//===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This provides C++ code generation targeting the Microsoft Visual C++ ABI. // The class in this file generates structures that follow the Microsoft // Visual C++ ABI, which is actually not very well documented at all outside // of Microsoft. // //===----------------------------------------------------------------------===// #include "ABIInfo.h" #include "CGCXXABI.h" #include "CGCleanup.h" #include "CGVTables.h" #include "CodeGenModule.h" #include "CodeGenTypes.h" #include "TargetInfo.h" #include "clang/AST/Attr.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/VTableBuilder.h" #include "clang/CodeGen/ConstantInitBuilder.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSet.h" #include "llvm/IR/Intrinsics.h" using namespace clang; using namespace CodeGen; namespace { /// Holds all the vbtable globals for a given class. struct VBTableGlobals { const VPtrInfoVector *VBTables; SmallVector Globals; }; class MicrosoftCXXABI : public CGCXXABI { public: MicrosoftCXXABI(CodeGenModule &CGM) : CGCXXABI(CGM), BaseClassDescriptorType(nullptr), ClassHierarchyDescriptorType(nullptr), CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr), ThrowInfoType(nullptr) { assert(!(CGM.getLangOpts().isExplicitDefaultVisibilityExportMapping() || CGM.getLangOpts().isAllDefaultVisibilityExportMapping()) && "visibility export mapping option unimplemented in this ABI"); } bool HasThisReturn(GlobalDecl GD) const override; bool hasMostDerivedReturn(GlobalDecl GD) const override; bool classifyReturnType(CGFunctionInfo &FI) const override; RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override; bool isSRetParameterAfterThis() const override { return true; } bool isThisCompleteObject(GlobalDecl GD) const override { // The Microsoft ABI doesn't use separate complete-object vs. // base-object variants of constructors, but it does of destructors. if (isa(GD.getDecl())) { switch (GD.getDtorType()) { case Dtor_Complete: case Dtor_Deleting: return true; case Dtor_Base: return false; case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?"); } llvm_unreachable("bad dtor kind"); } // No other kinds. return false; } size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD, FunctionArgList &Args) const override { assert(Args.size() >= 2 && "expected the arglist to have at least two args!"); // The 'most_derived' parameter goes second if the ctor is variadic and // has v-bases. if (CD->getParent()->getNumVBases() > 0 && CD->getType()->castAs()->isVariadic()) return 2; return 1; } std::vector getVBPtrOffsets(const CXXRecordDecl *RD) override { std::vector VBPtrOffsets; const ASTContext &Context = getContext(); const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); const VBTableGlobals &VBGlobals = enumerateVBTables(RD); for (const std::unique_ptr &VBT : *VBGlobals.VBTables) { const ASTRecordLayout &SubobjectLayout = Context.getASTRecordLayout(VBT->IntroducingObject); CharUnits Offs = VBT->NonVirtualOffset; Offs += SubobjectLayout.getVBPtrOffset(); if (VBT->getVBaseWithVPtr()) Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); VBPtrOffsets.push_back(Offs); } llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end()); return VBPtrOffsets; } StringRef GetPureVirtualCallName() override { return "_purecall"; } StringRef GetDeletedVirtualCallName() override { return "_purecall"; } void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType, const CXXDestructorDecl *Dtor) override; void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override; void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override; void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD, const VPtrInfo &Info); llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; CatchTypeInfo getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override; /// MSVC needs an extra flag to indicate a catchall. CatchTypeInfo getCatchAllTypeInfo() override { // For -EHa catch(...) must handle HW exception // Adjective = HT_IsStdDotDot (0x40), only catch C++ exceptions if (getContext().getLangOpts().EHAsynch) return CatchTypeInfo{nullptr, 0}; else return CatchTypeInfo{nullptr, 0x40}; } bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override; void EmitBadTypeidCall(CodeGenFunction &CGF) override; llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, Address ThisPtr, llvm::Type *StdTypeInfoPtrTy) override; bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, QualType SrcRecordTy) override; bool shouldEmitExactDynamicCast(QualType DestRecordTy) override { // TODO: Add support for exact dynamic_casts. return false; } llvm::Value *emitExactDynamicCast(CodeGenFunction &CGF, Address Value, QualType SrcRecordTy, QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastSuccess, llvm::BasicBlock *CastFail) override { llvm_unreachable("unsupported"); } llvm::Value *emitDynamicCastCall(CodeGenFunction &CGF, Address Value, QualType SrcRecordTy, QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) override; llvm::Value *emitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, QualType SrcRecordTy) override; bool EmitBadCastCall(CodeGenFunction &CGF) override; bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override { return false; } llvm::Value * GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl, const CXXRecordDecl *BaseClassDecl) override; llvm::BasicBlock * EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, const CXXRecordDecl *RD) override; llvm::BasicBlock * EmitDtorCompleteObjectHandler(CodeGenFunction &CGF); void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF, const CXXRecordDecl *RD) override; void EmitCXXConstructors(const CXXConstructorDecl *D) override; // Background on MSVC destructors // ============================== // // Both Itanium and MSVC ABIs have destructor variants. The variant names // roughly correspond in the following way: // Itanium Microsoft // Base -> no name, just ~Class // Complete -> vbase destructor // Deleting -> scalar deleting destructor // vector deleting destructor // // The base and complete destructors are the same as in Itanium, although the // complete destructor does not accept a VTT parameter when there are virtual // bases. A separate mechanism involving vtordisps is used to ensure that // virtual methods of destroyed subobjects are not called. // // The deleting destructors accept an i32 bitfield as a second parameter. Bit // 1 indicates if the memory should be deleted. Bit 2 indicates if the this // pointer points to an array. The scalar deleting destructor assumes that // bit 2 is zero, and therefore does not contain a loop. // // For virtual destructors, only one entry is reserved in the vftable, and it // always points to the vector deleting destructor. The vector deleting // destructor is the most general, so it can be used to destroy objects in // place, delete single heap objects, or delete arrays. // // A TU defining a non-inline destructor is only guaranteed to emit a base // destructor, and all of the other variants are emitted on an as-needed basis // in COMDATs. Because a non-base destructor can be emitted in a TU that // lacks a definition for the destructor, non-base destructors must always // delegate to or alias the base destructor. AddedStructorArgCounts buildStructorSignature(GlobalDecl GD, SmallVectorImpl &ArgTys) override; /// Non-base dtors should be emitted as delegating thunks in this ABI. bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, CXXDtorType DT) const override { return DT != Dtor_Base; } void setCXXDestructorDLLStorage(llvm::GlobalValue *GV, const CXXDestructorDecl *Dtor, CXXDtorType DT) const override; llvm::GlobalValue::LinkageTypes getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const override; void EmitCXXDestructors(const CXXDestructorDecl *D) override; const CXXRecordDecl *getThisArgumentTypeForMethod(GlobalDecl GD) override { auto *MD = cast(GD.getDecl()); if (MD->isVirtual()) { GlobalDecl LookupGD = GD; if (const auto *DD = dyn_cast(MD)) { // Complete dtors take a pointer to the complete object, // thus don't need adjustment. if (GD.getDtorType() == Dtor_Complete) return MD->getParent(); // There's only Dtor_Deleting in vftable but it shares the this // adjustment with the base one, so look up the deleting one instead. LookupGD = GlobalDecl(DD, Dtor_Deleting); } MethodVFTableLocation ML = CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD); // The vbases might be ordered differently in the final overrider object // and the complete object, so the "this" argument may sometimes point to // memory that has no particular type (e.g. past the complete object). // In this case, we just use a generic pointer type. // FIXME: might want to have a more precise type in the non-virtual // multiple inheritance case. if (ML.VBase || !ML.VFPtrOffset.isZero()) return nullptr; } return MD->getParent(); } Address adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD, Address This, bool VirtualCall) override; void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, FunctionArgList &Params) override; void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; AddedStructorArgs getImplicitConstructorArgs(CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, bool ForVirtualBase, bool Delegating) override; llvm::Value *getCXXDestructorImplicitParam(CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type, bool ForVirtualBase, bool Delegating) override; void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type, bool ForVirtualBase, bool Delegating, Address This, QualType ThisTy) override; void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD, llvm::GlobalVariable *VTable); void emitVTableDefinitions(CodeGenVTables &CGVT, const CXXRecordDecl *RD) override; bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) override; /// Don't initialize vptrs if dynamic class /// is marked with the 'novtable' attribute. bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override { return !VTableClass->hasAttr(); } llvm::Constant * getVTableAddressPoint(BaseSubobject Base, const CXXRecordDecl *VTableClass) override; llvm::Value *getVTableAddressPointInStructor( CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, const CXXRecordDecl *NearestVBase) override; llvm::Constant * getVTableAddressPointForConstExpr(BaseSubobject Base, const CXXRecordDecl *VTableClass) override; llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, CharUnits VPtrOffset) override; CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, Address This, llvm::Type *Ty, SourceLocation Loc) override; llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, Address This, DeleteOrMemberCallExpr E) override; void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD, CallArgList &CallArgs) override { assert(GD.getDtorType() == Dtor_Deleting && "Only deleting destructor thunks are available in this ABI"); CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)), getContext().IntTy); } void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; llvm::GlobalVariable * getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, llvm::GlobalVariable::LinkageTypes Linkage); llvm::GlobalVariable * getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD) { SmallString<256> OutName; llvm::raw_svector_ostream Out(OutName); getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out); StringRef MangledName = OutName.str(); if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName)) return VDispMap; MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); unsigned NumEntries = 1 + SrcRD->getNumVBases(); SmallVector Map(NumEntries, llvm::UndefValue::get(CGM.IntTy)); Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0); bool AnyDifferent = false; for (const auto &I : SrcRD->vbases()) { const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); if (!DstRD->isVirtuallyDerivedFrom(VBase)) continue; unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase); unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase); Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4); AnyDifferent |= SrcVBIndex != DstVBIndex; } // This map would be useless, don't use it. if (!AnyDifferent) return nullptr; llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size()); llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map); llvm::GlobalValue::LinkageTypes Linkage = SrcRD->isExternallyVisible() && DstRD->isExternallyVisible() ? llvm::GlobalValue::LinkOnceODRLinkage : llvm::GlobalValue::InternalLinkage; auto *VDispMap = new llvm::GlobalVariable( CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage, /*Initializer=*/Init, MangledName); return VDispMap; } void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD, llvm::GlobalVariable *GV) const; void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, GlobalDecl GD, bool ReturnAdjustment) override { GVALinkage Linkage = getContext().GetGVALinkageForFunction(cast(GD.getDecl())); if (Linkage == GVA_Internal) Thunk->setLinkage(llvm::GlobalValue::InternalLinkage); else if (ReturnAdjustment) Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage); else Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); } bool exportThunk() override { return false; } llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This, const ThisAdjustment &TA) override; llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret, const ReturnAdjustment &RA) override; void EmitThreadLocalInitFuncs( CodeGenModule &CGM, ArrayRef CXXThreadLocals, ArrayRef CXXThreadLocalInits, ArrayRef CXXThreadLocalInitVars) override; bool usesThreadWrapperFunction(const VarDecl *VD) const override { return getContext().getLangOpts().isCompatibleWithMSVC( LangOptions::MSVC2019_5) && (!isEmittedWithConstantInitializer(VD) || mayNeedDestruction(VD)); } LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, QualType LValType) override; void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, llvm::GlobalVariable *DeclPtr, bool PerformInit) override; void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, llvm::FunctionCallee Dtor, llvm::Constant *Addr) override; // ==== Notes on array cookies ========= // // MSVC seems to only use cookies when the class has a destructor; a // two-argument usual array deallocation function isn't sufficient. // // For example, this code prints "100" and "1": // struct A { // char x; // void *operator new[](size_t sz) { // printf("%u\n", sz); // return malloc(sz); // } // void operator delete[](void *p, size_t sz) { // printf("%u\n", sz); // free(p); // } // }; // int main() { // A *p = new A[100]; // delete[] p; // } // Whereas it prints "104" and "104" if you give A a destructor. bool requiresArrayCookie(const CXXDeleteExpr *expr, QualType elementType) override; bool requiresArrayCookie(const CXXNewExpr *expr) override; CharUnits getArrayCookieSizeImpl(QualType type) override; Address InitializeArrayCookie(CodeGenFunction &CGF, Address NewPtr, llvm::Value *NumElements, const CXXNewExpr *expr, QualType ElementType) override; llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, Address allocPtr, CharUnits cookieSize) override; friend struct MSRTTIBuilder; bool isImageRelative() const { return CGM.getTarget().getPointerWidth(LangAS::Default) == 64; } // 5 routines for constructing the llvm types for MS RTTI structs. llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) { llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor"); TDTypeName += llvm::utostr(TypeInfoString.size()); llvm::StructType *&TypeDescriptorType = TypeDescriptorTypeMap[TypeInfoString.size()]; if (TypeDescriptorType) return TypeDescriptorType; llvm::Type *FieldTypes[] = { CGM.Int8PtrPtrTy, CGM.Int8PtrTy, llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)}; TypeDescriptorType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName); return TypeDescriptorType; } llvm::Type *getImageRelativeType(llvm::Type *PtrType) { if (!isImageRelative()) return PtrType; return CGM.IntTy; } llvm::StructType *getBaseClassDescriptorType() { if (BaseClassDescriptorType) return BaseClassDescriptorType; llvm::Type *FieldTypes[] = { getImageRelativeType(CGM.Int8PtrTy), CGM.IntTy, CGM.IntTy, CGM.IntTy, CGM.IntTy, CGM.IntTy, getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), }; BaseClassDescriptorType = llvm::StructType::create( CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor"); return BaseClassDescriptorType; } llvm::StructType *getClassHierarchyDescriptorType() { if (ClassHierarchyDescriptorType) return ClassHierarchyDescriptorType; // Forward-declare RTTIClassHierarchyDescriptor to break a cycle. ClassHierarchyDescriptorType = llvm::StructType::create( CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor"); llvm::Type *FieldTypes[] = { CGM.IntTy, CGM.IntTy, CGM.IntTy, getImageRelativeType( getBaseClassDescriptorType()->getPointerTo()->getPointerTo()), }; ClassHierarchyDescriptorType->setBody(FieldTypes); return ClassHierarchyDescriptorType; } llvm::StructType *getCompleteObjectLocatorType() { if (CompleteObjectLocatorType) return CompleteObjectLocatorType; CompleteObjectLocatorType = llvm::StructType::create( CGM.getLLVMContext(), "rtti.CompleteObjectLocator"); llvm::Type *FieldTypes[] = { CGM.IntTy, CGM.IntTy, CGM.IntTy, getImageRelativeType(CGM.Int8PtrTy), getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), getImageRelativeType(CompleteObjectLocatorType), }; llvm::ArrayRef FieldTypesRef(FieldTypes); if (!isImageRelative()) FieldTypesRef = FieldTypesRef.drop_back(); CompleteObjectLocatorType->setBody(FieldTypesRef); return CompleteObjectLocatorType; } llvm::GlobalVariable *getImageBase() { StringRef Name = "__ImageBase"; if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name)) return GV; auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr, Name); CGM.setDSOLocal(GV); return GV; } llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) { if (!isImageRelative()) return PtrVal; if (PtrVal->isNullValue()) return llvm::Constant::getNullValue(CGM.IntTy); llvm::Constant *ImageBaseAsInt = llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy); llvm::Constant *PtrValAsInt = llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy); llvm::Constant *Diff = llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt, /*HasNUW=*/true, /*HasNSW=*/true); return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy); } private: MicrosoftMangleContext &getMangleContext() { return cast(CodeGen::CGCXXABI::getMangleContext()); } llvm::Constant *getZeroInt() { return llvm::ConstantInt::get(CGM.IntTy, 0); } llvm::Constant *getAllOnesInt() { return llvm::Constant::getAllOnesValue(CGM.IntTy); } CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override; void GetNullMemberPointerFields(const MemberPointerType *MPT, llvm::SmallVectorImpl &fields); /// Shared code for virtual base adjustment. Returns the