1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of classes 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGDebugInfo.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/CXXInheritance.h" 21 #include "clang/AST/CharUnits.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/EvaluatedExprVisitor.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtCXX.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/TargetBuiltins.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/Transforms/Utils/SanitizerStats.h" 32 #include <optional> 33 34 using namespace clang; 35 using namespace CodeGen; 36 37 /// Return the best known alignment for an unknown pointer to a 38 /// particular class. 39 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 40 if (!RD->hasDefinition()) 41 return CharUnits::One(); // Hopefully won't be used anywhere. 42 43 auto &layout = getContext().getASTRecordLayout(RD); 44 45 // If the class is final, then we know that the pointer points to an 46 // object of that type and can use the full alignment. 47 if (RD->isEffectivelyFinal()) 48 return layout.getAlignment(); 49 50 // Otherwise, we have to assume it could be a subclass. 51 return layout.getNonVirtualAlignment(); 52 } 53 54 /// Return the smallest possible amount of storage that might be allocated 55 /// starting from the beginning of an object of a particular class. 56 /// 57 /// This may be smaller than sizeof(RD) if RD has virtual base classes. 58 CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) { 59 if (!RD->hasDefinition()) 60 return CharUnits::One(); 61 62 auto &layout = getContext().getASTRecordLayout(RD); 63 64 // If the class is final, then we know that the pointer points to an 65 // object of that type and can use the full alignment. 66 if (RD->isEffectivelyFinal()) 67 return layout.getSize(); 68 69 // Otherwise, we have to assume it could be a subclass. 70 return std::max(layout.getNonVirtualSize(), CharUnits::One()); 71 } 72 73 /// Return the best known alignment for a pointer to a virtual base, 74 /// given the alignment of a pointer to the derived class. 75 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 76 const CXXRecordDecl *derivedClass, 77 const CXXRecordDecl *vbaseClass) { 78 // The basic idea here is that an underaligned derived pointer might 79 // indicate an underaligned base pointer. 80 81 assert(vbaseClass->isCompleteDefinition()); 82 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 83 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 84 85 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 86 expectedVBaseAlign); 87 } 88 89 CharUnits 90 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 91 const CXXRecordDecl *baseDecl, 92 CharUnits expectedTargetAlign) { 93 // If the base is an incomplete type (which is, alas, possible with 94 // member pointers), be pessimistic. 95 if (!baseDecl->isCompleteDefinition()) 96 return std::min(actualBaseAlign, expectedTargetAlign); 97 98 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 99 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 100 101 // If the class is properly aligned, assume the target offset is, too. 102 // 103 // This actually isn't necessarily the right thing to do --- if the 104 // class is a complete object, but it's only properly aligned for a 105 // base subobject, then the alignments of things relative to it are 106 // probably off as well. (Note that this requires the alignment of 107 // the target to be greater than the NV alignment of the derived 108 // class.) 109 // 110 // However, our approach to this kind of under-alignment can only 111 // ever be best effort; after all, we're never going to propagate 112 // alignments through variables or parameters. Note, in particular, 113 // that constructing a polymorphic type in an address that's less 114 // than pointer-aligned will generally trap in the constructor, 115 // unless we someday add some sort of attribute to change the 116 // assumed alignment of 'this'. So our goal here is pretty much 117 // just to allow the user to explicitly say that a pointer is 118 // under-aligned and then safely access its fields and vtables. 119 if (actualBaseAlign >= expectedBaseAlign) { 120 return expectedTargetAlign; 121 } 122 123 // Otherwise, we might be offset by an arbitrary multiple of the 124 // actual alignment. The correct adjustment is to take the min of 125 // the two alignments. 126 return std::min(actualBaseAlign, expectedTargetAlign); 127 } 128 129 Address CodeGenFunction::LoadCXXThisAddress() { 130 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 131 auto *MD = cast<CXXMethodDecl>(CurFuncDecl); 132 133 // Lazily compute CXXThisAlignment. 134 if (CXXThisAlignment.isZero()) { 135 // Just use the best known alignment for the parent. 136 // TODO: if we're currently emitting a complete-object ctor/dtor, 137 // we can always use the complete-object alignment. 138 CXXThisAlignment = CGM.getClassPointerAlignment(MD->getParent()); 139 } 140 141 llvm::Type *Ty = ConvertType(MD->getThisType()->getPointeeType()); 142 return Address(LoadCXXThis(), Ty, CXXThisAlignment, KnownNonNull); 143 } 144 145 /// Emit the address of a field using a member data pointer. 146 /// 147 /// \param E Only used for emergency diagnostics 148 Address 149 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 150 llvm::Value *memberPtr, 151 const MemberPointerType *memberPtrType, 152 LValueBaseInfo *BaseInfo, 153 TBAAAccessInfo *TBAAInfo) { 154 // Ask the ABI to compute the actual address. 155 llvm::Value *ptr = 156 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 157 memberPtr, memberPtrType); 158 159 QualType memberType = memberPtrType->getPointeeType(); 160 CharUnits memberAlign = 161 CGM.getNaturalTypeAlignment(memberType, BaseInfo, TBAAInfo); 162 memberAlign = 163 CGM.getDynamicOffsetAlignment(base.getAlignment(), 164 memberPtrType->getClass()->getAsCXXRecordDecl(), 165 memberAlign); 166 return Address(ptr, ConvertTypeForMem(memberPtrType->getPointeeType()), 167 memberAlign); 168 } 169 170 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 171 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 172 CastExpr::path_const_iterator End) { 173 CharUnits Offset = CharUnits::Zero(); 174 175 const ASTContext &Context = getContext(); 176 const CXXRecordDecl *RD = DerivedClass; 177 178 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 179 const CXXBaseSpecifier *Base = *I; 180 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 181 182 // Get the layout. 183 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 184 185 const auto *BaseDecl = 186 cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl()); 187 188 // Add the offset. 189 Offset += Layout.getBaseClassOffset(BaseDecl); 190 191 RD = BaseDecl; 192 } 193 194 return Offset; 195 } 196 197 llvm::Constant * 198 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 199 CastExpr::path_const_iterator PathBegin, 200 CastExpr::path_const_iterator PathEnd) { 201 assert(PathBegin != PathEnd && "Base path should not be empty!"); 202 203 CharUnits Offset = 204 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 205 if (Offset.isZero()) 206 return nullptr; 207 208 llvm::Type *PtrDiffTy = 209 Types.ConvertType(getContext().getPointerDiffType()); 210 211 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 212 } 213 214 /// Gets the address of a direct base class within a complete object. 215 /// This should only be used for (1) non-virtual bases or (2) virtual bases 216 /// when the type is known to be complete (e.g. in complete destructors). 217 /// 218 /// The object pointed to by 'This' is assumed to be non-null. 219 Address 220 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 221 const CXXRecordDecl *Derived, 222 const CXXRecordDecl *Base, 223 bool BaseIsVirtual) { 224 // 'this' must be a pointer (in some address space) to Derived. 225 assert(This.getElementType() == ConvertType(Derived)); 226 227 // Compute the offset of the virtual base. 228 CharUnits Offset; 229 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 230 if (BaseIsVirtual) 231 Offset = Layout.getVBaseClassOffset(Base); 232 else 233 Offset = Layout.getBaseClassOffset(Base); 234 235 // Shift and cast down to the base type. 236 // TODO: for complete types, this should be possible with a GEP. 237 Address V = This; 238 if (!Offset.isZero()) { 239 V = V.withElementType(Int8Ty); 240 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 241 } 242 return V.withElementType(ConvertType(Base)); 243 } 244 245 static Address 246 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 247 CharUnits nonVirtualOffset, 248 llvm::Value *virtualOffset, 249 const CXXRecordDecl *derivedClass, 250 const CXXRecordDecl *nearestVBase) { 251 // Assert that we have something to do. 252 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 253 254 // Compute the offset from the static and dynamic components. 255 llvm::Value *baseOffset; 256 if (!nonVirtualOffset.isZero()) { 257 llvm::Type *OffsetType = 258 (CGF.CGM.getTarget().getCXXABI().isItaniumFamily() && 259 CGF.CGM.getItaniumVTableContext().isRelativeLayout()) 260 ? CGF.Int32Ty 261 : CGF.PtrDiffTy; 262 baseOffset = 263 llvm::ConstantInt::get(OffsetType, nonVirtualOffset.getQuantity()); 264 if (virtualOffset) { 265 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 266 } 267 } else { 268 baseOffset = virtualOffset; 269 } 270 271 // Apply the base offset. 272 llvm::Value *ptr = addr.getPointer(); 273 ptr = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, ptr, baseOffset, "add.ptr"); 274 275 // If we have a virtual component, the alignment of the result will 276 // be relative only to the known alignment of that vbase. 277 CharUnits alignment; 278 if (virtualOffset) { 279 assert(nearestVBase && "virtual offset without vbase?"); 280 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 281 derivedClass, nearestVBase); 282 } else { 283 alignment = addr.getAlignment(); 284 } 285 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 286 287 return Address(ptr, CGF.Int8Ty, alignment); 288 } 289 290 Address CodeGenFunction::GetAddressOfBaseClass( 291 Address Value, const CXXRecordDecl *Derived, 292 CastExpr::path_const_iterator PathBegin, 293 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 294 SourceLocation Loc) { 295 assert(PathBegin != PathEnd && "Base path should not be empty!"); 296 297 CastExpr::path_const_iterator Start = PathBegin; 298 const CXXRecordDecl *VBase = nullptr; 299 300 // Sema has done some convenient canonicalization here: if the 301 // access path involved any virtual steps, the conversion path will 302 // *start* with a step down to the correct virtual base subobject, 303 // and hence will not require any further steps. 304 if ((*Start)->isVirtual()) { 305 VBase = cast<CXXRecordDecl>( 306 (*Start)->getType()->castAs<RecordType>()->getDecl()); 307 ++Start; 308 } 309 310 // Compute the static offset of the ultimate destination within its 311 // allocating subobject (the virtual base, if there is one, or else 312 // the "complete" object that we see). 313 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 314 VBase ? VBase : Derived, Start, PathEnd); 315 316 // If there's a virtual step, we can sometimes "devirtualize" it. 317 // For now, that's limited to when the derived type is final. 318 // TODO: "devirtualize" this for accesses to known-complete objects. 319 if (VBase && Derived->hasAttr<FinalAttr>()) { 320 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 321 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 322 NonVirtualOffset += vBaseOffset; 323 VBase = nullptr; // we no longer have a virtual step 324 } 325 326 // Get the base pointer type. 327 llvm::Type *BaseValueTy = ConvertType((PathEnd[-1])->getType()); 328 llvm::Type *PtrTy = llvm::PointerType::get( 329 CGM.getLLVMContext(), Value.getType()->getPointerAddressSpace()); 330 331 QualType DerivedTy = getContext().getRecordType(Derived); 332 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 333 334 // If the static offset is zero and we don't have a virtual step, 335 // just do a bitcast; null checks are unnecessary. 336 if (NonVirtualOffset.isZero() && !VBase) { 337 if (sanitizePerformTypeCheck()) { 338 SanitizerSet SkippedChecks; 339 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue); 340 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(), 341 DerivedTy, DerivedAlign, SkippedChecks); 342 } 343 return Value.withElementType(BaseValueTy); 344 } 345 346 llvm::BasicBlock *origBB = nullptr; 347 llvm::BasicBlock *endBB = nullptr; 348 349 // Skip over the offset (and the vtable load) if we're supposed to 350 // null-check the pointer. 351 if (NullCheckValue) { 352 origBB = Builder.GetInsertBlock(); 353 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 354 endBB = createBasicBlock("cast.end"); 355 356 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer()); 357 Builder.CreateCondBr(isNull, endBB, notNullBB); 358 EmitBlock(notNullBB); 359 } 360 361 if (sanitizePerformTypeCheck()) { 362 SanitizerSet SkippedChecks; 363 SkippedChecks.set(SanitizerKind::Null, true); 364 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 365 Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks); 366 } 367 368 // Compute the virtual offset. 369 llvm::Value *VirtualOffset = nullptr; 370 if (VBase) { 371 VirtualOffset = 372 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 373 } 374 375 // Apply both offsets. 376 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 377 VirtualOffset, Derived, VBase); 378 379 // Cast to the destination type. 380 Value = Value.withElementType(BaseValueTy); 381 382 // Build a phi if we needed a null check. 