "memptr.tobool"); 3083 } 3084 return Res; 3085 } 3086 3087 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT, 3088 llvm::Constant *Val) { 3089 // Function pointers are null if the pointer in the first field is null. 3090 if (MPT->isMemberFunctionPointer()) { 3091 llvm::Constant *FirstField = Val->getType()->isStructTy() ? 3092 Val->getAggregateElement(0U) : Val; 3093 return FirstField->isNullValue(); 3094 } 3095 3096 // If it's not a function pointer and it's zero initializable, we can easily 3097 // check zero. 3098 if (isZeroInitializable(MPT) && Val->isNullValue()) 3099 return true; 3100 3101 // Otherwise, break down all the fields for comparison. Hopefully these 3102 // little Constants are reused, while a big null struct might not be. 3103 llvm::SmallVector<llvm::Constant *, 4> Fields; 3104 GetNullMemberPointerFields(MPT, Fields); 3105 if (Fields.size() == 1) { 3106 assert(Val->getType()->isIntegerTy()); 3107 return Val == Fields[0]; 3108 } 3109 3110 unsigned I, E; 3111 for (I = 0, E = Fields.size(); I != E; ++I) { 3112 if (Val->getAggregateElement(I) != Fields[I]) 3113 break; 3114 } 3115 return I == E; 3116 } 3117 3118 llvm::Value * 3119 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 3120 Address This, 3121 llvm::Value *VBPtrOffset, 3122 llvm::Value *VBTableOffset, 3123 llvm::Value **VBPtrOut) { 3124 CGBuilderTy &Builder = CGF.Builder; 3125 // Load the vbtable pointer from the vbptr in the instance. 3126 llvm::Value *VBPtr = Builder.CreateInBoundsGEP(CGM.Int8Ty, This.getPointer(), 3127 VBPtrOffset, "vbptr"); 3128 if (VBPtrOut) 3129 *VBPtrOut = VBPtr; 3130 3131 CharUnits VBPtrAlign; 3132 if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) { 3133 VBPtrAlign = This.getAlignment().alignmentAtOffset( 3134 CharUnits::fromQuantity(CI->getSExtValue())); 3135 } else { 3136 VBPtrAlign = CGF.getPointerAlign(); 3137 } 3138 3139 llvm::Value *VBTable = Builder.CreateAlignedLoad( 3140 CGM.Int32Ty->getPointerTo(0), VBPtr, VBPtrAlign, "vbtable"); 3141 3142 // Translate from byte offset to table index. It improves analyzability. 3143 llvm::Value *VBTableIndex = Builder.CreateAShr( 3144 VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2), 3145 "vbtindex", /*isExact=*/true); 3146 3147 // Load an i32 offset from the vb-table. 3148 llvm::Value *VBaseOffs = 3149 Builder.CreateInBoundsGEP(CGM.Int32Ty, VBTable, VBTableIndex); 3150 return Builder.CreateAlignedLoad(CGM.Int32Ty, VBaseOffs, 3151 CharUnits::fromQuantity(4), "vbase_offs"); 3152 } 3153 3154 // Returns an adjusted base cast to i8*, since we do more address arithmetic on 3155 // it. 3156 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase( 3157 CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD, 3158 Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) { 3159 CGBuilderTy &Builder = CGF.Builder; 3160 Base = Base.withElementType(CGM.Int8Ty); 3161 llvm::BasicBlock *OriginalBB = nullptr; 3162 llvm::BasicBlock *SkipAdjustBB = nullptr; 3163 llvm::BasicBlock *VBaseAdjustBB = nullptr; 3164 3165 // In the unspecified inheritance model, there might not be a vbtable at all, 3166 // in which case we need to skip the virtual base lookup. If there is a 3167 // vbtable, the first entry is a no-op entry that gives back the original 3168 // base, so look for a virtual base adjustment offset of zero. 3169 if (VBPtrOffset) { 3170 OriginalBB = Builder.GetInsertBlock(); 3171 VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust"); 3172 SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust"); 3173 llvm::Value *IsVirtual = 3174 Builder.CreateICmpNE(VBTableOffset, getZeroInt(), 3175 "memptr.is_vbase"); 3176 Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB); 3177 CGF.EmitBlock(VBaseAdjustBB); 3178 } 3179 3180 // If we weren't given a dynamic vbptr offset, RD should be complete and we'll 3181 // know the vbptr offset. 3182 if (!VBPtrOffset) { 3183 CharUnits offs = CharUnits::Zero(); 3184 if (!RD->hasDefinition()) { 3185 DiagnosticsEngine &Diags = CGF.CGM.getDiags(); 3186 unsigned DiagID = Diags.getCustomDiagID( 3187 DiagnosticsEngine::Error, 3188 "member pointer representation requires a " 3189 "complete class type for %0 to perform this expression"); 3190 Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange(); 3191 } else if (RD->getNumVBases()) 3192 offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 3193 VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity()); 3194 } 3195 llvm::Value *VBPtr = nullptr; 3196 llvm::Value *VBaseOffs = 3197 GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr); 3198 llvm::Value *AdjustedBase = 3199 Builder.CreateInBoundsGEP(CGM.Int8Ty, VBPtr, VBaseOffs); 3200 3201 // Merge control flow with the case where we didn't have to adjust. 3202 if (VBaseAdjustBB) { 3203 Builder.CreateBr(SkipAdjustBB); 3204 CGF.EmitBlock(SkipAdjustBB); 3205 llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base"); 3206 Phi->addIncoming(Base.getPointer(), OriginalBB); 3207 Phi->addIncoming(AdjustedBase, VBaseAdjustBB); 3208 return Phi; 3209 } 3210 return AdjustedBase; 3211 } 3212 3213 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress( 3214 CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, 3215 const MemberPointerType *MPT) { 3216 assert(MPT->isMemberDataPointer()); 3217 CGBuilderTy &Builder = CGF.Builder; 3218 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3219 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3220 3221 // Extract the fields we need, regardless of model. We'll apply them if we 3222 // have them. 3223 llvm::Value *FieldOffset = MemPtr; 3224 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 3225 llvm::Value *VBPtrOffset = nullptr; 3226 if (MemPtr->getType()->isStructTy()) { 3227 // We need to extract values. 3228 unsigned I = 0; 3229 FieldOffset = Builder.CreateExtractValue(MemPtr, I++); 3230 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 3231 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 3232 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 3233 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 3234 } 3235 3236 llvm::Value *Addr; 3237 if (VirtualBaseAdjustmentOffset) { 3238 Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset, 3239 VBPtrOffset); 3240 } else { 3241 Addr = Base.getPointer(); 3242 } 3243 3244 // Apply the offset, which we assume is non-null. 3245 return Builder.CreateInBoundsGEP(CGF.Int8Ty, Addr, FieldOffset, 3246 "memptr.offset"); 3247 } 3248 3249 llvm::Value * 3250 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, 3251 const CastExpr *E, 3252 llvm::Value *Src) { 3253 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || 3254 E->getCastKind() == CK_BaseToDerivedMemberPointer || 3255 E->getCastKind() == CK_ReinterpretMemberPointer); 3256 3257 // Use constant emission if we can. 3258 if (isa<llvm::Constant>(Src)) 3259 return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src)); 3260 3261 // We may be adding or dropping fields from the member pointer, so we need 3262 // both types and the inheritance models of both records. 