//===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This contains code dealing with C++ code generation of classes // //===----------------------------------------------------------------------===// #include "CGBlocks.h" #include "CGCXXABI.h" #include "CGDebugInfo.h" #include "CGRecordLayout.h" #include "CodeGenFunction.h" #include "TargetInfo.h" #include "clang/AST/Attr.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/CharUnits.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/EvaluatedExprVisitor.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/StmtCXX.h" #include "clang/Basic/CodeGenOptions.h" #include "clang/Basic/TargetBuiltins.h" #include "clang/CodeGen/CGFunctionInfo.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Metadata.h" #include "llvm/Transforms/Utils/SanitizerStats.h" #include using namespace clang; using namespace CodeGen; /// Return the best known alignment for an unknown pointer to a /// particular class. CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { if (!RD->hasDefinition()) return CharUnits::One(); // Hopefully won't be used anywhere. auto &layout = getContext().getASTRecordLayout(RD); // If the class is final, then we know that the pointer points to an // object of that type and can use the full alignment. if (RD->isEffectivelyFinal()) return layout.getAlignment(); // Otherwise, we have to assume it could be a subclass. return layout.getNonVirtualAlignment(); } /// Return the smallest possible amount of storage that might be allocated /// starting from the beginning of an object of a particular class. /// /// This may be smaller than sizeof(RD) if RD has virtual base classes. CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) { if (!RD->hasDefinition()) return CharUnits::One(); auto &layout = getContext().getASTRecordLayout(RD); // If the class is final, then we know that the pointer points to an // object of that type and can use the full alignment. if (RD->isEffectivelyFinal()) return layout.getSize(); // Otherwise, we have to assume it could be a subclass. return std::max(layout.getNonVirtualSize(), CharUnits::One()); } /// Return the best known alignment for a pointer to a virtual base, /// given the alignment of a pointer to the derived class. CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, const CXXRecordDecl *derivedClass, const CXXRecordDecl *vbaseClass) { // The basic idea here is that an underaligned derived pointer might // indicate an underaligned base pointer. assert(vbaseClass->isCompleteDefinition()); auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, expectedVBaseAlign); } CharUnits CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, const CXXRecordDecl *baseDecl, CharUnits expectedTargetAlign) { // If the base is an incomplete type (which is, alas, possible with // member pointers), be pessimistic. if (!baseDecl->isCompleteDefinition()) return std::min(actualBaseAlign, expectedTargetAlign); auto &baseLayout = getContext().getASTRecordLayout(baseDecl); CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); // If the class is properly aligned, assume the target offset is, too. // // This actually isn't necessarily the right thing to do --- if the // class is a complete object, but it's only properly aligned for a // base subobject, then the alignments of things relative to it are // probably off as well. (Note that this requires the alignment of // the target to be greater than the NV alignment of the derived // class.) // // However, our approach to this kind of under-alignment can only // ever be best effort; after all, we're never going to propagate // alignments through variables or parameters. Note, in particular, // that constructing a polymorphic type in an address that's less // than pointer-aligned will generally trap in the constructor, // unless we someday add some sort of attribute to change the // assumed alignment of 'this'. So our goal here is pretty much // just to allow the user to explicitly say that a pointer is // under-aligned and then safely access its fields and vtables. if (actualBaseAlign >= expectedBaseAlign) { return expectedTargetAlign; } // Otherwise, we might be offset by an arbitrary multiple of the // actual alignment. The correct adjustment is to take the min of // the two alignments. return std::min(actualBaseAlign, expectedTargetAlign); } Address CodeGenFunction::LoadCXXThisAddress() { assert(CurFuncDecl && "loading 'this' without a func declaration?"); auto *MD = cast(CurFuncDecl); // Lazily compute CXXThisAlignment. if (CXXThisAlignment.isZero()) { // Just use the best known alignment for the parent. // TODO: if we're currently emitting a complete-object ctor/dtor, // we can always use the complete-object alignment. CXXThisAlignment = CGM.getClassPointerAlignment(MD->getParent()); } llvm::Type *Ty = ConvertType(MD->getThisType()->getPointeeType()); return Address(LoadCXXThis(), Ty, CXXThisAlignment, KnownNonNull); } /// Emit the address of a field using a member data pointer. /// /// \param E Only used for emergency diagnostics Address CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, llvm::Value *memberPtr, const MemberPointerType *memberPtrType, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { // Ask the ABI to compute the actual address. llvm::Value *ptr = CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, memberPtr, memberPtrType); QualType memberType = memberPtrType->getPointeeType(); CharUnits memberAlign = CGM.getNaturalTypeAlignment(memberType, BaseInfo, TBAAInfo); memberAlign = CGM.getDynamicOffsetAlignment(base.getAlignment(), memberPtrType->getClass()->getAsCXXRecordDecl(), memberAlign); return Address(ptr, ConvertTypeForMem(memberPtrType->getPointeeType()), memberAlign); } CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, CastExpr::path_const_iterator End) { CharUnits Offset = CharUnits::Zero(); const ASTContext &Context = getContext(); const CXXRecordDecl *RD = DerivedClass; for (CastExpr::path_const_iterator I = Start; I != End; ++I) { const CXXBaseSpecifier *Base = *I; assert(!Base->isVirtual() && "Should not see virtual bases here!"); // Get the layout. const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); const auto *BaseDecl = cast(Base->getType()->castAs()->getDecl()); // Add the offset. Offset += Layout.getBaseClassOffset(BaseDecl); RD = BaseDecl; } return Offset; } llvm::Constant * CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, CastExpr::path_const_iterator PathBegin, CastExpr::path_const_iterator PathEnd) { assert(PathBegin != PathEnd && "Base path should not be empty!"); CharUnits Offset = computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); if (Offset.isZero()) return nullptr; llvm::Type *PtrDiffTy = Types.ConvertType(getContext().getPointerDiffType()); return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); } /// Gets the address of a direct base class within a complete object. /// This should only be used for (1) non-virtual bases or (2) virtual bases /// when the type is known to be complete (e.g. in complete destructors). /// /// The object pointed to by 'This' is assumed to be non-null. Address CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, const CXXRecordDecl *Derived, const CXXRecordDecl *Base, bool BaseIsVirtual) { // 'this' must be a pointer (in some address space) to Derived. assert(This.getElementType() == ConvertType(Derived)); // Compute the offset of the virtual base. CharUnits Offset; const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); if (BaseIsVirtual) Offset = Layout.getVBaseClassOffset(Base); else Offset = Layout.getBaseClassOffset(Base); // Shift and cast down to the base type. // TODO: for complete types, this should be possible with a GEP. Address V = This; if (!Offset.isZero()) { V = V.withElementType(Int8Ty); V = Builder.CreateConstInBoundsByteGEP(V, Offset); } return V.withElementType(ConvertType(Base)); } static Address ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, CharUnits nonVirtualOffset, llvm::Value *virtualOffset, const CXXRecordDecl *derivedClass, const CXXRecordDecl *nearestVBase) { // Assert that we have something to do. assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); // Compute the offset from the static and dynamic components. llvm::Value *baseOffset; if (!nonVirtualOffset.isZero()) { llvm::Type *OffsetType = (CGF.CGM.getTarget().getCXXABI().isItaniumFamily() && CGF.CGM.getItaniumVTableContext().isRelativeLayout()) ? CGF.Int32Ty : CGF.PtrDiffTy; baseOffset = llvm::ConstantInt::get(OffsetType, nonVirtualOffset.getQuantity()); if (virtualOffset) { baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); } } else { baseOffset = virtualOffset; } // Apply the base offset. llvm::Value *ptr = addr.getPointer(); ptr = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, ptr, baseOffset, "add.ptr"); // If we have a virtual component, the alignment of the result will // be relative only to the known alignment of that vbase. CharUnits alignment; if (virtualOffset) { assert(nearestVBase && "virtual offset without vbase?"); alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), derivedClass, nearestVBase); } else { alignment = addr.getAlignment(); } alignment = alignment.alignmentAtOffset(nonVirtualOffset); return Address(ptr, CGF.Int8Ty, alignment); } Address CodeGenFunction::GetAddressOfBaseClass( Address Value, const CXXRecordDecl *Derived, CastExpr::path_const_iterator PathBegin, CastExpr::path_const_iterator PathEnd, bool NullCheckValue, SourceLocation Loc) { assert(PathBegin != PathEnd && "Base path should not be empty!"); CastExpr::path_const_iterator Start = PathBegin; const CXXRecordDecl *VBase = nullptr; // Sema has done some convenient canonicalization here: if the // access path involved any virtual steps, the conversion path will // *start* with a step down to the correct virtual base subobject, // and hence will not require any further steps. if ((*Start)->isVirtual()) { VBase = cast( (*Start)->getType()->castAs()->getDecl()); ++Start; } // Compute the static offset of the ultimate destination within its // allocating subobject (the virtual base, if there is one, or else // the "complete" object that we see). CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( VBase ? VBase : Derived, Start, PathEnd); // If there's a virtual step, we can sometimes "devirtualize" it. // For now, that's limited to when the derived type is final. // TODO: "devirtualize" this for accesses to known-complete objects. if (VBase && Derived->hasAttr()) { const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); NonVirtualOffset += vBaseOffset; VBase = nullptr; // we no longer have a virtual step } // Get the base pointer type. llvm::Type *BaseValueTy = ConvertType((PathEnd[-1])->getType()); llvm::Type *PtrTy = llvm::PointerType::get( CGM.getLLVMContext(), Value.getType()->getPointerAddressSpace()); QualType DerivedTy = getContext().getRecordType(Derived); CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); // If the static offset is zero and we don't have a virtual step, // just do a bitcast; null checks are unnecessary. if (NonVirtualOffset.isZero() && !VBase) { if (sanitizePerformTypeCheck()) { SanitizerSet SkippedChecks; SkippedChecks.set(SanitizerKind::Null, !NullCheckValue); EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks); } return Value.withElementType(BaseValueTy); } llvm::BasicBlock *origBB = nullptr; llvm::BasicBlock *endBB = nullptr; // Skip over the offset (and the vtable load) if we're supposed to // null-check the pointer. if (NullCheckValue) { origBB = Builder.GetInsertBlock(); llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); endBB = createBasicBlock("cast.end"); llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer()); Builder.CreateCondBr(isNull, endBB, notNullBB); EmitBlock(notNullBB); } if (sanitizePerformTypeCheck()) { SanitizerSet SkippedChecks; SkippedChecks.set(SanitizerKind::Null, true); EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks); } // Compute the virtual offset. llvm::Value *VirtualOffset = nullptr; if (VBase) { VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); } // Apply both offsets. Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, VirtualOffset, Derived, VBase); // Cast to the destination type. Value = Value.withElementType(BaseValueTy); // Build a phi if we needed a null check. if (NullCheckValue) { llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); Builder.CreateBr(endBB); EmitBlock(endBB); llvm::PHINode *PHI = Builder.CreatePHI(PtrTy, 2, "cast.result"); PHI->addIncoming(Value.getPointer(), notNullBB); PHI->addIncoming(llvm::Constant::getNullValue(PtrTy), origBB); Value = Value.withPointer(PHI, NotKnownNonNull); } return Value; } Address CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, const CXXRecordDecl *Derived, CastExpr::path_const_iterator PathBegin, CastExpr::path_const_iterator PathEnd, bool NullCheckValue) { assert(PathBegin != PathEnd && "Base path should not be empty!"); QualType DerivedTy = getContext().getCanonicalType(getContext().getTagDeclType(Derived)); unsigned AddrSpace = BaseAddr.getAddressSpace(); llvm::Type *DerivedValueTy = ConvertType(DerivedTy); llvm::Type *DerivedPtrTy = llvm::PointerType::get(getLLVMContext(), AddrSpace); llvm::Value *NonVirtualOffset = CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); if (!NonVirtualOffset) { // No offset, we can just cast back. return BaseAddr.withElementType(DerivedValueTy); } llvm::BasicBlock *CastNull = nullptr; llvm::BasicBlock *CastNotNull = nullptr; llvm::BasicBlock *CastEnd = nullptr; if (NullCheckValue) { CastNull = createBasicBlock("cast.null"); CastNotNull = createBasicBlock("cast.notnull"); CastEnd = createBasicBlock("cast.end"); llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer()); Builder.CreateCondBr(IsNull, CastNull, CastNotNull); EmitBlock(CastNotNull); } // Apply the offset. llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy); Value = Builder.CreateInBoundsGEP( Int8Ty, Value, Builder.CreateNeg(NonVirtualOffset), "sub.ptr"); // Just cast. Value = Builder.CreateBitCast(Value, DerivedPtrTy); // Produce a PHI if we had a null-check. if (NullCheckValue) { Builder.CreateBr(CastEnd); EmitBlock(CastNull); Builder.CreateBr(CastEnd); EmitBlock(CastEnd); llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); PHI->addIncoming(Value, CastNotNull); PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); Value = PHI; } return Address(Value, DerivedValueTy, CGM.getClassPointerAlignment(Derived)); } llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, bool Delegating) { if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { // This constructor/destructor does not need a VTT parameter. return nullptr; } const CXXRecordDecl *RD = cast(CurCodeDecl)->getParent(); const CXXRecordDecl *Base = cast(GD.getDecl())->getParent(); uint64_t SubVTTIndex; if (Delegating) { // If this is a delegating constructor call, just load the VTT. return LoadCXXVTT(); } else if (RD == Base) { // If the record matches the base, this is the complete ctor/dtor // variant calling the base variant in a class with virtual bases. assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && "doing no-op VTT offset in base dtor/ctor?"); assert(!ForVirtualBase && "Can't have same class as virtual base!"); SubVTTIndex = 0; } else { const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); CharUnits BaseOffset = ForVirtualBase ? Layout.getVBaseClassOffset(Base) : Layout.getBaseClassOffset(Base); SubVTTIndex = CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); } if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { // A VTT parameter was passed to the constructor, use it. llvm::Value *VTT = LoadCXXVTT(); return Builder.CreateConstInBoundsGEP1_64(VoidPtrTy, VTT, SubVTTIndex); } else { // We're the complete constructor, so get the VTT by name. llvm::GlobalValue *VTT = CGM.getVTables().GetAddrOfVTT(RD); return Builder.CreateConstInBoundsGEP2_64( VTT->getValueType(), VTT, 0, SubVTTIndex); } } namespace { /// Call the destructor for a direct base class. struct CallBaseDtor final : EHScopeStack::Cleanup { const CXXRecordDecl *BaseClass; bool BaseIsVirtual; CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} void Emit(CodeGenFunction &CGF, Flags flags) override { const CXXRecordDecl *DerivedClass = cast(CGF.CurCodeDecl)->getParent(); const CXXDestructorDecl *D = BaseClass->getDestructor(); // We are already inside a destructor, so presumably the object being // destroyed should have the expected type. QualType ThisTy = D->getThisObjectType(); Address Addr = CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), DerivedClass, BaseClass, BaseIsVirtual); CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, /*Delegating=*/false, Addr, ThisTy); } }; /// A visitor which checks whether an initializer uses 'this' in a /// way which requires the vtable to be properly set. struct DynamicThisUseChecker : ConstEvaluatedExprVisitor { typedef ConstEvaluatedExprVisitor super; bool UsesThis; DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} // Black-list all explicit and implicit references to 'this'. // // Do we need to worry about external references to 'this' derived // from arbitrary code? If so, then anything which runs arbitrary // external code might potentially access the vtable. void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } }; } // end anonymous namespace static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { DynamicThisUseChecker Checker(C); Checker.Visit(Init); return Checker.UsesThis; } static void EmitBaseInitializer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, CXXCtorInitializer *BaseInit) { assert(BaseInit->isBaseInitializer() && "Must have base initializer!"); Address ThisPtr = CGF.LoadCXXThisAddress(); const Type *BaseType = BaseInit->getBaseClass(); const auto *BaseClassDecl = cast(BaseType->castAs()->getDecl()); bool isBaseVirtual = BaseInit->isBaseVirtual(); // If the initializer for the base (other than the constructor // itself) accesses 'this' in any way, we need to initialize the // vtables. if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) CGF.InitializeVTablePointers(ClassDecl); // We can pretend to be a complete class because it only matters for // virtual bases, and we only do virtual bases for complete ctors. Address V = CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, BaseClassDecl, isBaseVirtual); AggValueSlot AggSlot = AggValueSlot::forAddr( V, Qualifiers(), AggValueSlot::IsDestructed, AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual)); CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); if (CGF.CGM.getLangOpts().Exceptions && !BaseClassDecl->hasTrivialDestructor()) CGF.EHStack.pushCleanup(EHCleanup, BaseClassDecl, isBaseVirtual); } static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { auto *CD = dyn_cast(D); if (!(CD && CD->isCopyOrMoveConstructor()) && !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) return false; // We can emit a memcpy for a trivial copy or move constructor/assignment. if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) return true; // We *must* emit a memcpy for a defaulted union copy or move op. if (D->getParent()->isUnion() && D->isDefaulted()) return true; return false; } static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, CXXCtorInitializer *MemberInit, LValue &LHS) { FieldDecl *Field = MemberInit->getAnyMember(); if (MemberInit->isIndirectMemberInitializer()) { // If we are initializing an anonymous union field, drill down to the field. IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); for (const auto *I : IndirectField->chain()) LHS = CGF.EmitLValueForFieldInitialization(LHS, cast(I)); } else { LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); } } static void EmitMemberInitializer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, CXXCtorInitializer *MemberInit, const CXXConstructorDecl *Constructor, FunctionArgList &Args) { ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); assert(MemberInit->isAnyMemberInitializer() && "Must have member initializer!"); assert(MemberInit->getInit() && "Must have initializer!"); // non-static data member initializers. FieldDecl *Field = MemberInit->getAnyMember(); QualType FieldType = Field->getType(); llvm::Value *ThisPtr = CGF.LoadCXXThis(); QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); LValue LHS; // If a base constructor is being emitted, create an LValue that has the // non-virtual alignment. if (CGF.CurGD.getCtorType() == Ctor_Base) LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy); else LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); // Special case: if we are in a copy or move constructor, and we are copying // an array of PODs or classes with trivial copy constructors, ignore the // AST and perform the copy we know is equivalent. // FIXME: This is hacky at best... if we had a bit more explicit information // in the AST, we could generalize it more easily. const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(FieldType); if (Array && Constructor->isDefaulted() && Constructor->isCopyOrMoveConstructor()) { QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); CXXConstructExpr *CE = dyn_cast(MemberInit->getInit()); if (BaseElementTy.isPODType(CGF.getContext()) || (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { unsigned SrcArgIndex = CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); // Copy the aggregate. CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field), LHS.isVolatileQualified()); // Ensure that we destroy the objects if an exception is thrown later in // the constructor. QualType::DestructionKind dtorKind = FieldType.isDestructedType(); if (CGF.needsEHCleanup(dtorKind)) CGF.pushEHDestroy(dtorKind, LHS.getAddress(CGF), FieldType); return; } } CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit()); } void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init) { QualType FieldType = Field->getType(); switch (getEvaluationKind(FieldType)) { case TEK_Scalar: if (LHS.isSimple()) { EmitExprAsInit(Init, Field, LHS, false); } else { RValue RHS = RValue::get(EmitScalarExpr(Init)); EmitStoreThroughLValue(RHS, LHS); } break; case TEK_Complex: EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); break; case TEK_Aggregate: { AggValueSlot Slot = AggValueSlot::forLValue( LHS, *this, AggValueSlot::IsDestructed, AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, getOverlapForFieldInit(Field), AggValueSlot::IsNotZeroed, // Checks are made by the code that calls constructor. AggValueSlot::IsSanitizerChecked); EmitAggExpr(Init, Slot); break; } } // Ensure that we destroy this object if an exception is thrown // later in the constructor. QualType::DestructionKind dtorKind = FieldType.isDestructedType(); if (needsEHCleanup(dtorKind)) pushEHDestroy(dtorKind, LHS.getAddress(*this), FieldType); } /// Checks whether the given constructor is a valid subject for the /// complete-to-base constructor delegation optimization, i.e. /// emitting the complete constructor as a simple call to the base /// constructor. bool CodeGenFunction::IsConstructorDelegationValid( const CXXConstructorDecl *Ctor) { // Currently we disable the optimization for classes with virtual // bases because (1) the addresses of parameter variables need to be // consistent across all initializers but (2) the delegate function // call necessarily creates a second copy of the parameter variable. // // The limiting example (purely theoretical AFAIK): // struct A { A(int &c) { c++; } }; // struct B : virtual A { // B(int count) : A(count) { printf("%d\n", count); } // }; // ...although even this example could in principle be emitted as a // delegation since the address of the parameter doesn't escape. if (Ctor->getParent()->getNumVBases()) { // TODO: white-list trivial vbase initializers. This case wouldn't // be subject to the restrictions below. // TODO: white-list cases where: // - there are no non-reference parameters to the constructor // - the initializers don't access any non-reference parameters // - the initializers don't take the address of non-reference // parameters // - etc. // If we ever add any of the above cases, remember that: // - function-try-blocks will always exclude this optimization // - we need to perform the constructor prologue and cleanup in // EmitConstructorBody. return false; } // We also disable the optimization for variadic functions because // it's impossible to "re-pass" varargs. if (Ctor->getType()->castAs()->isVariadic()) return false; // FIXME: Decide if we can do a delegation of a delegating constructor. if (Ctor->isDelegatingConstructor()) return false; return true; } // Emit code in ctor (Prologue==true) or dtor (Prologue==false) // to poison the extra field paddings inserted under // -fsanitize-address-field-padding=1|2. void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { ASTContext &Context = getContext(); const CXXRecordDecl *ClassDecl = Prologue ? cast(CurGD.getDecl())->getParent() : cast(CurGD.getDecl())->getParent(); if (!ClassDecl->mayInsertExtraPadding()) return; struct SizeAndOffset { uint64_t Size; uint64_t Offset; }; unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); // Populate sizes and offsets of fields. SmallVector SSV(Info.getFieldCount()); for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) SSV[i].Offset = Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); size_t NumFields = 0; for (const auto *Field : ClassDecl->fields()) { const FieldDecl *D = Field; auto FieldInfo = Context.getTypeInfoInChars(D->getType()); CharUnits FieldSize = FieldInfo.Width; assert(NumFields < SSV.size()); SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); NumFields++; } assert(NumFields == SSV.size()); if (SSV.size() <= 1) return; // We will insert calls to __asan_* run-time functions. // LLVM AddressSanitizer pass may decide to inline them later. llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, Args, false); llvm::FunctionCallee F = CGM.CreateRuntimeFunction( FTy, Prologue ? "__asan_poison_intra_object_redzone" : "__asan_unpoison_intra_object_redzone"); llvm::Value *ThisPtr = LoadCXXThis(); ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); // For each field check if it has sufficient padding, // if so (un)poison it with a call. for (size_t i = 0; i < SSV.size(); i++) { uint64_t AsanAlignment = 8; uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; if (PoisonSize < AsanAlignment || !SSV[i].Size || (NextField % AsanAlignment) != 0) continue; Builder.CreateCall( F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), Builder.getIntN(PtrSize, PoisonSize)}); } } /// EmitConstructorBody - Emits the body of the current constructor. void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { EmitAsanPrologueOrEpilogue(true); const CXXConstructorDecl *Ctor = cast(CurGD.getDecl()); CXXCtorType CtorType = CurGD.getCtorType(); assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || CtorType == Ctor_Complete) && "can only generate complete ctor for this ABI"); // Before we go any further, try the complete->base constructor // delegation optimization. if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && CGM.getTarget().getCXXABI().hasConstructorVariants()) { EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc()); return; } const FunctionDecl *Definition = nullptr; Stmt *Body = Ctor->getBody(Definition); assert(Definition == Ctor && "emitting wrong constructor body"); // Enter the function-try-block before the constructor prologue if // applicable. bool IsTryBody = (Body && isa(Body)); if (IsTryBody) EnterCXXTryStmt(*cast(Body), true); incrementProfileCounter(Body); RunCleanupsScope RunCleanups(*this); // TODO: in restricted cases, we can emit the vbase initializers of // a complete ctor and then delegate to the base ctor. // Emit the constructor prologue, i.e. the base and member // initializers. EmitCtorPrologue(Ctor, CtorType, Args); // Emit the body of the statement. if (IsTryBody) EmitStmt(cast(Body)->getTryBlock()); else if (Body) EmitStmt(Body); // Emit any cleanup blocks associated with the member or base // initializers, which includes (along the exceptional path) the // destructors for those members and bases that were fully // constructed. RunCleanups.ForceCleanup(); if (IsTryBody) ExitCXXTryStmt(*cast(Body), true); } namespace { /// RAII object to indicate that codegen is copying the value representation /// instead of the object representation. Useful when copying a struct or /// class which has uninitialized members and we're only performing /// lvalue-to-rvalue conversion on the object but not its members. class CopyingValueRepresentation { public: explicit CopyingValueRepresentation(CodeGenFunction &CGF) : CGF(CGF), OldSanOpts(CGF.SanOpts) { CGF.SanOpts.set(SanitizerKind::Bool, false); CGF.SanOpts.set(SanitizerKind::Enum, false); } ~CopyingValueRepresentation() { CGF.SanOpts = OldSanOpts; } private: CodeGenFunction &CGF; SanitizerSet OldSanOpts; }; } // end anonymous namespace namespace { class FieldMemcpyizer { public: FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, const VarDecl *SrcRec) : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), LastFieldOffset(0), LastAddedFieldIndex(0) {} bool isMemcpyableField(FieldDecl *F) const { // Never memcpy fields when we are adding poisoned paddings. if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) return false; Qualifiers Qual = F->getType().getQualifiers(); if (Qual.hasVolatile() || Qual.hasObjCLifetime()) return false; return true; } void addMemcpyableField(FieldDecl *F) { if (F->isZeroSize(CGF.getContext())) return; if (!FirstField) addInitialField(F); else addNextField(F); } CharUnits getMemcpySize(uint64_t FirstByteOffset) const { ASTContext &Ctx = CGF.getContext(); unsigned LastFieldSize = LastField->isBitField() ? LastField->getBitWidthValue(Ctx) : Ctx.toBits( Ctx.getTypeInfoDataSizeInChars(LastField->getType()).Width); uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize - FirstByteOffset + Ctx.getCharWidth() - 1; CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits); return MemcpySize; } void emitMemcpy() { // Give the subclass a chance to bail out if it feels the memcpy isn't // worth it (e.g. Hasn't aggregated enough data). if (!FirstField) { return; } uint64_t FirstByteOffset; if (FirstField->isBitField()) { const CGRecordLayout &RL = CGF.getTypes().getCGRecordLayout(FirstField->getParent()); const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); // FirstFieldOffset is not appropriate for bitfields, // we need to use the storage offset instead. FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); } else { FirstByteOffset = FirstFieldOffset; } CharUnits MemcpySize = getMemcpySize(FirstByteOffset); QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); Address ThisPtr = CGF.LoadCXXThisAddress(); LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); emitMemcpyIR( Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(CGF), Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(CGF), MemcpySize); reset(); } void reset() { FirstField = nullptr; } protected: CodeGenFunction &CGF; const CXXRecordDecl *ClassDecl; private: void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { DestPtr = DestPtr.withElementType(CGF.Int8Ty); SrcPtr = SrcPtr.withElementType(CGF.Int8Ty); CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); } void addInitialField(FieldDecl *F) { FirstField = F; LastField = F; FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); LastFieldOffset = FirstFieldOffset; LastAddedFieldIndex = F->getFieldIndex(); } void addNextField(FieldDecl *F) { // For the most part, the following invariant will hold: // F->getFieldIndex() == LastAddedFieldIndex + 1 // The one exception is that Sema won't add a copy-initializer for an // unnamed bitfield, which will show up here as a gap in the sequence. assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && "Cannot aggregate fields out of order."); LastAddedFieldIndex = F->getFieldIndex(); // The 'first' and 'last' fields are chosen by offset, rather than field // index. This allows the code to support bitfields, as well as regular // fields. uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); if (FOffset < FirstFieldOffset) { FirstField = F; FirstFieldOffset = FOffset; } else if (FOffset >= LastFieldOffset) { LastField = F; LastFieldOffset = FOffset; } } const VarDecl *SrcRec; const ASTRecordLayout &RecLayout; FieldDecl *FirstField; FieldDecl *LastField; uint64_t FirstFieldOffset, LastFieldOffset; unsigned LastAddedFieldIndex; }; class ConstructorMemcpyizer : public FieldMemcpyizer { private: /// Get source argument for copy constructor. Returns null if not a copy /// constructor. static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, const CXXConstructorDecl *CD, FunctionArgList &Args) { if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; return nullptr; } // Returns true if a CXXCtorInitializer represents a member initialization // that can be rolled into a memcpy. bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { if (!MemcpyableCtor) return false; FieldDecl *Field = MemberInit->getMember(); assert(Field && "No field for member init."); QualType FieldType = Field->getType(); CXXConstructExpr *CE = dyn_cast(MemberInit->getInit()); // Bail out on non-memcpyable, not-trivially-copyable members. if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && !(FieldType.isTriviallyCopyableType(CGF.getContext()) || FieldType->isReferenceType())) return false; // Bail out on volatile fields. if (!isMemcpyableField(Field)) return false; // Otherwise we're good. return true; } public: ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, FunctionArgList &Args) : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), ConstructorDecl(CD), MemcpyableCtor(CD->isDefaulted() && CD->isCopyOrMoveConstructor() && CGF.getLangOpts().getGC() == LangOptions::NonGC), Args(Args) { } void addMemberInitializer(CXXCtorInitializer *MemberInit) { if (isMemberInitMemcpyable(MemberInit)) { AggregatedInits.push_back(MemberInit); addMemcpyableField(MemberInit->getMember()); } else { emitAggregatedInits(); EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, ConstructorDecl, Args); } } void emitAggregatedInits() { if (AggregatedInits.size() <= 1) { // This memcpy is too small to be worthwhile. Fall back on default // codegen. if (!AggregatedInits.empty()) { CopyingValueRepresentation CVR(CGF); EmitMemberInitializer(CGF, ConstructorDecl->getParent(), AggregatedInits[0], ConstructorDecl, Args); AggregatedInits.clear(); } reset(); return; } pushEHDestructors(); emitMemcpy(); AggregatedInits.clear(); } void pushEHDestructors() { Address ThisPtr = CGF.LoadCXXThisAddress(); QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); for (unsigned i = 0; i < AggregatedInits.size(); ++i) { CXXCtorInitializer *MemberInit = AggregatedInits[i]; QualType FieldType = MemberInit->getAnyMember()->getType(); QualType::DestructionKind dtorKind = FieldType.isDestructedType(); if (!CGF.needsEHCleanup(dtorKind)) continue; LValue FieldLHS = LHS; EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(CGF), FieldType); } } void finish() { emitAggregatedInits(); } private: const CXXConstructorDecl *ConstructorDecl; bool MemcpyableCtor; FunctionArgList &Args; SmallVector AggregatedInits; }; class AssignmentMemcpyizer : public FieldMemcpyizer { private: // Returns the memcpyable field copied by the given statement, if one // exists. Otherwise returns null. FieldDecl *getMemcpyableField(Stmt *S) { if (!AssignmentsMemcpyable) return nullptr; if (BinaryOperator *BO = dyn_cast(S)) { // Recognise trivial assignments. if (BO->getOpcode() != BO_Assign) return nullptr; MemberExpr *ME = dyn_cast(BO->getLHS()); if (!ME) return nullptr; FieldDecl *Field = dyn_cast(ME->getMemberDecl()); if (!Field || !isMemcpyableField(Field)) return nullptr; Stmt *RHS = BO->getRHS(); if (ImplicitCastExpr *EC = dyn_cast(RHS)) RHS = EC->getSubExpr(); if (!RHS) return nullptr; if (MemberExpr *ME2 = dyn_cast(RHS)) { if (ME2->getMemberDecl() == Field) return Field; } return nullptr; } else if (CXXMemberCallExpr *MCE = dyn_cast(S)) { CXXMethodDecl *MD = dyn_cast(MCE->getCalleeDecl()); if (!(MD && isMemcpyEquivalentSpecialMember(MD))) return nullptr; MemberExpr *IOA = dyn_cast(MCE->getImplicitObjectArgument()); if (!IOA) return nullptr; FieldDecl *Field = dyn_cast(IOA->getMemberDecl()); if (!Field || !isMemcpyableField(Field)) return nullptr; MemberExpr *Arg0 = dyn_cast(MCE->getArg(0)); if (!Arg0 || Field != dyn_cast(Arg0->getMemberDecl())) return nullptr; return Field; } else if (CallExpr *CE = dyn_cast(S)) { FunctionDecl *FD = dyn_cast(CE->getCalleeDecl()); if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) return nullptr; Expr *DstPtr = CE->getArg(0); if (ImplicitCastExpr *DC = dyn_cast(DstPtr)) DstPtr = DC->getSubExpr(); UnaryOperator *DUO = dyn_cast(DstPtr); if (!DUO || DUO->getOpcode() != UO_AddrOf) return nullptr; MemberExpr *ME = dyn_cast(DUO->getSubExpr()); if (!ME) return nullptr; FieldDecl *Field = dyn_cast(ME->getMemberDecl()); if (!Field || !isMemcpyableField(Field)) return nullptr; Expr *SrcPtr = CE->getArg(1); if (ImplicitCastExpr *SC = dyn_cast(SrcPtr)) SrcPtr = SC->getSubExpr(); UnaryOperator *SUO = dyn_cast(SrcPtr); if (!SUO || SUO->getOpcode() != UO_AddrOf) return nullptr; MemberExpr *ME2 = dyn_cast(SUO->getSubExpr()); if (!ME2 || Field != dyn_cast(ME2->getMemberDecl())) return nullptr; return Field; } return nullptr; } bool AssignmentsMemcpyable; SmallVector AggregatedStmts; public: AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, FunctionArgList &Args) : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { assert(Args.size() == 2); } void emitAssignment(Stmt *S) { FieldDecl *F = getMemcpyableField(S); if (F) { addMemcpyableField(F); AggregatedStmts.push_back(S); } else { emitAggregatedStmts(); CGF.EmitStmt(S); } } void emitAggregatedStmts() { if (AggregatedStmts.size() <= 1) { if (!AggregatedStmts.empty()) { CopyingValueRepresentation CVR(CGF); CGF.EmitStmt(AggregatedStmts[0]); } reset(); } emitMemcpy(); AggregatedStmts.clear(); } void finish() { emitAggregatedStmts(); } }; } // end anonymous namespace static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { const Type *BaseType = BaseInit->getBaseClass(); const auto *BaseClassDecl = cast(BaseType->castAs()->getDecl()); return BaseClassDecl->isDynamicClass(); } /// EmitCtorPrologue - This routine generates necessary code to initialize /// base classes and non-static data members belonging to this constructor. void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType CtorType, FunctionArgList &Args) { if (CD->isDelegatingConstructor()) return EmitDelegatingCXXConstructorCall(CD, Args); const CXXRecordDecl *ClassDecl = CD->getParent(); CXXConstructorDecl::init_const_iterator B = CD->init_begin(), E = CD->init_end(); // Virtual base initializers first, if any. They aren't needed if: // - This is a base ctor variant // - There are no vbases // - The class is abstract, so a complete object of it cannot be constructed // // The check for an abstract class is necessary because sema may not have // marked virtual base destructors referenced. bool ConstructVBases = CtorType != Ctor_Base && ClassDecl->getNumVBases() != 0 && !ClassDecl->isAbstract(); // In the Microsoft C++ ABI, there are no constructor variants. Instead, the // constructor of a class with virtual bases takes an additional parameter to // conditionally construct the virtual bases. Emit that check here. llvm::BasicBlock *BaseCtorContinueBB = nullptr; if (ConstructVBases && !CGM.getTarget().getCXXABI().hasConstructorVariants()) { BaseCtorContinueBB = CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); assert(BaseCtorContinueBB); } llvm::Value *const OldThis = CXXThisValue; for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { if (!ConstructVBases) continue; if (CGM.getCodeGenOpts().StrictVTablePointers && CGM.getCodeGenOpts().OptimizationLevel > 0 && isInitializerOfDynamicClass(*B)) CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); EmitBaseInitializer(*this, ClassDecl, *B); } if (BaseCtorContinueBB) { // Complete object handler should continue to the remaining initializers. Builder.CreateBr(BaseCtorContinueBB); EmitBlock(BaseCtorContinueBB); } // Then, non-virtual base initializers. for (; B != E && (*B)->isBaseInitializer(); B++) { assert(!(*B)->isBaseVirtual()); if (CGM.getCodeGenOpts().StrictVTablePointers && CGM.getCodeGenOpts().OptimizationLevel > 0 && isInitializerOfDynamicClass(*B)) CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); EmitBaseInitializer(*this, ClassDecl, *B); } CXXThisValue = OldThis; InitializeVTablePointers(ClassDecl); // And finally, initialize class members. FieldConstructionScope FCS(*this, LoadCXXThisAddress()); ConstructorMemcpyizer CM(*this, CD, Args); for (; B != E; B++) { CXXCtorInitializer *Member = (*B); assert(!Member->isBaseInitializer()); assert(Member->isAnyMemberInitializer() && "Delegating initializer on non-delegating constructor"); CM.addMemberInitializer(Member); } CM.finish(); } static bool FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); static bool HasTrivialDestructorBody(ASTContext &Context, const CXXRecordDecl *BaseClassDecl, const CXXRecordDecl *MostDerivedClassDecl) { // If the destructor is trivial we don't have to check anything else. if (BaseClassDecl->hasTrivialDestructor()) return true; if (!BaseClassDecl->getDestructor()->hasTrivialBody()) return false; // Check fields. for (const auto *Field : BaseClassDecl->fields()) if (!FieldHasTrivialDestructorBody(Context, Field)) return false; // Check non-virtual bases. for (const auto &I : BaseClassDecl->bases()) { if (I.isVirtual()) continue; const CXXRecordDecl *NonVirtualBase = cast(I.getType()->castAs()->getDecl()); if (!HasTrivialDestructorBody(Context, NonVirtualBase, MostDerivedClassDecl)) return false; } if (BaseClassDecl == MostDerivedClassDecl) { // Check virtual bases. for (const auto &I : BaseClassDecl->vbases()) { const CXXRecordDecl *VirtualBase = cast(I.getType()->castAs()->getDecl()); if (!HasTrivialDestructorBody(Context, VirtualBase, MostDerivedClassDecl)) return false; } } return true; } static bool FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field) { QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); const RecordType *RT = FieldBaseElementType->getAs(); if (!RT) return true; CXXRecordDecl *FieldClassDecl = cast(RT->getDecl()); // The destructor for an implicit anonymous union member is never invoked. if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) return