383 if (NullCheckValue) { 384 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 385 Builder.CreateBr(endBB); 386 EmitBlock(endBB); 387 388 llvm::PHINode *PHI = Builder.CreatePHI(PtrTy, 2, "cast.result"); 389 PHI->addIncoming(Value.getPointer(), notNullBB); 390 PHI->addIncoming(llvm::Constant::getNullValue(PtrTy), origBB); 391 Value = Value.withPointer(PHI, NotKnownNonNull); 392 } 393 394 return Value; 395 } 396 397 Address 398 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 399 const CXXRecordDecl *Derived, 400 CastExpr::path_const_iterator PathBegin, 401 CastExpr::path_const_iterator PathEnd, 402 bool NullCheckValue) { 403 assert(PathBegin != PathEnd && "Base path should not be empty!"); 404 405 QualType DerivedTy = 406 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 407 unsigned AddrSpace = BaseAddr.getAddressSpace(); 408 llvm::Type *DerivedValueTy = ConvertType(DerivedTy); 409 llvm::Type *DerivedPtrTy = 410 llvm::PointerType::get(getLLVMContext(), AddrSpace); 411 412 llvm::Value *NonVirtualOffset = 413 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 414 415 if (!NonVirtualOffset) { 416 // No offset, we can just cast back. 417 return BaseAddr.withElementType(DerivedValueTy); 418 } 419 420 llvm::BasicBlock *CastNull = nullptr; 421 llvm::BasicBlock *CastNotNull = nullptr; 422 llvm::BasicBlock *CastEnd = nullptr; 423 424 if (NullCheckValue) { 425 CastNull = createBasicBlock("cast.null"); 426 CastNotNull = createBasicBlock("cast.notnull"); 427 CastEnd = createBasicBlock("cast.end"); 428 429 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer()); 430 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 431 EmitBlock(CastNotNull); 432 } 433 434 // Apply the offset. 435 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy); 436 Value = Builder.CreateInBoundsGEP( 437 Int8Ty, Value, Builder.CreateNeg(NonVirtualOffset), "sub.ptr"); 438 439 // Just cast. 440 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 441 442 // Produce a PHI if we had a null-check. 443 if (NullCheckValue) { 444 Builder.CreateBr(CastEnd); 445 EmitBlock(CastNull); 446 Builder.CreateBr(CastEnd); 447 EmitBlock(CastEnd); 448 449 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 450 PHI->addIncoming(Value, CastNotNull); 451 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 452 Value = PHI; 453 } 454 455 return Address(Value, DerivedValueTy, CGM.getClassPointerAlignment(Derived)); 456 } 457 458 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 459 bool ForVirtualBase, 460 bool Delegating) { 461 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 462 // This constructor/destructor does not need a VTT parameter. 463 return nullptr; 464 } 465 466 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 467 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 468 469 uint64_t SubVTTIndex; 470 471 if (Delegating) { 472 // If this is a delegating constructor call, just load the VTT. 473 return LoadCXXVTT(); 474 } else if (RD == Base) { 475 // If the record matches the base, this is the complete ctor/dtor 476 // variant calling the base variant in a class with virtual bases. 477 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 478 "doing no-op VTT offset in base dtor/ctor?"); 479 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 480 SubVTTIndex = 0; 481 } else { 482 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 483 CharUnits BaseOffset = ForVirtualBase ? 484 Layout.getVBaseClassOffset(Base) : 485 Layout.getBaseClassOffset(Base); 486 487 SubVTTIndex = 488 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 489 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 490 } 491 492 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 493 // A VTT parameter was passed to the constructor, use it. 494 llvm::Value *VTT = LoadCXXVTT(); 495 return Builder.CreateConstInBoundsGEP1_64(VoidPtrTy, VTT, SubVTTIndex); 496 } else { 497 // We're the complete constructor, so get the VTT by name. 498 llvm::GlobalValue *VTT = CGM.getVTables().GetAddrOfVTT(RD); 499 return Builder.CreateConstInBoundsGEP2_64( 500 VTT->getValueType(), VTT, 0, SubVTTIndex); 501 } 502 } 503 504 namespace { 505 /// Call the destructor for a direct base class. 506 struct CallBaseDtor final : EHScopeStack::Cleanup { 507 const CXXRecordDecl *BaseClass; 508 bool BaseIsVirtual; 509 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 510 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 511 512 void Emit(CodeGenFunction &CGF, Flags flags) override { 513 const CXXRecordDecl *DerivedClass = 514 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 515 516 const CXXDestructorDecl *D = BaseClass->getDestructor(); 517 // We are already inside a destructor, so presumably the object being 518 // destroyed should have the expected type. 519 QualType ThisTy = D->getThisObjectType(); 520 Address Addr = 521 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 522 DerivedClass, BaseClass, 523 BaseIsVirtual); 524 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 525 /*Delegating=*/false, Addr, ThisTy); 526 } 527 }; 528 529 /// A visitor which checks whether an initializer uses 'this' in a 530 /// way which requires the vtable to be properly set. 531 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 532 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 533 534 bool UsesThis; 535 536 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 537 538 // Black-list all explicit and implicit references to 'this'. 539 // 540 // Do we need to worry about external references to 'this' derived 541 // from arbitrary code? If so, then anything which runs arbitrary 542 // external code might potentially access the vtable. 543 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 544 }; 545 } // end anonymous namespace 546 547 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 548 DynamicThisUseChecker Checker(C); 549 Checker.Visit(Init); 550 return Checker.UsesThis; 551 } 552 553 static void EmitBaseInitializer(CodeGenFunction &CGF, 554 const CXXRecordDecl *ClassDecl, 555 CXXCtorInitializer *BaseInit) { 556 assert(BaseInit->isBaseInitializer() && 557 "Must have base initializer!"); 558 559 Address ThisPtr = CGF.LoadCXXThisAddress(); 560 561 const Type *BaseType = BaseInit->getBaseClass(); 562 const auto *BaseClassDecl = 563 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 564 565 bool isBaseVirtual = BaseInit->isBaseVirtual(); 566 567 // If the initializer for the base (other than the constructor 568 // itself) accesses 'this' in any way, we need to initialize the 569 // vtables. 570 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 571 CGF.InitializeVTablePointers(ClassDecl); 572 573 // We can pretend to be a complete class because it only matters for 574 // virtual bases, and we only do virtual bases for complete ctors. 575 Address V = 576 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 577 BaseClassDecl, 578 isBaseVirtual); 579 AggValueSlot AggSlot = 580 AggValueSlot::forAddr( 581 V, Qualifiers(), 582 AggValueSlot::IsDestructed, 583 AggValueSlot::DoesNotNeedGCBarriers, 584 AggValueSlot::IsNotAliased, 585 CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual)); 586 587 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 588 589 if (CGF.CGM.getLangOpts().Exceptions && 590 !BaseClassDecl->hasTrivialDestructor()) 591 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 592 isBaseVirtual); 593 } 594 595 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 596 auto *CD = dyn_cast<CXXConstructorDecl>(D); 597 if (!(CD && CD->isCopyOrMoveConstructor()) && 598 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 599 return false; 600 601 // We can emit a memcpy for a trivial copy or move constructor/assignment. 602 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 603 return true; 604 605 // We *must* emit a memcpy for a defaulted union copy or move op. 606 if (D->getParent()->isUnion() && D->isDefaulted()) 607 return true; 608 609 return false; 610 } 611 612 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 613 CXXCtorInitializer *MemberInit, 614 LValue &LHS) { 615 FieldDecl *Field = MemberInit->getAnyMember(); 616 if (MemberInit->isIndirectMemberInitializer()) { 617 // If we are initializing an anonymous union field, drill down to the field. 618 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 619 for (const auto *I : IndirectField->chain()) 620 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 621 } else { 622 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 623 } 624 } 625 626 static void EmitMemberInitializer(CodeGenFunction &CGF, 627 const CXXRecordDecl *ClassDecl, 628 CXXCtorInitializer *MemberInit, 629 const CXXConstructorDecl *Constructor, 630 FunctionArgList &Args) { 631 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 632 assert(MemberInit->isAnyMemberInitializer() && 633 "Must have member initializer!"); 634 assert(MemberInit->getInit() && "Must have initializer!"); 635 636 // non-static data member initializers. 637 FieldDecl *Field = MemberInit->getAnyMember(); 638 QualType FieldType = Field->getType(); 639 640 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 641 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 642 LValue LHS; 643 644 // If a base constructor is being emitted, create an LValue that has the 645 // non-virtual alignment. 646 if (CGF.CurGD.getCtorType() == Ctor_Base) 647 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy); 648 else 649 LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 650 651 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 652 653 // Special case: if we are in a copy or move constructor, and we are copying 654 // an array of PODs or classes with trivial copy constructors, ignore the 655 // AST and perform the copy we know is equivalent. 656 // FIXME: This is hacky at best... if we had a bit more explicit information 657 // in the AST, we could generalize it more easily. 658 const ConstantArrayType *Array 659 = CGF.getContext().getAsConstantArrayType(FieldType); 660 if (Array && Constructor->isDefaulted() && 661 Constructor->isCopyOrMoveConstructor()) { 662 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 663 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 664 if (BaseElementTy.isPODType(CGF.getContext()) || 665 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 666 unsigned SrcArgIndex = 667 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 668 llvm::Value *SrcPtr 669 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 670 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 671 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 672 673 // Copy the aggregate. 674 CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field), 675 LHS.isVolatileQualified()); 676 // Ensure that we destroy the objects if an exception is thrown later in 677 // the constructor. 678 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 679 if (CGF.needsEHCleanup(dtorKind)) 680 CGF.pushEHDestroy(dtorKind, LHS.getAddress(CGF), FieldType); 681 return; 682 } 683 } 684 685 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit()); 686 } 687 688 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 689 Expr *Init) { 690 QualType FieldType = Field->getType(); 691 switch (getEvaluationKind(FieldType)) { 692 case TEK_Scalar: 693 if (LHS.isSimple()) { 694 EmitExprAsInit(Init, Field, LHS, false); 695 } else { 696 RValue RHS = RValue::get(EmitScalarExpr(Init)); 697 EmitStoreThroughLValue(RHS, LHS); 698 } 699 break; 700 case TEK_Complex: 701 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 702 break; 703 case TEK_Aggregate: { 704 AggValueSlot Slot = AggValueSlot::forLValue( 705 LHS, *this, AggValueSlot::IsDestructed, 706 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 707 getOverlapForFieldInit(Field), AggValueSlot::IsNotZeroed, 708 // Checks are made by the code that calls constructor. 709 AggValueSlot::IsSanitizerChecked); 710 EmitAggExpr(Init, Slot); 711 break; 712 } 713 } 714 715 // Ensure that we destroy this object if an exception is thrown 716 // later in the constructor. 717 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 718 if (needsEHCleanup(dtorKind)) 719 pushEHDestroy(dtorKind, LHS.getAddress(*this), FieldType); 720 } 721 722 /// Checks whether the given constructor is a valid subject for the 723 /// complete-to-base constructor delegation optimization, i.e. 724 /// emitting the complete constructor as a simple call to the base 725 /// constructor. 726 bool CodeGenFunction::IsConstructorDelegationValid( 727 const CXXConstructorDecl *Ctor) { 728 729 // Currently we disable the optimization for classes with virtual 730 // bases because (1) the addresses of parameter variables need to be 731 // consistent across all initializers but (2) the delegate function 732 // call necessarily creates a second copy of the parameter variable. 733 // 734 // The limiting example (purely theoretical AFAIK): 735 // struct A { A(int &c) { c++; } }; 736 // struct B : virtual A { 737 // B(int count) : A(count) { printf("%d\n", count); } 738 // }; 739 // ...although even this example could in principle be emitted as a 740 // delegation since the address of the parameter doesn't escape. 741 if (Ctor->getParent()->getNumVBases()) { 742 // TODO: white-list trivial vbase initializers. This case wouldn't 743 // be subject to the restrictions below. 744 745 // TODO: white-list cases where: 746 // - there are no non-reference parameters to the constructor 747 // - the initializers don't access any non-reference parameters 748 // - the initializers don't take the address of non-reference 749 // parameters 750 // - etc. 751 // If we ever add any of the above cases, remember that: 752 // - function-try-blocks will always exclude this optimization 753 // - we need to perform the constructor prologue and cleanup in 754 // EmitConstructorBody. 755 756 return false; 757 } 758 759 // We also disable the optimization for variadic functions because 760 // it's impossible to "re-pass" varargs. 761 if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic()) 762 return false; 763 764 // FIXME: Decide if we can do a delegation of a delegating constructor. 765 if (Ctor->isDelegatingConstructor()) 766 return false; 767 768 return true; 769 } 770 771 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 772 // to poison the extra field paddings inserted under 773 // -fsanitize-address-field-padding=1|2. 774 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 775 ASTContext &Context = getContext(); 776 const CXXRecordDecl *ClassDecl = 777 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 778 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 779 if (!ClassDecl->mayInsertExtraPadding()) return; 780 781 struct SizeAndOffset { 782 uint64_t Size; 783 uint64_t Offset; 784 }; 785 786 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 787 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 788 789 // Populate sizes and offsets of fields. 