3263 const MemberPointerType *SrcTy = 3264 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 3265 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 3266 bool IsFunc = SrcTy->isMemberFunctionPointer(); 3267 3268 // If the classes use the same null representation, reinterpret_cast is a nop. 3269 bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer; 3270 if (IsReinterpret && IsFunc) 3271 return Src; 3272 3273 CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); 3274 CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); 3275 if (IsReinterpret && 3276 SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero()) 3277 return Src; 3278 3279 CGBuilderTy &Builder = CGF.Builder; 3280 3281 // Branch past the conversion if Src is null. 3282 llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy); 3283 llvm::Constant *DstNull = EmitNullMemberPointer(DstTy); 3284 3285 // C++ 5.2.10p9: The null member pointer value is converted to the null member 3286 // pointer value of the destination type. 3287 if (IsReinterpret) { 3288 // For reinterpret casts, sema ensures that src and dst are both functions 3289 // or data and have the same size, which means the LLVM types should match. 3290 assert(Src->getType() == DstNull->getType()); 3291 return Builder.CreateSelect(IsNotNull, Src, DstNull); 3292 } 3293 3294 llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock(); 3295 llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert"); 3296 llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted"); 3297 Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB); 3298 CGF.EmitBlock(ConvertBB); 3299 3300 llvm::Value *Dst = EmitNonNullMemberPointerConversion( 3301 SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src, 3302 Builder); 3303 3304 Builder.CreateBr(ContinueBB); 3305 3306 // In the continuation, choose between DstNull and Dst. 3307 CGF.EmitBlock(ContinueBB); 3308 llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted"); 3309 Phi->addIncoming(DstNull, OriginalBB); 3310 Phi->addIncoming(Dst, ConvertBB); 3311 return Phi; 3312 } 3313 3314 llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion( 3315 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, 3316 CastExpr::path_const_iterator PathBegin, 3317 CastExpr::path_const_iterator PathEnd, llvm::Value *Src, 3318 CGBuilderTy &Builder) { 3319 const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); 3320 const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); 3321 MSInheritanceModel SrcInheritance = SrcRD->getMSInheritanceModel(); 3322 MSInheritanceModel DstInheritance = DstRD->getMSInheritanceModel(); 3323 bool IsFunc = SrcTy->isMemberFunctionPointer(); 3324 bool IsConstant = isa<llvm::Constant>(Src); 3325 3326 // Decompose src. 3327 llvm::Value *FirstField = Src; 3328 llvm::Value *NonVirtualBaseAdjustment = getZeroInt(); 3329 llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt(); 3330 llvm::Value *VBPtrOffset = getZeroInt(); 3331 if (!inheritanceModelHasOnlyOneField(IsFunc, SrcInheritance)) { 3332 // We need to extract values. 3333 unsigned I = 0; 3334 FirstField = Builder.CreateExtractValue(Src, I++); 3335 if (inheritanceModelHasNVOffsetField(IsFunc, SrcInheritance)) 3336 NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++); 3337 if (inheritanceModelHasVBPtrOffsetField(SrcInheritance)) 3338 VBPtrOffset = Builder.CreateExtractValue(Src, I++); 3339 if (inheritanceModelHasVBTableOffsetField(SrcInheritance)) 3340 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++); 3341 } 3342 3343 bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer); 3344 const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy; 3345 const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl(); 3346 3347 // For data pointers, we adjust the field offset directly. For functions, we 3348 // have a separate field. 3349 llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField; 3350 3351 // The virtual inheritance model has a quirk: the virtual base table is always 3352 // referenced when dereferencing a member pointer even if the member pointer 3353 // is non-virtual. This is accounted for by adjusting the non-virtual offset 3354 // to point backwards to the top of the MDC from the first VBase. Undo this 3355 // adjustment to normalize the member pointer. 3356 llvm::Value *SrcVBIndexEqZero = 3357 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); 3358 if (SrcInheritance == MSInheritanceModel::Virtual) { 3359 if (int64_t SrcOffsetToFirstVBase = 3360 getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) { 3361 llvm::Value *UndoSrcAdjustment = Builder.CreateSelect( 3362 SrcVBIndexEqZero, 3363 llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase), 3364 getZeroInt()); 3365 NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment); 3366 } 3367 } 3368 3369 // A non-zero vbindex implies that we are dealing with a source member in a 3370 // floating virtual base in addition to some non-virtual offset. If the 3371 // vbindex is zero, we are dealing with a source that exists in a non-virtual, 3372 // fixed, base. The difference between these two cases is that the vbindex + 3373 // nvoffset *always* point to the member regardless of what context they are 3374 // evaluated in so long as the vbindex is adjusted. A member inside a fixed 3375 // base requires explicit nv adjustment. 3376 llvm::Constant *BaseClassOffset = llvm::ConstantInt::get( 3377 CGM.IntTy, 3378 CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd) 3379 .getQuantity()); 3380 3381 llvm::Value *NVDisp; 3382 if (IsDerivedToBase) 3383 NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj"); 3384 else 3385 NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj"); 3386 3387 NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt()); 3388 3389 // Update the vbindex to an appropriate value in the destination because 3390 // SrcRD's vbtable might not be a strict prefix of the one in DstRD. 3391 llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero; 3392 if (inheritanceModelHasVBTableOffsetField(DstInheritance) && 3393 inheritanceModelHasVBTableOffsetField(SrcInheritance)) { 3394 if (llvm::GlobalVariable *VDispMap = 3395 getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) { 3396 llvm::Value *VBIndex = Builder.CreateExactUDiv( 3397 VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4)); 3398 if (IsConstant) { 3399 llvm::Constant *Mapping = VDispMap->getInitializer(); 3400 VirtualBaseAdjustmentOffset = 3401 Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex)); 3402 } else { 3403 llvm::Value *Idxs[] = {getZeroInt(), VBIndex}; 3404 VirtualBaseAdjustmentOffset = Builder.CreateAlignedLoad( 3405 CGM.IntTy, Builder.CreateInBoundsGEP(VDispMap->getValueType(), 3406 VDispMap, Idxs), 3407 CharUnits::fromQuantity(4)); 3408 } 3409 3410 DstVBIndexEqZero = 3411 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); 3412 } 3413 } 3414 3415 // Set the VBPtrOffset to zero if the vbindex is zero. Otherwise, initialize 3416 // it to the offset of the vbptr. 