false; return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); } /// CanSkipVTablePointerInitialization - Check whether we need to initialize /// any vtable pointers before calling this destructor. static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, const CXXDestructorDecl *Dtor) { const CXXRecordDecl *ClassDecl = Dtor->getParent(); if (!ClassDecl->isDynamicClass()) return true; // For a final class, the vtable pointer is known to already point to the // class's vtable. if (ClassDecl->isEffectivelyFinal()) return true; if (!Dtor->hasTrivialBody()) return false; // Check the fields. for (const auto *Field : ClassDecl->fields()) if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) return false; return true; } /// EmitDestructorBody - Emits the body of the current destructor. void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { const CXXDestructorDecl *Dtor = cast(CurGD.getDecl()); CXXDtorType DtorType = CurGD.getDtorType(); // For an abstract class, non-base destructors are never used (and can't // be emitted in general, because vbase dtors may not have been validated // by Sema), but the Itanium ABI doesn't make them optional and Clang may // in fact emit references to them from other compilations, so emit them // as functions containing a trap instruction. if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) { llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); TrapCall->setDoesNotReturn(); TrapCall->setDoesNotThrow(); Builder.CreateUnreachable(); Builder.ClearInsertionPoint(); return; } Stmt *Body = Dtor->getBody(); if (Body) incrementProfileCounter(Body); // The call to operator delete in a deleting destructor happens // outside of the function-try-block, which means it's always // possible to delegate the destructor body to the complete // destructor. Do so. if (DtorType == Dtor_Deleting) { RunCleanupsScope DtorEpilogue(*this); EnterDtorCleanups(Dtor, Dtor_Deleting); if (HaveInsertPoint()) { QualType ThisTy = Dtor->getThisObjectType(); EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); } return; } // If the body is a function-try-block, enter the try before // anything else. bool isTryBody = (Body && isa(Body)); if (isTryBody) EnterCXXTryStmt(*cast(Body), true); EmitAsanPrologueOrEpilogue(false); // Enter the epilogue cleanups. RunCleanupsScope DtorEpilogue(*this); // If this is the complete variant, just invoke the base variant; // the epilogue will destruct the virtual bases. But we can't do // this optimization if the body is a function-try-block, because // we'd introduce *two* handler blocks. In the Microsoft ABI, we // always delegate because we might not have a definition in this TU. switch (DtorType) { case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT"); case Dtor_Deleting: llvm_unreachable("already handled deleting case"); case Dtor_Complete: assert((Body || getTarget().getCXXABI().isMicrosoft()) && "can't emit a dtor without a body for non-Microsoft ABIs"); // Enter the cleanup scopes for virtual bases. EnterDtorCleanups(Dtor, Dtor_Complete); if (!isTryBody) { QualType ThisTy = Dtor->getThisObjectType(); EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); break; } // Fallthrough: act like we're in the base variant. [[fallthrough]]; case Dtor_Base: assert(Body); // Enter the cleanup scopes for fields and non-virtual bases. EnterDtorCleanups(Dtor, Dtor_Base); // Initialize the vtable pointers before entering the body. if (!CanSkipVTablePointerInitialization(*this, Dtor)) { // Insert the llvm.launder.invariant.group intrinsic before initializing // the vptrs to cancel any previous assumptions we might have made. if (CGM.getCodeGenOpts().StrictVTablePointers && CGM.getCodeGenOpts().OptimizationLevel > 0) CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); InitializeVTablePointers(Dtor->getParent()); } if (isTryBody) EmitStmt(cast(Body)->getTryBlock()); else if (Body) EmitStmt(Body); else { assert(Dtor->isImplicit() && "bodyless dtor not implicit"); // nothing to do besides what's in the epilogue } // -fapple-kext must inline any call to this dtor into // the caller's body. if (getLangOpts().AppleKext) CurFn->addFnAttr(llvm::Attribute::AlwaysInline); break; } // Jump out through the epilogue cleanups. DtorEpilogue.ForceCleanup(); // Exit the try if applicable. if (isTryBody) ExitCXXTryStmt(*cast(Body), true); } void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { const CXXMethodDecl *AssignOp = cast(CurGD.getDecl()); const Stmt *RootS = AssignOp->getBody(); assert(isa(RootS) && "Body of an implicit assignment operator should be compound stmt."); const CompoundStmt *RootCS = cast(RootS); LexicalScope Scope(*this, RootCS->getSourceRange()); incrementProfileCounter(RootCS); AssignmentMemcpyizer AM(*this, AssignOp, Args); for (auto *I : RootCS->body()) AM.emitAssignment(I); AM.finish(); } namespace { llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF, const CXXDestructorDecl *DD) { if (Expr *ThisArg = DD->getOperatorDeleteThisArg()) return CGF.EmitScalarExpr(ThisArg); return CGF.LoadCXXThis(); } /// Call the operator delete associated with the current destructor. struct CallDtorDelete final : EHScopeStack::Cleanup { CallDtorDelete() {} void Emit(CodeGenFunction &CGF, Flags flags) override { const CXXDestructorDecl *Dtor = cast(CGF.CurCodeDecl); const CXXRecordDecl *ClassDecl = Dtor->getParent(); CGF.EmitDeleteCall(Dtor->getOperatorDelete(), LoadThisForDtorDelete(CGF, Dtor), CGF.getContext().getTagDeclType(ClassDecl)); } }; void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF, llvm::Value *ShouldDeleteCondition, bool ReturnAfterDelete) { llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); llvm::Value *ShouldCallDelete = CGF.Builder.CreateIsNull(ShouldDeleteCondition); CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); CGF.EmitBlock(callDeleteBB); const CXXDestructorDecl *Dtor = cast(CGF.CurCodeDecl); const CXXRecordDecl *ClassDecl = Dtor->getParent(); CGF.EmitDeleteCall(Dtor->getOperatorDelete(), LoadThisForDtorDelete(CGF, Dtor), CGF.getContext().getTagDeclType(ClassDecl)); assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() == ReturnAfterDelete && "unexpected value for ReturnAfterDelete"); if (ReturnAfterDelete) CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); else CGF.Builder.CreateBr(continueBB); CGF.EmitBlock(continueBB); } struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { llvm::Value *ShouldDeleteCondition; public: CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) : ShouldDeleteCondition(ShouldDeleteCondition) { assert(ShouldDeleteCondition != nullptr); } void Emit(CodeGenFunction &CGF, Flags flags) override { EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition, /*ReturnAfterDelete*/false); } }; class DestroyField final : public EHScopeStack::Cleanup { const FieldDecl *field; CodeGenFunction::Destroyer *destroyer; bool useEHCleanupForArray; public: DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, bool useEHCleanupForArray) : field(field), destroyer(destroyer), useEHCleanupForArray(useEHCleanupForArray) {} void Emit(CodeGenFunction &CGF, Flags flags) override { // Find the address of the field. Address thisValue = CGF.LoadCXXThisAddress(); QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); LValue LV = CGF.EmitLValueForField(ThisLV, field); assert(LV.isSimple()); CGF.emitDestroy(LV.getAddress(CGF), field->getType(), destroyer, flags.isForNormalCleanup() && useEHCleanupForArray); } }; class DeclAsInlineDebugLocation { CGDebugInfo *DI; llvm::MDNode *InlinedAt; std::optional Location; public: DeclAsInlineDebugLocation(CodeGenFunction &CGF, const NamedDecl &Decl) : DI(CGF.getDebugInfo()) { if (!DI) return; InlinedAt = DI->getInlinedAt(); DI->setInlinedAt(CGF.Builder.getCurrentDebugLocation()); Location.emplace(CGF, Decl.getLocation()); } ~DeclAsInlineDebugLocation() { if (!DI) return; Location.reset(); DI->setInlinedAt(InlinedAt); } }; static void EmitSanitizerDtorCallback( CodeGenFunction &CGF, StringRef Name, llvm::Value *Ptr, std::optional PoisonSize = {}) { CodeGenFunction::SanitizerScope SanScope(&CGF); // Pass in void pointer and size of region as arguments to runtime // function SmallVector Args = { CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy)}; SmallVector ArgTypes = {CGF.VoidPtrTy}; if (PoisonSize.has_value()) { Args.emplace_back(llvm::ConstantInt::get(CGF.SizeTy, *PoisonSize)); ArgTypes.emplace_back(CGF.SizeTy); } llvm::FunctionType *FnType = llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FnType, Name); CGF.EmitNounwindRuntimeCall(Fn, Args); } static void EmitSanitizerDtorFieldsCallback(CodeGenFunction &CGF, llvm::Value *Ptr, CharUnits::QuantityType PoisonSize) { EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_fields", Ptr, PoisonSize); } /// Poison base class with a trivial destructor. struct SanitizeDtorTrivialBase final : EHScopeStack::Cleanup { const CXXRecordDecl *BaseClass; bool BaseIsVirtual; SanitizeDtorTrivialBase(const CXXRecordDecl *Base, bool BaseIsVirtual) : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} void Emit(CodeGenFunction &CGF, Flags flags) override { const CXXRecordDecl *DerivedClass = cast(CGF.CurCodeDecl)->getParent(); Address Addr = CGF.GetAddressOfDirectBaseInCompleteClass( CGF.LoadCXXThisAddress(), DerivedClass, BaseClass, BaseIsVirtual); const ASTRecordLayout &BaseLayout = CGF.getContext().getASTRecordLayout(BaseClass); CharUnits BaseSize = BaseLayout.getSize(); if (!BaseSize.isPositive()) return; // Use the base class declaration location as inline DebugLocation. All // fields of the class are destroyed. DeclAsInlineDebugLocation InlineHere(CGF, *BaseClass); EmitSanitizerDtorFieldsCallback(CGF, Addr.getPointer(), BaseSize.getQuantity()); // Prevent the current stack frame from disappearing from the stack trace. CGF.CurFn->addFnAttr("disable-tail-calls", "true"); } }; class SanitizeDtorFieldRange final : public EHScopeStack::Cleanup { const CXXDestructorDecl *Dtor; unsigned StartIndex; unsigned EndIndex; public: SanitizeDtorFieldRange(const CXXDestructorDecl *Dtor, unsigned StartIndex, unsigned EndIndex) : Dtor(Dtor), StartIndex(StartIndex), EndIndex(EndIndex) {} // Generate function call for handling object poisoning. // Disables tail call elimination, to prevent the current stack frame // from disappearing from the stack trace. void Emit(CodeGenFunction &CGF, Flags flags) override { const ASTContext &Context = CGF.getContext(); const ASTRecordLayout &Layout = Context.getASTRecordLayout(Dtor->getParent()); // It's a first trivial field so it should be at the begining of a char, // still round up start offset just