790 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 791 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 792 SSV[i].Offset = 793 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 794 795 size_t NumFields = 0; 796 for (const auto *Field : ClassDecl->fields()) { 797 const FieldDecl *D = Field; 798 auto FieldInfo = Context.getTypeInfoInChars(D->getType()); 799 CharUnits FieldSize = FieldInfo.Width; 800 assert(NumFields < SSV.size()); 801 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 802 NumFields++; 803 } 804 assert(NumFields == SSV.size()); 805 if (SSV.size() <= 1) return; 806 807 // We will insert calls to __asan_* run-time functions. 808 // LLVM AddressSanitizer pass may decide to inline them later. 809 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 810 llvm::FunctionType *FTy = 811 llvm::FunctionType::get(CGM.VoidTy, Args, false); 812 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 813 FTy, Prologue ? "__asan_poison_intra_object_redzone" 814 : "__asan_unpoison_intra_object_redzone"); 815 816 llvm::Value *ThisPtr = LoadCXXThis(); 817 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 818 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 819 // For each field check if it has sufficient padding, 820 // if so (un)poison it with a call. 821 for (size_t i = 0; i < SSV.size(); i++) { 822 uint64_t AsanAlignment = 8; 823 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 824 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 825 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 826 if (PoisonSize < AsanAlignment || !SSV[i].Size || 827 (NextField % AsanAlignment) != 0) 828 continue; 829 Builder.CreateCall( 830 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 831 Builder.getIntN(PtrSize, PoisonSize)}); 832 } 833 } 834 835 /// EmitConstructorBody - Emits the body of the current constructor. 836 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 837 EmitAsanPrologueOrEpilogue(true); 838 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 839 CXXCtorType CtorType = CurGD.getCtorType(); 840 841 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 842 CtorType == Ctor_Complete) && 843 "can only generate complete ctor for this ABI"); 844 845 // Before we go any further, try the complete->base constructor 846 // delegation optimization. 847 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 848 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 849 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc()); 850 return; 851 } 852 853 const FunctionDecl *Definition = nullptr; 854 Stmt *Body = Ctor->getBody(Definition); 855 assert(Definition == Ctor && "emitting wrong constructor body"); 856 857 // Enter the function-try-block before the constructor prologue if 858 // applicable. 859 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 860 if (IsTryBody) 861 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 862 863 incrementProfileCounter(Body); 864 865 RunCleanupsScope RunCleanups(*this); 866 867 // TODO: in restricted cases, we can emit the vbase initializers of 868 // a complete ctor and then delegate to the base ctor. 869 870 // Emit the constructor prologue, i.e. the base and member 871 // initializers. 872 EmitCtorPrologue(Ctor, CtorType, Args); 873 874 // Emit the body of the statement. 875 if (IsTryBody) 876 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 877 else if (Body) 878 EmitStmt(Body); 879 880 // Emit any cleanup blocks associated with the member or base 881 // initializers, which includes (along the exceptional path) the 882 // destructors for those members and bases that were fully 883 // constructed. 884 RunCleanups.ForceCleanup(); 885 886 if (IsTryBody) 887 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 888 } 889 890 namespace { 891 /// RAII object to indicate that codegen is copying the value representation 892 /// instead of the object representation. Useful when copying a struct or 893 /// class which has uninitialized members and we're only performing 894 /// lvalue-to-rvalue conversion on the object but not its members. 895 class CopyingValueRepresentation { 896 public: 897 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 898 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 899 CGF.SanOpts.set(SanitizerKind::Bool, false); 900 CGF.SanOpts.set(SanitizerKind::Enum, false); 901 } 902 ~CopyingValueRepresentation() { 903 CGF.SanOpts = OldSanOpts; 904 } 905 private: 906 CodeGenFunction &CGF; 907 SanitizerSet OldSanOpts; 908 }; 909 } // end anonymous namespace 910 911 namespace { 912 class FieldMemcpyizer { 913 public: 914 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 915 const VarDecl *SrcRec) 916 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 917 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 918 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 919 LastFieldOffset(0), LastAddedFieldIndex(0) {} 920 921 bool isMemcpyableField(FieldDecl *F) const { 922 // Never memcpy fields when we are adding poisoned paddings. 923 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 924 return false; 925 Qualifiers Qual = F->getType().getQualifiers(); 926 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 927 return false; 928 return true; 929 } 930 931 void addMemcpyableField(FieldDecl *F) { 932 if (F->isZeroSize(CGF.getContext())) 933 return; 934 if (!FirstField) 935 addInitialField(F); 936 else 937 addNextField(F); 938 } 939 940 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 941 ASTContext &Ctx = CGF.getContext(); 942 unsigned LastFieldSize = 943 LastField->isBitField() 944 ? LastField->getBitWidthValue(Ctx) 945 : Ctx.toBits( 946 Ctx.getTypeInfoDataSizeInChars(LastField->getType()).Width); 947 uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize - 948 FirstByteOffset + Ctx.getCharWidth() - 1; 949 CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits); 950 return MemcpySize; 951 } 952 953 void emitMemcpy() { 954 // Give the subclass a chance to bail out if it feels the memcpy isn't 955 // worth it (e.g. Hasn't aggregated enough data). 956 if (!FirstField) { 957 return; 958 } 959 960 uint64_t FirstByteOffset; 961 if (FirstField->isBitField()) { 962 const CGRecordLayout &RL = 963 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 964 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 965 // FirstFieldOffset is not appropriate for bitfields, 966 // we need to use the storage offset instead. 967 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 968 } else { 969 FirstByteOffset = FirstFieldOffset; 970 } 971 972 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 973 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 974 Address ThisPtr = CGF.LoadCXXThisAddress(); 975 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 976 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 977 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 978 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 979 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 980 981 emitMemcpyIR( 982 Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(CGF), 983 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(CGF), 984 MemcpySize); 985 reset(); 986 } 987 988 void reset() { 989 FirstField = nullptr; 990 } 991 992 protected: 993 CodeGenFunction &CGF; 994 const CXXRecordDecl *ClassDecl; 995 996 private: 997 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 998 DestPtr = DestPtr.withElementType(CGF.Int8Ty); 999 SrcPtr = SrcPtr.withElementType(CGF.Int8Ty); 1000 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 1001 } 1002 1003 void addInitialField(FieldDecl *F) { 1004 FirstField = F; 1005 LastField = F; 1006 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1007 LastFieldOffset = FirstFieldOffset; 1008 LastAddedFieldIndex = F->getFieldIndex(); 1009 } 1010 1011 void addNextField(FieldDecl *F) { 1012 // For the most part, the following invariant will hold: 1013 // F->getFieldIndex() == LastAddedFieldIndex + 1 1014 // The one exception is that Sema won't add a copy-initializer for an 1015 // unnamed bitfield, which will show up here as a gap in the sequence. 1016 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 1017 "Cannot aggregate fields out of order."); 1018 LastAddedFieldIndex = F->getFieldIndex(); 1019 1020 // The 'first' and 'last' fields are chosen by offset, rather than field 1021 // index. This allows the code to support bitfields, as well as regular 1022 // fields. 1023 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1024 if (FOffset < FirstFieldOffset) { 1025 FirstField = F; 1026 FirstFieldOffset = FOffset; 1027 } else if (FOffset >= LastFieldOffset) { 1028 LastField = F; 1029 LastFieldOffset = FOffset; 1030 } 1031 } 1032 1033 const VarDecl *SrcRec; 1034 const ASTRecordLayout &RecLayout; 1035 FieldDecl *FirstField; 1036 FieldDecl *LastField; 1037 uint64_t FirstFieldOffset, LastFieldOffset; 1038 unsigned LastAddedFieldIndex; 1039 }; 1040 1041 class ConstructorMemcpyizer : public FieldMemcpyizer { 1042 private: 1043 /// Get source argument for copy constructor. Returns null if not a copy 1044 /// constructor. 1045 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1046 const CXXConstructorDecl *CD, 1047 FunctionArgList &Args) { 1048 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1049 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1050 return nullptr; 1051 } 1052 1053 // Returns true if a CXXCtorInitializer represents a member initialization 1054 // that can be rolled into a memcpy. 1055 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1056 if (!MemcpyableCtor) 1057 return false; 1058 FieldDecl *Field = MemberInit->getMember(); 1059 assert(Field && "No field for member init."); 1060 QualType FieldType = Field->getType(); 1061 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1062 1063 // Bail out on non-memcpyable, not-trivially-copyable members. 1064 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1065 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1066 FieldType->isReferenceType())) 1067 return false; 1068 1069 // Bail out on volatile fields. 1070 if (!isMemcpyableField(Field)) 1071 return false; 1072 1073 // Otherwise we're good. 1074 return true; 1075 } 1076 1077 public: 1078 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1079 FunctionArgList &Args) 1080 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1081 ConstructorDecl(CD), 1082 MemcpyableCtor(CD->isDefaulted() && 1083 CD->isCopyOrMoveConstructor() && 1084 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1085 Args(Args) { } 1086 1087 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1088 if (isMemberInitMemcpyable(MemberInit)) { 1089 AggregatedInits.push_back(MemberInit); 1090 addMemcpyableField(MemberInit->getMember()); 1091 } else { 1092 emitAggregatedInits(); 1093 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1094 ConstructorDecl, Args); 1095 } 1096 } 1097 1098 void emitAggregatedInits() { 1099 if (AggregatedInits.size() <= 1) { 1100 // This memcpy is too small to be worthwhile. Fall back on default 1101 // codegen. 1102 if (!AggregatedInits.empty()) { 1103 CopyingValueRepresentation CVR(CGF); 1104 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1105 AggregatedInits[0], ConstructorDecl, Args); 1106 AggregatedInits.clear(); 1107 } 1108 reset(); 1109 return; 1110 } 1111 1112 pushEHDestructors(); 1113 emitMemcpy(); 1114 AggregatedInits.clear(); 1115 } 1116 1117 void pushEHDestructors() { 1118 Address ThisPtr = CGF.LoadCXXThisAddress(); 1119 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1120 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1121 1122 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1123 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1124 QualType FieldType = MemberInit->getAnyMember()->getType(); 1125 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1126 if (!CGF.needsEHCleanup(dtorKind)) 1127 continue; 1128 LValue FieldLHS = LHS; 1129 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1130 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(CGF), FieldType); 1131 } 1132 } 1133 1134 void finish() { 1135 emitAggregatedInits(); 1136 } 1137 1138 private: 1139 const CXXConstructorDecl *ConstructorDecl; 1140 bool MemcpyableCtor; 1141 FunctionArgList &Args; 1142 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1143 }; 1144 1145 class AssignmentMemcpyizer : public FieldMemcpyizer { 1146 private: 1147 // Returns the memcpyable field copied by the given statement, if one 1148 // exists. Otherwise returns null. 1149 FieldDecl *getMemcpyableField(Stmt *S) { 1150 if (!AssignmentsMemcpyable) 1151 return nullptr; 1152 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1153 // Recognise trivial assignments. 