3417 if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) { 3418 llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get( 3419 CGM.IntTy, 3420 getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity()); 3421 VBPtrOffset = 3422 Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset); 3423 } 3424 3425 // Likewise, apply a similar adjustment so that dereferencing the member 3426 // pointer correctly accounts for the distance between the start of the first 3427 // virtual base and the top of the MDC. 3428 if (DstInheritance == MSInheritanceModel::Virtual) { 3429 if (int64_t DstOffsetToFirstVBase = 3430 getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) { 3431 llvm::Value *DoDstAdjustment = Builder.CreateSelect( 3432 DstVBIndexEqZero, 3433 llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase), 3434 getZeroInt()); 3435 NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment); 3436 } 3437 } 3438 3439 // Recompose dst from the null struct and the adjusted fields from src. 3440 llvm::Value *Dst; 3441 if (inheritanceModelHasOnlyOneField(IsFunc, DstInheritance)) { 3442 Dst = FirstField; 3443 } else { 3444 Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy)); 3445 unsigned Idx = 0; 3446 Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++); 3447 if (inheritanceModelHasNVOffsetField(IsFunc, DstInheritance)) 3448 Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++); 3449 if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) 3450 Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++); 3451 if (inheritanceModelHasVBTableOffsetField(DstInheritance)) 3452 Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++); 3453 } 3454 return Dst; 3455 } 3456 3457 llvm::Constant * 3458 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E, 3459 llvm::Constant *Src) { 3460 const MemberPointerType *SrcTy = 3461 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 3462 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 3463 3464 CastKind CK = E->getCastKind(); 3465 3466 return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(), 3467 E->path_end(), Src); 3468 } 3469 3470 llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion( 3471 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, 3472 CastExpr::path_const_iterator PathBegin, 3473 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) { 3474 assert(CK == CK_DerivedToBaseMemberPointer || 3475 CK == CK_BaseToDerivedMemberPointer || 3476 CK == CK_ReinterpretMemberPointer); 3477 // If src is null, emit a new null for dst. We can't return src because dst 3478 // might have a new representation. 3479 if (MemberPointerConstantIsNull(SrcTy, Src)) 3480 return EmitNullMemberPointer(DstTy); 3481 3482 // We don't need to do anything for reinterpret_casts of non-null member 3483 // pointers. We should only get here when the two type representations have 3484 // the same size. 3485 if (CK == CK_ReinterpretMemberPointer) 3486 return Src; 3487 3488 CGBuilderTy Builder(CGM, CGM.getLLVMContext()); 3489 auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion( 3490 SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder)); 3491 3492 return Dst; 3493 } 3494 3495 CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer( 3496 CodeGenFunction &CGF, const Expr *E, Address This, 3497 llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr, 3498 const MemberPointerType *MPT) { 3499 assert(MPT->isMemberFunctionPointer()); 3500 const FunctionProtoType *FPT = 3501 MPT->getPointeeType()->castAs<FunctionProtoType>(); 3502 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3503 CGBuilderTy &Builder = CGF.Builder; 3504 3505 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3506 3507 // Extract the fields we need, regardless of model. We'll apply them if we 3508 // have them. 3509 llvm::Value *FunctionPointer = MemPtr; 3510 llvm::Value *NonVirtualBaseAdjustment = nullptr; 3511 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 3512 llvm::Value *VBPtrOffset = nullptr; 3513 if (MemPtr->getType()->isStructTy()) { 3514 // We need to extract values. 3515 unsigned I = 0; 3516 FunctionPointer = Builder.CreateExtractValue(MemPtr, I++); 3517 if (inheritanceModelHasNVOffsetField(MPT, Inheritance)) 3518 NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++); 3519 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 3520 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 3521 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 3522 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 3523 } 3524 3525 if (VirtualBaseAdjustmentOffset) { 3526 ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This, 3527 VirtualBaseAdjustmentOffset, VBPtrOffset); 3528 } else { 3529 ThisPtrForCall = This.getPointer(); 3530 } 3531 3532 if (NonVirtualBaseAdjustment) 3533 ThisPtrForCall = Builder.CreateInBoundsGEP(CGF.Int8Ty, ThisPtrForCall, 3534 NonVirtualBaseAdjustment); 3535 3536 CGCallee Callee(FPT, FunctionPointer); 3537 return Callee; 3538 } 3539 3540 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) { 3541 return new MicrosoftCXXABI(CGM); 3542 } 3543 3544 // MS RTTI Overview: 3545 // The run time type information emitted by cl.exe contains 5 distinct types of 3546 // structures. Many of them reference each other. 3547 // 3548 // TypeInfo: Static classes that are returned by typeid. 3549 // 3550 // CompleteObjectLocator: Referenced by vftables. They contain information 3551 // required for dynamic casting, including OffsetFromTop. They also contain 3552 // a reference to the TypeInfo for the type and a reference to the 3553 // CompleteHierarchyDescriptor for the type. 3554 // 3555 // ClassHierarchyDescriptor: Contains information about a class hierarchy. 3556 // Used during dynamic_cast to walk a class hierarchy. References a base 3557 // class array and the size of said array. 3558 // 3559 // BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is 3560 // somewhat of a misnomer because the most derived class is also in the list 3561 // as well as multiple copies of virtual bases (if they occur multiple times 3562 // in the hierarchy.) The BaseClassArray contains one BaseClassDescriptor for 3563 // every path in the hierarchy, in pre-order depth first order. Note, we do 3564 // not declare a specific llvm type for BaseClassArray, it's merely an array 3565 // of BaseClassDescriptor pointers. 3566 // 3567 // BaseClassDescriptor: Contains information about a class in a class hierarchy. 3568 // BaseClassDescriptor is also somewhat of a misnomer for the same reason that 3569 // BaseClassArray is. It contains information about a class within a 3570 // hierarchy such as: is this base is ambiguous and what is its offset in the 3571 // vbtable. The names of the BaseClassDescriptors have all of their fields 3572 // mangled into them so they can be aggressively deduplicated by the linker. 3573 3574 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) { 3575 StringRef MangledName("??_7type_info@@6B@"); 3576 if (auto VTable = CGM.getModule().getNamedGlobal(MangledName)) 3577 return VTable; 3578 return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy, 3579 /*isConstant=*/true, 3580 llvm::GlobalVariable::ExternalLinkage, 3581 /*Initializer=*/nullptr, MangledName); 3582 } 3583 3584 namespace { 3585 3586 /// A Helper struct that stores information about a class in a class 3587 /// hierarchy. The information stored in these structs struct is used during 3588 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors. 3589 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with 3590 // implicit depth first pre-order tree connectivity. getFirstChild and 3591 // getNextSibling allow us to walk the tree efficiently. 