offset from /// the vbptr to the virtual base. Optionally returns the address of the /// vbptr itself. llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, Address Base, llvm::Value *VBPtrOffset, llvm::Value *VBTableOffset, llvm::Value **VBPtr = nullptr); llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, Address Base, int32_t VBPtrOffset, int32_t VBTableOffset, llvm::Value **VBPtr = nullptr) { assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s"); llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset); return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr); } std::tuple performBaseAdjustment(CodeGenFunction &CGF, Address Value, QualType SrcRecordTy); /// Performs a full virtual base adjustment. Used to dereference /// pointers to members of virtual bases. llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD, Address Base, llvm::Value *VirtualBaseAdjustmentOffset, llvm::Value *VBPtrOffset /* optional */); /// Emits a full member pointer with the fields common to data and /// function member pointers. llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField, bool IsMemberFunction, const CXXRecordDecl *RD, CharUnits NonVirtualBaseAdjustment, unsigned VBTableIndex); bool MemberPointerConstantIsNull(const MemberPointerType *MPT, llvm::Constant *MP); /// - Initialize all vbptrs of 'this' with RD as the complete type. void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD); /// Caching wrapper around VBTableBuilder::enumerateVBTables(). const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD); /// Generate a thunk for calling a virtual member function MD. llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, const MethodVFTableLocation &ML); llvm::Constant *EmitMemberDataPointer(const CXXRecordDecl *RD, CharUnits offset); public: llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; bool isZeroInitializable(const MemberPointerType *MPT) override; bool isMemberPointerConvertible(const MemberPointerType *MPT) const override { const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); return RD->hasAttr(); } llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, CharUnits offset) override; llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override; llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, llvm::Value *L, llvm::Value *R, const MemberPointerType *MPT, bool Inequality) override; llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, llvm::Value *MemPtr, const MemberPointerType *MPT) override; llvm::Value * EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, const MemberPointerType *MPT) override; llvm::Value *EmitNonNullMemberPointerConversion( const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, CastExpr::path_const_iterator PathBegin, CastExpr::path_const_iterator PathEnd, llvm::Value *Src, CGBuilderTy &Builder); llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, const CastExpr *E, llvm::Value *Src) override; llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, llvm::Constant *Src) override; llvm::Constant *EmitMemberPointerConversion( const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, CastExpr::path_const_iterator PathBegin, CastExpr::path_const_iterator PathEnd, llvm::Constant *Src); CGCallee EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E, Address This, llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr, const MemberPointerType *MPT) override; void emitCXXStructor(GlobalDecl GD) override; llvm::StructType *getCatchableTypeType() { if (CatchableTypeType) return CatchableTypeType; llvm::Type *FieldTypes[] = { CGM.IntTy, // Flags getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor CGM.IntTy, // NonVirtualAdjustment CGM.IntTy, // OffsetToVBPtr CGM.IntTy, // VBTableIndex CGM.IntTy, // Size getImageRelativeType(CGM.Int8PtrTy) // CopyCtor }; CatchableTypeType = llvm::StructType::create( CGM.getLLVMContext(), FieldTypes, "eh.CatchableType"); return CatchableTypeType; } llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) { llvm::StructType *&CatchableTypeArrayType = CatchableTypeArrayTypeMap[NumEntries]; if (CatchableTypeArrayType) return CatchableTypeArrayType; llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray."); CTATypeName += llvm::utostr(NumEntries); llvm::Type *CTType = getImageRelativeType(getCatchableTypeType()->getPointerTo()); llvm::Type *FieldTypes[] = { CGM.IntTy, // NumEntries llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes }; CatchableTypeArrayType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName); return CatchableTypeArrayType; } llvm::StructType *getThrowInfoType() { if (ThrowInfoType) return ThrowInfoType; llvm::Type *FieldTypes[] = { CGM.IntTy, // Flags getImageRelativeType(CGM.Int8PtrTy), // CleanupFn getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat getImageRelativeType(CGM.Int8PtrTy) // CatchableTypeArray }; ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, "eh.ThrowInfo"); return ThrowInfoType; } llvm::FunctionCallee getThrowFn() { // _CxxThrowException is passed an exception object and a ThrowInfo object // which describes the exception. llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()}; llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false); llvm::FunctionCallee Throw = CGM.CreateRuntimeFunction(FTy, "_CxxThrowException"); // _CxxThrowException is stdcall on 32-bit x86 platforms. if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) { if (auto *Fn = dyn_cast(Throw.getCallee())) Fn->setCallingConv(llvm::CallingConv::X86_StdCall); } return Throw; } llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, CXXCtorType CT); llvm::Constant *getCatchableType(QualType T, uint32_t NVOffset = 0, int32_t VBPtrOffset = -1, uint32_t VBIndex = 0); llvm::GlobalVariable *getCatchableTypeArray(QualType T); llvm::GlobalVariable *getThrowInfo(QualType T) override; std::pair LoadVTablePtr(CodeGenFunction &CGF, Address This, const CXXRecordDecl *RD) override; bool isPermittedToBeHomogeneousAggregate(const CXXRecordDecl *RD) const override; private: typedef std::pair VFTableIdTy; typedef llvm::DenseMap VTablesMapTy; typedef llvm::DenseMap VFTablesMapTy; /// All the vftables that have been referenced. VFTablesMapTy VFTablesMap; VTablesMapTy VTablesMap; /// This set holds the record decls we've deferred vtable emission for. llvm::SmallPtrSet DeferredVFTables; /// All the vbtables which have been referenced. llvm::DenseMap VBTablesMap; /// Info on the global variable used to guard initialization of static locals. /// The BitIndex field is only used for externally invisible declarations. struct GuardInfo { GuardInfo() = default; llvm::GlobalVariable *Guard = nullptr; unsigned BitIndex = 0; }; /// Map from DeclContext to the current guard variable. We assume that the /// AST is visited in source code order. llvm::DenseMap GuardVariableMap; llvm::DenseMap ThreadLocalGuardVariableMap; llvm::DenseMap ThreadSafeGuardNumMap; llvm::DenseMap TypeDescriptorTypeMap; llvm::StructType *BaseClassDescriptorType; llvm::StructType *ClassHierarchyDescriptorType; llvm::StructType *CompleteObjectLocatorType; llvm::DenseMap CatchableTypeArrays; llvm::StructType *CatchableTypeType; llvm::DenseMap CatchableTypeArrayTypeMap; llvm::StructType *ThrowInfoType; }; } CGCXXABI::RecordArgABI MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const { // Use the default C calling convention rules for things that can be passed in // registers, i.e. non-trivially copyable records or records marked with // [[trivial_abi]]. if (RD->canPassInRegisters()) return RAA_Default; switch (CGM.getTarget().getTriple().getArch()) { default: // FIXME: Implement for other architectures. return RAA_Indirect; case llvm::Triple::thumb: // Pass things indirectly for now because it is simple. // FIXME: This is incompatible with MSVC for arguments with a dtor and no // copy ctor. return RAA_Indirect; case llvm::Triple::x86: { // If the argument has *required* alignment greater than four bytes, pass // it indirectly. Prior to MSVC version 19.14, passing overaligned // arguments was not supported and resulted in a compiler error. In 19.14 // and later versions, such arguments are now passed indirectly. TypeInfo Info = getContext().getTypeInfo(RD->getTypeForDecl()); if (Info.isAlignRequired() && Info.Align > 4) return RAA_Indirect; // If C++ prohibits us from making a copy, construct the arguments directly // into argument memory. return RAA_DirectInMemory; } case llvm::Triple::x86_64: case llvm::Triple::aarch64: return RAA_Indirect; } llvm_unreachable("invalid enum"); } void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType, const CXXDestructorDecl *Dtor) { // FIXME: Provide a source location here even though there's no // CXXMemberCallExpr for dtor call. bool UseGlobalDelete = DE->isGlobalDelete(); CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE); if (UseGlobalDelete) CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType); } void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) { llvm::Value *Args[] = { llvm::ConstantPointerNull::get(CGM.Int8PtrTy), llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())}; llvm::FunctionCallee Fn = getThrowFn(); if (isNoReturn) CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args); else CGF.EmitRuntimeCallOrInvoke(Fn, Args); } void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *S) { // In the MS ABI, the runtime handles the copy, and the catch handler is // responsible for destruction. VarDecl *CatchParam = S->getExceptionDecl(); llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock(); llvm::CatchPadInst *CPI = cast(CatchPadBB->getFirstNonPHI()); CGF.CurrentFuncletPad = CPI; // If this is a catch-all or the catch parameter is unnamed, we don't need to // emit an alloca to the object. if (!CatchParam || !CatchParam->getDeclName()) { CGF.EHStack.pushCleanup(NormalCleanup, CPI); return; } CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer()); CGF.EHStack.pushCleanup(NormalCleanup, CPI); CGF.EmitAutoVarCleanups(var); } /// We need to perform a generic polymorphic operation (like a typeid /// or a cast), which requires an object with a vfptr. Adjust the /// address to point to an object with a vfptr. std::tuple MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value, QualType SrcRecordTy) { Value = Value.withElementType(CGF.Int8Ty); const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); const ASTContext &Context = getContext(); // If the class itself has a vfptr, great. This check implicitly // covers non-virtual base subobjects: a class with its own virtual // functions would be a candidate to be a primary base. if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr()) return std::make_tuple(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0), SrcDecl); // Okay, one of the vbases must have a vfptr, or else this isn't // actually a polymorphic class. const CXXRecordDecl *PolymorphicBase = nullptr; for (auto &Base : SrcDecl->vbases()) { const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) { PolymorphicBase = BaseDecl; break; } } assert(PolymorphicBase && "polymorphic class has no apparent vfptr?"); llvm::Value *Offset = GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase); llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP( Value.getElementType(), Value.getPointer(), Offset); CharUnits VBaseAlign = CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase); return std::make_tuple(Address(Ptr, CGF.Int8Ty, VBaseAlign), Offset, PolymorphicBase); } bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) { const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); return IsDeref && !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); } static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF, llvm::Value *Argument) { llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false); llvm::Value *Args[] = {Argument}; llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid"); return CGF.EmitRuntimeCallOrInvoke(Fn, Args); } void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { llvm::CallBase *Call = emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy)); Call->setDoesNotReturn(); CGF.Builder.CreateUnreachable(); } llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, Address ThisPtr, llvm::Type *StdTypeInfoPtrTy) { std::tie(ThisPtr, std::ignore, std::ignore) = performBaseAdjustment(CGF, ThisPtr, SrcRecordTy); llvm::CallBase *Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer()); return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy); } bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, QualType SrcRecordTy) { const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); return SrcIsPtr && !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); } llvm::Value *MicrosoftCXXABI::emitDynamicCastCall( CodeGenFunction &CGF, Address This, QualType SrcRecordTy, QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) { llvm::Value *SrcRTTI = CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); llvm::Value *DestRTTI = CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); llvm::Value *Offset; std::tie(This, Offset, std::ignore) = performBaseAdjustment(CGF, This, SrcRecordTy); llvm::Value *ThisPtr = This.getPointer(); Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty); // PVOID __RTDynamicCast( // PVOID inptr, // LONG VfDelta, // PVOID SrcType, // PVOID TargetType, // BOOL isReference) llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy, CGF.Int8PtrTy, CGF.Int32Ty}; llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), "__RTDynamicCast"); llvm::Value *Args[] = { ThisPtr, Offset, SrcRTTI, DestRTTI, llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())}; return CGF.EmitRuntimeCallOrInvoke(Function, Args); } llvm::Value *MicrosoftCXXABI::emitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, QualType SrcRecordTy) { std::tie(Value, std::ignore, std::ignore) = performBaseAdjustment(CGF, Value, SrcRecordTy); // PVOID __RTCastToVoid( // PVOID inptr) llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), "__RTCastToVoid"); llvm::Value *Args[] = {Value.getPointer()}; return CGF.EmitRuntimeCall(Function, Args); } bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { return false; } llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset( CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl, const CXXRecordDecl *BaseClassDecl) { const ASTContext &Context = getContext(); int64_t VBPtrChars = Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity(); llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars); CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy); CharUnits VBTableChars = IntSize * CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl); llvm::Value *VBTableOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity()); llvm::Value *VBPtrToNewBase = GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset); VBPtrToNewBase = CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy); return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase); } bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const { return isa(GD.getDecl()); } static bool isDeletingDtor(GlobalDecl GD) { return isa(GD.getDecl()) && GD.getDtorType() == Dtor_Deleting; } bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const { return isDeletingDtor(GD); } static bool isTrivialForMSVC(const CXXRecordDecl *RD, QualType Ty, CodeGenModule &CGM) { // On AArch64, HVAs that can be passed in registers can also be returned // in registers. (Note this is using the MSVC definition of an HVA; see // isPermittedToBeHomogeneousAggregate().) const Type *Base = nullptr; uint64_t NumElts = 0; if (CGM.getTarget().getTriple().isAArch64() && CGM.getTypes().getABIInfo().isHomogeneousAggregate(Ty, Base, NumElts) && isa(Base)) { return true; } // We use the C++14 definition of an aggregate, so we also // check for: // No private or protected non static data members. // No base classes // No virtual functions // Additionally, we need to ensure that there is a trivial copy assignment // operator, a trivial destructor and no user-provided constructors. if (RD->hasProtectedFields() || RD->hasPrivateFields()) return false; if (RD->getNumBases() > 0) return false; if (RD->isPolymorphic()) return false; if (RD->hasNonTrivialCopyAssignment()) return false; for (const CXXConstructorDecl *Ctor : RD->ctors()) if (Ctor->isUserProvided()) return false; if (RD->hasNonTrivialDestructor()) return false; return true; } bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const { const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); if (!RD) return false; bool isTrivialForABI = RD->canPassInRegisters() && isTrivialForMSVC(RD, FI.getReturnType(), CGM); // MSVC always returns structs indirectly from C++ instance methods. bool isIndirectReturn = !isTrivialForABI || FI.isInstanceMethod(); if (isIndirectReturn) { CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType()); FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false); // MSVC always passes `this` before the `sret` parameter. FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod()); // On AArch64, use the `inreg` attribute if the object is considered to not // be trivially copyable, or if this is an instance method struct return. FI.getReturnInfo().setInReg(CGM.getTarget().getTriple().isAArch64()); return true; } // Otherwise, use the C ABI rules. return false; } llvm::BasicBlock * MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, const CXXRecordDecl *RD) { llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); assert(IsMostDerivedClass && "ctor for a class with virtual bases must have an implicit parameter"); llvm::Value *IsCompleteObject = CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases"); llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases"); CGF.Builder.CreateCondBr(IsCompleteObject, CallVbaseCtorsBB, SkipVbaseCtorsBB); CGF.EmitBlock(CallVbaseCtorsBB); // Fill in the vbtable pointers here. EmitVBPtrStores(CGF, RD); // CGF will put the base ctor calls in this basic block for us later. return SkipVbaseCtorsBB; } llvm::BasicBlock * MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) { llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); assert(IsMostDerivedClass && "ctor for a class with virtual bases must have an implicit parameter"); llvm::Value *IsCompleteObject = CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock("Dtor.dtor_vbases"); llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock("Dtor.skip_vbases"); CGF.Builder.CreateCondBr(IsCompleteObject, CallVbaseDtorsBB, SkipVbaseDtorsBB); CGF.EmitBlock(CallVbaseDtorsBB); // CGF will put the base dtor calls in this basic block for us later. return SkipVbaseDtorsBB; } void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers( CodeGenFunction &CGF, const CXXRecordDecl *RD) { // In most cases, an