1154 if (BO->getOpcode() != BO_Assign) 1155 return nullptr; 1156 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1157 if (!ME) 1158 return nullptr; 1159 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1160 if (!Field || !isMemcpyableField(Field)) 1161 return nullptr; 1162 Stmt *RHS = BO->getRHS(); 1163 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1164 RHS = EC->getSubExpr(); 1165 if (!RHS) 1166 return nullptr; 1167 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) { 1168 if (ME2->getMemberDecl() == Field) 1169 return Field; 1170 } 1171 return nullptr; 1172 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1173 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1174 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1175 return nullptr; 1176 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1177 if (!IOA) 1178 return nullptr; 1179 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1180 if (!Field || !isMemcpyableField(Field)) 1181 return nullptr; 1182 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1183 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1184 return nullptr; 1185 return Field; 1186 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1187 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1188 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1189 return nullptr; 1190 Expr *DstPtr = CE->getArg(0); 1191 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1192 DstPtr = DC->getSubExpr(); 1193 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1194 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1195 return nullptr; 1196 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1197 if (!ME) 1198 return nullptr; 1199 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1200 if (!Field || !isMemcpyableField(Field)) 1201 return nullptr; 1202 Expr *SrcPtr = CE->getArg(1); 1203 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1204 SrcPtr = SC->getSubExpr(); 1205 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1206 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1207 return nullptr; 1208 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1209 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1210 return nullptr; 1211 return Field; 1212 } 1213 1214 return nullptr; 1215 } 1216 1217 bool AssignmentsMemcpyable; 1218 SmallVector<Stmt*, 16> AggregatedStmts; 1219 1220 public: 1221 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1222 FunctionArgList &Args) 1223 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1224 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1225 assert(Args.size() == 2); 1226 } 1227 1228 void emitAssignment(Stmt *S) { 1229 FieldDecl *F = getMemcpyableField(S); 1230 if (F) { 1231 addMemcpyableField(F); 1232 AggregatedStmts.push_back(S); 1233 } else { 1234 emitAggregatedStmts(); 1235 CGF.EmitStmt(S); 1236 } 1237 } 1238 1239 void emitAggregatedStmts() { 1240 if (AggregatedStmts.size() <= 1) { 1241 if (!AggregatedStmts.empty()) { 1242 CopyingValueRepresentation CVR(CGF); 1243 CGF.EmitStmt(AggregatedStmts[0]); 1244 } 1245 reset(); 1246 } 1247 1248 emitMemcpy(); 1249 AggregatedStmts.clear(); 1250 } 1251 1252 void finish() { 1253 emitAggregatedStmts(); 1254 } 1255 }; 1256 } // end anonymous namespace 1257 1258 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1259 const Type *BaseType = BaseInit->getBaseClass(); 1260 const auto *BaseClassDecl = 1261 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 1262 return BaseClassDecl->isDynamicClass(); 1263 } 1264 1265 /// EmitCtorPrologue - This routine generates necessary code to initialize 1266 /// base classes and non-static data members belonging to this constructor. 1267 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1268 CXXCtorType CtorType, 1269 FunctionArgList &Args) { 1270 if (CD->isDelegatingConstructor()) 1271 return EmitDelegatingCXXConstructorCall(CD, Args); 1272 1273 const CXXRecordDecl *ClassDecl = CD->getParent(); 1274 1275 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1276 E = CD->init_end(); 1277 1278 // Virtual base initializers first, if any. They aren't needed if: 1279 // - This is a base ctor variant 1280 // - There are no vbases 1281 // - The class is abstract, so a complete object of it cannot be constructed 1282 // 1283 // The check for an abstract class is necessary because sema may not have 1284 // marked virtual base destructors referenced. 1285 bool ConstructVBases = CtorType != Ctor_Base && 1286 ClassDecl->getNumVBases() != 0 && 1287 !ClassDecl->isAbstract(); 1288 1289 // In the Microsoft C++ ABI, there are no constructor variants. Instead, the 1290 // constructor of a class with virtual bases takes an additional parameter to 1291 // conditionally construct the virtual bases. Emit that check here. 1292 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1293 if (ConstructVBases && 1294 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1295 BaseCtorContinueBB = 1296 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1297 assert(BaseCtorContinueBB); 1298 } 1299 1300 llvm::Value *const OldThis = CXXThisValue; 1301 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1302 if (!ConstructVBases) 1303 continue; 1304 if (CGM.getCodeGenOpts().StrictVTablePointers && 1305 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1306 isInitializerOfDynamicClass(*B)) 1307 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1308 EmitBaseInitializer(*this, ClassDecl, *B); 1309 } 1310 1311 if (BaseCtorContinueBB) { 1312 // Complete object handler should continue to the remaining initializers. 1313 Builder.CreateBr(BaseCtorContinueBB); 1314 EmitBlock(BaseCtorContinueBB); 1315 } 1316 1317 // Then, non-virtual base initializers. 1318 for (; B != E && (*B)->isBaseInitializer(); B++) { 1319 assert(!(*B)->isBaseVirtual()); 1320 1321 if (CGM.getCodeGenOpts().StrictVTablePointers && 1322 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1323 isInitializerOfDynamicClass(*B)) 1324 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1325 EmitBaseInitializer(*this, ClassDecl, *B); 1326 } 1327 1328 CXXThisValue = OldThis; 1329 1330 InitializeVTablePointers(ClassDecl); 1331 1332 // And finally, initialize class members. 1333 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1334 ConstructorMemcpyizer CM(*this, CD, Args); 1335 for (; B != E; B++) { 1336 CXXCtorInitializer *Member = (*B); 1337 assert(!Member->isBaseInitializer()); 1338 assert(Member->isAnyMemberInitializer() && 1339 "Delegating initializer on non-delegating constructor"); 1340 CM.addMemberInitializer(Member); 1341 } 1342 CM.finish(); 1343 } 1344 1345 static bool 1346 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1347 1348 static bool 1349 HasTrivialDestructorBody(ASTContext &Context, 1350 const CXXRecordDecl *BaseClassDecl, 1351 const CXXRecordDecl *MostDerivedClassDecl) 1352 { 1353 // If the destructor is trivial we don't have to check anything else. 1354 if (BaseClassDecl->hasTrivialDestructor()) 1355 return true; 1356 1357 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1358 return false; 1359 1360 // Check fields. 1361 for (const auto *Field : BaseClassDecl->fields()) 1362 if (!FieldHasTrivialDestructorBody(Context, Field)) 1363 return false; 1364 1365 // Check non-virtual bases. 1366 for (const auto &I : BaseClassDecl->bases()) { 1367 if (I.isVirtual()) 1368 continue; 1369 1370 const CXXRecordDecl *NonVirtualBase = 1371 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1372 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1373 MostDerivedClassDecl)) 1374 return false; 1375 } 1376 1377 if (BaseClassDecl == MostDerivedClassDecl) { 1378 // Check virtual bases. 1379 for (const auto &I : BaseClassDecl->vbases()) { 1380 const CXXRecordDecl *VirtualBase = 1381 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1382 if (!HasTrivialDestructorBody(Context, VirtualBase, 1383 MostDerivedClassDecl)) 1384 return false; 1385 } 1386 } 1387 1388 return true; 1389 } 1390 1391 static bool 1392 FieldHasTrivialDestructorBody(ASTContext &Context, 1393 const FieldDecl *Field) 1394 { 1395 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1396 1397 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1398 if (!RT) 1399 return true; 1400 1401 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1402 1403 // The destructor for an implicit anonymous union member is never invoked. 1404 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1405 return false; 1406 1407 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1408 } 1409 1410 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1411 /// any vtable pointers before calling this destructor. 1412 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1413 const CXXDestructorDecl *Dtor) { 1414 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1415 if (!ClassDecl->isDynamicClass()) 1416 return true; 1417 1418 // For a final class, the vtable pointer is known to already point to the 1419 // class's vtable. 1420 if (ClassDecl->isEffectivelyFinal()) 1421 return true; 1422 1423 if (!Dtor->hasTrivialBody()) 1424 return false; 1425 1426 // Check the fields. 1427 for (const auto *Field : ClassDecl->fields()) 1428 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1429 return false; 1430 1431 return true; 1432 } 1433 1434 /// EmitDestructorBody - Emits the body of the current destructor. 1435 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1436 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1437 CXXDtorType DtorType = CurGD.getDtorType(); 1438 1439 // For an abstract class, non-base destructors are never used (and can't 1440 // be emitted in general, because vbase dtors may not have been validated 1441 // by Sema), but the Itanium ABI doesn't make them optional and Clang may 1442 // in fact emit references to them from other compilations, so emit them 1443 // as functions containing a trap instruction. 1444 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) { 1445 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 1446 TrapCall->setDoesNotReturn(); 1447 TrapCall->setDoesNotThrow(); 1448 Builder.CreateUnreachable(); 1449 Builder.ClearInsertionPoint(); 1450 return; 1451 } 1452 1453 Stmt *Body = Dtor->getBody(); 1454 if (Body) 1455 incrementProfileCounter(Body); 1456 1457 // The call to operator delete in a deleting destructor happens 1458 // outside of the function-try-block, which means it's always 1459 // possible to delegate the destructor body to the complete 1460 // destructor. Do so. 1461 if (DtorType == Dtor_Deleting) { 1462 RunCleanupsScope DtorEpilogue(*this); 1463 EnterDtorCleanups(Dtor, Dtor_Deleting); 1464 if (HaveInsertPoint()) { 1465 QualType ThisTy = Dtor->getThisObjectType(); 1466 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1467 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1468 } 1469 return; 1470 } 1471 1472 // If the body is a function-try-block, enter the try before 1473 // anything else. 1474 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1475 if (isTryBody) 1476 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1477 EmitAsanPrologueOrEpilogue(false); 1478 1479 // Enter the epilogue cleanups. 1480 RunCleanupsScope DtorEpilogue(*this); 1481 1482 // If this is the complete variant, just invoke the base variant; 1483 // the epilogue will destruct the virtual bases. But we can't do 1484 // this optimization if the body is a function-try-block, because 1485 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1486 // always delegate because we might not have a definition in this TU. 1487 switch (DtorType) { 1488 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT"); 1489 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1490 1491 case Dtor_Complete: 1492 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1493 "can't emit a dtor without a body for non-Microsoft ABIs"); 1494 1495 // Enter the cleanup scopes for virtual bases. 1496 EnterDtorCleanups(Dtor, Dtor_Complete); 1497 1498 if (!isTryBody) { 1499 QualType ThisTy = Dtor->getThisObjectType(); 1500 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1501 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1502 break; 1503 } 1504 1505 // Fallthrough: act like we're in the base variant. 1506 [[fallthrough]]; 1507 1508 case Dtor_Base: 1509 assert(Body); 1510 1511 // Enter the cleanup scopes for fields and non-virtual bases. 1512 EnterDtorCleanups(Dtor, Dtor_Base); 1513 1514 // Initialize the vtable pointers before entering the body. 1515 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1516 // Insert the llvm.launder.invariant.group intrinsic before initializing 1517 // the vptrs to cancel any previous assumptions we might have made. 1518 if (CGM.getCodeGenOpts().StrictVTablePointers && 1519 CGM.getCodeGenOpts().OptimizationLevel > 0) 1520 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1521 InitializeVTablePointers(Dtor->getParent()); 1522 } 1523 1524 if (isTryBody) 1525 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1526 else if (Body) 1527 EmitStmt(Body); 1528 else { 1529 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1530 // nothing to do besides what's in the epilogue 1531 } 1532 // -fapple-kext must inline any call to this dtor into 1533 // the caller's body. 1534 if (getLangOpts().AppleKext) 1535 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1536 1537 break; 1538 } 1539 1540 // Jump out through the epilogue cleanups. 1541 DtorEpilogue.ForceCleanup(); 1542 1543 // Exit the try if applicable. 1544 if (isTryBody) 1545 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1546 } 1547 1548 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1549 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1550 const Stmt *RootS = AssignOp->getBody(); 1551 assert(isa<CompoundStmt>(RootS) && 1552 "Body of an implicit assignment operator should be compound stmt."); 1553 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1554 1555 LexicalScope Scope(*this, RootCS->getSourceRange()); 1556 1557 incrementProfileCounter(RootCS); 1558 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1559 for (auto *I : RootCS->body()) 1560 AM.emitAssignment(I); 1561 AM.finish(); 1562 } 1563 1564 namespace { 1565 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF, 1566 const CXXDestructorDecl *DD) { 1567 if (Expr *ThisArg = DD->getOperatorDeleteThisArg()) 1568 return CGF.EmitScalarExpr(ThisArg); 1569 return CGF.LoadCXXThis(); 1570 } 1571 1572 /// Call the operator delete associated with the current destructor. 1573 struct CallDtorDelete final : EHScopeStack::Cleanup { 1574 CallDtorDelete() {} 1575 1576 void Emit(CodeGenFunction &CGF, Flags flags) override { 1577 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1578 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1579 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1580 LoadThisForDtorDelete(CGF, Dtor), 1581 CGF.getContext().getTagDeclType(ClassDecl)); 1582 } 1583 }; 1584 1585 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF, 1586 llvm::Value *ShouldDeleteCondition, 1587 bool ReturnAfterDelete) { 1588 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1589 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1590 llvm::Value *ShouldCallDelete 1591 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1592 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1593 1594 CGF.EmitBlock(callDeleteBB); 1595 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1596 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1597 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1598 LoadThisForDtorDelete(CGF, Dtor), 1599 CGF.getContext().getTagDeclType(ClassDecl)); 1600 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() == 1601 ReturnAfterDelete && 1602 "unexpected value for ReturnAfterDelete"); 1603 if (ReturnAfterDelete) 1604 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 1605 else 1606 CGF.Builder.CreateBr(continueBB); 1607 1608 CGF.EmitBlock(continueBB); 1609 } 1610 1611 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1612 llvm::Value *ShouldDeleteCondition; 1613 1614 public: 1615 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1616 : ShouldDeleteCondition(ShouldDeleteCondition) { 1617 assert(ShouldDeleteCondition != nullptr); 1618 } 1619 1620 void Emit(CodeGenFunction &CGF, Flags flags) override { 1621 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition, 1622 /*ReturnAfterDelete*/false); 1623 } 1624 }; 1625 1626 class DestroyField final : public EHScopeStack::Cleanup { 1627 const FieldDecl *field; 1628 CodeGenFunction::Destroyer *destroyer; 1629 bool useEHCleanupForArray; 1630 1631 public: 1632 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1633 bool useEHCleanupForArray) 1634 : field(field), destroyer(destroyer), 1635 useEHCleanupForArray(useEHCleanupForArray) {} 1636 1637 void Emit(CodeGenFunction &CGF, Flags flags) override { 1638 // Find the address of the field. 