3592 struct MSRTTIClass { 3593 enum { 3594 IsPrivateOnPath = 1 | 8, 3595 IsAmbiguous = 2, 3596 IsPrivate = 4, 3597 IsVirtual = 16, 3598 HasHierarchyDescriptor = 64 3599 }; 3600 MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {} 3601 uint32_t initialize(const MSRTTIClass *Parent, 3602 const CXXBaseSpecifier *Specifier); 3603 3604 MSRTTIClass *getFirstChild() { return this + 1; } 3605 static MSRTTIClass *getNextChild(MSRTTIClass *Child) { 3606 return Child + 1 + Child->NumBases; 3607 } 3608 3609 const CXXRecordDecl *RD, *VirtualRoot; 3610 uint32_t Flags, NumBases, OffsetInVBase; 3611 }; 3612 3613 /// Recursively initialize the base class array. 3614 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent, 3615 const CXXBaseSpecifier *Specifier) { 3616 Flags = HasHierarchyDescriptor; 3617 if (!Parent) { 3618 VirtualRoot = nullptr; 3619 OffsetInVBase = 0; 3620 } else { 3621 if (Specifier->getAccessSpecifier() != AS_public) 3622 Flags |= IsPrivate | IsPrivateOnPath; 3623 if (Specifier->isVirtual()) { 3624 Flags |= IsVirtual; 3625 VirtualRoot = RD; 3626 OffsetInVBase = 0; 3627 } else { 3628 if (Parent->Flags & IsPrivateOnPath) 3629 Flags |= IsPrivateOnPath; 3630 VirtualRoot = Parent->VirtualRoot; 3631 OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext() 3632 .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity(); 3633 } 3634 } 3635 NumBases = 0; 3636 MSRTTIClass *Child = getFirstChild(); 3637 for (const CXXBaseSpecifier &Base : RD->bases()) { 3638 NumBases += Child->initialize(this, &Base) + 1; 3639 Child = getNextChild(Child); 3640 } 3641 return NumBases; 3642 } 3643 3644 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) { 3645 switch (Ty->getLinkage()) { 3646 case Linkage::Invalid: 3647 llvm_unreachable("Linkage hasn't been computed!"); 3648 3649 case Linkage::None: 3650 case Linkage::Internal: 3651 case Linkage::UniqueExternal: 3652 return llvm::GlobalValue::InternalLinkage; 3653 3654 case Linkage::VisibleNone: 3655 case Linkage::Module: 3656 case Linkage::External: 3657 return llvm::GlobalValue::LinkOnceODRLinkage; 3658 } 3659 llvm_unreachable("Invalid linkage!"); 3660 } 3661 3662 /// An ephemeral helper class for building MS RTTI types. It caches some 3663 /// calls to the module and information about the most derived class in a 3664 /// hierarchy. 3665 struct MSRTTIBuilder { 3666 enum { 3667 HasBranchingHierarchy = 1, 3668 HasVirtualBranchingHierarchy = 2, 3669 HasAmbiguousBases = 4 3670 }; 3671 3672 MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD) 3673 : CGM(ABI.CGM), Context(CGM.getContext()), 3674 VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD), 3675 Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))), 3676 ABI(ABI) {} 3677 3678 llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes); 3679 llvm::GlobalVariable * 3680 getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes); 3681 llvm::GlobalVariable *getClassHierarchyDescriptor(); 3682 llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info); 3683 3684 CodeGenModule &CGM; 3685 ASTContext &Context; 3686 llvm::LLVMContext &VMContext; 3687 llvm::Module &Module; 3688 const CXXRecordDecl *RD; 3689 llvm::GlobalVariable::LinkageTypes Linkage; 3690 MicrosoftCXXABI &ABI; 3691 }; 3692 3693 } // namespace 3694 3695 /// Recursively serializes a class hierarchy in pre-order depth first 3696 /// order. 3697 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes, 3698 const CXXRecordDecl *RD) { 3699 Classes.push_back(MSRTTIClass(RD)); 3700 for (const CXXBaseSpecifier &Base : RD->bases()) 3701 serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl()); 3702 } 3703 3704 /// Find ambiguity among base classes. 3705 static void 3706 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) { 3707 llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases; 3708 llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases; 3709 llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases; 3710 for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) { 3711 if ((Class->Flags & MSRTTIClass::IsVirtual) && 3712 !VirtualBases.insert(Class->RD).second) { 3713 Class = MSRTTIClass::getNextChild(Class); 3714 continue; 3715 } 3716 if (!UniqueBases.insert(Class->RD).second) 3717 AmbiguousBases.insert(Class->RD); 3718 Class++; 3719 } 3720 if (AmbiguousBases.empty()) 3721 return; 3722 for (MSRTTIClass &Class : Classes) 3723 if (AmbiguousBases.count(Class.RD)) 3724 Class.Flags |= MSRTTIClass::IsAmbiguous; 3725 } 3726 3727 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() { 3728 SmallString<256> MangledName; 3729 { 3730 llvm::raw_svector_ostream Out(MangledName); 3731 ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out); 3732 } 3733 3734 // Check to see if we've already declared this ClassHierarchyDescriptor. 3735 if (auto CHD = Module.getNamedGlobal(MangledName)) 3736 return CHD; 3737 3738 // Serialize the class hierarchy and initialize the CHD Fields. 3739 SmallVector<MSRTTIClass, 8> Classes; 3740 serializeClassHierarchy(Classes, RD); 3741 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); 3742 detectAmbiguousBases(Classes); 3743 int Flags = 0; 3744 for (const MSRTTIClass &Class : Classes) { 3745 if (Class.RD->getNumBases() > 1) 3746 Flags |= HasBranchingHierarchy; 3747 // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We 3748 // believe the field isn't actually used. 3749 if (Class.Flags & MSRTTIClass::IsAmbiguous) 3750 Flags |= HasAmbiguousBases; 3751 } 3752 if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0) 3753 Flags |= HasVirtualBranchingHierarchy; 3754 // These gep indices are used to get the address of the first element of the 3755 // base class array. 3756 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0), 3757 llvm::ConstantInt::get(CGM.IntTy, 0)}; 3758 3759 // Forward-declare the class hierarchy descriptor 3760 auto Type = ABI.getClassHierarchyDescriptorType(); 3761 auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3762 /*Initializer=*/nullptr, 3763 MangledName); 3764 if (CHD->isWeakForLinker()) 3765 CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName())); 3766 3767 auto *Bases = getBaseClassArray(Classes); 3768 3769 // Initialize the base class ClassHierarchyDescriptor. 3770 llvm::Constant *Fields[] = { 3771 llvm::ConstantInt::get(CGM.IntTy, 0), // reserved by the runtime 3772 llvm::ConstantInt::get(CGM.IntTy, Flags), 3773 llvm::ConstantInt::get(CGM.IntTy, Classes.size()), 3774 ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr( 3775 Bases->getValueType(), Bases, 3776 llvm::ArrayRef<llvm::Value *>(GEPIndices))), 3777 }; 3778 CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 3779 return CHD; 3780 } 3781 3782 llvm::GlobalVariable * 3783 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) { 3784 SmallString<256> MangledName; 3785 { 3786 llvm::raw_svector_ostream Out(MangledName); 3787 ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out); 3788 } 3789 3790 // Forward-declare the base class array. 3791 // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit 3792 // mode) bytes of padding. We provide a pointer sized amount of padding by 3793 // adding +1 to Classes.size(). The sections have pointer alignment and are 3794 // marked pick-any so it shouldn't matter. 