override for a vbase virtual method can adjust // the "this" parameter by applying a constant offset. // However, this is not enough while a constructor or a destructor of some // class X is being executed if all the following conditions are met: // - X has virtual bases, (1) // - X overrides a virtual method M of a vbase Y, (2) // - X itself is a vbase of the most derived class. // // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X // which holds the extra amount of "this" adjustment we must do when we use // the X vftables (i.e. during X ctor or dtor). // Outside the ctors and dtors, the values of vtorDisps are zero. const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets; const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap(); CGBuilderTy &Builder = CGF.Builder; llvm::Value *Int8This = nullptr; // Initialize lazily. for (const CXXBaseSpecifier &S : RD->vbases()) { const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl(); auto I = VBaseMap.find(VBase); assert(I != VBaseMap.end()); if (!I->second.hasVtorDisp()) continue; llvm::Value *VBaseOffset = GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, VBase); uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity(); // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase). llvm::Value *VtorDispValue = Builder.CreateSub( VBaseOffset, llvm::ConstantInt::get(CGM.PtrDiffTy, ConstantVBaseOffset), "vtordisp.value"); VtorDispValue = Builder.CreateTruncOrBitCast(VtorDispValue, CGF.Int32Ty); if (!Int8This) Int8This = getThisValue(CGF); llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(CGF.Int8Ty, Int8This, VBaseOffset); // vtorDisp is always the 32-bits before the vbase in the class layout. VtorDispPtr = Builder.CreateConstGEP1_32(CGF.Int8Ty, VtorDispPtr, -4); Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr, CharUnits::fromQuantity(4)); } } static bool hasDefaultCXXMethodCC(ASTContext &Context, const CXXMethodDecl *MD) { CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention( /*IsVariadic=*/false, /*IsCXXMethod=*/true); CallingConv ActualCallingConv = MD->getType()->castAs()->getCallConv(); return ExpectedCallingConv == ActualCallingConv; } void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { // There's only one constructor type in this ABI. CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete)); // Exported default constructors either have a simple call-site where they use // the typical calling convention and have a single 'this' pointer for an // argument -or- they get a wrapper function which appropriately thunks to the // real default constructor. This thunk is the default constructor closure. if (D->hasAttr() && D->isDefaultConstructor() && D->isDefined()) { if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) { llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure); Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage); CGM.setGVProperties(Fn, D); } } } void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD) { Address This = getThisAddress(CGF); This = This.withElementType(CGM.Int8Ty); const ASTContext &Context = getContext(); const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); const VBTableGlobals &VBGlobals = enumerateVBTables(RD); for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { const std::unique_ptr &VBT = (*VBGlobals.VBTables)[I]; llvm::GlobalVariable *GV = VBGlobals.Globals[I]; const ASTRecordLayout &SubobjectLayout = Context.getASTRecordLayout(VBT->IntroducingObject); CharUnits Offs = VBT->NonVirtualOffset; Offs += SubobjectLayout.getVBPtrOffset(); if (VBT->getVBaseWithVPtr()) Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs); llvm::Value *GVPtr = CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0); VBPtr = VBPtr.withElementType(GVPtr->getType()); CGF.Builder.CreateStore(GVPtr, VBPtr); } } CGCXXABI::AddedStructorArgCounts MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD, SmallVectorImpl &ArgTys) { AddedStructorArgCounts Added; // TODO: 'for base' flag if (isa(GD.getDecl()) && GD.getDtorType() == Dtor_Deleting) { // The scalar deleting destructor takes an implicit int parameter. ArgTys.push_back(getContext().IntTy); ++Added.Suffix; } auto *CD = dyn_cast(GD.getDecl()); if (!CD) return Added; // All parameters are already in place except is_most_derived, which goes // after 'this' if it's variadic and last if it's not. const CXXRecordDecl *Class = CD->getParent(); const FunctionProtoType *FPT = CD->getType()->castAs(); if (Class->getNumVBases()) { if (FPT->isVariadic()) { ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy); ++Added.Prefix; } else { ArgTys.push_back(getContext().IntTy); ++Added.Suffix; } } return Added; } void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV, const CXXDestructorDecl *Dtor, CXXDtorType DT) const { // Deleting destructor variants are never imported or exported. Give them the // default storage class. if (DT == Dtor_Deleting) { GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); } else { const NamedDecl *ND = Dtor; CGM.setDLLImportDLLExport(GV, ND); } } llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage( GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const { // Internal things are always internal, regardless of attributes. After this, // we know the thunk is externally visible. if (Linkage == GVA_Internal) return llvm::GlobalValue::InternalLinkage; switch (DT) { case Dtor_Base: // The base destructor most closely tracks the user-declared constructor, so // we delegate back to the normal declarator case. return CGM.getLLVMLinkageForDeclarator(Dtor, Linkage); case Dtor_Complete: // The complete destructor is like an inline function, but it may be // imported and therefore must be exported as well. This requires changing // the linkage if a DLL attribute is present. if (Dtor->hasAttr()) return llvm::GlobalValue::WeakODRLinkage; if (Dtor->hasAttr()) return llvm::GlobalValue::AvailableExternallyLinkage; return llvm::GlobalValue::LinkOnceODRLinkage; case Dtor_Deleting: // Deleting destructors are like inline functions. They have vague linkage // and are emitted everywhere they are used. They are internal if the class // is internal. return llvm::GlobalValue::LinkOnceODRLinkage; case Dtor_Comdat: llvm_unreachable("MS C++ ABI does not support comdat dtors"); } llvm_unreachable("invalid dtor type"); } void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { // The TU defining a dtor is only guaranteed to emit a base destructor. All // other destructor variants are delegating thunks. CGM.EmitGlobal(GlobalDecl(D, Dtor_Base)); // If the class is dllexported, emit the complete (vbase) destructor wherever // the base dtor is emitted. // FIXME: To match MSVC, this should only be done when the class is exported // with -fdllexport-inlines enabled. if (D->getParent()->getNumVBases() > 0 && D->hasAttr()) CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete)); } CharUnits MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) { const CXXMethodDecl *MD = cast(GD.getDecl()); if (const CXXDestructorDecl *DD = dyn_cast(MD)) { // Complete destructors take a pointer to the complete object as a // parameter, thus don't need this adjustment. if (GD.getDtorType() == Dtor_Complete) return CharUnits(); // There's no Dtor_Base in vftable but it shares the this adjustment with // the deleting one, so look it up instead. GD = GlobalDecl(DD, Dtor_Deleting); } MethodVFTableLocation ML = CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); CharUnits Adjustment = ML.VFPtrOffset; // Normal virtual instance methods need to adjust from the vfptr that first // defined the virtual method to the virtual base subobject, but destructors // do not. The vector deleting destructor thunk applies this adjustment for // us if necessary. if (isa(MD)) Adjustment = CharUnits::Zero(); if (ML.VBase) { const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(MD->getParent()); Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase); } return Adjustment; } Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall( CodeGenFunction &CGF, GlobalDecl GD, Address This, bool VirtualCall) { if (!VirtualCall) { // If the call of a virtual function is not virtual, we just have to // compensate for the adjustment the virtual function does in its prologue. CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD); if (Adjustment.isZero()) return This; This = This.withElementType(CGF.Int8Ty); assert(Adjustment.isPositive()); return CGF.Builder.CreateConstByteGEP(This, Adjustment); } const CXXMethodDecl *MD = cast(GD.getDecl()); GlobalDecl LookupGD = GD; if (const CXXDestructorDecl *DD = dyn_cast(MD)) { // Complete dtors take a pointer to the complete object, // thus don't need adjustment. if (GD.getDtorType() == Dtor_Complete) return This; // There's only Dtor_Deleting in vftable but it shares the this adjustment // with the base one, so look up the deleting one instead. LookupGD = GlobalDecl(DD, Dtor_Deleting); } MethodVFTableLocation ML = CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD); CharUnits StaticOffset = ML.VFPtrOffset; // Base destructors expect 'this' to point to the beginning of the base // subobject, not the first vfptr that happens to contain the virtual dtor. // However, we still need to apply the virtual base adjustment. if (isa(MD) && GD.getDtorType() == Dtor_Base) StaticOffset = CharUnits::Zero(); Address Result = This; if (ML.VBase) { Result = Result.withElementType(CGF.Int8Ty); const CXXRecordDecl *Derived = MD->getParent(); const CXXRecordDecl *VBase = ML.VBase; llvm::Value *VBaseOffset = GetVirtualBaseClassOffset(CGF, Result, Derived, VBase); llvm::Value *VBasePtr = CGF.Builder.CreateInBoundsGEP( Result.getElementType(), Result.getPointer(), VBaseOffset); CharUnits VBaseAlign = CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase); Result = Address(VBasePtr, CGF.Int8Ty, VBaseAlign); } if (!StaticOffset.isZero()) { assert(StaticOffset.isPositive()); Result = Result.withElementType(CGF.Int8Ty); if (ML.VBase) { // Non-virtual adjustment might result in a pointer outside the allocated // object, e.g. if the final overrider class is laid out after the virtual // base that declares a method in the most derived class. // FIXME: Update the code that emits this adjustment in thunks prologues. Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset); } else { Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset); } } return Result; } void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, FunctionArgList &Params) { ASTContext &Context = getContext(); const CXXMethodDecl *MD = cast(CGF.CurGD.getDecl()); assert(isa(MD) || isa(MD)); if (isa(MD) && MD->getParent()->getNumVBases()) { auto *IsMostDerived = ImplicitParamDecl::Create( Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), &Context.Idents.get("is_most_derived"), Context.IntTy, ImplicitParamKind::Other); // The 'most_derived' parameter goes second if the ctor is variadic and last // if it's not. Dtors can't be variadic. const FunctionProtoType *FPT = MD->getType()->castAs(); if (FPT->isVariadic()) Params.insert(Params.begin() + 1, IsMostDerived); else Params.push_back(IsMostDerived); getStructorImplicitParamDecl(CGF) = IsMostDerived; } else if (isDeletingDtor(CGF.CurGD)) { auto *ShouldDelete = ImplicitParamDecl::Create( Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), &Context.Idents.get("should_call_delete"), Context.IntTy, ImplicitParamKind::Other); Params.push_back(ShouldDelete); getStructorImplicitParamDecl(CGF) = ShouldDelete; } } void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { // Naked functions have no prolog. if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr()) return; // Overridden virtual methods of non-primary bases need to adjust the incoming // 'this' pointer in the prologue. In this hierarchy, C::b will subtract // sizeof(void*) to adjust from B* to C*: // struct A { virtual void a(); }; // struct B { virtual void b(); }; // struct C : A, B { virtual void b(); }; // // Leave the value stored in the 'this' alloca unadjusted, so that the // debugger sees the unadjusted value. Microsoft debuggers require this, and // will apply the ThisAdjustment in the method type information. // FIXME: Do something better for DWARF debuggers, which won't expect this, // without making our codegen depend on debug info settings. llvm::Value *This = loadIncomingCXXThis(CGF); const CXXMethodDecl *MD = cast(CGF.CurGD.getDecl()); if (!CGF.CurFuncIsThunk && MD->isVirtual()) { CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(CGF.CurGD); if (!Adjustment.isZero()) { assert(Adjustment.isPositive()); This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This, -Adjustment.getQuantity()); } } setCXXABIThisValue(CGF, This); // If this is a function that the ABI specifies returns 'this', initialize // the return slot to 'this' at the start of the function. // // Unlike the setting of return types, this is done within the ABI // implementation instead of by clients of CGCXXABI because: // 1) getThisValue is currently protected // 2) in theory, an ABI could implement 'this' returns some other way; // HasThisReturn only specifies a contract, not the implementation if (HasThisReturn(CGF.CurGD) || hasMostDerivedReturn(CGF.CurGD)) CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); if (isa(MD) && MD->getParent()->getNumVBases()) { assert(getStructorImplicitParamDecl(CGF) && "no implicit parameter for a constructor with virtual bases?"); getStructorImplicitParamValue(CGF) = CGF.Builder.CreateLoad( CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), "is_most_derived"); } if (isDeletingDtor(CGF.CurGD)) { assert(getStructorImplicitParamDecl(CGF) && "no implicit parameter for a deleting destructor?"); getStructorImplicitParamValue(CGF) = CGF.Builder.CreateLoad( CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), "should_call_delete"); } } CGCXXABI::AddedStructorArgs MicrosoftCXXABI::getImplicitConstructorArgs( CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, bool ForVirtualBase, bool Delegating) { assert(Type == Ctor_Complete || Type == Ctor_Base); // Check if we need a 'most_derived' parameter. if (!D->getParent()->getNumVBases()) return AddedStructorArgs{}; // Add the 'most_derived' argument second if we are variadic or last if not. const FunctionProtoType *FPT = D->getType()->castAs(); llvm::Value *MostDerivedArg; if (Delegating) { MostDerivedArg = getStructorImplicitParamValue(CGF); } else { MostDerivedArg = llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete); } if (FPT->isVariadic()) { return AddedStructorArgs::prefix({{MostDerivedArg, getContext().IntTy}}); } return AddedStructorArgs::suffix({{MostDerivedArg, getContext().IntTy}}); } llvm::Value *MicrosoftCXXABI::getCXXDestructorImplicitParam( CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type, bool ForVirtualBase, bool Delegating) { return nullptr; } void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type, bool ForVirtualBase, bool Delegating, Address This, QualType ThisTy) { // Use the base destructor variant in place of the complete destructor variant // if the class has no virtual bases. This effectively implements some of the // -mconstructor-aliases optimization, but as part of the MS C++ ABI. if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0) Type = Dtor_Base; GlobalDecl GD(DD, Type); CGCallee Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD); if (DD->isVirtual()) { assert(Type != CXXDtorType::Dtor_Deleting && "The deleting destructor should only be called via a virtual call"); This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type), This, false); } llvm::BasicBlock *BaseDtorEndBB = nullptr; if (ForVirtualBase && isa(CGF.CurCodeDecl)) { BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF); } llvm::Value *Implicit = getCXXDestructorImplicitParam(CGF, DD, Type, ForVirtualBase, Delegating); // = nullptr CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, /*ImplicitParam=*/Implicit, /*ImplicitParamTy=*/QualType(), nullptr); if (BaseDtorEndBB) { // Complete object handler should continue to be the remaining CGF.Builder.CreateBr(BaseDtorEndBB); CGF.EmitBlock(BaseDtorEndBB); } } void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD, llvm::GlobalVariable *VTable) { // Emit type metadata on vtables with LTO or IR instrumentation. // In IR instrumentation, the type metadata could be used to find out vtable // definitions (for type profiling) among all global variables. if (!CGM.getCodeGenOpts().LTOUnit && !CGM.getCodeGenOpts().hasProfileIRInstr()) return; // TODO: Should VirtualFunctionElimination also be supported here? // See similar handling in CodeGenModule::EmitVTableTypeMetadata. if (CGM.getCodeGenOpts().WholeProgramVTables) { llvm::DenseSet Visited; llvm::GlobalObject::VCallVisibility TypeVis = CGM.GetVCallVisibilityLevel(RD, Visited); if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic) VTable->setVCallVisibilityMetadata(TypeVis); } // The location of the first virtual function pointer in the virtual table, // aka the "address point" on Itanium. This is at offset 0 if RTTI is // disabled, or sizeof(void*) if RTTI is enabled. CharUnits AddressPoint = getContext().getLangOpts().RTTIData ? getContext().toCharUnitsFromBits( getContext().getTargetInfo().getPointerWidth(LangAS::Default)) : CharUnits::Zero(); if (Info.PathToIntroducingObject.empty()) { CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); return; } // Add a bitset entry for the least derived base belonging to this vftable. CGM.AddVTableTypeMetadata(VTable, AddressPoint, Info.PathToIntroducingObject.back()); // Add a bitset entry for each derived class that is laid out at the same // offset as the least derived base. for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) { const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1]; const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I]; const ASTRecordLayout &Layout = getContext().getASTRecordLayout(DerivedRD); CharUnits Offset; auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD); if (VBI == Layout.getVBaseOffsetsMap().end()) Offset = Layout.getBaseClassOffset(BaseRD); else Offset = VBI->second.VBaseOffset; if (!Offset.isZero()) return; CGM.AddVTableTypeMetadata(VTable, AddressPoint, DerivedRD); } // Finally do the same for the most derived class. if (Info.FullOffsetInMDC.isZero()) CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); } void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, const CXXRecordDecl *RD) { MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD); for (const std::unique_ptr& Info : VFPtrs) { llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC); if (VTable->hasInitializer()) continue; const VTableLayout &VTLayout = VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC); llvm::Constant *RTTI = nullptr; if (any_of(VTLayout.vtable_components(), [](const VTableComponent &VTC) { return VTC.isRTTIKind(); })) RTTI = getMSCompleteObjectLocator(RD, *Info); ConstantInitBuilder builder(CGM); auto components = builder.beginStruct(); CGVT.createVTableInitializer(components, VTLayout, RTTI, VTable->hasLocalLinkage()); components.finishAndSetAsInitializer(VTable); emitVTableTypeMetadata(*Info, RD, VTable); } } bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField( CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) { return Vptr.NearestVBase != nullptr; } llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor( CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, const CXXRecordDecl *NearestVBase) { llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass); if (!VTableAddressPoint) { assert(Base.getBase()->getNumVBases() && !