1639 Address thisValue = CGF.LoadCXXThisAddress(); 1640 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1641 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1642 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1643 assert(LV.isSimple()); 1644 1645 CGF.emitDestroy(LV.getAddress(CGF), field->getType(), destroyer, 1646 flags.isForNormalCleanup() && useEHCleanupForArray); 1647 } 1648 }; 1649 1650 class DeclAsInlineDebugLocation { 1651 CGDebugInfo *DI; 1652 llvm::MDNode *InlinedAt; 1653 std::optional<ApplyDebugLocation> Location; 1654 1655 public: 1656 DeclAsInlineDebugLocation(CodeGenFunction &CGF, const NamedDecl &Decl) 1657 : DI(CGF.getDebugInfo()) { 1658 if (!DI) 1659 return; 1660 InlinedAt = DI->getInlinedAt(); 1661 DI->setInlinedAt(CGF.Builder.getCurrentDebugLocation()); 1662 Location.emplace(CGF, Decl.getLocation()); 1663 } 1664 1665 ~DeclAsInlineDebugLocation() { 1666 if (!DI) 1667 return; 1668 Location.reset(); 1669 DI->setInlinedAt(InlinedAt); 1670 } 1671 }; 1672 1673 static void EmitSanitizerDtorCallback( 1674 CodeGenFunction &CGF, StringRef Name, llvm::Value *Ptr, 1675 std::optional<CharUnits::QuantityType> PoisonSize = {}) { 1676 CodeGenFunction::SanitizerScope SanScope(&CGF); 1677 // Pass in void pointer and size of region as arguments to runtime 1678 // function 1679 SmallVector<llvm::Value *, 2> Args = { 1680 CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy)}; 1681 SmallVector<llvm::Type *, 2> ArgTypes = {CGF.VoidPtrTy}; 1682 1683 if (PoisonSize.has_value()) { 1684 Args.emplace_back(llvm::ConstantInt::get(CGF.SizeTy, *PoisonSize)); 1685 ArgTypes.emplace_back(CGF.SizeTy); 1686 } 1687 1688 llvm::FunctionType *FnType = 1689 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1690 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FnType, Name); 1691 1692 CGF.EmitNounwindRuntimeCall(Fn, Args); 1693 } 1694 1695 static void 1696 EmitSanitizerDtorFieldsCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1697 CharUnits::QuantityType PoisonSize) { 1698 EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_fields", Ptr, 1699 PoisonSize); 1700 } 1701 1702 /// Poison base class with a trivial destructor. 1703 struct SanitizeDtorTrivialBase final : EHScopeStack::Cleanup { 1704 const CXXRecordDecl *BaseClass; 1705 bool BaseIsVirtual; 1706 SanitizeDtorTrivialBase(const CXXRecordDecl *Base, bool BaseIsVirtual) 1707 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 1708 1709 void Emit(CodeGenFunction &CGF, Flags flags) override { 1710 const CXXRecordDecl *DerivedClass = 1711 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 1712 1713 Address Addr = CGF.GetAddressOfDirectBaseInCompleteClass( 1714 CGF.LoadCXXThisAddress(), DerivedClass, BaseClass, BaseIsVirtual); 1715 1716 const ASTRecordLayout &BaseLayout = 1717 CGF.getContext().getASTRecordLayout(BaseClass); 1718 CharUnits BaseSize = BaseLayout.getSize(); 1719 1720 if (!BaseSize.isPositive()) 1721 return; 1722 1723 // Use the base class declaration location as inline DebugLocation. All 1724 // fields of the class are destroyed. 1725 DeclAsInlineDebugLocation InlineHere(CGF, *BaseClass); 1726 EmitSanitizerDtorFieldsCallback(CGF, Addr.getPointer(), 1727 BaseSize.getQuantity()); 1728 1729 // Prevent the current stack frame from disappearing from the stack trace. 1730 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1731 } 1732 }; 1733 1734 class SanitizeDtorFieldRange final : public EHScopeStack::Cleanup { 1735 const CXXDestructorDecl *Dtor; 1736 unsigned StartIndex; 1737 unsigned EndIndex; 1738 1739 public: 1740 SanitizeDtorFieldRange(const CXXDestructorDecl *Dtor, unsigned StartIndex, 1741 unsigned EndIndex) 1742 : Dtor(Dtor), StartIndex(StartIndex), EndIndex(EndIndex) {} 1743 1744 // Generate function call for handling object poisoning. 1745 // Disables tail call elimination, to prevent the current stack frame 1746 // from disappearing from the stack trace. 1747 void Emit(CodeGenFunction &CGF, Flags flags) override { 1748 const ASTContext &Context = CGF.getContext(); 1749 const ASTRecordLayout &Layout = 1750 Context.getASTRecordLayout(Dtor->getParent()); 1751 1752 // It's a first trivial field so it should be at the begining of a char, 1753 // still round up start offset just in case. 1754 CharUnits PoisonStart = Context.toCharUnitsFromBits( 1755 Layout.getFieldOffset(StartIndex) + Context.getCharWidth() - 1); 1756 llvm::ConstantInt *OffsetSizePtr = 1757 llvm::ConstantInt::get(CGF.SizeTy, PoisonStart.getQuantity()); 1758 1759 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP( 1760 CGF.Int8Ty, 1761 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy), 1762 OffsetSizePtr); 1763 1764 CharUnits PoisonEnd; 1765 if (EndIndex >= Layout.getFieldCount()) { 1766 PoisonEnd = Layout.getNonVirtualSize(); 1767 } else { 1768 PoisonEnd = 1769 Context.toCharUnitsFromBits(Layout.getFieldOffset(EndIndex)); 1770 } 1771 CharUnits PoisonSize = PoisonEnd - PoisonStart; 1772 if (!PoisonSize.isPositive()) 1773 return; 1774 1775 // Use the top field declaration location as inline DebugLocation. 1776 DeclAsInlineDebugLocation InlineHere( 1777 CGF, **std::next(Dtor->getParent()->field_begin(), StartIndex)); 1778 EmitSanitizerDtorFieldsCallback(CGF, OffsetPtr, PoisonSize.getQuantity()); 1779 1780 // Prevent the current stack frame from disappearing from the stack trace. 1781 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1782 } 1783 }; 1784 1785 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1786 const CXXDestructorDecl *Dtor; 1787 1788 public: 1789 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1790 1791 // Generate function call for handling vtable pointer poisoning. 1792 void Emit(CodeGenFunction &CGF, Flags flags) override { 1793 assert(Dtor->getParent()->isDynamicClass()); 1794 (void)Dtor; 1795 // Poison vtable and vtable ptr if they exist for this class. 1796 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1797 1798 // Pass in void pointer and size of region as arguments to runtime 1799 // function 1800 EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_vptr", 1801 VTablePtr); 1802 } 1803 }; 1804 1805 class SanitizeDtorCleanupBuilder { 1806 ASTContext &Context; 1807 EHScopeStack &EHStack; 1808 const CXXDestructorDecl *DD; 1809 std::optional<unsigned> StartIndex; 1810 1811 public: 1812 SanitizeDtorCleanupBuilder(ASTContext &Context, EHScopeStack &EHStack, 1813 const CXXDestructorDecl *DD) 1814 : Context(Context), EHStack(EHStack), DD(DD), StartIndex(std::nullopt) {} 1815 void PushCleanupForField(const FieldDecl *Field) { 1816 if (Field->isZeroSize(Context)) 1817 return; 1818 unsigned FieldIndex = Field->getFieldIndex(); 1819 if (FieldHasTrivialDestructorBody(Context, Field)) { 1820 if (!StartIndex) 1821 StartIndex = FieldIndex; 1822 } else if (StartIndex) { 1823 EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD, 1824 *StartIndex, FieldIndex); 1825 StartIndex = std::nullopt; 1826 } 1827 } 1828 void End() { 1829 if (StartIndex) 1830 EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD, 1831 *StartIndex, -1); 1832 } 1833 }; 1834 } // end anonymous namespace 1835 1836 /// Emit all code that comes at the end of class's 1837 /// destructor. This is to call destructors on members and base classes 1838 /// in reverse order of their construction. 1839 /// 1840 /// For a deleting destructor, this also handles the case where a destroying 1841 /// operator delete completely overrides the definition. 1842 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1843 CXXDtorType DtorType) { 1844 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1845 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1846 1847 // The deleting-destructor phase just needs to call the appropriate 1848 // operator delete that Sema picked up. 1849 if (DtorType == Dtor_Deleting) { 1850 assert(DD->getOperatorDelete() && 1851 "operator delete missing - EnterDtorCleanups"); 1852 if (CXXStructorImplicitParamValue) { 1853 // If there is an implicit param to the deleting dtor, it's a boolean 1854 // telling whether this is a deleting destructor. 1855 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) 1856 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue, 1857 /*ReturnAfterDelete*/true); 1858 else 1859 EHStack.pushCleanup<CallDtorDeleteConditional>( 1860 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1861 } else { 1862 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) { 1863 const CXXRecordDecl *ClassDecl = DD->getParent(); 1864 EmitDeleteCall(DD->getOperatorDelete(), 1865 LoadThisForDtorDelete(*this, DD), 1866 getContext().getTagDeclType(ClassDecl)); 1867 EmitBranchThroughCleanup(ReturnBlock); 1868 } else { 1869 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1870 } 1871 } 1872 return; 1873 } 1874 1875 const CXXRecordDecl *ClassDecl = DD->getParent(); 1876 1877 // Unions have no bases and do not call field destructors. 1878 if (ClassDecl->isUnion()) 1879 return; 1880 1881 // The complete-destructor phase just destructs all the virtual bases. 1882 if (DtorType == Dtor_Complete) { 1883 // Poison the vtable pointer such that access after the base 1884 // and member destructors are invoked is invalid. 1885 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1886 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1887 ClassDecl->isPolymorphic()) 1888 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1889 1890 // We push them in the forward order so that they'll be popped in 1891 // the reverse order. 1892 for (const auto &Base : ClassDecl->vbases()) { 1893 auto *BaseClassDecl = 1894 cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl()); 1895 1896 if (BaseClassDecl->hasTrivialDestructor()) { 1897 // Under SanitizeMemoryUseAfterDtor, poison the trivial base class 1898 // memory. For non-trival base classes the same is done in the class 1899 // destructor. 1900 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1901 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty()) 1902 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup, 1903 BaseClassDecl, 1904 /*BaseIsVirtual*/ true); 1905 } else { 1906 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl, 1907 /*BaseIsVirtual*/ true); 1908 } 1909 } 1910 1911 return; 1912 } 1913 1914 assert(DtorType == Dtor_Base); 1915 // Poison the vtable pointer if it has no virtual bases, but inherits 1916 // virtual functions. 1917 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1918 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1919 ClassDecl->isPolymorphic()) 1920 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1921 1922 // Destroy non-virtual bases. 1923 for (const auto &Base : ClassDecl->bases()) { 1924 // Ignore virtual bases. 1925 if (Base.isVirtual()) 1926 continue; 1927 1928 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1929 1930 if (BaseClassDecl->hasTrivialDestructor()) { 1931 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1932 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty()) 1933 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup, 1934 BaseClassDecl, 1935 /*BaseIsVirtual*/ false); 1936 } else { 1937 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl, 1938 /*BaseIsVirtual*/ false); 1939 } 1940 } 1941 1942 // Poison fields such that access after their destructors are 1943 // invoked, and before the base class destructor runs, is invalid. 1944 bool SanitizeFields = CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1945 SanOpts.has(SanitizerKind::Memory); 1946 SanitizeDtorCleanupBuilder SanitizeBuilder(getContext(), EHStack, DD); 1947 1948 // Destroy direct fields. 1949 for (const auto *Field : ClassDecl->fields()) { 1950 if (SanitizeFields) 1951 SanitizeBuilder.PushCleanupForField(Field); 1952 1953 QualType type = Field->getType(); 1954 QualType::DestructionKind dtorKind = type.isDestructedType(); 1955 if (!dtorKind) 1956 continue; 1957 1958 // Anonymous union members do not have their destructors called. 1959 const RecordType *RT = type->getAsUnionType(); 1960 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) 1961 continue; 1962 1963 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1964 EHStack.pushCleanup<DestroyField>( 1965 cleanupKind, Field, getDestroyer(dtorKind), cleanupKind & EHCleanup); 1966 } 1967 1968 if (SanitizeFields) 1969 SanitizeBuilder.End(); 1970 } 1971 1972 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1973 /// constructor for each of several members of an array. 1974 /// 1975 /// \param ctor the constructor to call for each element 1976 /// \param arrayType the type of the array to initialize 1977 /// \param arrayBegin an arrayType* 1978 /// \param zeroInitialize true if each element should be 1979 /// zero-initialized before it is constructed 1980 void CodeGenFunction::EmitCXXAggrConstructorCall( 1981 const CXXConstructorDecl *ctor, const ArrayType *arrayType, 1982 Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked, 1983 bool zeroInitialize) { 1984 QualType elementType; 1985 llvm::Value *numElements = 1986 emitArrayLength(arrayType, elementType, arrayBegin); 1987 1988 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, 1989 NewPointerIsChecked, zeroInitialize); 1990 } 1991 1992 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1993 /// constructor for each of several members of an array. 