3795 llvm::Type *PtrType = ABI.getImageRelativeType( 3796 ABI.getBaseClassDescriptorType()->getPointerTo()); 3797 auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1); 3798 auto *BCA = 3799 new llvm::GlobalVariable(Module, ArrType, 3800 /*isConstant=*/true, Linkage, 3801 /*Initializer=*/nullptr, MangledName); 3802 if (BCA->isWeakForLinker()) 3803 BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName())); 3804 3805 // Initialize the BaseClassArray. 3806 SmallVector<llvm::Constant *, 8> BaseClassArrayData; 3807 for (MSRTTIClass &Class : Classes) 3808 BaseClassArrayData.push_back( 3809 ABI.getImageRelativeConstant(getBaseClassDescriptor(Class))); 3810 BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType)); 3811 BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData)); 3812 return BCA; 3813 } 3814 3815 llvm::GlobalVariable * 3816 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) { 3817 // Compute the fields for the BaseClassDescriptor. They are computed up front 3818 // because they are mangled into the name of the object. 3819 uint32_t OffsetInVBTable = 0; 3820 int32_t VBPtrOffset = -1; 3821 if (Class.VirtualRoot) { 3822 auto &VTableContext = CGM.getMicrosoftVTableContext(); 3823 OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4; 3824 VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity(); 3825 } 3826 3827 SmallString<256> MangledName; 3828 { 3829 llvm::raw_svector_ostream Out(MangledName); 3830 ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor( 3831 Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable, 3832 Class.Flags, Out); 3833 } 3834 3835 // Check to see if we've already declared this object. 3836 if (auto BCD = Module.getNamedGlobal(MangledName)) 3837 return BCD; 3838 3839 // Forward-declare the base class descriptor. 3840 auto Type = ABI.getBaseClassDescriptorType(); 3841 auto BCD = 3842 new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3843 /*Initializer=*/nullptr, MangledName); 3844 if (BCD->isWeakForLinker()) 3845 BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName())); 3846 3847 // Initialize the BaseClassDescriptor. 3848 llvm::Constant *Fields[] = { 3849 ABI.getImageRelativeConstant( 3850 ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))), 3851 llvm::ConstantInt::get(CGM.IntTy, Class.NumBases), 3852 llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase), 3853 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 3854 llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable), 3855 llvm::ConstantInt::get(CGM.IntTy, Class.Flags), 3856 ABI.getImageRelativeConstant( 3857 MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()), 3858 }; 3859 BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 3860 return BCD; 3861 } 3862 3863 llvm::GlobalVariable * 3864 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) { 3865 SmallString<256> MangledName; 3866 { 3867 llvm::raw_svector_ostream Out(MangledName); 3868 ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info.MangledPath, Out); 3869 } 3870 3871 // Check to see if we've already computed this complete object locator. 3872 if (auto COL = Module.getNamedGlobal(MangledName)) 3873 return COL; 3874 3875 // Compute the fields of the complete object locator. 3876 int OffsetToTop = Info.FullOffsetInMDC.getQuantity(); 3877 int VFPtrOffset = 0; 3878 // The offset includes the vtordisp if one exists. 3879 if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr()) 3880 if (Context.getASTRecordLayout(RD) 3881 .getVBaseOffsetsMap() 3882 .find(VBase) 3883 ->second.hasVtorDisp()) 3884 VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4; 3885 3886 // Forward-declare the complete object locator. 3887 llvm::StructType *Type = ABI.getCompleteObjectLocatorType(); 3888 auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3889 /*Initializer=*/nullptr, MangledName); 3890 3891 // Initialize the CompleteObjectLocator. 3892 llvm::Constant *Fields[] = { 3893 llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()), 3894 llvm::ConstantInt::get(CGM.IntTy, OffsetToTop), 3895 llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset), 3896 ABI.getImageRelativeConstant( 3897 CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))), 3898 ABI.getImageRelativeConstant(getClassHierarchyDescriptor()), 3899 ABI.getImageRelativeConstant(COL), 3900 }; 3901 llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields); 3902 if (!ABI.isImageRelative()) 3903 FieldsRef = FieldsRef.drop_back(); 3904 COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef)); 3905 if (COL->isWeakForLinker()) 3906 COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName())); 3907 return COL; 3908 } 3909 3910 static QualType decomposeTypeForEH(ASTContext &Context, QualType T, 3911 bool &IsConst, bool &IsVolatile, 3912 bool &IsUnaligned) { 3913 T = Context.getExceptionObjectType(T); 3914 3915 // C++14 [except.handle]p3: 3916 // A handler is a match for an exception object of type E if [...] 3917 // - the handler is of type cv T or const T& where T is a pointer type and 3918 // E is a pointer type that can be converted to T by [...] 3919 // - a qualification conversion 3920 IsConst = false; 3921 IsVolatile = false; 3922 IsUnaligned = false; 3923 QualType PointeeType = T->getPointeeType(); 3924 if (!PointeeType.isNull()) { 3925 IsConst = PointeeType.isConstQualified(); 3926 IsVolatile = PointeeType.isVolatileQualified(); 3927 IsUnaligned = PointeeType.getQualifiers().hasUnaligned(); 3928 } 3929 3930 // Member pointer types like "const int A::*" are represented by having RTTI 3931 // for "int A::*" and separately storing the const qualifier. 3932 if (const auto *MPTy = T->getAs<MemberPointerType>()) 3933 T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(), 3934 MPTy->getClass()); 3935 3936 // Pointer types like "const int * const *" are represented by having RTTI 3937 // for "const int **" and separately storing the const qualifier. 3938 if (T->isPointerType()) 3939 T = Context.getPointerType(PointeeType.getUnqualifiedType()); 3940 3941 return T; 3942 } 3943 3944 CatchTypeInfo 3945 MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type, 3946 QualType CatchHandlerType) { 3947 // TypeDescriptors for exceptions never have qualified pointer types, 3948 // qualifiers are stored separately in order to support qualification 3949 // conversions. 3950 bool IsConst, IsVolatile, IsUnaligned; 3951 Type = 3952 decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile, IsUnaligned); 3953 3954 bool IsReference = CatchHandlerType->isReferenceType(); 3955 3956 uint32_t Flags = 0; 3957 if (IsConst) 3958 Flags |= 1; 3959 if (IsVolatile) 3960 Flags |= 2; 3961 if (IsUnaligned) 3962 Flags |= 4; 3963 if (IsReference) 3964 Flags |= 8; 3965 3966 return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(), 3967 Flags}; 3968 } 3969 3970 /// Gets a TypeDescriptor. Returns a llvm::Constant * rather than a 3971 /// llvm::GlobalVariable * because different type descriptors have different 3972 /// types, and need to be abstracted. They are abstracting by casting the 3973 /// address to an Int8PtrTy. 3974 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) { 3975 SmallString<256> MangledName; 3976 { 3977 llvm::raw_svector_ostream Out(MangledName); 3978 getMangleContext().mangleCXXRTTI(Type, Out); 3979 } 3980 3981 // Check to see if we've already declared this TypeDescriptor. 