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr()); } return VTableAddressPoint; } static void mangleVFTableName(MicrosoftMangleContext &MangleContext, const CXXRecordDecl *RD, const VPtrInfo &VFPtr, SmallString<256> &Name) { llvm::raw_svector_ostream Out(Name); MangleContext.mangleCXXVFTable(RD, VFPtr.MangledPath, Out); } llvm::Constant * MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base, const CXXRecordDecl *VTableClass) { (void)getAddrOfVTable(VTableClass, Base.getBaseOffset()); VFTableIdTy ID(VTableClass, Base.getBaseOffset()); return VFTablesMap[ID]; } llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr( BaseSubobject Base, const CXXRecordDecl *VTableClass) { llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass); assert(VFTable && "Couldn't find a vftable for the given base?"); return VFTable; } llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, CharUnits VPtrOffset) { // getAddrOfVTable may return 0 if asked to get an address of a vtable which // shouldn't be used in the given record type. We want to cache this result in // VFTablesMap, thus a simple zero check is not sufficient. VFTableIdTy ID(RD, VPtrOffset); VTablesMapTy::iterator I; bool Inserted; std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr)); if (!Inserted) return I->second; llvm::GlobalVariable *&VTable = I->second; MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD); if (DeferredVFTables.insert(RD).second) { // We haven't processed this record type before. // Queue up this vtable for possible deferred emission. CGM.addDeferredVTable(RD); #ifndef NDEBUG // Create all the vftables at once in order to make sure each vftable has // a unique mangled name. llvm::StringSet<> ObservedMangledNames; for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) { SmallString<256> Name; mangleVFTableName(getMangleContext(), RD, *VFPtrs[J], Name); if (!ObservedMangledNames.insert(Name.str()).second) llvm_unreachable("Already saw this mangling before?"); } #endif } const std::unique_ptr *VFPtrI = llvm::find_if(VFPtrs, [&](const std::unique_ptr &VPI) { return VPI->FullOffsetInMDC == VPtrOffset; }); if (VFPtrI == VFPtrs.end()) { VFTablesMap[ID] = nullptr; return nullptr; } const std::unique_ptr &VFPtr = *VFPtrI; SmallString<256> VFTableName; mangleVFTableName(getMangleContext(), RD, *VFPtr, VFTableName); // Classes marked __declspec(dllimport) need vftables generated on the // import-side in order to support features like constexpr. No other // translation unit relies on the emission of the local vftable, translation // units are expected to generate them as needed. // // Because of this unique behavior, we maintain this logic here instead of // getVTableLinkage. llvm::GlobalValue::LinkageTypes VFTableLinkage = RD->hasAttr() ? llvm::GlobalValue::LinkOnceODRLinkage : CGM.getVTableLinkage(RD); bool VFTableComesFromAnotherTU = llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) || llvm::GlobalValue::isExternalLinkage(VFTableLinkage); bool VTableAliasIsRequred = !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData; if (llvm::GlobalValue *VFTable = CGM.getModule().getNamedGlobal(VFTableName)) { VFTablesMap[ID] = VFTable; VTable = VTableAliasIsRequred ? cast( cast(VFTable)->getAliaseeObject()) : cast(VFTable); return VTable; } const VTableLayout &VTLayout = VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC); llvm::GlobalValue::LinkageTypes VTableLinkage = VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage; StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str(); llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout); // Create a backing variable for the contents of VTable. The VTable may // or may not include space for a pointer to RTTI data. llvm::GlobalValue *VFTable; VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType, /*isConstant=*/true, VTableLinkage, /*Initializer=*/nullptr, VTableName); VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); llvm::Comdat *C = nullptr; if (!VFTableComesFromAnotherTU && llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) C = CGM.getModule().getOrInsertComdat(VFTableName.str()); // Only insert a pointer into the VFTable for RTTI data if we are not // importing it. We never reference the RTTI data directly so there is no // need to make room for it. if (VTableAliasIsRequred) { llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.Int32Ty, 0), llvm::ConstantInt::get(CGM.Int32Ty, 0), llvm::ConstantInt::get(CGM.Int32Ty, 1)}; // Create a GEP which points just after the first entry in the VFTable, // this should be the location of the first virtual method. llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr( VTable->getValueType(), VTable, GEPIndices); if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) { VFTableLinkage = llvm::GlobalValue::ExternalLinkage; if (C) C->setSelectionKind(llvm::Comdat::Largest); } VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy, /*AddressSpace=*/0, VFTableLinkage, VFTableName.str(), VTableGEP, &CGM.getModule()); VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); } else { // We don't need a GlobalAlias to be a symbol for the VTable if we won't // be referencing any RTTI data. // The GlobalVariable will end up being an appropriate definition of the // VFTable. VFTable = VTable; } if (C) VTable->setComdat(C); if (RD->hasAttr()) VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); VFTablesMap[ID] = VFTable; return VTable; } CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, Address This, llvm::Type *Ty, SourceLocation Loc) { CGBuilderTy &Builder = CGF.Builder; Ty = Ty->getPointerTo(); Address VPtr = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); auto *MethodDecl = cast(GD.getDecl()); llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty->getPointerTo(), MethodDecl->getParent()); MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD); // Compute the identity of the most derived class whose virtual table is // located at the MethodVFTableLocation ML. auto getObjectWithVPtr = [&] { return llvm::find_if(VFTContext.getVFPtrOffsets( ML.VBase ? ML.VBase : MethodDecl->getParent()), [&](const std::unique_ptr &Info) { return Info->FullOffsetInMDC == ML.VFPtrOffset; }) ->get() ->ObjectWithVPtr; }; llvm::Value *VFunc; if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) { VFunc = CGF.EmitVTableTypeCheckedLoad( getObjectWithVPtr(), VTable, Ty, ML.Index * CGM.getContext().getTargetInfo().getPointerWidth(LangAS::Default) / 8); } else { if (CGM.getCodeGenOpts().PrepareForLTO) CGF.EmitTypeMetadataCodeForVCall(getObjectWithVPtr(), VTable, Loc); llvm::Value *VFuncPtr = Builder.CreateConstInBoundsGEP1_64(Ty, VTable, ML.Index, "vfn"); VFunc = Builder.CreateAlignedLoad(Ty, VFuncPtr, CGF.getPointerAlign()); } CGCallee Callee(GD, VFunc); return Callee; } llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall( CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, Address This, DeleteOrMemberCallExpr E) { auto *CE = E.dyn_cast(); auto *D = E.dyn_cast(); assert((CE != nullptr) ^ (D != nullptr)); assert(CE == nullptr || CE->arg_begin() == CE->arg_end()); assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); // We have only one destructor in the vftable but can get both behaviors // by passing an implicit int parameter. GlobalDecl GD(Dtor, Dtor_Deleting); const CGFunctionInfo *FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(GD); llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo); CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty); ASTContext &Context = getContext(); llvm::Value *ImplicitParam = llvm::ConstantInt::get( llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()), DtorType == Dtor_Deleting); QualType ThisTy; if (CE) { ThisTy = CE->getObjectType(); } else { ThisTy = D->getDestroyedType(); } This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); RValue RV = CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, ImplicitParam, Context.IntTy, CE); return RV.getScalarVal(); } const VBTableGlobals & MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) { // At this layer, we can key the cache off of a single class, which is much // easier than caching each vbtable individually. llvm::DenseMap::iterator Entry; bool Added; std::tie(Entry, Added) = VBTablesMap.insert(std::make_pair(RD, VBTableGlobals())); VBTableGlobals &VBGlobals = Entry->second; if (!Added) return VBGlobals; MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); VBGlobals.VBTables = &Context.enumerateVBTables(RD); // Cache the globals for all vbtables so we don't have to recompute the // mangled names. llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(), E = VBGlobals.VBTables->end(); I != E; ++I) { VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage)); } return VBGlobals; } llvm::Function * MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, const MethodVFTableLocation &ML) { assert(!isa(MD) && !isa(MD) && "can't form pointers to ctors or virtual dtors"); // Calculate the mangled name. SmallString<256> ThunkName; llvm::raw_svector_ostream Out(ThunkName); getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out); // If the thunk has been generated previously, just return it. if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) return cast(GV); // Create the llvm::Function. const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeUnprototypedMustTailThunk(MD); llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); llvm::Function *ThunkFn = llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage, ThunkName.str(), &CGM.getModule()); assert(ThunkFn->getName() == ThunkName && "name was uniqued!"); ThunkFn->setLinkage(MD->isExternallyVisible() ? llvm::GlobalValue::LinkOnceODRLinkage : llvm::GlobalValue::InternalLinkage); if (MD->isExternallyVisible()) ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false); CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn); // Add the "thunk" attribute so that LLVM knows that the return type is // meaningless. These thunks can be used to call functions with differing // return types, and the caller is required to cast the prototype // appropriately to extract the correct value. ThunkFn->addFnAttr("thunk"); // These thunks can be compared, so they are not unnamed. ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); // Start codegen. CodeGenFunction CGF(CGM); CGF.CurGD = GlobalDecl(MD); CGF.CurFuncIsThunk = true; // Build FunctionArgs, but only include the implicit 'this' parameter // declaration. FunctionArgList FunctionArgs; buildThisParam(CGF, FunctionArgs); // Start defining the function. CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, FunctionArgs, MD->getLocation(), SourceLocation()); ApplyDebugLocation AL(CGF, MD->getLocation()); setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); // Load the vfptr and then callee from the vftable. The callee should have // adjusted 'this' so that the vfptr is at offset zero. llvm::Type *ThunkPtrTy = ThunkTy->getPointerTo(); llvm::Value *VTable = CGF.GetVTablePtr( getThisAddress(CGF), ThunkPtrTy->getPointerTo(), MD->getParent()); llvm::Value *VFuncPtr = CGF.Builder.CreateConstInBoundsGEP1_64( ThunkPtrTy, VTable, ML.Index, "vfn"); llvm::Value *Callee = CGF.Builder.CreateAlignedLoad(ThunkPtrTy, VFuncPtr, CGF.getPointerAlign()); CGF.EmitMustTailThunk(MD, getThisValue(CGF), {ThunkTy, Callee}); return ThunkFn; } void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { const VBTableGlobals &VBGlobals = enumerateVBTables(RD); for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { const std::unique_ptr& VBT = (*VBGlobals.VBTables)[I]; llvm::GlobalVariable *GV = VBGlobals.Globals[I]; if (GV->isDeclaration()) emitVBTableDefinition(*VBT, RD, GV); } } llvm::GlobalVariable * MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, llvm::GlobalVariable::LinkageTypes Linkage) { SmallString<256> OutName; llvm::raw_svector_ostream Out(OutName); getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out); StringRef Name = OutName.str(); llvm::ArrayType *VBTableType = llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ObjectWithVPtr->getNumVBases()); assert(!CGM.getModule().getNamedGlobal(Name) && "vbtable with this name already exists: mangling bug?"); CharUnits Alignment = CGM.getContext().getTypeAlignInChars(CGM.getContext().IntTy); llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable( Name, VBTableType, Linkage, Alignment.getAsAlign()); GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); if (RD->hasAttr()) GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); else if (RD->hasAttr()) GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); if (!GV->hasExternalLinkage()) emitVBTableDefinition(VBT, RD, GV); return GV; } void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD, llvm::GlobalVariable *GV) const { const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr; assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() && "should only emit vbtables for classes with vbtables"); const ASTRecordLayout &BaseLayout = getContext().getASTRecordLayout(VBT.IntroducingObject); const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD); SmallVector Offsets(1 + ObjectWithVPtr->getNumVBases(), nullptr); // The offset from ObjectWithVPtr's vbptr to itself always leads. CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset(); Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity()); MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); for (const auto &I : ObjectWithVPtr->vbases()) { const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase); assert(!Offset.isNegative()); // Make it relative to the subobject vbptr. CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset; if (VBT.getVBaseWithVPtr()) CompleteVBPtrOffset += DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr()); Offset -= CompleteVBPtrOffset; unsigned VBIndex = Context.getVBTableIndex(ObjectWithVPtr, VBase); assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?"); Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity()); } assert(Offsets.size() == cast(GV->getValueType())->getNumElements()); llvm::ArrayType *VBTableType = llvm::ArrayType::get(CGM.IntTy, Offsets.size()); llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets); GV->setInitializer(Init); if (RD->hasAttr()) GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage); } llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF, Address This, const ThisAdjustment &TA) { if (TA.isEmpty()) return This.getPointer(); This = This.withElementType(CGF.Int8Ty); llvm::Value *V; if (TA.Virtual.isEmpty()) { V = This.getPointer(); } else { assert(TA.Virtual.Microsoft.VtordispOffset < 0); // Adjust the this argument based on the vtordisp value. Address VtorDispPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset)); VtorDispPtr = VtorDispPtr.withElementType(CGF.Int32Ty); llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp"); V = CGF.Builder.CreateGEP(This.getElementType(), This.getPointer(), CGF.Builder.CreateNeg(VtorDisp)); // Unfortunately, having applied the vtordisp means that we no // longer really have a known alignment for the vbptr step. // We'll assume the vbptr is pointer-aligned. if (TA.Virtual.Microsoft.VBPtrOffset) { // If the final overrider is defined in a virtual base other than the one // that holds the vfptr, we have to use a vtordispex thunk which looks up // the vbtable of the derived class. assert(TA.Virtual.Microsoft.VBPtrOffset > 0); assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0); llvm::Value *VBPtr; llvm::Value *VBaseOffset = GetVBaseOffsetFromVBPtr( CGF, Address(V, CGF.Int8Ty, CGF.getPointerAlign()), -TA.Virtual.Microsoft.VBPtrOffset, TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr); V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, VBPtr, VBaseOffset); } } if (TA.NonVirtual) { // Non-virtual adjustment might result in a pointer outside the allocated // object, e.g. if the final overrider class is laid out after the virtual // base that declares a method in the most derived class. V = CGF.Builder.CreateConstGEP1_32(CGF.Int8Ty, V, TA.NonVirtual); } // Don't need to bitcast back, the call CodeGen will handle this. return V; } llvm::Value * MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret, const ReturnAdjustment &RA) { if (RA.isEmpty()) return Ret.getPointer(); Ret = Ret.withElementType(CGF.Int8Ty); llvm::Value *V = Ret.getPointer(); if (RA.Virtual.Microsoft.VBIndex) { assert(RA.Virtual.Microsoft.VBIndex > 0); int32_t IntSize = CGF.getIntSize().getQuantity(); llvm::Value *VBPtr; llvm::Value *VBaseOffset = GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset, IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr); V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, VBPtr, VBaseOffset); } if (RA.NonVirtual) V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual); return V; } bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr, QualType elementType) { // Microsoft seems to completely ignore the possibility of a // two-argument usual deallocation function. return elementType.isDestructedType(); } bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) { // Microsoft seems to completely ignore the possibility of a // two-argument usual deallocation function. return expr->getAllocatedType().isDestructedType(); } CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) { // The array cookie is always a size_t; we then pad that out to the // alignment of the element type. ASTContext &Ctx = getContext(); return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()), Ctx.getTypeAlignInChars(type)); } llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, Address allocPtr, CharUnits cookieSize) { Address numElementsPtr = allocPtr.withElementType(CGF.SizeTy); return CGF.Builder.CreateLoad(numElementsPtr); } Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, Address newPtr, llvm::Value *numElements, const CXXNewExpr *expr, QualType elementType) { assert(requiresArrayCookie(expr)); // The size of the cookie. CharUnits cookieSize = getArrayCookieSizeImpl(elementType); // Compute an offset to the cookie. Address cookiePtr = newPtr; // Write the number of elements into the appropriate slot. Address numElementsPtr = cookiePtr.withElementType(CGF.SizeTy); CGF.Builder.CreateStore(numElements, numElementsPtr); // Finally, compute a pointer to the actual data buffer by skipping // over the cookie completely. return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize); } static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD, llvm::FunctionCallee Dtor, llvm::Constant *Addr) { // Create a function which calls the destructor. llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr); // extern "C" int __tlregdtor(void (*f)(void)); llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get( CGF.IntTy, DtorStub->getType(), /*isVarArg=*/false); llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction( TLRegDtorTy, "__tlregdtor", llvm::AttributeList(), /*Local=*/true); if (llvm::Function *TLRegDtorFn = dyn_cast(TLRegDtor.getCallee())) TLRegDtorFn->setDoesNotThrow(); CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub); } void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, llvm::FunctionCallee Dtor, llvm::Constant *Addr) { if (D.isNoDestroy(CGM.getContext())) return; if (D.getTLSKind()) return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr); // HLSL doesn't support atexit. if (CGM.getLangOpts().HLSL) return CGM.AddCXXDtorEntry(Dtor, Addr); // The default behavior is to use atexit. CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr); } void MicrosoftCXXABI::EmitThreadLocalInitFuncs( CodeGenModule &CGM, ArrayRef CXXThreadLocals, ArrayRef CXXThreadLocalInits, ArrayRef CXXThreadLocalInitVars) { if (CXXThreadLocalInits.empty()) return; CGM.AppendLinkerOptions(CGM.getTarget().getTriple().getArch() == llvm::Triple::x86 ? "/include:___dyn_tls_init@12" : "/include:__dyn_tls_init"); // This will create a GV in the .CRT$XDU section. It will point to our // initialization function. The CRT will call all of these function // pointers at start-up time and, eventually, at thread-creation time. auto AddToXDU = [&CGM](llvm::Function *InitFunc) { llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable( CGM.getModule(), InitFunc->getType(), /*isConstant=*/true, llvm::GlobalVariable::InternalLinkage, InitFunc, Twine(InitFunc->getName(), "$initializer$")); InitFuncPtr->setSection(".CRT$XDU"); // This variable has discardable linkage, we have to add it to @llvm.used to // ensure it won't get discarded. CGM.addUsedGlobal(InitFuncPtr); return InitFuncPtr; }; std::vector NonComdatInits; for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) { llvm::GlobalVariable *GV = cast( CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I]))); llvm::Function *F = CXXThreadLocalInits[I]; // If the GV is already in a comdat group, then we have to join it. if (llvm::Comdat *C = GV->getComdat()) AddToXDU(F)->setComdat(C); else NonComdatInits.push_back(F); } if (!NonComdatInits.empty()) { llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); llvm::Function *InitFunc = CGM.CreateGlobalInitOrCleanUpFunction( FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(), SourceLocation(), /*TLS=*/true); CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits); AddToXDU(InitFunc); } } static llvm::GlobalValue *getTlsGuardVar(CodeGenModule &CGM) { // __tls_guard comes from the MSVC runtime and reflects // whether TLS has been initialized for a particular thread. // It is set from within __dyn_tls_init by the runtime. // Every library and executable has its own variable. llvm::Type *VTy = llvm::Type::getInt8Ty(CGM.getLLVMContext()); llvm::Constant *TlsGuardConstant = CGM.CreateRuntimeVariable(VTy, "__tls_guard"); llvm::GlobalValue *TlsGuard = cast(TlsGuardConstant); TlsGuard->setThreadLocal(true); return TlsGuard; } static llvm::FunctionCallee getDynTlsOnDemandInitFn(CodeGenModule &CGM) { // __dyn_tls_on_demand_init comes from the MSVC runtime and triggers // dynamic TLS initialization by calling __dyn_tls_init internally. llvm::FunctionType *FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), {}, /*isVarArg=*/false); return CGM.CreateRuntimeFunction( FTy, "__dyn_tls_on_demand_init", llvm::AttributeList::get(CGM.getLLVMContext(), llvm::AttributeList::FunctionIndex, llvm::Attribute::NoUnwind), /*Local=*/true); } static void emitTlsGuardCheck(CodeGenFunction &CGF, llvm::GlobalValue *TlsGuard, llvm::BasicBlock *DynInitBB, llvm::BasicBlock *ContinueBB) { llvm::LoadInst *TlsGuardValue = CGF.Builder.CreateLoad(Address(TlsGuard, CGF.Int8Ty, CharUnits::One())); llvm::Value *CmpResult = CGF.Builder.CreateICmpEQ(TlsGuardValue, CGF.Builder.getInt8(0)); CGF.Builder.CreateCondBr(CmpResult, DynInitBB, ContinueBB); } static void emitDynamicTlsInitializationCall(CodeGenFunction &CGF, llvm::GlobalValue *TlsGuard, llvm::BasicBlock *ContinueBB) { llvm::FunctionCallee Initializer = getDynTlsOnDemandInitFn(CGF.CGM); llvm::Function *InitializerFunction = cast(Initializer.getCallee()); llvm::CallInst *CallVal = CGF.Builder.CreateCall(InitializerFunction); CallVal->setCallingConv(InitializerFunction->getCallingConv()); CGF.Builder.CreateBr(ContinueBB); } static void emitDynamicTlsInitialization(CodeGenFunction &CGF) { llvm::BasicBlock *DynInitBB = CGF.createBasicBlock("dyntls.dyn_init", CGF.CurFn); llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("dyntls.continue", CGF.CurFn); llvm::GlobalValue *TlsGuard = getTlsGuardVar(CGF.CGM); emitTlsGuardCheck(CGF, TlsGuard, DynInitBB, ContinueBB); CGF.Builder.SetInsertPoint(DynInitBB); emitDynamicTlsInitializationCall(CGF, TlsGuard, ContinueBB); CGF.Builder.SetInsertPoint(ContinueBB); } LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, QualType LValType) { // Dynamic TLS initialization works by checking the state of a // guard variable (__tls_guard) to see whether TLS initialization // for a thread has happend yet. // If not, the initialization is triggered on-demand // by calling __dyn_tls_on_demand_init. emitDynamicTlsInitialization(CGF); // Emit the variable just like any regular global variable. llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); CharUnits Alignment = CGF.getContext().getDeclAlign(VD); Address Addr(V, RealVarTy, Alignment); LValue LV = VD->getType()->isReferenceType() ? CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), AlignmentSource::Decl) : CGF.MakeAddrLValue(Addr, LValType, AlignmentSource::Decl); return LV; } static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) { StringRef VarName("_Init_thread_epoch"); CharUnits Align = CGM.getIntAlign(); if (auto *GV = CGM.getModule().getNamedGlobal(VarName)) return ConstantAddress(GV, GV->getValueType(), Align); auto *GV = new llvm::GlobalVariable( CGM.getModule(), CGM.IntTy, /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage, /*Initializer=*/nullptr, VarName, /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel); GV->setAlignment(Align.getAsAlign()); return ConstantAddress(GV, GV->getValueType(), Align); } static llvm::FunctionCallee getInitThreadHeaderFn(CodeGenModule &CGM) { llvm::FunctionType *FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), CGM.IntTy->getPointerTo(), /*isVarArg=*/false); return CGM.CreateRuntimeFunction( FTy, "_Init_thread_header", llvm::AttributeList::get(CGM.getLLVMContext(), llvm::AttributeList::FunctionIndex, llvm::Attribute::NoUnwind), /*Local=*/true); } static llvm::FunctionCallee getInitThreadFooterFn(CodeGenModule &CGM) { llvm::FunctionType *FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), CGM.IntTy->getPointerTo(), /*isVarArg=*/false); return CGM.CreateRuntimeFunction( FTy, "_Init_thread_footer", llvm::AttributeList::get(CGM.getLLVMContext(), llvm::AttributeList::FunctionIndex, llvm::Attribute::NoUnwind), /*Local=*/true); } static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) { llvm::FunctionType *FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), CGM.IntTy->getPointerTo(), /*isVarArg=*/false); return CGM.CreateRuntimeFunction( FTy, "_Init_thread_abort", llvm::AttributeList::get(CGM.getLLVMContext(), llvm::AttributeList::FunctionIndex, llvm::Attribute::NoUnwind), /*Local=*/true); } namespace { struct ResetGuardBit final : EHScopeStack::Cleanup { Address Guard; unsigned GuardNum; ResetGuardBit(Address Guard, unsigned GuardNum) : Guard(Guard), GuardNum(GuardNum) {} void Emit(CodeGenFunction &CGF, Flags flags) override { // Reset the bit in the mask so that the static variable may be // reinitialized. CGBuilderTy &Builder = CGF.Builder; llvm::LoadInst *LI = Builder.CreateLoad(Guard); llvm::ConstantInt *Mask = llvm::ConstantInt::get(CGF.IntTy, ~(1ULL << GuardNum)); Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard); } }; struct CallInitThreadAbort final : EHScopeStack::Cleanup { llvm::Value *Guard; CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {} void Emit(CodeGenFunction &CGF, Flags flags) override { // Calling _Init_thread_abort will reset the guard's state. CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard); } }; } void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, llvm::GlobalVariable *GV, bool PerformInit) { // MSVC only uses guards for static locals. if (!D.isStaticLocal()) { assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()); // GlobalOpt is allowed to discard the initializer, so use linkonce_odr. llvm::Function *F = CGF.CurFn; F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); F->setComdat(CGM.getModule().getOrInsertComdat(F->getName())); CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); return; } bool ThreadlocalStatic = D.getTLSKind(); bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics; // Thread-safe static variables which aren't thread-specific have a // per-variable guard. bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic; CGBuilderTy &Builder = CGF.Builder; llvm::IntegerType *GuardTy = CGF.Int32Ty; llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0); CharUnits GuardAlign = CharUnits::fromQuantity(4); // Get the guard variable for this function if we have one already. GuardInfo *GI = nullptr; if (ThreadlocalStatic) GI = &ThreadLocalGuardVariableMap[D.getDeclContext()]; else if (!ThreadsafeStatic) GI = &GuardVariableMap[D.getDeclContext()]; llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr; unsigned GuardNum; if (D.isExternallyVisible()) { // Externally visible variables have to be numbered in Sema to properly // handle unreachable VarDecls. GuardNum = getContext().getStaticLocalNumber(&D); assert(GuardNum > 0); GuardNum--; } else if (HasPerVariableGuard) { GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++; } else { // Non-externally visible variables are numbered here in CodeGen. GuardNum = GI->BitIndex++; } if (!HasPerVariableGuard && GuardNum >= 32) { if (D.isExternallyVisible()) ErrorUnsupportedABI(CGF, "more than 32 guarded initializations"); GuardNum %= 32; GuardVar = nullptr; } if (!GuardVar) { // Mangle the name for the guard. SmallString<256> GuardName; { llvm::raw_svector_ostream Out(GuardName); if (HasPerVariableGuard) getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum, Out); else getMangleContext().mangleStaticGuardVariable(&D, Out); } // Create the guard variable with a zero-initializer. Just absorb linkage, // visibility and dll storage class from the guarded variable. GuardVar = new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false, GV->getLinkage(), Zero, GuardName.str()); GuardVar->setVisibility(GV->getVisibility()); GuardVar->setDLLStorageClass(GV->getDLLStorageClass()); GuardVar->setAlignment(GuardAlign.getAsAlign()); if (GuardVar->isWeakForLinker()) GuardVar->setComdat( CGM.getModule().getOrInsertComdat(GuardVar->getName())); if (D.getTLSKind()) CGM.setTLSMode(GuardVar, D); if (GI && !HasPerVariableGuard) GI->Guard = GuardVar; } ConstantAddress GuardAddr(GuardVar, GuardTy, GuardAlign); assert(GuardVar->getLinkage() == GV->getLinkage() && "static local from the same function had different linkage"); if (!HasPerVariableGuard) { // Pseudo code for the test: // if (!(GuardVar & MyGuardBit)) { // GuardVar |= MyGuardBit; // ... initialize the object ...; // } // Test our bit from the guard variable. llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1ULL << GuardNum); llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr); llvm::Value *NeedsInit = Builder.CreateICmpEQ(Builder.CreateAnd(LI, Bit), Zero); llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, EndBlock, CodeGenFunction::GuardKind::VariableGuard, &D); // Set our bit in the guard variable and emit the initializer and add a global // destructor if appropriate. CGF.EmitBlock(InitBlock); Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr); CGF.EHStack.pushCleanup(EHCleanup, GuardAddr, GuardNum); CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); CGF.PopCleanupBlock(); Builder.CreateBr(EndBlock); // Continue. CGF.EmitBlock(EndBlock); } else { // Pseudo code for the test: // if (TSS > _Init_thread_epoch) { // _Init_thread_header(&TSS); // if (TSS == -1) { // ... initialize the object ...; // _Init_thread_footer(&TSS); // } // } // // The algorithm is almost identical to what can be found in the appendix // found in N2325. // This BasicBLock determines whether or not we have any work to do. llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr); FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); llvm::LoadInst *InitThreadEpoch = Builder.CreateLoad(getInitThreadEpochPtr(CGM)); llvm::Value *IsUninitialized = Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch); llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt"); llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); CGF.EmitCXXGuardedInitBranch(IsUninitialized, AttemptInitBlock, EndBlock, CodeGenFunction::GuardKind::VariableGuard, &D); // This BasicBlock attempts to determine whether or not this thread is // responsible for doing the initialization. CGF.EmitBlock(AttemptInitBlock); CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM), GuardAddr.getPointer()); llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr); SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); llvm::Value *ShouldDoInit = Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt()); llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock); // Ok, we ended up getting selected as the initializing thread. CGF.EmitBlock(InitBlock); CGF.EHStack.pushCleanup(EHCleanup, GuardAddr); CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); CGF.PopCleanupBlock(); CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM), GuardAddr.getPointer()); Builder.CreateBr(EndBlock); CGF.EmitBlock(EndBlock); } } bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) { // Null-ness for function memptrs only depends on the first field, which is // the function pointer. The rest don't matter, so we can zero initialize. if (MPT->isMemberFunctionPointer()) return true; // The virtual base adjustment field is always -1 for null, so if we have one // we can't zero initialize. The field offset is sometimes also -1 if 0 is a // valid field offset. const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); return (!inheritanceModelHasVBTableOffsetField(Inheritance) && RD->nullFieldOffsetIsZero()); } llvm::Type * MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); llvm::SmallVector fields; if (MPT->isMemberFunctionPointer()) fields.push_back(CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk else fields.push_back(CGM.IntTy); // FieldOffset if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(), Inheritance)) fields.push_back(CGM.IntTy); if (inheritanceModelHasVBPtrOffsetField(Inheritance)) fields.push_back(CGM.IntTy); if (inheritanceModelHasVBTableOffsetField(Inheritance)) fields.push_back(CGM.IntTy); // VirtualBaseAdjustmentOffset if (fields.size() == 1) return fields[0]; return llvm::StructType::get(CGM.getLLVMContext(), fields); } void MicrosoftCXXABI:: GetNullMemberPointerFields(const MemberPointerType *MPT, llvm::SmallVectorImpl &fields) { assert(fields.empty()); const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); if (MPT->isMemberFunctionPointer()) { // FunctionPointerOrVirtualThunk fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); } else { if (RD->nullFieldOffsetIsZero()) fields.push_back(getZeroInt()); // FieldOffset else fields.push_back(getAllOnesInt()); // FieldOffset } if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(), Inheritance)) fields.push_back(getZeroInt()); if (inheritanceModelHasVBPtrOffsetField(Inheritance)) fields.push_back(getZeroInt()); if (inheritanceModelHasVBTableOffsetField(Inheritance)) fields.push_back(getAllOnesInt()); } llvm::Constant * MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { llvm::SmallVector fields; GetNullMemberPointerFields(MPT, fields); if (fields.size() == 1) return fields[0]; llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields); assert(Res->getType() == ConvertMemberPointerType(MPT)); return Res; } llvm::Constant * MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField, bool IsMemberFunction, const CXXRecordDecl *RD, CharUnits NonVirtualBaseAdjustment, unsigned VBTableIndex) { MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); // Single inheritance class member pointer are represented as scalars instead // of aggregates. if (inheritanceModelHasOnlyOneField(IsMemberFunction, Inheritance)) return FirstField; llvm::SmallVector fields; fields.push_back(FirstField); if (inheritanceModelHasNVOffsetField(IsMemberFunction, Inheritance)) fields.push_back(llvm::ConstantInt::get( CGM.IntTy, NonVirtualBaseAdjustment.getQuantity())); if (inheritanceModelHasVBPtrOffsetField(Inheritance)) { CharUnits Offs = CharUnits::Zero(); if (VBTableIndex) Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity())); } // The rest of the fields are adjusted by conversions to a more derived class. if (inheritanceModelHasVBTableOffsetField(Inheritance)) fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex)); return llvm::ConstantStruct::getAnon(fields); } llvm::Constant * MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, CharUnits offset) { return EmitMemberDataPointer(MPT->getMostRecentCXXRecordDecl(), offset); } llvm::Constant *MicrosoftCXXABI::EmitMemberDataPointer(const CXXRecordDecl *RD, CharUnits offset) { if (RD->getMSInheritanceModel() == MSInheritanceModel::Virtual) offset -= getContext().getOffsetOfBaseWithVBPtr(RD); llvm::Constant *FirstField = llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity()); return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD, CharUnits::Zero(), /*VBTableIndex=*/0); } llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP, QualType MPType) { const MemberPointerType *DstTy = MPType->castAs(); const ValueDecl *MPD = MP.getMemberPointerDecl(); if (!MPD) return EmitNullMemberPointer(DstTy); ASTContext &Ctx = getContext(); ArrayRef MemberPointerPath = MP.getMemberPointerPath(); llvm::Constant *C; if (const CXXMethodDecl *MD = dyn_cast(MPD)) { C = EmitMemberFunctionPointer(MD); } else { // For a pointer to data member, start off with the offset of the field in // the class in which it was declared, and convert from there if necessary. // For indirect field decls, get the outermost anonymous field and use the // parent class. CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD)); const FieldDecl *FD = dyn_cast(MPD); if (!FD) FD = cast(*cast(MPD)->chain_begin()); const CXXRecordDecl *RD = cast(FD->getParent()); RD = RD->getMostRecentNonInjectedDecl(); C = EmitMemberDataPointer(RD, FieldOffset); } if (!MemberPointerPath.empty()) { const CXXRecordDecl *SrcRD = cast(MPD->getDeclContext()); const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr(); const MemberPointerType *SrcTy = Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy) ->castAs(); bool DerivedMember = MP.isMemberPointerToDerivedMember(); SmallVector DerivedToBasePath; const CXXRecordDecl *PrevRD = SrcRD; for (const CXXRecordDecl *PathElem : MemberPointerPath) { const CXXRecordDecl *Base = nullptr; const CXXRecordDecl *Derived = nullptr; if (DerivedMember) { Base = PathElem; Derived = PrevRD; } else { Base = PrevRD; Derived = PathElem; } for (const CXXBaseSpecifier &BS : Derived->bases()) if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base->getCanonicalDecl()) DerivedToBasePath.push_back(&BS); PrevRD = PathElem; } assert(DerivedToBasePath.size() == MemberPointerPath.size()); CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer : CK_BaseToDerivedMemberPointer; C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(), DerivedToBasePath.end(), C); } return C; } llvm::Constant * MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) { assert(MD->isInstance() && "Member function must not be static!"); CharUnits NonVirtualBaseAdjustment = CharUnits::Zero(); const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl(); CodeGenTypes &Types = CGM.getTypes(); unsigned VBTableIndex = 0; llvm::Constant *FirstField; const FunctionProtoType *FPT = MD->getType()->castAs(); if (!MD->isVirtual()) { llvm::Type *Ty; // Check whether the function has a computable LLVM signature. if (Types.isFuncTypeConvertible(FPT)) { // The function has a computable LLVM signature; use the correct type. Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); } else { // Use an arbitrary non-function type to tell GetAddrOfFunction that the // function type is incomplete. Ty = CGM.PtrDiffTy; } FirstField = CGM.GetAddrOfFunction(MD, Ty); } else { auto &VTableContext = CGM.getMicrosoftVTableContext(); MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(MD); FirstField = EmitVirtualMemPtrThunk(MD, ML); // Include the vfptr adjustment if the method is in a non-primary vftable. NonVirtualBaseAdjustment += ML.VFPtrOffset; if (ML.VBase) VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4; } if (VBTableIndex == 0 && RD->getMSInheritanceModel() == MSInheritanceModel::Virtual) NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD); // The rest of the fields are common with data member pointers. return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD, NonVirtualBaseAdjustment, VBTableIndex); } /// Member pointers are the same if they're either bitwise identical *or* both /// null. Null-ness for function members is determined by the first field, /// while for data member pointers we must compare all fields. llvm::Value * MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, llvm::Value *L, llvm::Value *R, const MemberPointerType *MPT, bool Inequality) { CGBuilderTy &Builder = CGF.Builder; // Handle != comparisons by switching the sense of all boolean operations. llvm::ICmpInst::Predicate Eq; llvm::Instruction::BinaryOps And, Or; if (Inequality) { Eq = llvm::ICmpInst::ICMP_NE; And = llvm::Instruction::Or; Or = llvm::Instruction::And; } else { Eq = llvm::ICmpInst::ICMP_EQ; And = llvm::Instruction::And; Or = llvm::Instruction::Or; } // If this is a single field member pointer (single inheritance), this is a // single icmp. const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); if (inheritanceModelHasOnlyOneField(MPT->isMemberFunctionPointer(), Inheritance)) return Builder.CreateICmp(Eq, L, R); // Compare the first field. llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0"); llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0"); llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first"); // Compare everything other than the first field. llvm::Value *Res = nullptr; llvm::StructType *LType = cast(L->getType()); for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) { llvm::Value *LF = Builder.CreateExtractValue(L, I); llvm::Value *RF = Builder.CreateExtractValue(R, I); llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest"); if (Res) Res = Builder.CreateBinOp(And, Res, Cmp); else Res = Cmp; } // Check if the first field is 0 if this is a function pointer. if (MPT->isMemberFunctionPointer()) { // (l1 == r1 && ...) || l0 == 0 llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType()); llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero"); Res = Builder.CreateBinOp(Or, Res, IsZero); } // Combine the comparison of the first field, which must always be true for // this comparison to succeeed. return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp"); } llvm::Value * MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, llvm::Value *MemPtr, const MemberPointerType *MPT) { CGBuilderTy &Builder = CGF.Builder; llvm::SmallVector fields; // We only need one field for member functions. if (MPT->isMemberFunctionPointer()) fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); else GetNullMemberPointerFields(MPT, fields); assert(!fields.empty()); llvm::Value *FirstField = MemPtr; if (MemPtr->getType()->isStructTy()) FirstField = Builder.CreateExtractValue(MemPtr, 0); llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0"); // For function member pointers, we only need to test the function pointer // field. The other fields if any can be garbage. if (MPT->isMemberFunctionPointer()) return Res; // Otherwise, emit a series of compares and combine the results. for (int I = 1, E = fields.size(); I < E; ++I) { llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I); llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp"); Res = Builder.CreateOr(Res, Next, "memptr.tobool"); } return Res; } bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT, llvm::Constant *Val) { // Function pointers are null if the pointer in the first field is null. if (MPT->isMemberFunctionPointer()) { llvm::Constant *FirstField = Val->getType()->isStructTy() ? Val->getAggregateElement(0U) : Val; return FirstField->isNullValue(); } // If it's not a function pointer and it's zero initializable, we can easily // check zero. if (isZeroInitializable(MPT) && Val->isNullValue()) return true; // Otherwise, break down all the fields for comparison. Hopefully these // little Constants are reused, while a big null struct might not be. llvm::SmallVector Fields; GetNullMemberPointerFields(MPT, Fields); if (Fields.size() == 1) { assert(Val->getType()->isIntegerTy()); return Val == Fields[0]; } unsigned I, E; for (I = 0, E = Fields.size(); I != E; ++I) { if (Val->getAggregateElement(I) != Fields[I]) break; } return I == E; } llvm::Value * MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, Address This, llvm::Value *VBPtrOffset, llvm::Value *VBTableOffset, llvm::Value **VBPtrOut) { CGBuilderTy &Builder = CGF.Builder; // Load the vbtable pointer from the vbptr in the instance. llvm::Value *VBPtr = Builder.CreateInBoundsGEP(CGM.Int8Ty, This.getPointer(), VBPtrOffset, "vbptr"); if (VBPtrOut) *VBPtrOut = VBPtr; CharUnits VBPtrAlign; if (auto CI = dyn_cast(VBPtrOffset)) { VBPtrAlign = This.getAlignment().alignmentAtOffset( CharUnits::fromQuantity(CI->getSExtValue())); } else { VBPtrAlign = CGF.getPointerAlign(); } llvm::Value *VBTable = Builder.CreateAlignedLoad( CGM.Int32Ty->getPointerTo(0), VBPtr, VBPtrAlign, "vbtable"); // Translate from byte offset to table index. It improves analyzability. llvm::Value *VBTableIndex = Builder.CreateAShr( VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2), "vbtindex", /*isExact=*/true); // Load an i32 offset from the vb-table. llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(CGM.Int32Ty, VBTable, VBTableIndex); return Builder.CreateAlignedLoad(CGM.Int32Ty, VBaseOffs, CharUnits::fromQuantity(4), "vbase_offs"); } // Returns an adjusted base cast to i8*, since we do more address arithmetic on // it. llvm::Value *MicrosoftCXXABI::AdjustVirtualBase( CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD, Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) { CGBuilderTy &Builder = CGF.Builder; Base = Base.withElementType(CGM.Int8Ty); llvm::BasicBlock *OriginalBB = nullptr; llvm::BasicBlock *SkipAdjustBB = nullptr; llvm::BasicBlock *VBaseAdjustBB = nullptr; // In the unspecified inheritance model, there might not be a vbtable at all, // in which case we need to skip the virtual base lookup. If there is a // vbtable, the first entry is a no-op entry that gives back the original // base, so look for a virtual base adjustment offset of zero. if (VBPtrOffset) { OriginalBB = Builder.GetInsertBlock(); VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust"); SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust"); llvm::Value *IsVirtual = Builder.CreateICmpNE(VBTableOffset, getZeroInt(), "memptr.is_vbase"); Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB); CGF.EmitBlock(VBaseAdjustBB); } // If we weren't given a dynamic vbptr offset, RD should be complete and we'll // know the vbptr offset. if (!VBPtrOffset) { CharUnits offs = CharUnits::Zero(); if (!RD->hasDefinition()) { DiagnosticsEngine &Diags = CGF.CGM.getDiags(); unsigned DiagID = Diags.getCustomDiagID( DiagnosticsEngine::Error, "member pointer representation requires a " "complete class type for %0 to perform this expression"); Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange(); } else if (RD->getNumVBases()) offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity()); } llvm::Value *VBPtr = nullptr; llvm::Value *VBaseOffs = GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr); llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(CGM.Int8Ty, VBPtr, VBaseOffs); // Merge control flow with the case where we didn't have to adjust. if (VBaseAdjustBB) { Builder.CreateBr(SkipAdjustBB); CGF.EmitBlock(SkipAdjustBB); llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base"); Phi->addIncoming(Base.getPointer(), OriginalBB); Phi->addIncoming(AdjustedBase, VBaseAdjustBB); return Phi; } return AdjustedBase; } llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress( CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, const MemberPointerType *MPT) { assert(MPT->isMemberDataPointer()); CGBuilderTy &Builder = CGF.Builder; const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); // Extract the fields we need, regardless of model. We'll apply them if we // have them. llvm::Value *FieldOffset = MemPtr; llvm::Value *VirtualBaseAdjustmentOffset = nullptr; llvm::Value *VBPtrOffset = nullptr; if (MemPtr->getType()->isStructTy()) { // We need to extract values. unsigned I = 0; FieldOffset = Builder.CreateExtractValue(MemPtr, I++); if (inheritanceModelHasVBPtrOffsetField(Inheritance)) VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); if (inheritanceModelHasVBTableOffsetField(Inheritance)) VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); } llvm::Value *Addr; if (VirtualBaseAdjustmentOffset) { Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset, VBPtrOffset); } else { Addr = Base.getPointer(); } // Apply the offset, which we assume is non-null. return Builder.CreateInBoundsGEP(CGF.Int8Ty, Addr, FieldOffset, "memptr.offset"); } llvm::Value * MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, const CastExpr *E, llvm::Value *Src) { assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || E->getCastKind() == CK_BaseToDerivedMemberPointer || E->getCastKind() == CK_ReinterpretMemberPointer); // Use constant emission if we can. if (isa(Src)) return EmitMemberPointerConversion(E, cast(Src)); // We may be adding or dropping fields from the member pointer, so we need // both types and the inheritance models of both records. const MemberPointerType *SrcTy = E->getSubExpr()->getType()->castAs(); const MemberPointerType *DstTy = E->getType()->castAs(); bool IsFunc = SrcTy->isMemberFunctionPointer(); // If the classes use the same null representation, reinterpret_cast is a nop. bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer; if (IsReinterpret && IsFunc) return Src; CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); if (IsReinterpret && SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero()) return Src; CGBuilderTy &Builder = CGF.Builder; // Branch past the conversion if Src is null. llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy); llvm::Constant *DstNull = EmitNullMemberPointer(DstTy); // C++ 5.2.10p9: The null member pointer value is converted to the null member // pointer value of the destination type. if (IsReinterpret) { // For reinterpret casts, sema ensures that src and dst are both functions // or data and have the same size, which means the LLVM types should match. assert(Src->getType() == DstNull->getType()); return Builder.CreateSelect(IsNotNull, Src, DstNull); } llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock(); llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert"); llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted"); Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB); CGF.EmitBlock(ConvertBB); llvm::Value *Dst = EmitNonNullMemberPointerConversion( SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src, Builder); Builder.CreateBr(ContinueBB); // In the continuation, choose between DstNull and Dst. CGF.EmitBlock(ContinueBB); llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted"); Phi->addIncoming(DstNull, OriginalBB); Phi->addIncoming(Dst, ConvertBB); return Phi; } llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion( const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, CastExpr::path_const_iterator PathBegin, CastExpr::path_const_iterator PathEnd, llvm::Value *Src, CGBuilderTy &Builder) { const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); MSInheritanceModel SrcInheritance = SrcRD->getMSInheritanceModel(); MSInheritanceModel DstInheritance = DstRD->getMSInheritanceModel(); bool IsFunc = SrcTy->isMemberFunctionPointer(); bool IsConstant = isa(Src); // Decompose src. llvm::Value *FirstField = Src; llvm::Value *NonVirtualBaseAdjustment = getZeroInt(); llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt(); llvm::Value *VBPtrOffset = getZeroInt(); if (!inheritanceModelHasOnlyOneField(IsFunc, SrcInheritance)) { // We need to extract values. unsigned I = 0; FirstField = Builder.CreateExtractValue(Src, I++); if (inheritanceModelHasNVOffsetField(IsFunc, SrcInheritance)) NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++); if (inheritanceModelHasVBPtrOffsetField(SrcInheritance)) VBPtrOffset = Builder.CreateExtractValue(Src, I++); if (inheritanceModelHasVBTableOffsetField(SrcInheritance)) VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++); } bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer); const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy; const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl(); // For data pointers, we adjust the field offset directly. For functions, we // have a separate field. llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField; // The virtual inheritance model has a quirk: the virtual base table is always // referenced when dereferencing a member pointer even if the member pointer // is non-virtual. This is accounted for by adjusting the non-virtual offset // to point backwards to the top of the MDC from the first VBase. Undo this // adjustment to normalize the member pointer. llvm::Value *SrcVBIndexEqZero = Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); if (SrcInheritance == MSInheritanceModel::Virtual) { if (int64_t SrcOffsetToFirstVBase = getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) { llvm::Value *UndoSrcAdjustment = Builder.CreateSelect( SrcVBIndexEqZero, llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase), getZeroInt()); NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment); } } // A non-zero vbindex implies that we are dealing with a source member in a // floating virtual base in addition to some non-virtual offset. If the // vbindex is zero, we are dealing with a source that exists in a non-virtual, // fixed, base. The difference between these two cases is that the vbindex + // nvoffset *always* point to the member regardless of what context they are // evaluated in so long as the vbindex is adjusted. A member inside a fixed // base requires explicit nv adjustment. llvm::Constant *BaseClassOffset = llvm::ConstantInt::get( CGM.IntTy, CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd) .getQuantity()); llvm::Value *NVDisp; if (IsDerivedToBase) NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj"); else NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj"); NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt()); // Update the vbindex to an appropriate value in the destination because // SrcRD's vbtable might not be a strict prefix of the one in DstRD. llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero; if (inheritanceModelHasVBTableOffsetField(DstInheritance) && inheritanceModelHasVBTableOffsetField(SrcInheritance)) { if (llvm::GlobalVariable *VDispMap = getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) { llvm::Value *VBIndex = Builder.CreateExactUDiv( VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4)); if (IsConstant) { llvm::Constant *Mapping = VDispMap->getInitializer(); VirtualBaseAdjustmentOffset = Mapping->getAggregateElement(cast(VBIndex)); } else { llvm::Value *Idxs[] = {getZeroInt(), VBIndex}; VirtualBaseAdjustmentOffset = Builder.CreateAlignedLoad( CGM.IntTy, Builder.CreateInBoundsGEP(VDispMap->getValueType(), VDispMap, Idxs), CharUnits::fromQuantity(4)); } DstVBIndexEqZero = Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); } } // Set the VBPtrOffset to zero if the vbindex is zero. Otherwise, initialize // it to the offset of the vbptr. if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) { llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get( CGM.IntTy, getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity()); VBPtrOffset = Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset); } // Likewise, apply a similar adjustment so that dereferencing the