1994 /// 1995 /// \param ctor the constructor to call for each element 1996 /// \param numElements the number of elements in the array; 1997 /// may be zero 1998 /// \param arrayBase a T*, where T is the type constructed by ctor 1999 /// \param zeroInitialize true if each element should be 2000 /// zero-initialized before it is constructed 2001 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 2002 llvm::Value *numElements, 2003 Address arrayBase, 2004 const CXXConstructExpr *E, 2005 bool NewPointerIsChecked, 2006 bool zeroInitialize) { 2007 // It's legal for numElements to be zero. This can happen both 2008 // dynamically, because x can be zero in 'new A[x]', and statically, 2009 // because of GCC extensions that permit zero-length arrays. There 2010 // are probably legitimate places where we could assume that this 2011 // doesn't happen, but it's not clear that it's worth it. 2012 llvm::BranchInst *zeroCheckBranch = nullptr; 2013 2014 // Optimize for a constant count. 2015 llvm::ConstantInt *constantCount 2016 = dyn_cast<llvm::ConstantInt>(numElements); 2017 if (constantCount) { 2018 // Just skip out if the constant count is zero. 2019 if (constantCount->isZero()) return; 2020 2021 // Otherwise, emit the check. 2022 } else { 2023 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 2024 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 2025 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 2026 EmitBlock(loopBB); 2027 } 2028 2029 // Find the end of the array. 2030 llvm::Type *elementType = arrayBase.getElementType(); 2031 llvm::Value *arrayBegin = arrayBase.getPointer(); 2032 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP( 2033 elementType, arrayBegin, numElements, "arrayctor.end"); 2034 2035 // Enter the loop, setting up a phi for the current location to initialize. 2036 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2037 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 2038 EmitBlock(loopBB); 2039 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 2040 "arrayctor.cur"); 2041 cur->addIncoming(arrayBegin, entryBB); 2042 2043 // Inside the loop body, emit the constructor call on the array element. 2044 2045 // The alignment of the base, adjusted by the size of a single element, 2046 // provides a conservative estimate of the alignment of every element. 2047 // (This assumes we never start tracking offsetted alignments.) 2048 // 2049 // Note that these are complete objects and so we don't need to 2050 // use the non-virtual size or alignment. 2051 QualType type = getContext().getTypeDeclType(ctor->getParent()); 2052 CharUnits eltAlignment = 2053 arrayBase.getAlignment() 2054 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2055 Address curAddr = Address(cur, elementType, eltAlignment); 2056 2057 // Zero initialize the storage, if requested. 2058 if (zeroInitialize) 2059 EmitNullInitialization(curAddr, type); 2060 2061 // C++ [class.temporary]p4: 2062 // There are two contexts in which temporaries are destroyed at a different 2063 // point than the end of the full-expression. The first context is when a 2064 // default constructor is called to initialize an element of an array. 2065 // If the constructor has one or more default arguments, the destruction of 2066 // every temporary created in a default argument expression is sequenced 2067 // before the construction of the next array element, if any. 2068 2069 { 2070 RunCleanupsScope Scope(*this); 2071 2072 // Evaluate the constructor and its arguments in a regular 2073 // partial-destroy cleanup. 2074 if (getLangOpts().Exceptions && 2075 !ctor->getParent()->hasTrivialDestructor()) { 2076 Destroyer *destroyer = destroyCXXObject; 2077 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 2078 *destroyer); 2079 } 2080 auto currAVS = AggValueSlot::forAddr( 2081 curAddr, type.getQualifiers(), AggValueSlot::IsDestructed, 2082 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 2083 AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed, 2084 NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked 2085 : AggValueSlot::IsNotSanitizerChecked); 2086 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 2087 /*Delegating=*/false, currAVS, E); 2088 } 2089 2090 // Go to the next element. 2091 llvm::Value *next = Builder.CreateInBoundsGEP( 2092 elementType, cur, llvm::ConstantInt::get(SizeTy, 1), "arrayctor.next"); 2093 cur->addIncoming(next, Builder.GetInsertBlock()); 2094 2095 // Check whether that's the end of the loop. 2096 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 2097 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 2098 Builder.CreateCondBr(done, contBB, loopBB); 2099 2100 // Patch the earlier check to skip over the loop. 2101 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 2102 2103 EmitBlock(contBB); 2104 } 2105 2106 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 2107 Address addr, 2108 QualType type) { 2109 const RecordType *rtype = type->castAs<RecordType>(); 2110 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 2111 const CXXDestructorDecl *dtor = record->getDestructor(); 2112 assert(!dtor->isTrivial()); 2113 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 2114 /*Delegating=*/false, addr, type); 2115 } 2116 2117 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2118 CXXCtorType Type, 2119 bool ForVirtualBase, 2120 bool Delegating, 2121 AggValueSlot ThisAVS, 2122 const CXXConstructExpr *E) { 2123 CallArgList Args; 2124 Address This = ThisAVS.getAddress(); 2125 LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace(); 2126 QualType ThisType = D->getThisType(); 2127 LangAS ThisAS = ThisType.getTypePtr()->getPointeeType().getAddressSpace(); 2128 llvm::Value *ThisPtr = This.getPointer(); 2129 2130 if (SlotAS != ThisAS) { 2131 unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS); 2132 llvm::Type *NewType = 2133 llvm::PointerType::get(getLLVMContext(), TargetThisAS); 2134 ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(), 2135 ThisAS, SlotAS, NewType); 2136 } 2137 2138 // Push the this ptr. 2139 Args.add(RValue::get(ThisPtr), D->getThisType()); 2140 2141 // If this is a trivial constructor, emit a memcpy now before we lose 2142 // the alignment information on the argument. 2143 // FIXME: It would be better to preserve alignment information into CallArg. 2144 if (isMemcpyEquivalentSpecialMember(D)) { 2145 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2146 2147 const Expr *Arg = E->getArg(0); 2148 LValue Src = EmitLValue(Arg); 2149 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 2150 LValue Dest = MakeAddrLValue(This, DestTy); 2151 EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap()); 2152 return; 2153 } 2154 2155 // Add the rest of the user-supplied arguments. 2156 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2157 EvaluationOrder Order = E->isListInitialization() 2158 ? EvaluationOrder::ForceLeftToRight 2159 : EvaluationOrder::Default; 2160 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(), 2161 /*ParamsToSkip*/ 0, Order); 2162 2163 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args, 2164 ThisAVS.mayOverlap(), E->getExprLoc(), 2165 ThisAVS.isSanitizerChecked()); 2166 } 2167 2168 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, 2169 const CXXConstructorDecl *Ctor, 2170 CXXCtorType Type, CallArgList &Args) { 2171 // We can't forward a variadic call. 2172 if (Ctor->isVariadic()) 2173 return false; 2174 2175 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2176 // If the parameters are callee-cleanup, it's not safe to forward. 2177 for (auto *P : Ctor->parameters()) 2178 if (P->needsDestruction(CGF.getContext())) 2179 return false; 2180 2181 // Likewise if they're inalloca. 2182 const CGFunctionInfo &Info = 2183 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0); 2184 if (Info.usesInAlloca()) 2185 return false; 2186 } 2187 2188 // Anything else should be OK. 2189 return true; 2190 } 2191 2192 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2193 CXXCtorType Type, 2194 bool ForVirtualBase, 2195 bool Delegating, 2196 Address This, 2197 CallArgList &Args, 2198 AggValueSlot::Overlap_t Overlap, 2199 SourceLocation Loc, 2200 bool NewPointerIsChecked) { 2201 const CXXRecordDecl *ClassDecl = D->getParent(); 2202 2203 if (!NewPointerIsChecked) 2204 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(), 2205 getContext().getRecordType(ClassDecl), CharUnits::Zero()); 2206 2207 if (D->isTrivial() && D->isDefaultConstructor()) { 2208 assert(Args.size() == 1 && "trivial default ctor with args"); 2209 return; 2210 } 2211 2212 // If this is a trivial constructor, just emit what's needed. If this is a 2213 // union copy constructor, we must emit a memcpy, because the AST does not 2214 // model that copy. 2215 if (isMemcpyEquivalentSpecialMember(D)) { 2216 assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); 2217 2218 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); 2219 Address Src = Address(Args[1].getRValue(*this).getScalarVal(), ConvertTypeForMem(SrcTy), 2220 CGM.getNaturalTypeAlignment(SrcTy)); 2221 LValue SrcLVal = MakeAddrLValue(Src, SrcTy); 2222 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2223 LValue DestLVal = MakeAddrLValue(This, DestTy); 2224 EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap); 2225 return; 2226 } 2227 2228 bool PassPrototypeArgs = true; 2229 // Check whether we can actually emit the constructor before trying to do so. 2230 if (auto Inherited = D->getInheritedConstructor()) { 2231 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type); 2232 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) { 2233 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, 2234 Delegating, Args); 2235 return; 2236 } 2237 } 2238 2239 // Insert any ABI-specific implicit constructor arguments. 2240 CGCXXABI::AddedStructorArgCounts ExtraArgs = 2241 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase, 2242 Delegating, Args); 2243 2244 // Emit the call. 2245 llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type)); 2246 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall( 2247 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs); 2248 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type)); 2249 EmitCall(Info, Callee, ReturnValueSlot(), Args, nullptr, false, Loc); 2250 2251 // Generate vtable assumptions if we're constructing a complete object 2252 // with a vtable. We don't do this for base subobjects for two reasons: 2253 // first, it's incorrect for classes with virtual bases, and second, we're 2254 // about to overwrite the vptrs anyway. 2255 // We also have to make sure if we can refer to vtable: 2256 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2257 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2258 // sure that definition of vtable is not hidden, 2259 // then we are always safe to refer to it. 2260 // FIXME: It looks like InstCombine is very inefficient on dealing with 2261 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2262 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2263 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2264 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2265 CGM.getCodeGenOpts().StrictVTablePointers) 2266 EmitVTableAssumptionLoads(ClassDecl, This); 2267 } 2268 2269 void CodeGenFunction::EmitInheritedCXXConstructorCall( 2270 const CXXConstructorDecl *D, bool ForVirtualBase, Address This, 2271 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { 2272 CallArgList Args; 2273 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType()); 2274 2275 // Forward the parameters. 2276 if (InheritedFromVBase && 2277 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 2278 // Nothing to do; this construction is not responsible for constructing 2279 // the base class containing the inherited constructor. 2280 // FIXME: Can we just pass undef's for the remaining arguments if we don't 2281 // have constructor variants? 2282 Args.push_back(ThisArg); 2283 } else if (!CXXInheritedCtorInitExprArgs.empty()) { 2284 // The inheriting constructor was inlined; just inject its arguments. 2285 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && 2286 "wrong number of parameters for inherited constructor call"); 2287 Args = CXXInheritedCtorInitExprArgs; 2288 Args[0] = ThisArg; 2289 } else { 2290 // The inheriting constructor was not inlined. Emit delegating arguments. 2291 Args.push_back(ThisArg); 2292 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl); 2293 assert(OuterCtor->getNumParams() == D->getNumParams()); 2294 assert(!OuterCtor->isVariadic() && "should have been inlined"); 2295 2296 for (const auto *Param : OuterCtor->parameters()) { 2297 assert(getContext().hasSameUnqualifiedType( 2298 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), 2299 Param->getType())); 2300 EmitDelegateCallArg(Args, Param, E->getLocation()); 2301 2302 // Forward __attribute__(pass_object_size). 2303 if (Param->hasAttr<PassObjectSizeAttr>()) { 2304 auto *POSParam = SizeArguments[Param]; 2305 assert(POSParam && "missing pass_object_size value for forwarding"); 2306 EmitDelegateCallArg(Args, POSParam, E->getLocation()); 2307 } 2308 } 2309 } 2310 2311 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, 2312 This, Args, AggValueSlot::MayOverlap, 2313 E->getLocation(), /*NewPointerIsChecked*/true); 2314 } 2315 2316 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( 2317 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, 2318 bool Delegating, CallArgList &Args) { 2319 GlobalDecl GD(Ctor, CtorType); 2320 InlinedInheritingConstructorScope Scope(*this, GD); 2321 ApplyInlineDebugLocation DebugScope(*this, GD); 2322 RunCleanupsScope RunCleanups(*this); 2323 2324 // Save the arguments to be passed to the inherited constructor. 2325 CXXInheritedCtorInitExprArgs = Args; 2326 2327 FunctionArgList Params; 2328 QualType RetType = BuildFunctionArgList(CurGD, Params); 2329 FnRetTy = RetType; 2330 2331 // Insert any ABI-specific implicit constructor arguments. 2332 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, 2333 ForVirtualBase, Delegating, Args); 2334 2335 // Emit a simplified prolog. We only need to emit the implicit params. 