3982 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 3983 return GV; 3984 3985 // Note for the future: If we would ever like to do deferred emission of 3986 // RTTI, check if emitting vtables opportunistically need any adjustment. 3987 3988 // Compute the fields for the TypeDescriptor. 3989 SmallString<256> TypeInfoString; 3990 { 3991 llvm::raw_svector_ostream Out(TypeInfoString); 3992 getMangleContext().mangleCXXRTTIName(Type, Out); 3993 } 3994 3995 // Declare and initialize the TypeDescriptor. 3996 llvm::Constant *Fields[] = { 3997 getTypeInfoVTable(CGM), // VFPtr 3998 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data 3999 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)}; 4000 llvm::StructType *TypeDescriptorType = 4001 getTypeDescriptorType(TypeInfoString); 4002 auto *Var = new llvm::GlobalVariable( 4003 CGM.getModule(), TypeDescriptorType, /*isConstant=*/false, 4004 getLinkageForRTTI(Type), 4005 llvm::ConstantStruct::get(TypeDescriptorType, Fields), 4006 MangledName); 4007 if (Var->isWeakForLinker()) 4008 Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName())); 4009 return Var; 4010 } 4011 4012 /// Gets or a creates a Microsoft CompleteObjectLocator. 4013 llvm::GlobalVariable * 4014 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD, 4015 const VPtrInfo &Info) { 4016 return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info); 4017 } 4018 4019 void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) { 4020 if (auto *ctor = dyn_cast<CXXConstructorDecl>(GD.getDecl())) { 4021 // There are no constructor variants, always emit the complete destructor. 4022 llvm::Function *Fn = 4023 CGM.codegenCXXStructor(GD.getWithCtorType(Ctor_Complete)); 4024 CGM.maybeSetTrivialComdat(*ctor, *Fn); 4025 return; 4026 } 4027 4028 auto *dtor = cast<CXXDestructorDecl>(GD.getDecl()); 4029 4030 // Emit the base destructor if the base and complete (vbase) destructors are 4031 // equivalent. This effectively implements -mconstructor-aliases as part of 4032 // the ABI. 4033 if (GD.getDtorType() == Dtor_Complete && 4034 dtor->getParent()->getNumVBases() == 0) 4035 GD = GD.getWithDtorType(Dtor_Base); 4036 4037 // The base destructor is equivalent to the base destructor of its 4038 // base class if there is exactly one non-virtual base class with a 4039 // non-trivial destructor, there are no fields with a non-trivial 4040 // destructor, and the body of the destructor is trivial. 4041 if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(dtor)) 4042 return; 4043 4044 llvm::Function *Fn = CGM.codegenCXXStructor(GD); 4045 if (Fn->isWeakForLinker()) 4046 Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName())); 4047 } 4048 4049 llvm::Function * 4050 MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, 4051 CXXCtorType CT) { 4052 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 4053 4054 // Calculate the mangled name. 4055 SmallString<256> ThunkName; 4056 llvm::raw_svector_ostream Out(ThunkName); 4057 getMangleContext().mangleName(GlobalDecl(CD, CT), Out); 4058 4059 // If the thunk has been generated previously, just return it. 4060 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) 4061 return cast<llvm::Function>(GV); 4062 4063 // Create the llvm::Function. 4064 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT); 4065 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); 4066 const CXXRecordDecl *RD = CD->getParent(); 4067 QualType RecordTy = getContext().getRecordType(RD); 4068 llvm::Function *ThunkFn = llvm::Function::Create( 4069 ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule()); 4070 ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>( 4071 FnInfo.getEffectiveCallingConvention())); 4072 if (ThunkFn->isWeakForLinker()) 4073 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 4074 bool IsCopy = CT == Ctor_CopyingClosure; 4075 4076 // Start codegen. 4077 CodeGenFunction CGF(CGM); 4078 CGF.CurGD = GlobalDecl(CD, Ctor_Complete); 4079 4080 // Build FunctionArgs. 4081 FunctionArgList FunctionArgs; 4082 4083 // A constructor always starts with a 'this' pointer as its first argument. 4084 buildThisParam(CGF, FunctionArgs); 4085 4086 // Following the 'this' pointer is a reference to the source object that we 4087 // are copying from. 4088 ImplicitParamDecl SrcParam( 4089 getContext(), /*DC=*/nullptr, SourceLocation(), 4090 &getContext().Idents.get("src"), 4091 getContext().getLValueReferenceType(RecordTy, 4092 /*SpelledAsLValue=*/true), 4093 ImplicitParamKind::Other); 4094 if (IsCopy) 4095 FunctionArgs.push_back(&SrcParam); 4096 4097 // Constructors for classes which utilize virtual bases have an additional 4098 // parameter which indicates whether or not it is being delegated to by a more 4099 // derived constructor. 4100 ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr, 4101 SourceLocation(), 4102 &getContext().Idents.get("is_most_derived"), 4103 getContext().IntTy, ImplicitParamKind::Other); 4104 // Only add the parameter to the list if the class has virtual bases. 4105 if (RD->getNumVBases() > 0) 4106 FunctionArgs.push_back(&IsMostDerived); 4107 4108 // Start defining the function. 4109 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4110 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, 4111 FunctionArgs, CD->getLocation(), SourceLocation()); 4112 // Create a scope with an artificial location for the body of this function. 4113 auto AL = ApplyDebugLocation::CreateArtificial(CGF); 4114 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); 4115 llvm::Value *This = getThisValue(CGF); 4116 4117 llvm::Value *SrcVal = 4118 IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src") 4119 : nullptr; 4120 4121 CallArgList Args; 4122 4123 // Push the this ptr. 4124 Args.add(RValue::get(This), CD->getThisType()); 4125 4126 // Push the src ptr. 4127 if (SrcVal) 4128 Args.add(RValue::get(SrcVal), SrcParam.getType()); 4129 4130 // Add the rest of the default arguments. 4131 SmallVector<const Stmt *, 4> ArgVec; 4132 ArrayRef<ParmVarDecl *> params = CD->parameters().drop_front(IsCopy ? 1 : 0); 4133 for (const ParmVarDecl *PD : params) { 4134 assert(PD->hasDefaultArg() && "ctor closure lacks default args"); 4135 ArgVec.push_back(PD->getDefaultArg()); 4136 } 4137 4138 CodeGenFunction::RunCleanupsScope Cleanups(CGF); 4139 4140 const auto *FPT = CD->getType()->castAs<FunctionProtoType>(); 4141 CGF.EmitCallArgs(Args, FPT, llvm::ArrayRef(ArgVec), CD, IsCopy ? 1 : 0); 4142 4143 // Insert any ABI-specific implicit constructor arguments. 4144 AddedStructorArgCounts ExtraArgs = 4145 addImplicitConstructorArgs(CGF, CD, Ctor_Complete, 4146 /*ForVirtualBase=*/false, 4147 /*Delegating=*/false, Args); 4148 // Call the destructor with our arguments. 4149 llvm::Constant *CalleePtr = 4150 CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); 4151 CGCallee Callee = 4152 CGCallee::forDirect(CalleePtr, GlobalDecl(CD, Ctor_Complete)); 4153 const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall( 4154 Args, CD, Ctor_Complete, ExtraArgs.Prefix, ExtraArgs.Suffix); 4155 CGF.EmitCall(CalleeInfo, Callee, ReturnValueSlot(), Args); 4156 4157 Cleanups.ForceCleanup(); 4158 4159 // Emit the ret instruction, remove any temporary instructions created for the 4160 // aid of CodeGen. 