in case. CharUnits PoisonStart = Context.toCharUnitsFromBits( Layout.getFieldOffset(StartIndex) + Context.getCharWidth() - 1); llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get(CGF.SizeTy, PoisonStart.getQuantity()); llvm::Value *OffsetPtr = CGF.Builder.CreateGEP( CGF.Int8Ty, CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy), OffsetSizePtr); CharUnits PoisonEnd; if (EndIndex >= Layout.getFieldCount()) { PoisonEnd = Layout.getNonVirtualSize(); } else { PoisonEnd = Context.toCharUnitsFromBits(Layout.getFieldOffset(EndIndex)); } CharUnits PoisonSize = PoisonEnd - PoisonStart; if (!PoisonSize.isPositive()) return; // Use the top field declaration location as inline DebugLocation. DeclAsInlineDebugLocation InlineHere( CGF, **std::next(Dtor->getParent()->field_begin(), StartIndex)); EmitSanitizerDtorFieldsCallback(CGF, OffsetPtr, PoisonSize.getQuantity()); // Prevent the current stack frame from disappearing from the stack trace. CGF.CurFn->addFnAttr("disable-tail-calls", "true"); } }; class SanitizeDtorVTable final : public EHScopeStack::Cleanup { const CXXDestructorDecl *Dtor; public: SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} // Generate function call for handling vtable pointer poisoning. void Emit(CodeGenFunction &CGF, Flags flags) override { assert(Dtor->getParent()->isDynamicClass()); (void)Dtor; // Poison vtable and vtable ptr if they exist for this class. llvm::Value *VTablePtr = CGF.LoadCXXThis(); // Pass in void pointer and size of region as arguments to runtime // function EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_vptr", VTablePtr); } }; class SanitizeDtorCleanupBuilder { ASTContext &Context; EHScopeStack &EHStack; const CXXDestructorDecl *DD; std::optional StartIndex; public: SanitizeDtorCleanupBuilder(ASTContext &Context, EHScopeStack &EHStack, const CXXDestructorDecl *DD) : Context(Context), EHStack(EHStack), DD(DD), StartIndex(std::nullopt) {} void PushCleanupForField(const FieldDecl *Field) { if (Field->isZeroSize(Context)) return; unsigned FieldIndex = Field->getFieldIndex(); if (FieldHasTrivialDestructorBody(Context, Field)) { if (!StartIndex) StartIndex = FieldIndex; } else if (StartIndex) { EHStack.pushCleanup(NormalAndEHCleanup, DD, *StartIndex, FieldIndex); StartIndex = std::nullopt; } } void End() { if (StartIndex) EHStack.pushCleanup(NormalAndEHCleanup, DD, *StartIndex, -1); } }; } // end anonymous namespace /// Emit all code that comes at the end of class's /// destructor. This is to call destructors on members and base classes /// in reverse order of their construction. /// /// For a deleting destructor, this also handles the case where a destroying /// operator delete completely overrides the definition. void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, CXXDtorType DtorType) { assert((!DD->isTrivial() || DD->hasAttr()) && "Should not emit dtor epilogue for non-exported trivial dtor!"); // The deleting-destructor phase just needs to call the appropriate // operator delete that Sema picked up. if (DtorType == Dtor_Deleting) { assert(DD->getOperatorDelete() && "operator delete missing - EnterDtorCleanups"); if (CXXStructorImplicitParamValue) { // If there is an implicit param to the deleting dtor, it's a boolean // telling whether this is a deleting destructor. if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue, /*ReturnAfterDelete*/true); else EHStack.pushCleanup( NormalAndEHCleanup, CXXStructorImplicitParamValue); } else { if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) { const CXXRecordDecl *ClassDecl = DD->getParent(); EmitDeleteCall(DD->getOperatorDelete(), LoadThisForDtorDelete(*this, DD), getContext().getTagDeclType(ClassDecl)); EmitBranchThroughCleanup(ReturnBlock); } else { EHStack.pushCleanup(NormalAndEHCleanup); } } return; } const CXXRecordDecl *ClassDecl = DD->getParent(); // Unions have no bases and do not call field destructors. if (ClassDecl->isUnion()) return; // The complete-destructor phase just destructs all the virtual bases. if (DtorType == Dtor_Complete) { // Poison the vtable pointer such that access after the base // and member destructors are invoked is invalid. if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && ClassDecl->isPolymorphic()) EHStack.pushCleanup(NormalAndEHCleanup, DD); // We push them in the forward order so that they'll be popped in // the reverse order. for (const auto &Base : ClassDecl->vbases()) { auto *BaseClassDecl = cast(Base.getType()->castAs()->getDecl()); if (BaseClassDecl->hasTrivialDestructor()) { // Under SanitizeMemoryUseAfterDtor, poison the trivial base class // memory. For non-trival base classes the same is done in the class // destructor. if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty()) EHStack.pushCleanup(NormalAndEHCleanup, BaseClassDecl, /*BaseIsVirtual*/ true); } else { EHStack.pushCleanup(NormalAndEHCleanup, BaseClassDecl, /*BaseIsVirtual*/ true); } } return; } assert(DtorType == Dtor_Base); // Poison the vtable pointer if it has no virtual bases, but inherits // virtual functions. if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && ClassDecl->isPolymorphic()) EHStack.pushCleanup(NormalAndEHCleanup, DD); // Destroy non-virtual bases. for (const auto &Base : ClassDecl->bases()) { // Ignore virtual bases. if (Base.isVirtual()) continue; CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); if (BaseClassDecl->hasTrivialDestructor()) { if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty()) EHStack.pushCleanup(NormalAndEHCleanup, BaseClassDecl, /*BaseIsVirtual*/ false); } else { EHStack.pushCleanup(NormalAndEHCleanup, BaseClassDecl, /*BaseIsVirtual*/ false); } } // Poison fields such that access after their destructors are // invoked, and before the base class destructor runs, is invalid. bool SanitizeFields = CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && SanOpts.has(SanitizerKind::Memory); SanitizeDtorCleanupBuilder SanitizeBuilder(getContext(), EHStack, DD); // Destroy direct fields. for (const auto *Field : ClassDecl->fields()) { if (SanitizeFields) SanitizeBuilder.PushCleanupForField(Field); QualType type = Field->getType(); QualType::DestructionKind dtorKind = type.isDestructedType(); if (!dtorKind) continue; // Anonymous union members do not have their destructors called. const RecordType *RT = type->getAsUnionType(); if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; CleanupKind cleanupKind = getCleanupKind(dtorKind); EHStack.pushCleanup( cleanupKind, Field, getDestroyer(dtorKind), cleanupKind & EHCleanup); } if (SanitizeFields) SanitizeBuilder.End(); } /// EmitCXXAggrConstructorCall - Emit a loop to call a particular /// constructor for each of several members of an array. /// /// \param ctor the constructor to call for each element /// \param arrayType the type of the array to initialize /// \param arrayBegin an arrayType* /// \param zeroInitialize true if each element should be /// zero-initialized before it is constructed void CodeGenFunction::EmitCXXAggrConstructorCall( const CXXConstructorDecl *ctor, const ArrayType *arrayType, Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked, bool zeroInitialize) { QualType elementType; llvm::Value *numElements = emitArrayLength(arrayType, elementType, arrayBegin); EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, NewPointerIsChecked, zeroInitialize); } /// EmitCXXAggrConstructorCall - Emit a loop to call a particular /// constructor for each of several members of an array. /// /// \param ctor the constructor to call for each element /// \param numElements the number of elements in the array; /// may be zero /// \param arrayBase a T*, where T is the type constructed by ctor /// \param zeroInitialize true if each element should be /// zero-initialized before it is constructed void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, llvm::Value *numElements, Address arrayBase, const CXXConstructExpr *E, bool NewPointerIsChecked, bool zeroInitialize) { // It's legal for numElements to be zero. This can happen both // dynamically, because x can be zero in 'new A[x]', and statically, // because of GCC extensions that permit zero-length arrays. There // are probably legitimate places where we could assume that this // doesn't happen, but it's not clear that it's worth it. llvm::BranchInst *zeroCheckBranch = nullptr; // Optimize for a constant count. llvm::ConstantInt *constantCount = dyn_cast(numElements); if (constantCount) { // Just skip out if the constant count is zero. if (constantCount->isZero()) return; // Otherwise, emit the check. } else { llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); EmitBlock(loopBB); } // Find the end of the array. llvm::Type *elementType = arrayBase.getElementType(); llvm::Value *arrayBegin = arrayBase.getPointer(); llvm::Value *arrayEnd = Builder.CreateInBoundsGEP( elementType, arrayBegin, numElements, "arrayctor.end"); // Enter the loop, setting up a phi for the current location to initialize. llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); EmitBlock(loopBB); llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, "arrayctor.cur"); cur->addIncoming(arrayBegin, entryBB); // Inside the loop body, emit the constructor call on the array element. // The alignment of the base, adjusted by the size of a single element, // provides a conservative estimate of the alignment of every element. // (This assumes we never start tracking offsetted alignments.) // // Note that these are complete objects and so we don't need to // use the non-virtual size or alignment. QualType type = getContext().getTypeDeclType(ctor->getParent()); CharUnits eltAlignment = arrayBase.getAlignment() .