2336 assert(Args.size() >= Params.size() && "too few arguments for call"); 2337 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2338 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) { 2339 const RValue &RV = Args[I].getRValue(*this); 2340 assert(!RV.isComplex() && "complex indirect params not supported"); 2341 ParamValue Val = RV.isScalar() 2342 ? ParamValue::forDirect(RV.getScalarVal()) 2343 : ParamValue::forIndirect(RV.getAggregateAddress()); 2344 EmitParmDecl(*Params[I], Val, I + 1); 2345 } 2346 } 2347 2348 // Create a return value slot if the ABI implementation wants one. 2349 // FIXME: This is dumb, we should ask the ABI not to try to set the return 2350 // value instead. 2351 if (!RetType->isVoidType()) 2352 ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); 2353 2354 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 2355 CXXThisValue = CXXABIThisValue; 2356 2357 // Directly emit the constructor initializers. 2358 EmitCtorPrologue(Ctor, CtorType, Params); 2359 } 2360 2361 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2362 llvm::Value *VTableGlobal = 2363 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2364 if (!VTableGlobal) 2365 return; 2366 2367 // We can just use the base offset in the complete class. 2368 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2369 2370 if (!NonVirtualOffset.isZero()) 2371 This = 2372 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2373 Vptr.VTableClass, Vptr.NearestVBase); 2374 2375 llvm::Value *VPtrValue = 2376 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2377 llvm::Value *Cmp = 2378 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2379 Builder.CreateAssumption(Cmp); 2380 } 2381 2382 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2383 Address This) { 2384 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2385 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2386 EmitVTableAssumptionLoad(Vptr, This); 2387 } 2388 2389 void 2390 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2391 Address This, Address Src, 2392 const CXXConstructExpr *E) { 2393 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2394 2395 CallArgList Args; 2396 2397 // Push the this ptr. 2398 Args.add(RValue::get(This.getPointer()), D->getThisType()); 2399 2400 // Push the src ptr. 2401 QualType QT = *(FPT->param_type_begin()); 2402 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2403 llvm::Value *SrcVal = Builder.CreateBitCast(Src.getPointer(), t); 2404 Args.add(RValue::get(SrcVal), QT); 2405 2406 // Skip over first argument (Src). 2407 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2408 /*ParamsToSkip*/ 1); 2409 2410 EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false, 2411 /*Delegating*/false, This, Args, 2412 AggValueSlot::MayOverlap, E->getExprLoc(), 2413 /*NewPointerIsChecked*/false); 2414 } 2415 2416 void 2417 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2418 CXXCtorType CtorType, 2419 const FunctionArgList &Args, 2420 SourceLocation Loc) { 2421 CallArgList DelegateArgs; 2422 2423 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2424 assert(I != E && "no parameters to constructor"); 2425 2426 // this 2427 Address This = LoadCXXThisAddress(); 2428 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType()); 2429 ++I; 2430 2431 // FIXME: The location of the VTT parameter in the parameter list is 2432 // specific to the Itanium ABI and shouldn't be hardcoded here. 2433 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2434 assert(I != E && "cannot skip vtt parameter, already done with args"); 2435 assert((*I)->getType()->isPointerType() && 2436 "skipping parameter not of vtt type"); 2437 ++I; 2438 } 2439 2440 // Explicit arguments. 2441 for (; I != E; ++I) { 2442 const VarDecl *param = *I; 2443 // FIXME: per-argument source location 2444 EmitDelegateCallArg(DelegateArgs, param, Loc); 2445 } 2446 2447 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, 2448 /*Delegating=*/true, This, DelegateArgs, 2449 AggValueSlot::MayOverlap, Loc, 2450 /*NewPointerIsChecked=*/true); 2451 } 2452 2453 namespace { 2454 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2455 const CXXDestructorDecl *Dtor; 2456 Address Addr; 2457 CXXDtorType Type; 2458 2459 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2460 CXXDtorType Type) 2461 : Dtor(D), Addr(Addr), Type(Type) {} 2462 2463 void Emit(CodeGenFunction &CGF, Flags flags) override { 2464 // We are calling the destructor from within the constructor. 2465 // Therefore, "this" should have the expected type. 2466 QualType ThisTy = Dtor->getThisObjectType(); 2467 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2468 /*Delegating=*/true, Addr, ThisTy); 2469 } 2470 }; 2471 } // end anonymous namespace 2472 2473 void 2474 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2475 const FunctionArgList &Args) { 2476 assert(Ctor->isDelegatingConstructor()); 2477 2478 Address ThisPtr = LoadCXXThisAddress(); 2479 2480 AggValueSlot AggSlot = 2481 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2482 AggValueSlot::IsDestructed, 2483 AggValueSlot::DoesNotNeedGCBarriers, 2484 AggValueSlot::IsNotAliased, 2485 AggValueSlot::MayOverlap, 2486 AggValueSlot::IsNotZeroed, 2487 // Checks are made by the code that calls constructor. 2488 AggValueSlot::IsSanitizerChecked); 2489 2490 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2491 2492 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2493 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2494 CXXDtorType Type = 2495 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2496 2497 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2498 ClassDecl->getDestructor(), 2499 ThisPtr, Type); 2500 } 2501 } 2502 2503 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2504 CXXDtorType Type, 2505 bool ForVirtualBase, 2506 bool Delegating, Address This, 2507 QualType ThisTy) { 2508 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2509 Delegating, This, ThisTy); 2510 } 2511 2512 namespace { 2513 struct CallLocalDtor final : EHScopeStack::Cleanup { 2514 const CXXDestructorDecl *Dtor; 2515 Address Addr; 2516 QualType Ty; 2517 2518 CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty) 2519 : Dtor(D), Addr(Addr), Ty(Ty) {} 2520 2521 void Emit(CodeGenFunction &CGF, Flags flags) override { 2522 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2523 /*ForVirtualBase=*/false, 2524 /*Delegating=*/false, Addr, Ty); 2525 } 2526 }; 2527 } // end anonymous namespace 2528 2529 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2530 QualType T, Address Addr) { 2531 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T); 2532 } 2533 2534 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2535 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2536 if (!ClassDecl) return; 2537 if (ClassDecl->hasTrivialDestructor()) return; 2538 2539 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2540 assert(D && D->isUsed() && "destructor not marked as used!"); 2541 PushDestructorCleanup(D, T, Addr); 2542 } 2543 2544 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2545 // Compute the address point. 2546 llvm::Value *VTableAddressPoint = 2547 CGM.getCXXABI().getVTableAddressPointInStructor( 2548 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2549 2550 if (!VTableAddressPoint) 2551 return; 2552 2553 // Compute where to store the address point. 2554 llvm::Value *VirtualOffset = nullptr; 2555 CharUnits NonVirtualOffset = CharUnits::Zero(); 2556 2557 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2558 // We need to use the virtual base offset offset because the virtual base 2559 // might have a different offset in the most derived class. 2560 2561 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2562 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2563 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2564 } else { 2565 // We can just use the base offset in the complete class. 2566 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2567 } 2568 2569 // Apply the offsets. 2570 Address VTableField = LoadCXXThisAddress(); 2571 if (!NonVirtualOffset.isZero() || VirtualOffset) 2572 VTableField = ApplyNonVirtualAndVirtualOffset( 2573 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2574 Vptr.NearestVBase); 2575 2576 // Finally, store the address point. Use the same LLVM types as the field to 2577 // support optimization. 2578 unsigned GlobalsAS = CGM.getDataLayout().getDefaultGlobalsAddressSpace(); 2579 llvm::Type *PtrTy = llvm::PointerType::get(CGM.getLLVMContext(), GlobalsAS); 2580 // vtable field is derived from `this` pointer, therefore they should be in 2581 // the same addr space. Note that this might not be LLVM address space 0. 2582 VTableField = VTableField.withElementType(PtrTy); 2583 2584 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2585 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(PtrTy); 2586 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 2587 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2588 CGM.getCodeGenOpts().StrictVTablePointers) 2589 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2590 } 2591 2592 CodeGenFunction::VPtrsVector 2593 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2594 CodeGenFunction::VPtrsVector VPtrsResult; 2595 VisitedVirtualBasesSetTy VBases; 2596 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2597 /*NearestVBase=*/nullptr, 2598 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2599 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2600 VPtrsResult); 2601 return VPtrsResult; 2602 } 2603 2604 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2605 const CXXRecordDecl *NearestVBase, 2606 CharUnits OffsetFromNearestVBase, 2607 bool BaseIsNonVirtualPrimaryBase, 2608 const CXXRecordDecl *VTableClass, 2609 VisitedVirtualBasesSetTy &VBases, 2610 VPtrsVector &Vptrs) { 2611 // If this base is a non-virtual primary base the address point has already 2612 // been set. 2613 if (!BaseIsNonVirtualPrimaryBase) { 2614 // Initialize the vtable pointer for this base. 2615 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2616 Vptrs.push_back(Vptr); 2617 } 2618 2619 const CXXRecordDecl *RD = Base.getBase(); 2620 2621 // Traverse bases. 2622 for (const auto &I : RD->bases()) { 2623 auto *BaseDecl = 2624 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2625 2626 // Ignore classes without a vtable. 2627 if (!BaseDecl->isDynamicClass()) 2628 continue; 2629 2630 CharUnits BaseOffset; 2631 CharUnits BaseOffsetFromNearestVBase; 2632 bool BaseDeclIsNonVirtualPrimaryBase; 2633 2634 if (I.isVirtual()) { 2635 // Check if we've visited this virtual base before. 2636 if (!VBases.insert(BaseDecl).second) 2637 continue; 2638 2639 const ASTRecordLayout &Layout = 2640 getContext().getASTRecordLayout(VTableClass); 2641 2642 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2643 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2644 BaseDeclIsNonVirtualPrimaryBase = false; 2645 } else { 2646 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2647 2648 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2649 BaseOffsetFromNearestVBase = 2650 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2651 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2652 } 2653 2654 getVTablePointers( 2655 BaseSubobject(BaseDecl, BaseOffset), 2656 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2657 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2658 } 2659 } 2660 2661 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2662 // Ignore classes without a vtable. 2663 if (!RD->isDynamicClass()) 2664 return; 2665 2666 // Initialize the vtable pointers for this class and all of its bases. 2667 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2668 for (const VPtr &Vptr : getVTablePointers(RD)) 2669 InitializeVTablePointer(Vptr); 2670 2671 if (RD->getNumVBases()) 2672 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2673 } 2674 2675 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2676 llvm::Type *VTableTy, 2677 const CXXRecordDecl *RD) { 2678 Address VTablePtrSrc = This.withElementType(VTableTy); 2679 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2680 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy); 2681 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo); 2682 2683 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2684 CGM.getCodeGenOpts().StrictVTablePointers) 2685 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2686 2687 return VTable; 2688 } 2689 2690 // If a class has a single non-virtual base and does not introduce or override 2691 // virtual member functions or fields, it will have the same layout as its base. 2692 // This function returns the least derived such class. 2693 // 2694 // Casting an instance of a base class to such a derived class is technically 2695 // undefined behavior, but it is a relatively common hack for introducing member 2696 // functions on class instances with specific properties (e.g. llvm::Operator) 2697 // that works under most compilers and should not have security implications, so 2698 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2699 static const CXXRecordDecl * 2700 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2701 if (!RD->field_empty()) 2702 return RD; 2703 2704 if (RD->getNumVBases() != 0) 2705 return RD; 2706 2707 if (RD->getNumBases() != 1) 2708 return RD; 2709 2710 for (const CXXMethodDecl *MD : RD->methods()) { 2711 if (MD->isVirtual()) { 2712 // Virtual member functions are only ok if they are implicit destructors 2713 // because the implicit destructor will have the same semantics as the 2714 // base class's destructor if no fields are added. 2715 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2716 continue; 2717 return RD; 2718 } 2719 } 2720 2721 return LeastDerivedClassWithSameLayout( 2722 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2723 } 2724 2725 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2726 llvm::Value *VTable, 2727 SourceLocation Loc) { 2728 if (SanOpts.has(SanitizerKind::CFIVCall)) 2729 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); 2730 else if (CGM.getCodeGenOpts().WholeProgramVTables && 2731 // Don't insert type test assumes if we are forcing public 2732 // visibility. 