4161 CGF.FinishFunction(SourceLocation()); 4162 4163 return ThunkFn; 4164 } 4165 4166 llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T, 4167 uint32_t NVOffset, 4168 int32_t VBPtrOffset, 4169 uint32_t VBIndex) { 4170 assert(!T->isReferenceType()); 4171 4172 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 4173 const CXXConstructorDecl *CD = 4174 RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr; 4175 CXXCtorType CT = Ctor_Complete; 4176 if (CD) 4177 if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1) 4178 CT = Ctor_CopyingClosure; 4179 4180 uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity(); 4181 SmallString<256> MangledName; 4182 { 4183 llvm::raw_svector_ostream Out(MangledName); 4184 getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset, 4185 VBPtrOffset, VBIndex, Out); 4186 } 4187 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 4188 return getImageRelativeConstant(GV); 4189 4190 // The TypeDescriptor is used by the runtime to determine if a catch handler 4191 // is appropriate for the exception object. 4192 llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T)); 4193 4194 // The runtime is responsible for calling the copy constructor if the 4195 // exception is caught by value. 4196 llvm::Constant *CopyCtor; 4197 if (CD) { 4198 if (CT == Ctor_CopyingClosure) 4199 CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure); 4200 else 4201 CopyCtor = CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); 4202 } else { 4203 CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy); 4204 } 4205 CopyCtor = getImageRelativeConstant(CopyCtor); 4206 4207 bool IsScalar = !RD; 4208 bool HasVirtualBases = false; 4209 bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason. 4210 QualType PointeeType = T; 4211 if (T->isPointerType()) 4212 PointeeType = T->getPointeeType(); 4213 if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) { 4214 HasVirtualBases = RD->getNumVBases() > 0; 4215 if (IdentifierInfo *II = RD->getIdentifier()) 4216 IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace(); 4217 } 4218 4219 // Encode the relevant CatchableType properties into the Flags bitfield. 4220 // FIXME: Figure out how bits 2 or 8 can get set. 4221 uint32_t Flags = 0; 4222 if (IsScalar) 4223 Flags |= 1; 4224 if (HasVirtualBases) 4225 Flags |= 4; 4226 if (IsStdBadAlloc) 4227 Flags |= 16; 4228 4229 llvm::Constant *Fields[] = { 4230 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags 4231 TD, // TypeDescriptor 4232 llvm::ConstantInt::get(CGM.IntTy, NVOffset), // NonVirtualAdjustment 4233 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr 4234 llvm::ConstantInt::get(CGM.IntTy, VBIndex), // VBTableIndex 4235 llvm::ConstantInt::get(CGM.IntTy, Size), // Size 4236 CopyCtor // CopyCtor 4237 }; 4238 llvm::StructType *CTType = getCatchableTypeType(); 4239 auto *GV = new llvm::GlobalVariable( 4240 CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(T), 4241 llvm::ConstantStruct::get(CTType, Fields), MangledName); 4242 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4243 GV->setSection(".xdata"); 4244 if (GV->isWeakForLinker()) 4245 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); 4246 return getImageRelativeConstant(GV); 4247 } 4248 4249 llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) { 4250 assert(!T->isReferenceType()); 4251 4252 // See if we've already generated a CatchableTypeArray for this type before. 4253 llvm::GlobalVariable *&CTA = CatchableTypeArrays[T]; 4254 if (CTA) 4255 return CTA; 4256 4257 // Ensure that we don't have duplicate entries in our CatchableTypeArray by 4258 // using a SmallSetVector. Duplicates may arise due to virtual bases 4259 // occurring more than once in the hierarchy. 4260 llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes; 4261 4262 // C++14 [except.handle]p3: 4263 // A handler is a match for an exception object of type E if [...] 4264 // - the handler is of type cv T or cv T& and T is an unambiguous public 4265 // base class of E, or 4266 // - the handler is of type cv T or const T& where T is a pointer type and 4267 // E is a pointer type that can be converted to T by [...] 4268 // - a standard pointer conversion (4.10) not involving conversions to 4269 // pointers to private or protected or ambiguous classes 4270 const CXXRecordDecl *MostDerivedClass = nullptr; 4271 bool IsPointer = T->isPointerType(); 4272 if (IsPointer) 4273 MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl(); 4274 else 4275 MostDerivedClass = T->getAsCXXRecordDecl(); 4276 4277 // Collect all the unambiguous public bases of the MostDerivedClass. 4278 if (MostDerivedClass) { 4279 const ASTContext &Context = getContext(); 4280 const ASTRecordLayout &MostDerivedLayout = 4281 Context.getASTRecordLayout(MostDerivedClass); 4282 MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext(); 4283 SmallVector<MSRTTIClass, 8> Classes; 4284 serializeClassHierarchy(Classes, MostDerivedClass); 4285 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); 4286 detectAmbiguousBases(Classes); 4287 for (const MSRTTIClass &Class : Classes) { 4288 // Skip any ambiguous or private bases. 4289 if (Class.Flags & 4290 (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous)) 4291 continue; 4292 // Write down how to convert from a derived pointer to a base pointer. 4293 uint32_t OffsetInVBTable = 0; 4294 int32_t VBPtrOffset = -1; 4295 if (Class.VirtualRoot) { 4296 OffsetInVBTable = 4297 VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4; 4298 VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity(); 4299 } 4300 4301 // Turn our record back into a pointer if the exception object is a 4302 // pointer. 4303 QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0); 4304 if (IsPointer) 4305 RTTITy = Context.getPointerType(RTTITy); 4306 CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase, 4307 VBPtrOffset, OffsetInVBTable)); 4308 } 4309 } 4310 4311 // C++14 [except.handle]p3: 4312 // A handler is a match for an exception object of type E if 4313 // - The handler is of type cv T or cv T& and E and T are the same type 4314 // (ignoring the top-level cv-qualifiers) 4315 CatchableTypes.insert(getCatchableType(T)); 4316 4317 // C++14 [except.handle]p3: 4318 // A handler is a match for an exception object of type E if 4319 // - the handler is of type cv T or const T& where T is a pointer type and 4320 // E is a pointer type that can be converted to T by [...] 4321 // - a standard pointer conversion (4.10) not involving conversions to 4322 // pointers to private or protected or ambiguous classes 4323 // 4324 // C++14 [conv.ptr]p2: 4325 // A prvalue of type "pointer to cv T," where T is an object type, can be 4326 // converted to a prvalue of type "pointer to cv void". 4327 if (IsPointer && T->getPointeeType()->isObjectType()) 4328 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); 4329 4330 // C++14 [except.handle]p3: 4331 // A handler is a match for an exception object of type E if [...] 