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); Address curAddr = Address(cur, elementType, eltAlignment); // Zero initialize the storage, if requested. if (zeroInitialize) EmitNullInitialization(curAddr, type); // C++ [class.temporary]p4: // There are two contexts in which temporaries are destroyed at a different // point than the end of the full-expression. The first context is when a // default constructor is called to initialize an element of an array. // If the constructor has one or more default arguments, the destruction of // every temporary created in a default argument expression is sequenced // before the construction of the next array element, if any. { RunCleanupsScope Scope(*this); // Evaluate the constructor and its arguments in a regular // partial-destroy cleanup. if (getLangOpts().Exceptions && !ctor->getParent()->hasTrivialDestructor()) { Destroyer *destroyer = destroyCXXObject; pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, *destroyer); } auto currAVS = AggValueSlot::forAddr( curAddr, type.getQualifiers(), AggValueSlot::IsDestructed, AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed, NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked : AggValueSlot::IsNotSanitizerChecked); EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, /*Delegating=*/false, currAVS, E); } // Go to the next element. llvm::Value *next = Builder.CreateInBoundsGEP( elementType, cur, llvm::ConstantInt::get(SizeTy, 1), "arrayctor.next"); cur->addIncoming(next, Builder.GetInsertBlock()); // Check whether that's the end of the loop. llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); Builder.CreateCondBr(done, contBB, loopBB); // Patch the earlier check to skip over the loop. if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); EmitBlock(contBB); } void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, Address addr, QualType type) { const RecordType *rtype = type->castAs(); const CXXRecordDecl *record = cast(rtype->getDecl()); const CXXDestructorDecl *dtor = record->getDestructor(); assert(!dtor->isTrivial()); CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, /*Delegating=*/false, addr, type); } void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, bool ForVirtualBase, bool Delegating, AggValueSlot ThisAVS, const CXXConstructExpr *E) { CallArgList Args; Address This = ThisAVS.getAddress(); LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace(); QualType ThisType = D->getThisType(); LangAS ThisAS = ThisType.getTypePtr()->getPointeeType().getAddressSpace(); llvm::Value *ThisPtr = This.getPointer(); if (SlotAS != ThisAS) { unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS); llvm::Type *NewType = llvm::PointerType::get(getLLVMContext(), TargetThisAS); ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(), ThisAS, SlotAS, NewType); } // Push the this ptr. Args.add(RValue::get(ThisPtr), D->getThisType()); // If this is a trivial constructor, emit a memcpy now before we lose // the alignment information on the argument. // FIXME: It would be better to preserve alignment information into CallArg. if (isMemcpyEquivalentSpecialMember(D)) { assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); const Expr *Arg = E->getArg(0); LValue Src = EmitLValue(Arg); QualType DestTy = getContext().getTypeDeclType(D->getParent()); LValue Dest = MakeAddrLValue(This, DestTy); EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap()); return; } // Add the rest of the user-supplied arguments. const FunctionProtoType *FPT = D->getType()->castAs(); EvaluationOrder Order = E->isListInitialization() ? EvaluationOrder::ForceLeftToRight : EvaluationOrder::Default; EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(), /*ParamsToSkip*/ 0, Order); EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args, ThisAVS.mayOverlap(), E->getExprLoc(), ThisAVS.isSanitizerChecked()); } static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, const CXXConstructorDecl *Ctor, CXXCtorType Type, CallArgList &Args) { // We can't forward a variadic call. if (Ctor->isVariadic()) return false; if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { // If the parameters are callee-cleanup, it's not safe to forward. for (auto *P : Ctor->parameters()) if (P->needsDestruction(CGF.getContext())) return false; // Likewise if they're inalloca. const CGFunctionInfo &Info = CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0); if (Info.usesInAlloca()) return false; } // Anything else should be OK. return true; } void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, bool ForVirtualBase, bool Delegating, Address This, CallArgList &Args, AggValueSlot::Overlap_t Overlap, SourceLocation Loc, bool NewPointerIsChecked) { const CXXRecordDecl *ClassDecl = D->getParent(); if (!NewPointerIsChecked) EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(), getContext().getRecordType(ClassDecl), CharUnits::Zero()); if (D->isTrivial() && D->isDefaultConstructor()) { assert(Args.size() == 1 && "trivial default ctor with args"); return; } // If this is a trivial constructor, just emit what's needed. If this is a // union copy constructor, we must emit a memcpy, because the AST does not // model that copy. if (isMemcpyEquivalentSpecialMember(D)) { assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); Address Src = Address(Args[1].getRValue(*this).getScalarVal(), ConvertTypeForMem(SrcTy), CGM.getNaturalTypeAlignment(SrcTy)); LValue SrcLVal = MakeAddrLValue(Src, SrcTy); QualType DestTy = getContext().getTypeDeclType(ClassDecl); LValue DestLVal = MakeAddrLValue(This, DestTy); EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap); return; } bool PassPrototypeArgs = true; // Check whether we can actually emit the constructor before trying to do so. if (auto Inherited = D->getInheritedConstructor()) { PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type); if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) { EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, Delegating, Args); return; } } // Insert any ABI-specific implicit constructor arguments. CGCXXABI::AddedStructorArgCounts ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase, Delegating, Args); // Emit the call. llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type)); const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall( Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs); CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type)); EmitCall(Info, Callee, ReturnValueSlot(), Args, nullptr, false, Loc); // Generate vtable assumptions if we're constructing a complete object // with a vtable. We don't do this for base subobjects for two reasons: // first, it's incorrect for classes with virtual bases, and second, we're // about to overwrite the vptrs anyway. // We also have to make sure if we can refer to vtable: // - Otherwise we can refer to vtable if it's safe to speculatively emit. // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are // sure that definition of vtable is not hidden, // then we are always safe to refer to it. // FIXME: It looks like InstCombine is very inefficient on dealing with // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. if (CGM.getCodeGenOpts().OptimizationLevel > 0 && ClassDecl->isDynamicClass() && Type != Ctor_Base && CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && CGM.getCodeGenOpts().StrictVTablePointers) EmitVTableAssumptionLoads(ClassDecl, This); } void CodeGenFunction::EmitInheritedCXXConstructorCall( const CXXConstructorDecl *D, bool ForVirtualBase, Address This, bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { CallArgList Args; CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType()); // Forward the parameters. if (InheritedFromVBase && CGM.getTarget().getCXXABI().hasConstructorVariants()) { // Nothing to do; this construction is not responsible for constructing // the base class containing the inherited constructor. // FIXME: Can we just pass undef's for the remaining arguments if we don't // have constructor variants? Args.push_back(ThisArg); } else if (!CXXInheritedCtorInitExprArgs.empty()) { // The inheriting constructor was inlined; just inject its arguments. assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && "wrong number of parameters for inherited constructor call"); Args = CXXInheritedCtorInitExprArgs; Args[0] = ThisArg; } else { // The inheriting constructor was not inlined. Emit delegating arguments. Args.push_back(ThisArg); const auto *OuterCtor = cast(CurCodeDecl); assert(OuterCtor->getNumParams() == D->getNumParams()); assert(!OuterCtor->isVariadic() && "should have been inlined"); for (const auto *Param : OuterCtor->parameters()) { assert(getContext().hasSameUnqualifiedType( OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), Param->getType())); EmitDelegateCallArg(Args, Param, E->getLocation()); // Forward __attribute__(pass_object_size). if (Param->hasAttr()) { auto *POSParam = SizeArguments[Param]; assert(POSParam && "missing pass_object_size value for forwarding"); EmitDelegateCallArg(Args, POSParam, E->getLocation()); } } } EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, This, Args, AggValueSlot::MayOverlap, E->getLocation(), /*NewPointerIsChecked*/true); } void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, bool Delegating, CallArgList &Args) { GlobalDecl GD(Ctor, CtorType); InlinedInheritingConstructorScope Scope(*this, GD); ApplyInlineDebugLocation DebugScope(*this, GD); RunCleanupsScope RunCleanups(*this); // Save the arguments to be passed to the inherited constructor. CXXInheritedCtorInitExprArgs = Args; FunctionArgList Params; QualType RetType = BuildFunctionArgList(CurGD, Params); FnRetTy = RetType; // Insert any ABI-specific implicit constructor arguments. CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, ForVirtualBase, Delegating, Args); // Emit a simplified prolog. We only need to emit the implicit params. assert(Args.size() >= Params.size() && "too few arguments for call"); for (unsigned I = 0, N = Args.size(); I != N; ++I) { if (I < Params.size() && isa(Params[I])) { const RValue &RV = Args[I].getRValue(*this); assert(!RV.isComplex() && "complex indirect params not supported"); ParamValue Val = RV.isScalar() ? ParamValue::forDirect(RV.getScalarVal()) : ParamValue::forIndirect(RV.getAggregateAddress()); EmitParmDecl(*Params[I], Val, I + 1); } } // Create a return value slot if the ABI implementation wants one. // FIXME: This is dumb, we should ask the ABI not to try to set the return // value instead. if (!RetType->isVoidType()) ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); CGM.getCXXABI().EmitInstanceFunctionProlog(*this); CXXThisValue = CXXABIThisValue; // Directly emit the constructor initializers. EmitCtorPrologue(Ctor, CtorType, Params); } void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { llvm::Value *VTableGlobal = CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); if (!VTableGlobal) return; // We can just use the base offset in the complete class. CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); if (!NonVirtualOffset.isZero()) This = ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, Vptr.VTableClass, Vptr.NearestVBase); llvm::Value *VPtrValue = GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); llvm::Value *Cmp = Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); Builder.CreateAssumption(Cmp); } void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This) { if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) for (const VPtr &Vptr : getVTablePointers(ClassDecl)) EmitVTableAssumptionLoad(Vptr, This); } void CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, Address