2733 !CGM.AlwaysHasLTOVisibilityPublic(RD)) { 2734 QualType Ty = QualType(RD->getTypeForDecl(), 0); 2735 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(Ty); 2736 llvm::Value *TypeId = 2737 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2738 2739 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2740 // If we already know that the call has hidden LTO visibility, emit 2741 // @llvm.type.test(). Otherwise emit @llvm.public.type.test(), which WPD 2742 // will convert to @llvm.type.test() if we assert at link time that we have 2743 // whole program visibility. 2744 llvm::Intrinsic::ID IID = CGM.HasHiddenLTOVisibility(RD) 2745 ? llvm::Intrinsic::type_test 2746 : llvm::Intrinsic::public_type_test; 2747 llvm::Value *TypeTest = 2748 Builder.CreateCall(CGM.getIntrinsic(IID), {CastedVTable, TypeId}); 2749 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); 2750 } 2751 } 2752 2753 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, 2754 llvm::Value *VTable, 2755 CFITypeCheckKind TCK, 2756 SourceLocation Loc) { 2757 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2758 RD = LeastDerivedClassWithSameLayout(RD); 2759 2760 EmitVTablePtrCheck(RD, VTable, TCK, Loc); 2761 } 2762 2763 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, Address Derived, 2764 bool MayBeNull, 2765 CFITypeCheckKind TCK, 2766 SourceLocation Loc) { 2767 if (!getLangOpts().CPlusPlus) 2768 return; 2769 2770 auto *ClassTy = T->getAs<RecordType>(); 2771 if (!ClassTy) 2772 return; 2773 2774 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2775 2776 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2777 return; 2778 2779 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2780 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2781 2782 llvm::BasicBlock *ContBlock = nullptr; 2783 2784 if (MayBeNull) { 2785 llvm::Value *DerivedNotNull = 2786 Builder.CreateIsNotNull(Derived.getPointer(), "cast.nonnull"); 2787 2788 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2789 ContBlock = createBasicBlock("cast.cont"); 2790 2791 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2792 2793 EmitBlock(CheckBlock); 2794 } 2795 2796 llvm::Value *VTable; 2797 std::tie(VTable, ClassDecl) = 2798 CGM.getCXXABI().LoadVTablePtr(*this, Derived, ClassDecl); 2799 2800 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2801 2802 if (MayBeNull) { 2803 Builder.CreateBr(ContBlock); 2804 EmitBlock(ContBlock); 2805 } 2806 } 2807 2808 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2809 llvm::Value *VTable, 2810 CFITypeCheckKind TCK, 2811 SourceLocation Loc) { 2812 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && 2813 !CGM.HasHiddenLTOVisibility(RD)) 2814 return; 2815 2816 SanitizerMask M; 2817 llvm::SanitizerStatKind SSK; 2818 switch (TCK) { 2819 case CFITCK_VCall: 2820 M = SanitizerKind::CFIVCall; 2821 SSK = llvm::SanStat_CFI_VCall; 2822 break; 2823 case CFITCK_NVCall: 2824 M = SanitizerKind::CFINVCall; 2825 SSK = llvm::SanStat_CFI_NVCall; 2826 break; 2827 case CFITCK_DerivedCast: 2828 M = SanitizerKind::CFIDerivedCast; 2829 SSK = llvm::SanStat_CFI_DerivedCast; 2830 break; 2831 case CFITCK_UnrelatedCast: 2832 M = SanitizerKind::CFIUnrelatedCast; 2833 SSK = llvm::SanStat_CFI_UnrelatedCast; 2834 break; 2835 case CFITCK_ICall: 2836 case CFITCK_NVMFCall: 2837 case CFITCK_VMFCall: 2838 llvm_unreachable("unexpected sanitizer kind"); 2839 } 2840 2841 std::string TypeName = RD->getQualifiedNameAsString(); 2842 if (getContext().getNoSanitizeList().containsType(M, TypeName)) 2843 return; 2844 2845 SanitizerScope SanScope(this); 2846 EmitSanitizerStatReport(SSK); 2847 2848 llvm::Metadata *MD = 2849 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2850 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2851 2852 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2853 llvm::Value *TypeTest = Builder.CreateCall( 2854 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId}); 2855 2856 llvm::Constant *StaticData[] = { 2857 llvm::ConstantInt::get(Int8Ty, TCK), 2858 EmitCheckSourceLocation(Loc), 2859 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2860 }; 2861 2862 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 2863 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 2864 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData); 2865 return; 2866 } 2867 2868 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { 2869 EmitTrapCheck(TypeTest, SanitizerHandler::CFICheckFail); 2870 return; 2871 } 2872 2873 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2874 CGM.getLLVMContext(), 2875 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2876 llvm::Value *ValidVtable = Builder.CreateCall( 2877 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables}); 2878 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail, 2879 StaticData, {CastedVTable, ValidVtable}); 2880 } 2881 2882 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { 2883 if (!CGM.getCodeGenOpts().WholeProgramVTables || 2884 !CGM.HasHiddenLTOVisibility(RD)) 2885 return false; 2886 2887 if (CGM.getCodeGenOpts().VirtualFunctionElimination) 2888 return true; 2889 2890 if (!SanOpts.has(SanitizerKind::CFIVCall) || 2891 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall)) 2892 return false; 2893 2894 std::string TypeName = RD->getQualifiedNameAsString(); 2895 return !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall, 2896 TypeName); 2897 } 2898 2899 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( 2900 const CXXRecordDecl *RD, llvm::Value *VTable, llvm::Type *VTableTy, 2901 uint64_t VTableByteOffset) { 2902 SanitizerScope SanScope(this); 2903 2904 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); 2905 2906 llvm::Metadata *MD = 2907 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2908 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2909 2910 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2911 llvm::Value *CheckedLoad = Builder.CreateCall( 2912 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), 2913 {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), 2914 TypeId}); 2915 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); 2916 2917 std::string TypeName = RD->getQualifiedNameAsString(); 2918 if (SanOpts.has(SanitizerKind::CFIVCall) && 2919 !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall, 2920 TypeName)) { 2921 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall), 2922 SanitizerHandler::CFICheckFail, {}, {}); 2923 } 2924 2925 return Builder.CreateBitCast(Builder.CreateExtractValue(CheckedLoad, 0), 2926 VTableTy); 2927 } 2928 2929 void CodeGenFunction::EmitForwardingCallToLambda( 2930 const CXXMethodDecl *callOperator, CallArgList &callArgs, 2931 const CGFunctionInfo *calleeFnInfo, llvm::Constant *calleePtr) { 2932 // Get the address of the call operator. 2933 if (!calleeFnInfo) 2934 calleeFnInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2935 2936 if (!calleePtr) 2937 calleePtr = 2938 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2939 CGM.getTypes().GetFunctionType(*calleeFnInfo)); 2940 2941 // Prepare the return slot. 2942 const FunctionProtoType *FPT = 2943 callOperator->getType()->castAs<FunctionProtoType>(); 2944 QualType resultType = FPT->getReturnType(); 2945 ReturnValueSlot returnSlot; 2946 if (!resultType->isVoidType() && 2947 calleeFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 2948 !hasScalarEvaluationKind(calleeFnInfo->getReturnType())) 2949 returnSlot = 2950 ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(), 2951 /*IsUnused=*/false, /*IsExternallyDestructed=*/true); 2952 2953 // We don't need to separately arrange the call arguments because 2954 // the call can't be variadic anyway --- it's impossible to forward 2955 // variadic arguments. 2956 2957 // Now emit our call. 2958 auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator)); 2959 RValue RV = EmitCall(*calleeFnInfo, callee, returnSlot, callArgs); 2960 2961 // If necessary, copy the returned value into the slot. 2962 if (!resultType->isVoidType() && returnSlot.isNull()) { 2963 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) { 2964 RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal())); 2965 } 2966 EmitReturnOfRValue(RV, resultType); 2967 } else 2968 EmitBranchThroughCleanup(ReturnBlock); 2969 } 2970 2971 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2972 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2973 const VarDecl *variable = BD->capture_begin()->getVariable(); 2974 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2975 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2976 2977 if (CallOp->isVariadic()) { 2978 // FIXME: Making this work correctly is nasty because it requires either 2979 // cloning the body of the call operator or making the call operator 2980 // forward. 2981 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2982 return; 2983 } 2984 2985 // Start building arguments for forwarding call 2986 CallArgList CallArgs; 2987 2988 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2989 Address ThisPtr = GetAddrOfBlockDecl(variable); 2990 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 2991 2992 // Add the rest of the parameters. 2993 for (auto *param : BD->parameters()) 2994 EmitDelegateCallArg(CallArgs, param, param->getBeginLoc()); 2995 2996 assert(!Lambda->isGenericLambda() && 2997 "generic lambda interconversion to block not implemented"); 2998 EmitForwardingCallToLambda(CallOp, CallArgs); 2999 } 3000 3001 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) { 3002 if (MD->isVariadic()) { 3003 // FIXME: Making this work correctly is nasty because it requires either 3004 // cloning the body of the call operator or making the call operator 3005 // forward. 3006 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 3007 return; 3008 } 3009 3010 const CXXRecordDecl *Lambda = MD->getParent(); 3011 3012 // Start building arguments for forwarding call 3013 CallArgList CallArgs; 3014 3015 QualType LambdaType = getContext().getRecordType(Lambda); 3016 QualType ThisType = getContext().getPointerType(LambdaType); 3017 Address ThisPtr = CreateMemTemp(LambdaType, "unused.capture"); 3018 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 3019 3020 EmitLambdaDelegatingInvokeBody(MD, CallArgs); 3021 } 3022 3023 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD, 3024 CallArgList &CallArgs) { 3025 // Add the rest of the forwarded parameters. 3026 for (auto *Param : MD->parameters()) 3027 EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc()); 3028 3029 const CXXRecordDecl *Lambda = MD->getParent(); 3030 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 3031 // For a generic lambda, find the corresponding call operator specialization 3032 // to which the call to the static-invoker shall be forwarded. 3033 if (Lambda->isGenericLambda()) { 3034 assert(MD->isFunctionTemplateSpecialization()); 3035 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 3036 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 3037 void *InsertPos = nullptr; 3038 FunctionDecl *CorrespondingCallOpSpecialization = 3039 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 3040 assert(CorrespondingCallOpSpecialization); 3041 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 3042 } 3043 3044 // Special lambda forwarding when there are inalloca parameters. 3045 if (hasInAllocaArg(MD)) { 3046 const CGFunctionInfo *ImplFnInfo = nullptr; 3047 llvm::Function *ImplFn = nullptr; 3048 EmitLambdaInAllocaImplFn(CallOp, &ImplFnInfo, &ImplFn); 3049 3050 EmitForwardingCallToLambda(CallOp, CallArgs, ImplFnInfo, ImplFn); 3051 return; 3052 } 3053 3054 EmitForwardingCallToLambda(CallOp, CallArgs); 3055 } 3056 3057 void CodeGenFunction::EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD) { 3058 if (MD->isVariadic()) { 3059 // FIXME: Making this work correctly is nasty because it requires either 3060 // cloning the body of the call operator or making the call operator forward. 3061 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 3062 return; 3063 } 3064 3065 // Forward %this argument. 3066 CallArgList CallArgs; 3067 QualType LambdaType = getContext().getRecordType(MD->getParent()); 3068 QualType ThisType = getContext().getPointerType(LambdaType); 3069 llvm::Value *ThisArg = CurFn->getArg(0); 3070 CallArgs.add(RValue::get(ThisArg), ThisType); 3071 3072 EmitLambdaDelegatingInvokeBody(MD, CallArgs); 3073 } 3074 3075 void CodeGenFunction::EmitLambdaInAllocaImplFn( 3076 const CXXMethodDecl *CallOp, const CGFunctionInfo **ImplFnInfo, 3077 llvm::Function **ImplFn) { 3078 const CGFunctionInfo &FnInfo = 3079 CGM.getTypes().arrangeCXXMethodDeclaration(CallOp); 3080 llvm::Function *CallOpFn = 3081 cast<llvm::Function>(CGM.GetAddrOfFunction(GlobalDecl(CallOp))); 3082 3083 // Emit function containing the original call op body. __invoke will delegate 3084 // to this function. 3085 SmallVector<CanQualType, 4> ArgTypes; 3086 for (auto I = FnInfo.arg_begin(); I != FnInfo.arg_end(); ++I) 3087 ArgTypes.push_back(I->type); 3088 *ImplFnInfo = &CGM.getTypes().arrangeLLVMFunctionInfo( 3089 FnInfo.getReturnType(), FnInfoOpts::IsDelegateCall, ArgTypes, 3090 FnInfo.getExtInfo(), {}, FnInfo.getRequiredArgs()); 3091 3092 // Create mangled name as if this was a method named __impl. If for some 3093 // reason the name doesn't look as expected then just tack __impl to the 3094 // front. 3095 // TODO: Use the name mangler to produce the right name instead of using 3096 // string replacement. 3097 StringRef CallOpName = CallOpFn->getName(); 3098 std::string ImplName; 3099 if (size_t Pos = CallOpName.find_first_of("<lambda")) 3100 ImplName = ("?__impl@" + CallOpName.drop_front(Pos)).str(); 3101 else 3102 ImplName = ("__impl" + CallOpName).str(); 3103 3104 llvm::Function *Fn = CallOpFn->getParent()->getFunction(ImplName); 3105 if (!Fn) { 3106 Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(**ImplFnInfo), 3107 llvm::GlobalValue::InternalLinkage, ImplName, 3108 CGM.getModule()); 3109 CGM.SetInternalFunctionAttributes(CallOp, Fn, **ImplFnInfo); 3110 3111 const GlobalDecl &GD = GlobalDecl(CallOp); 3112 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3113 CodeGenFunction(CGM).GenerateCode(GD, Fn, **ImplFnInfo); 3114 CGM.SetLLVMFunctionAttributesForDefinition(D, Fn); 3115 } 3116 *ImplFn = Fn; 3117 } 3118