member // pointer correctly accounts for the distance between the start of the first // virtual base and the top of the MDC. if (DstInheritance == MSInheritanceModel::Virtual) { if (int64_t DstOffsetToFirstVBase = getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) { llvm::Value *DoDstAdjustment = Builder.CreateSelect( DstVBIndexEqZero, llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase), getZeroInt()); NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment); } } // Recompose dst from the null struct and the adjusted fields from src. llvm::Value *Dst; if (inheritanceModelHasOnlyOneField(IsFunc, DstInheritance)) { Dst = FirstField; } else { Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy)); unsigned Idx = 0; Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++); if (inheritanceModelHasNVOffsetField(IsFunc, DstInheritance)) Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++); if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++); if (inheritanceModelHasVBTableOffsetField(DstInheritance)) Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++); } return Dst; } llvm::Constant * MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E, llvm::Constant *Src) { const MemberPointerType *SrcTy = E->getSubExpr()->getType()->castAs(); const MemberPointerType *DstTy = E->getType()->castAs(); CastKind CK = E->getCastKind(); return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(), E->path_end(), Src); } llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion( const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, CastExpr::path_const_iterator PathBegin, CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) { assert(CK == CK_DerivedToBaseMemberPointer || CK == CK_BaseToDerivedMemberPointer || CK == CK_ReinterpretMemberPointer); // If src is null, emit a new null for dst. We can't return src because dst // might have a new representation. if (MemberPointerConstantIsNull(SrcTy, Src)) return EmitNullMemberPointer(DstTy); // We don't need to do anything for reinterpret_casts of non-null member // pointers. We should only get here when the two type representations have // the same size. if (CK == CK_ReinterpretMemberPointer) return Src; CGBuilderTy Builder(CGM, CGM.getLLVMContext()); auto *Dst = cast(EmitNonNullMemberPointerConversion( SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder)); return Dst; } CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer( CodeGenFunction &CGF, const Expr *E, Address This, llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr, const MemberPointerType *MPT) { assert(MPT->isMemberFunctionPointer()); const FunctionProtoType *FPT = MPT->getPointeeType()->castAs(); const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); CGBuilderTy &Builder = CGF.Builder; MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); // Extract the fields we need, regardless of model. We'll apply them if we // have them. llvm::Value *FunctionPointer = MemPtr; llvm::Value *NonVirtualBaseAdjustment = nullptr; llvm::Value *VirtualBaseAdjustmentOffset = nullptr; llvm::Value *VBPtrOffset = nullptr; if (MemPtr->getType()->isStructTy()) { // We need to extract values. unsigned I = 0; FunctionPointer = Builder.CreateExtractValue(MemPtr, I++); if (inheritanceModelHasNVOffsetField(MPT, Inheritance)) NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++); if (inheritanceModelHasVBPtrOffsetField(Inheritance)) VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); if (inheritanceModelHasVBTableOffsetField(Inheritance)) VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); } if (VirtualBaseAdjustmentOffset) { ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This, VirtualBaseAdjustmentOffset, VBPtrOffset); } else { ThisPtrForCall = This.getPointer(); } if (NonVirtualBaseAdjustment) ThisPtrForCall = Builder.CreateInBoundsGEP(CGF.Int8Ty, ThisPtrForCall, NonVirtualBaseAdjustment); CGCallee Callee(FPT, FunctionPointer); return Callee; } CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) { return new MicrosoftCXXABI(CGM); } // MS RTTI Overview: // The run time type information emitted by cl.exe contains 5 distinct types of // structures. Many of them reference each other. // // TypeInfo: Static classes that are returned by typeid. // // CompleteObjectLocator: Referenced by vftables. They contain information // required for dynamic casting, including OffsetFromTop. They also contain // a reference to the TypeInfo for the type and a reference to the // CompleteHierarchyDescriptor for the type. // // ClassHierarchyDescriptor: Contains information about a class hierarchy. // Used during dynamic_cast to walk a class hierarchy. References a base // class array and the size of said array. // // BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is // somewhat of a misnomer because the most derived class is also in the list // as well as multiple copies of virtual bases (if they occur multiple times // in the hierarchy.) The BaseClassArray contains one BaseClassDescriptor for // every path in the hierarchy, in pre-order depth first order. Note, we do // not declare a specific llvm type for BaseClassArray, it's merely an array // of BaseClassDescriptor pointers. // // BaseClassDescriptor: Contains information about a class in a class hierarchy. // BaseClassDescriptor is also somewhat of a misnomer for the same reason that // BaseClassArray is. It contains information about a class within a // hierarchy such as: is this base is ambiguous and what is its offset in the // vbtable. The names of the BaseClassDescriptors have all of their fields // mangled into them so they can be aggressively deduplicated by the linker. static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) { StringRef MangledName("??_7type_info@@6B@"); if (auto VTable = CGM.getModule().getNamedGlobal(MangledName)) return VTable; return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy, /*isConstant=*/true, llvm::GlobalVariable::ExternalLinkage, /*Initializer=*/nullptr, MangledName); } namespace { /// A Helper struct that stores information about a class in a class /// hierarchy. The information stored in these structs struct is used during /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors. // During RTTI creation, MSRTTIClasses are stored in a contiguous array with // implicit depth first pre-order tree connectivity. getFirstChild and // getNextSibling allow us to walk the tree efficiently. struct MSRTTIClass { enum { IsPrivateOnPath = 1 | 8, IsAmbiguous = 2, IsPrivate = 4, IsVirtual = 16, HasHierarchyDescriptor = 64 }; MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {} uint32_t initialize(const MSRTTIClass *Parent, const CXXBaseSpecifier *Specifier); MSRTTIClass *getFirstChild() { return this + 1; } static MSRTTIClass *getNextChild(MSRTTIClass *Child) { return Child + 1 + Child->NumBases; } const CXXRecordDecl *RD, *VirtualRoot; uint32_t Flags, NumBases, OffsetInVBase; }; /// Recursively initialize the base class array. uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent, const CXXBaseSpecifier *Specifier) { Flags = HasHierarchyDescriptor; if (!Parent) { VirtualRoot = nullptr; OffsetInVBase = 0; } else { if (Specifier->getAccessSpecifier() != AS_public) Flags |= IsPrivate | IsPrivateOnPath; if (Specifier->isVirtual()) { Flags |= IsVirtual; VirtualRoot = RD; OffsetInVBase = 0; } else { if (Parent->Flags & IsPrivateOnPath) Flags |= IsPrivateOnPath; VirtualRoot = Parent->VirtualRoot; OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext() .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity(); } } NumBases = 0; MSRTTIClass *Child = getFirstChild(); for (const CXXBaseSpecifier &Base : RD->bases()) { NumBases += Child->initialize(this, &Base) + 1; Child = getNextChild(Child); } return NumBases; } static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) { switch (Ty->getLinkage()) { case Linkage::Invalid: llvm_unreachable("Linkage hasn't been computed!"); case Linkage::None: case Linkage::Internal: case Linkage::UniqueExternal: return llvm::GlobalValue::InternalLinkage; case Linkage::VisibleNone: case Linkage::Module: case Linkage::External: return llvm::GlobalValue::LinkOnceODRLinkage; } llvm_unreachable("Invalid linkage!"); } /// An ephemeral helper class for building MS RTTI types. It caches some /// calls to the module and information about the most derived class in a /// hierarchy. struct MSRTTIBuilder { enum { HasBranchingHierarchy = 1, HasVirtualBranchingHierarchy = 2, HasAmbiguousBases = 4 }; MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD) : CGM(ABI.CGM), Context(CGM.getContext()), VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD), Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))), ABI(ABI) {} llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes); llvm::GlobalVariable * getBaseClassArray(SmallVectorImpl &Classes); llvm::GlobalVariable *getClassHierarchyDescriptor(); llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info); CodeGenModule &CGM; ASTContext &Context; llvm::LLVMContext &VMContext; llvm::Module &Module; const CXXRecordDecl *RD; llvm::GlobalVariable::LinkageTypes Linkage; MicrosoftCXXABI &ABI; }; } // namespace /// Recursively serializes a class hierarchy in pre-order depth first /// order. static void serializeClassHierarchy(SmallVectorImpl &Classes, const CXXRecordDecl *RD) { Classes.push_back(MSRTTIClass(RD)); for (const CXXBaseSpecifier &Base : RD->bases()) serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl()); } /// Find ambiguity among base classes. static void detectAmbiguousBases(SmallVectorImpl &Classes) { llvm::SmallPtrSet VirtualBases; llvm::SmallPtrSet UniqueBases; llvm::SmallPtrSet AmbiguousBases; for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) { if ((Class->Flags & MSRTTIClass::IsVirtual) && !VirtualBases.insert(Class->RD).second) { Class = MSRTTIClass::getNextChild(Class); continue; } if (!UniqueBases.insert(Class->RD).second) AmbiguousBases.insert(Class->RD); Class++; } if (AmbiguousBases.empty()) return; for (MSRTTIClass &Class : Classes) if (AmbiguousBases.count(Class.RD)) Class.Flags |= MSRTTIClass::IsAmbiguous; } llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() { SmallString<256> MangledName; { llvm::raw_svector_ostream Out(MangledName); ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out); } // Check to see if we've already declared this ClassHierarchyDescriptor. if (auto CHD = Module.getNamedGlobal(MangledName)) return CHD; // Serialize the class hierarchy and initialize the CHD Fields. SmallVector Classes; serializeClassHierarchy(Classes, RD); Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); detectAmbiguousBases(Classes); int Flags = 0; for (const MSRTTIClass &Class : Classes) { if (Class.RD->getNumBases() > 1) Flags |= HasBranchingHierarchy; // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We // believe the field isn't actually used. if (Class.Flags & MSRTTIClass::IsAmbiguous) Flags |= HasAmbiguousBases; } if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0) Flags |= HasVirtualBranchingHierarchy; // These gep indices are used to get the address of the first element of the // base class array. llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0), llvm::ConstantInt::get(CGM.IntTy, 0)}; // Forward-declare the class hierarchy descriptor auto Type = ABI.getClassHierarchyDescriptorType(); auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, /*Initializer=*/nullptr, MangledName); if (CHD->isWeakForLinker()) CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName())); auto *Bases = getBaseClassArray(Classes); // Initialize the base class ClassHierarchyDescriptor. llvm::Constant *Fields[] = { llvm::ConstantInt::get(CGM.IntTy, 0), // reserved by the runtime llvm::ConstantInt::get(CGM.IntTy, Flags), llvm::ConstantInt::get(CGM.IntTy, Classes.size()), ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr( Bases->getValueType(), Bases, llvm::ArrayRef(GEPIndices))), }; CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); return CHD; } llvm::GlobalVariable * MSRTTIBuilder::getBaseClassArray(SmallVectorImpl &Classes) { SmallString<256> MangledName; { llvm::raw_svector_ostream Out(MangledName); ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out); } // Forward-declare the base class array. // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit // mode) bytes of padding. We provide a pointer sized amount of padding by // adding +1 to Classes.size(). The sections have pointer alignment and are // marked pick-any so it shouldn't matter. llvm::Type *PtrType = ABI.getImageRelativeType( ABI.getBaseClassDescriptorType()->getPointerTo()); auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1); auto *BCA = new llvm::GlobalVariable(Module, ArrType, /*isConstant=*/true, Linkage, /*Initializer=*/nullptr, MangledName); if (BCA->isWeakForLinker()) BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName())); // Initialize the BaseClassArray. SmallVector BaseClassArrayData; for (MSRTTIClass &Class : Classes) BaseClassArrayData.push_back( ABI.getImageRelativeConstant(getBaseClassDescriptor(Class))); BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType)); BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData)); return BCA; } llvm::GlobalVariable * MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) { // Compute the fields for the BaseClassDescriptor. They are computed up front // because they are mangled into the name of the object. uint32_t OffsetInVBTable = 0; int32_t VBPtrOffset = -1; if (Class.VirtualRoot) { auto &VTableContext = CGM.getMicrosoftVTableContext(); OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4; VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity(); } SmallString<256> MangledName; { llvm::raw_svector_ostream Out(MangledName); ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor( Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable, Class.Flags, Out); } // Check to see if we've already declared this object. if (auto BCD = Module.getNamedGlobal(MangledName)) return BCD; // Forward-declare the base class descriptor. auto Type = ABI.getBaseClassDescriptorType(); auto BCD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, /*Initializer=*/nullptr, MangledName); if (BCD->isWeakForLinker()) BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName())); // Initialize the BaseClassDescriptor. llvm::Constant *Fields[] = { ABI.getImageRelativeConstant( ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))), llvm::ConstantInt::get(CGM.IntTy, Class.NumBases), llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase), llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable), llvm::ConstantInt::get(CGM.IntTy, Class.Flags), ABI.getImageRelativeConstant( MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()), }; BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); return BCD; } llvm::GlobalVariable * MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) { SmallString<256> MangledName; { llvm::raw_svector_ostream Out(MangledName); ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info.MangledPath, Out); } // Check to see if we've already computed this complete object locator. if (auto COL = Module.getNamedGlobal(MangledName)) return COL; // Compute the fields of the complete object locator. int OffsetToTop = Info.FullOffsetInMDC.getQuantity(); int VFPtrOffset = 0; // The offset includes the vtordisp if one exists. if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr()) if (Context.getASTRecordLayout(RD) .getVBaseOffsetsMap() .find(VBase) ->second.hasVtorDisp()) VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4; // Forward-declare the complete object locator. llvm::StructType *Type = ABI.getCompleteObjectLocatorType(); auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, /*Initializer=*/nullptr, MangledName); // Initialize the CompleteObjectLocator. llvm::Constant *Fields[] = { llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()), llvm::ConstantInt::get(CGM.IntTy, OffsetToTop), llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset), ABI.getImageRelativeConstant( CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))), ABI.getImageRelativeConstant(getClassHierarchyDescriptor()), ABI.getImageRelativeConstant(COL), }; llvm::ArrayRef FieldsRef(Fields); if (!ABI.isImageRelative()) FieldsRef = FieldsRef.drop_back(); COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef)); if (COL->isWeakForLinker()) COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName())); return COL; } static QualType decomposeTypeForEH(ASTContext &Context, QualType T, bool &IsConst, bool &IsVolatile, bool &IsUnaligned) { T = Context.getExceptionObjectType(T); // C++14 [except.handle]p3: // A handler is a match for an exception object of type E if [...] // - the handler is of type cv T or const T& where T is a pointer type and // E is a pointer type that can be converted to T by [...] // - a qualification conversion IsConst = false; IsVolatile = false; IsUnaligned = false; QualType PointeeType = T->getPointeeType(); if (!PointeeType.isNull()) { IsConst = PointeeType.isConstQualified(); IsVolatile = PointeeType.isVolatileQualified(); IsUnaligned = PointeeType.getQualifiers().hasUnaligned(); } // Member pointer types like "const int A::*" are represented by having RTTI // for "int A::*" and separately storing the const qualifier. if (const auto *MPTy = T->getAs()) T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(), MPTy->getClass()); // Pointer types like "const int * const *" are represented by having RTTI // for "const int **" and separately storing the const qualifier. if (T->isPointerType()) T = Context.getPointerType(PointeeType.getUnqualifiedType()); return T; } CatchTypeInfo MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type, QualType CatchHandlerType) { // TypeDescriptors for exceptions never have qualified pointer types, // qualifiers are stored separately in order to support qualification // conversions. bool IsConst, IsVolatile, IsUnaligned; Type = decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile, IsUnaligned); bool IsReference = CatchHandlerType->isReferenceType(); uint32_t Flags = 0; if (IsConst) Flags |= 1; if (IsVolatile) Flags |= 2; if (IsUnaligned) Flags |= 4; if (IsReference) Flags |= 8; return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(), Flags}; } /// Gets a TypeDescriptor. Returns a llvm::Constant * rather than a /// llvm::GlobalVariable * because different type descriptors have different /// types, and need to be abstracted. They are abstracting by casting the /// address to an Int8PtrTy. llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) { SmallString<256> MangledName; { llvm::raw_svector_ostream Out(MangledName); getMangleContext().mangleCXXRTTI(Type, Out); } // Check to see if we've already declared this