4332 // - the handler is of type cv T or const T& where T is a pointer or 4333 // pointer to member type and E is std::nullptr_t. 4334 // 4335 // We cannot possibly list all possible pointer types here, making this 4336 // implementation incompatible with the standard. However, MSVC includes an 4337 // entry for pointer-to-void in this case. Let's do the same. 4338 if (T->isNullPtrType()) 4339 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); 4340 4341 uint32_t NumEntries = CatchableTypes.size(); 4342 llvm::Type *CTType = 4343 getImageRelativeType(getCatchableTypeType()->getPointerTo()); 4344 llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries); 4345 llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries); 4346 llvm::Constant *Fields[] = { 4347 llvm::ConstantInt::get(CGM.IntTy, NumEntries), // NumEntries 4348 llvm::ConstantArray::get( 4349 AT, llvm::ArrayRef(CatchableTypes.begin(), 4350 CatchableTypes.end())) // CatchableTypes 4351 }; 4352 SmallString<256> MangledName; 4353 { 4354 llvm::raw_svector_ostream Out(MangledName); 4355 getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out); 4356 } 4357 CTA = new llvm::GlobalVariable( 4358 CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(T), 4359 llvm::ConstantStruct::get(CTAType, Fields), MangledName); 4360 CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4361 CTA->setSection(".xdata"); 4362 if (CTA->isWeakForLinker()) 4363 CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName())); 4364 return CTA; 4365 } 4366 4367 llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) { 4368 bool IsConst, IsVolatile, IsUnaligned; 4369 T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile, IsUnaligned); 4370 4371 // The CatchableTypeArray enumerates the various (CV-unqualified) types that 4372 // the exception object may be caught as. 4373 llvm::GlobalVariable *CTA = getCatchableTypeArray(T); 4374 // The first field in a CatchableTypeArray is the number of CatchableTypes. 4375 // This is used as a component of the mangled name which means that we need to 4376 // know what it is in order to see if we have previously generated the 4377 // ThrowInfo. 4378 uint32_t NumEntries = 4379 cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U)) 4380 ->getLimitedValue(); 4381 4382 SmallString<256> MangledName; 4383 { 4384 llvm::raw_svector_ostream Out(MangledName); 4385 getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned, 4386 NumEntries, Out); 4387 } 4388 4389 // Reuse a previously generated ThrowInfo if we have generated an appropriate 4390 // one before. 4391 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 4392 return GV; 4393 4394 // The RTTI TypeDescriptor uses an unqualified type but catch clauses must 4395 // be at least as CV qualified. Encode this requirement into the Flags 4396 // bitfield. 4397 uint32_t Flags = 0; 4398 if (IsConst) 4399 Flags |= 1; 4400 if (IsVolatile) 4401 Flags |= 2; 4402 if (IsUnaligned) 4403 Flags |= 4; 4404 4405 // The cleanup-function (a destructor) must be called when the exception 4406 // object's lifetime ends. 4407 llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy); 4408 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4409 if (CXXDestructorDecl *DtorD = RD->getDestructor()) 4410 if (!DtorD->isTrivial()) 4411 CleanupFn = CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete)); 4412 // This is unused as far as we can tell, initialize it to null. 4413 llvm::Constant *ForwardCompat = 4414 getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy)); 4415 llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant(CTA); 4416 llvm::StructType *TIType = getThrowInfoType(); 4417 llvm::Constant *Fields[] = { 4418 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags 4419 getImageRelativeConstant(CleanupFn), // CleanupFn 4420 ForwardCompat, // ForwardCompat 4421 PointerToCatchableTypes // CatchableTypeArray 4422 }; 4423 auto *GV = new llvm::GlobalVariable( 4424 CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(T), 4425 llvm::ConstantStruct::get(TIType, Fields), MangledName.str()); 4426 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4427 GV->setSection(".xdata"); 4428 if (GV->isWeakForLinker()) 4429 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); 4430 return GV; 4431 } 4432 4433 void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) { 4434 const Expr *SubExpr = E->getSubExpr(); 4435 assert(SubExpr && "SubExpr cannot be null"); 4436 QualType ThrowType = SubExpr->getType(); 4437 // The exception object lives on the stack and it's address is passed to the 4438 // runtime function. 4439 Address AI = CGF.CreateMemTemp(ThrowType); 4440 CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(), 4441 /*IsInit=*/true); 4442 4443 // The so-called ThrowInfo is used to describe how the exception object may be 4444 // caught. 4445 llvm::GlobalVariable *TI = getThrowInfo(ThrowType); 4446 4447 // Call into the runtime to throw the exception. 4448 llvm::Value *Args[] = { 4449 AI.getPointer(), 4450 TI 4451 }; 4452 CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args); 4453 } 4454 4455 std::pair<llvm::Value *, const CXXRecordDecl *> 4456 MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This, 4457 const CXXRecordDecl *RD) { 4458 std::tie(This, std::ignore, RD) = 4459 performBaseAdjustment(CGF, This, QualType(RD->getTypeForDecl(), 0)); 4460 return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD}; 4461 } 4462 4463 bool MicrosoftCXXABI::isPermittedToBeHomogeneousAggregate( 4464 const CXXRecordDecl *RD) const { 4465 // All aggregates are permitted to be HFA on non-ARM platforms, which mostly 4466 // affects vectorcall on x64/x86. 4467 if (!CGM.getTarget().getTriple().isAArch64()) 4468 return true; 4469 // MSVC Windows on Arm64 has its own rules for determining if a type is HFA 4470 // that are inconsistent with the AAPCS64 ABI. The following are our best 4471 // determination of those rules so far, based on observation of MSVC's 4472 // behavior. 4473 if (RD->isEmpty()) 4474 return false; 4475 if (RD->isPolymorphic()) 4476 return false; 4477 if (RD->hasNonTrivialCopyAssignment()) 4478 return false; 4479 if (RD->hasNonTrivialDestructor()) 4480 return false; 4481 if (RD->hasNonTrivialDefaultConstructor()) 4482 return false; 4483 // These two are somewhat redundant given the caller 4484 // (ABIInfo::isHomogeneousAggregate) checks the bases and fields, but that 4485 // caller doesn't consider empty bases/fields to be non-homogenous, but it 4486 // looks like Microsoft's AArch64 ABI does care about these empty types & 4487 // anything containing/derived from one is non-homogeneous. 4488 // Instead we could add another CXXABI entry point to query this property and 4489 // have ABIInfo::isHomogeneousAggregate use that property. 4490 // I don't think any other of the features listed above could be true of a 4491 // base/field while not true of the outer struct. For example, if you have a 4492 // base/field that has an non-trivial copy assignment/dtor/default ctor, then 4493 // the outer struct's corresponding operation must be non-trivial. 4494 for (const CXXBaseSpecifier &B : RD->bases()) { 4495 if (const CXXRecordDecl *FRD = B.getType()->getAsCXXRecordDecl()) { 4496 if (!isPermittedToBeHomogeneousAggregate(FRD)) 4497 return false; 4498 } 4499 } 4500 // empty fields seem to be caught by the ABIInfo::isHomogeneousAggregate 4501 // checking for padding - but maybe there are ways to end up with an empty 4502 // field without padding? Not that I know of, so don't check fields here & 4503 // rely on the padding check. 4504 return true; 4505 } 4506