TypeDescriptor. if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) return GV; // Note for the future: If we would ever like to do deferred emission of // RTTI, check if emitting vtables opportunistically need any adjustment. // Compute the fields for the TypeDescriptor. SmallString<256> TypeInfoString; { llvm::raw_svector_ostream Out(TypeInfoString); getMangleContext().mangleCXXRTTIName(Type, Out); } // Declare and initialize the TypeDescriptor. llvm::Constant *Fields[] = { getTypeInfoVTable(CGM), // VFPtr llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)}; llvm::StructType *TypeDescriptorType = getTypeDescriptorType(TypeInfoString); auto *Var = new llvm::GlobalVariable( CGM.getModule(), TypeDescriptorType, /*isConstant=*/false, getLinkageForRTTI(Type), llvm::ConstantStruct::get(TypeDescriptorType, Fields), MangledName); if (Var->isWeakForLinker()) Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName())); return Var; } /// Gets or a creates a Microsoft CompleteObjectLocator. llvm::GlobalVariable * MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD, const VPtrInfo &Info) { return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info); } void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) { if (auto *ctor = dyn_cast(GD.getDecl())) { // There are no constructor variants, always emit the complete destructor. llvm::Function *Fn = CGM.codegenCXXStructor(GD.getWithCtorType(Ctor_Complete)); CGM.maybeSetTrivialComdat(*ctor, *Fn); return; } auto *dtor = cast(GD.getDecl()); // Emit the base destructor if the base and complete (vbase) destructors are // equivalent. This effectively implements -mconstructor-aliases as part of // the ABI. if (GD.getDtorType() == Dtor_Complete && dtor->getParent()->getNumVBases() == 0) GD = GD.getWithDtorType(Dtor_Base); // The base destructor is equivalent to the base destructor of its // base class if there is exactly one non-virtual base class with a // non-trivial destructor, there are no fields with a non-trivial // destructor, and the body of the destructor is trivial. if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(dtor)) return; llvm::Function *Fn = CGM.codegenCXXStructor(GD); if (Fn->isWeakForLinker()) Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName())); } llvm::Function * MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, CXXCtorType CT) { assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); // Calculate the mangled name. SmallString<256> ThunkName; llvm::raw_svector_ostream Out(ThunkName); getMangleContext().mangleName(GlobalDecl(CD, CT), Out); // If the thunk has been generated previously, just return it. if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) return cast(GV); // Create the llvm::Function. const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT); llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); const CXXRecordDecl *RD = CD->getParent(); QualType RecordTy = getContext().getRecordType(RD); llvm::Function *ThunkFn = llvm::Function::Create( ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule()); ThunkFn->setCallingConv(static_cast( FnInfo.getEffectiveCallingConvention())); if (ThunkFn->isWeakForLinker()) ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); bool IsCopy = CT == Ctor_CopyingClosure; // Start codegen. CodeGenFunction CGF(CGM); CGF.CurGD = GlobalDecl(CD, Ctor_Complete); // Build FunctionArgs. FunctionArgList FunctionArgs; // A constructor always starts with a 'this' pointer as its first argument. buildThisParam(CGF, FunctionArgs); // Following the 'this' pointer is a reference to the source object that we // are copying from. ImplicitParamDecl SrcParam( getContext(), /*DC=*/nullptr, SourceLocation(), &getContext().Idents.get("src"), getContext().getLValueReferenceType(RecordTy, /*SpelledAsLValue=*/true), ImplicitParamKind::Other); if (IsCopy) FunctionArgs.push_back(&SrcParam); // Constructors for classes which utilize virtual bases have an additional // parameter which indicates whether or not it is being delegated to by a more // derived constructor. ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr, SourceLocation(), &getContext().Idents.get("is_most_derived"), getContext().IntTy, ImplicitParamKind::Other); // Only add the parameter to the list if the class has virtual bases. if (RD->getNumVBases() > 0) FunctionArgs.push_back(&IsMostDerived); // Start defining the function. auto NL = ApplyDebugLocation::CreateEmpty(CGF); CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, FunctionArgs, CD->getLocation(), SourceLocation()); // Create a scope with an artificial location for the body of this function. auto AL = ApplyDebugLocation::CreateArtificial(CGF); setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); llvm::Value *This = getThisValue(CGF); llvm::Value *SrcVal = IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src") : nullptr; CallArgList Args; // Push the this ptr. Args.add(RValue::get(This), CD->getThisType()); // Push the src ptr. if (SrcVal) Args.add(RValue::get(SrcVal), SrcParam.getType()); // Add the rest of the default arguments. SmallVector ArgVec; ArrayRef params = CD->parameters().drop_front(IsCopy ? 1 : 0); for (const ParmVarDecl *PD : params) { assert(PD->hasDefaultArg() && "ctor closure lacks default args"); ArgVec.push_back(PD->getDefaultArg()); } CodeGenFunction::RunCleanupsScope Cleanups(CGF); const auto *FPT = CD->getType()->castAs(); CGF.EmitCallArgs(Args, FPT, llvm::ArrayRef(ArgVec), CD, IsCopy ? 1 : 0); // Insert any ABI-specific implicit constructor arguments. AddedStructorArgCounts ExtraArgs = addImplicitConstructorArgs(CGF, CD, Ctor_Complete, /*ForVirtualBase=*/false, /*Delegating=*/false, Args); // Call the destructor with our arguments. llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CD, Ctor_Complete)); const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall( Args, CD, Ctor_Complete, ExtraArgs.Prefix, ExtraArgs.Suffix); CGF.EmitCall(CalleeInfo, Callee, ReturnValueSlot(), Args); Cleanups.ForceCleanup(); // Emit the ret instruction, remove any temporary instructions created for the // aid of CodeGen. CGF.FinishFunction(SourceLocation()); return ThunkFn; } llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T, uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex) { assert(!T->isReferenceType()); CXXRecordDecl *RD = T->getAsCXXRecordDecl(); const CXXConstructorDecl *CD = RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr; CXXCtorType CT = Ctor_Complete; if (CD) if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1) CT = Ctor_CopyingClosure; uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity(); SmallString<256> MangledName; { llvm::raw_svector_ostream Out(MangledName); getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset, VBPtrOffset, VBIndex, Out); } if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) return getImageRelativeConstant(GV); // The TypeDescriptor is used by the runtime to determine if a catch handler // is appropriate for the exception object. llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T)); // The runtime is responsible for calling the copy constructor if the // exception is caught by value. llvm::Constant *CopyCtor; if (CD) { if (CT == Ctor_CopyingClosure) CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure); else CopyCtor = CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); } else { CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy); } CopyCtor = getImageRelativeConstant(CopyCtor); bool IsScalar = !RD; bool HasVirtualBases = false; bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason. QualType PointeeType = T; if (T->isPointerType()) PointeeType = T->getPointeeType(); if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) { HasVirtualBases = RD->getNumVBases() > 0; if (IdentifierInfo *II = RD->getIdentifier()) IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace(); } // Encode the relevant CatchableType properties into the Flags bitfield. // FIXME: Figure out how bits 2 or 8 can get set. uint32_t Flags = 0; if (IsScalar) Flags |= 1; if (HasVirtualBases) Flags |= 4; if (IsStdBadAlloc) Flags |= 16; llvm::Constant *Fields[] = { llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags TD, // TypeDescriptor llvm::ConstantInt::get(CGM.IntTy, NVOffset), // NonVirtualAdjustment llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr llvm::ConstantInt::get(CGM.IntTy, VBIndex), // VBTableIndex llvm::ConstantInt::get(CGM.IntTy, Size), // Size CopyCtor // CopyCtor }; llvm::StructType *CTType = getCatchableTypeType(); auto *GV = new llvm::GlobalVariable( CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(T), llvm::ConstantStruct::get(CTType, Fields), MangledName); GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); GV->setSection(".xdata"); if (GV->isWeakForLinker()) GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); return getImageRelativeConstant(GV); } llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) { assert(!T->isReferenceType()); // See if we've already generated a CatchableTypeArray for this type before. llvm::GlobalVariable *&CTA = CatchableTypeArrays[T]; if (CTA) return CTA; // Ensure that we don't have duplicate entries in our CatchableTypeArray by // using a SmallSetVector. Duplicates may arise due to virtual bases // occurring more than once in the hierarchy. llvm::SmallSetVector CatchableTypes; // C++14 [except.handle]p3: // A handler is a match for an exception object of type E if [...] // - the handler is of type cv T or cv T& and T is an unambiguous public // base class of E, or // - the handler is of type cv T or const T& where T is a pointer type and // E is a pointer type that can be converted to T by [...] // - a standard pointer conversion (4.10) not involving conversions to // pointers to private or protected or ambiguous classes const CXXRecordDecl *MostDerivedClass = nullptr; bool IsPointer = T->isPointerType(); if (IsPointer) MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl(); else MostDerivedClass = T->getAsCXXRecordDecl(); // Collect all the unambiguous public bases of the MostDerivedClass. if (MostDerivedClass) { const ASTContext &Context = getContext(); const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(MostDerivedClass); MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext(); SmallVector Classes; serializeClassHierarchy(Classes, MostDerivedClass); Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); detectAmbiguousBases(Classes); for (const MSRTTIClass &Class : Classes) { // Skip any ambiguous or private bases. if (Class.Flags & (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous)) continue; // Write down how to convert from a derived pointer to a base pointer. uint32_t OffsetInVBTable = 0; int32_t VBPtrOffset = -1; if (Class.VirtualRoot) { OffsetInVBTable = VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4; VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity(); } // Turn our record back into a pointer if the exception object is a // pointer. QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0); if (IsPointer) RTTITy = Context.getPointerType(RTTITy); CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable)); } } // C++14 [except.handle]p3: // A handler is a match for an exception object of type E if // - The handler is of type cv T or cv T& and E and T are the same type // (ignoring the top-level cv-qualifiers) CatchableTypes.insert(getCatchableType(T)); // C++14 [except.handle]p3: // A handler is a match for an exception object of type E if // - the handler is of type cv T or const T& where T is a pointer type and // E is a pointer type that can be converted to T by [...] // - a standard pointer conversion (4.10) not involving conversions to // pointers to private or protected or ambiguous classes // // C++14 [conv.ptr]p2: // A prvalue of type "pointer to cv T," where T is an object type, can be // converted to a prvalue of type "pointer to cv void". if (IsPointer && T->getPointeeType()->isObjectType()) CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); // C++14 [except.handle]p3: // A handler is a match for an exception object of type E if [...] // - the handler is of type cv T or const T& where T is a pointer or // pointer to member type and E is std::nullptr_t. // // We cannot possibly list all possible pointer types here, making this // implementation incompatible with the standard. However, MSVC includes an // entry for pointer-to-void in this case. Let's do the same. if (T->isNullPtrType()) CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); uint32_t NumEntries = CatchableTypes.size(); llvm::Type *CTType = getImageRelativeType(getCatchableTypeType()->getPointerTo()); llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries); llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries); llvm::Constant *Fields[] = { llvm::ConstantInt::get(CGM.IntTy, NumEntries), // NumEntries llvm::ConstantArray::get( AT, llvm::ArrayRef(CatchableTypes.begin(), CatchableTypes.end())) // CatchableTypes }; SmallString<256> MangledName; { llvm::raw_svector_ostream Out(MangledName); getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out); } CTA = new llvm::GlobalVariable( CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(T), llvm::ConstantStruct::get(CTAType, Fields), MangledName); CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); CTA->setSection(".xdata"); if (CTA->isWeakForLinker()) CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName())); return CTA; } llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) { bool IsConst, IsVolatile, IsUnaligned; T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile, IsUnaligned); // The CatchableTypeArray enumerates the various (CV-unqualified) types that // the exception object may be caught as. llvm::GlobalVariable *CTA = getCatchableTypeArray(T); // The first field in a CatchableTypeArray is the number of CatchableTypes. // This is used as a component of the mangled name which means that we need to // know what it is in order to see if we have previously generated the // ThrowInfo. uint32_t NumEntries = cast(CTA->getInitializer()->getAggregateElement(0U)) ->getLimitedValue(); SmallString<256> MangledName; { llvm::raw_svector_ostream Out(MangledName); getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned, NumEntries, Out); } // Reuse a previously generated ThrowInfo if we have generated an appropriate // one before. if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) return GV; // The RTTI TypeDescriptor uses an unqualified type but catch clauses must // be at least as CV qualified. Encode this requirement into the Flags // bitfield. uint32_t Flags = 0; if (IsConst) Flags |= 1; if (IsVolatile) Flags |= 2; if (IsUnaligned) Flags |= 4; // The cleanup-function (a destructor) must be called when the exception // object's lifetime ends. llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy); if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) if (CXXDestructorDecl *DtorD = RD->getDestructor()) if (!DtorD->isTrivial()) CleanupFn = CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete)); // This is unused as far as we can tell, initialize it to null. llvm::Constant *ForwardCompat = getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy)); llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant(CTA); llvm::StructType *TIType = getThrowInfoType(); llvm::Constant *Fields[] = { llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags getImageRelativeConstant(CleanupFn), // CleanupFn ForwardCompat, // ForwardCompat PointerToCatchableTypes // CatchableTypeArray }; auto *GV = new llvm::GlobalVariable( CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(T), llvm::ConstantStruct::get(TIType, Fields), MangledName.str()); GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); GV->setSection(".xdata"); if (GV->isWeakForLinker()) GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); return GV; } void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) { const Expr *SubExpr = E->getSubExpr(); assert(SubExpr && "SubExpr cannot be null"); QualType ThrowType = SubExpr->getType(); // The exception object lives on the stack and it's address is passed to the // runtime function. Address AI = CGF.CreateMemTemp(ThrowType); CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(), /*IsInit=*/true); // The so-called ThrowInfo is used to describe how the exception object may be // caught. llvm::GlobalVariable *TI = getThrowInfo(ThrowType); // Call into the runtime to throw the exception. llvm::Value *Args[] = { AI.getPointer(), TI }; CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args); } std::pair MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This, const CXXRecordDecl *RD) { std::tie(This, std::ignore, RD) = performBaseAdjustment(CGF, This, QualType(RD->getTypeForDecl(), 0)); return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD}; } bool MicrosoftCXXABI::isPermittedToBeHomogeneousAggregate( const CXXRecordDecl *RD) const { // All aggregates are permitted to be HFA on non-ARM platforms, which mostly // affects vectorcall on x64/x86. if (!CGM.getTarget().getTriple().isAArch64()) return true; // MSVC Windows on Arm64 has its own rules for determining if a type is HFA // that are inconsistent with the AAPCS64 ABI. The following are our best // determination of those rules so far, based on observation of MSVC's // behavior. if (RD->isEmpty()) return false; if (RD->isPolymorphic()) return false; if (RD->hasNonTrivialCopyAssignment()) return false; if (RD->hasNonTrivialDestructor()) return false; if (RD->hasNonTrivialDefaultConstructor()) return false; // These two are somewhat redundant given the caller // (ABIInfo::isHomogeneousAggregate) checks the bases and fields, but that // caller doesn't consider empty bases/fields to be non-homogenous, but it // looks like Microsoft's AArch64 ABI does care about these empty types & // anything containing/derived from one is non-homogeneous. // Instead we could add another CXXABI entry point to query this property and // have ABIInfo::isHomogeneousAggregate use that property. // I don't think any other of the features listed above could be true of a // base/field while not true of the outer struct. For example, if you have a // base/field that has an non-trivial copy assignment/dtor/default ctor, then // the outer struct's corresponding operation must be non-trivial. for (const CXXBaseSpecifier &B : RD->bases()) { if (const CXXRecordDecl *FRD = B.getType()->getAsCXXRecordDecl()) { if (!isPermittedToBeHomogeneousAggregate(FRD)) return false; } } // empty fields seem to be caught by the ABIInfo::isHomogeneousAggregate // checking for padding - but maybe there are ways to end up with an empty // field without padding? Not that I know of, so don't check fields here & // rely on the padding check. return true; }