This, Address Src, const CXXConstructExpr *E) { const FunctionProtoType *FPT = D->getType()->castAs(); CallArgList Args; // Push the this ptr. Args.add(RValue::get(This.getPointer()), D->getThisType()); // Push the src ptr. QualType QT = *(FPT->param_type_begin()); llvm::Type *t = CGM.getTypes().ConvertType(QT); llvm::Value *SrcVal = Builder.CreateBitCast(Src.getPointer(), t); Args.add(RValue::get(SrcVal), QT); // Skip over first argument (Src). EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), /*ParamsToSkip*/ 1); EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false, /*Delegating*/false, This, Args, AggValueSlot::MayOverlap, E->getExprLoc(), /*NewPointerIsChecked*/false); } void CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, CXXCtorType CtorType, const FunctionArgList &Args, SourceLocation Loc) { CallArgList DelegateArgs; FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); assert(I != E && "no parameters to constructor"); // this Address This = LoadCXXThisAddress(); DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType()); ++I; // FIXME: The location of the VTT parameter in the parameter list is // specific to the Itanium ABI and shouldn't be hardcoded here. if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { assert(I != E && "cannot skip vtt parameter, already done with args"); assert((*I)->getType()->isPointerType() && "skipping parameter not of vtt type"); ++I; } // Explicit arguments. for (; I != E; ++I) { const VarDecl *param = *I; // FIXME: per-argument source location EmitDelegateCallArg(DelegateArgs, param, Loc); } EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, /*Delegating=*/true, This, DelegateArgs, AggValueSlot::MayOverlap, Loc, /*NewPointerIsChecked=*/true); } namespace { struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { const CXXDestructorDecl *Dtor; Address Addr; CXXDtorType Type; CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, CXXDtorType Type) : Dtor(D), Addr(Addr), Type(Type) {} void Emit(CodeGenFunction &CGF, Flags flags) override { // We are calling the destructor from within the constructor. // Therefore, "this" should have the expected type. QualType ThisTy = Dtor->getThisObjectType(); CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, /*Delegating=*/true, Addr, ThisTy); } }; } // end anonymous namespace void CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, const FunctionArgList &Args) { assert(Ctor->isDelegatingConstructor()); Address ThisPtr = LoadCXXThisAddress(); AggValueSlot AggSlot = AggValueSlot::forAddr(ThisPtr, Qualifiers(), AggValueSlot::IsDestructed, AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, AggValueSlot::MayOverlap, AggValueSlot::IsNotZeroed, // Checks are made by the code that calls constructor. AggValueSlot::IsSanitizerChecked); EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); const CXXRecordDecl *ClassDecl = Ctor->getParent(); if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { CXXDtorType Type = CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; EHStack.pushCleanup(EHCleanup, ClassDecl->getDestructor(), ThisPtr, Type); } } void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, CXXDtorType Type, bool ForVirtualBase, bool Delegating, Address This, QualType ThisTy) { CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, Delegating, This, ThisTy); } namespace { struct CallLocalDtor final : EHScopeStack::Cleanup { const CXXDestructorDecl *Dtor; Address Addr; QualType Ty; CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty) : Dtor(D), Addr(Addr), Ty(Ty) {} void Emit(CodeGenFunction &CGF, Flags flags) override { CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, /*Delegating=*/false, Addr, Ty); } }; } // end anonymous namespace void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, QualType T, Address Addr) { EHStack.pushCleanup(NormalAndEHCleanup, D, Addr, T); } void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); if (!ClassDecl) return; if (ClassDecl->hasTrivialDestructor()) return; const CXXDestructorDecl *D = ClassDecl->getDestructor(); assert(D && D->isUsed() && "destructor not marked as used!"); PushDestructorCleanup(D, T, Addr); } void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { // Compute the address point. llvm::Value *VTableAddressPoint = CGM.getCXXABI().getVTableAddressPointInStructor( *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); if (!VTableAddressPoint) return; // Compute where to store the address point. llvm::Value *VirtualOffset = nullptr; CharUnits NonVirtualOffset = CharUnits::Zero(); if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { // We need to use the virtual base offset offset because the virtual base // might have a different offset in the most derived class. VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); NonVirtualOffset = Vptr.OffsetFromNearestVBase; } else { // We can just use the base offset in the complete class. NonVirtualOffset = Vptr.Base.getBaseOffset(); } // Apply the offsets. Address VTableField = LoadCXXThisAddress(); if (!NonVirtualOffset.isZero() || VirtualOffset) VTableField = ApplyNonVirtualAndVirtualOffset( *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, Vptr.NearestVBase); // Finally, store the address point. Use the same LLVM types as the field to // support optimization. unsigned GlobalsAS = CGM.getDataLayout().getDefaultGlobalsAddressSpace(); llvm::Type *PtrTy = llvm::PointerType::get(CGM.getLLVMContext(), GlobalsAS); // vtable field is derived from `this` pointer, therefore they should be in // the same addr space. Note that this might not be LLVM address space 0. VTableField = VTableField.withElementType(PtrTy); llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(PtrTy); CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); if (CGM.getCodeGenOpts().OptimizationLevel > 0 && CGM.getCodeGenOpts().StrictVTablePointers) CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); } CodeGenFunction::VPtrsVector CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { CodeGenFunction::VPtrsVector VPtrsResult; VisitedVirtualBasesSetTy VBases; getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), /*NearestVBase=*/nullptr, /*OffsetFromNearestVBase=*/CharUnits::Zero(), /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, VPtrsResult); return VPtrsResult; } void CodeGenFunction::getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, CharUnits OffsetFromNearestVBase, bool BaseIsNonVirtualPrimaryBase, const CXXRecordDecl *VTableClass, VisitedVirtualBasesSetTy &VBases, VPtrsVector &Vptrs) { // If this base is a non-virtual primary base the address point has already // been set. if (!BaseIsNonVirtualPrimaryBase) { // Initialize the vtable pointer for this base. VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; Vptrs.push_back(Vptr); } const CXXRecordDecl *RD = Base.getBase(); // Traverse bases. for (const auto &I : RD->bases()) { auto *BaseDecl = cast(I.getType()->castAs()->getDecl()); // Ignore classes without a vtable. if (!BaseDecl->isDynamicClass()) continue; CharUnits BaseOffset; CharUnits BaseOffsetFromNearestVBase; bool BaseDeclIsNonVirtualPrimaryBase; if (I.isVirtual()) { // Check if we've visited this virtual base before. if (!VBases.insert(BaseDecl).second) continue; const ASTRecordLayout &Layout = getContext().getASTRecordLayout(VTableClass); BaseOffset = Layout.getVBaseClassOffset(BaseDecl); BaseOffsetFromNearestVBase = CharUnits::Zero(); BaseDeclIsNonVirtualPrimaryBase = false; } else { const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); BaseOffsetFromNearestVBase = OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; } getVTablePointers( BaseSubobject(BaseDecl, BaseOffset), I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); } } void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { // Ignore classes without a vtable. if (!RD->isDynamicClass()) return; // Initialize the vtable pointers for this class and all of its bases. if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) for (const VPtr &Vptr : getVTablePointers(RD)) InitializeVTablePointer(Vptr); if (RD->getNumVBases()) CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); } llvm::Value *CodeGenFunction::GetVTablePtr(Address This, llvm::Type *VTableTy, const CXXRecordDecl *RD) { Address VTablePtrSrc = This.withElementType(VTableTy); llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy); CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo); if (CGM.getCodeGenOpts().OptimizationLevel > 0 && CGM.getCodeGenOpts().StrictVTablePointers) CGM.DecorateInstructionWithInvariantGroup(VTable, RD); return VTable; } // If a class has a single non-virtual base and does not introduce or override // virtual member functions or fields, it will have the same layout as its base. // This function returns the least derived such class. // // Casting an instance of a base class to such a derived class is technically // undefined behavior, but it is a relatively common hack for introducing member // functions on class instances with specific properties (e.g. llvm::Operator) // that works under most compilers and should not have security implications, so // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. static const CXXRecordDecl * LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { if (!RD->field_empty()) return RD; if (RD->getNumVBases() != 0) return RD; if (RD->getNumBases() != 1) return RD; for (const CXXMethodDecl *MD : RD->methods()) { if (MD->isVirtual()) { // Virtual member functions are only ok if they are implicit destructors // because the implicit destructor will have the same semantics as the // base class's destructor if no fields are added. if (isa(MD) && MD->isImplicit()) continue; return RD; } } return LeastDerivedClassWithSameLayout( RD->bases_begin()->getType()->getAsCXXRecordDecl()); } void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, llvm::Value *VTable, SourceLocation Loc) { if (SanOpts.has(SanitizerKind::CFIVCall)) EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); else if (CGM.getCodeGenOpts().WholeProgramVTables && // Don't insert type test assumes if we are forcing public // visibility. !CGM.AlwaysHasLTOVisibilityPublic(RD)) { QualType Ty = QualType(RD->getTypeForDecl(), 0); llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(Ty); llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); // If we already know that the call has hidden LTO visibility, emit // @llvm.type.test(). Otherwise emit @llvm.public.type.test(), which WPD // will convert to @llvm.type.test() if we assert at link time that we have // whole program visibility. llvm::Intrinsic::ID IID = CGM.HasHiddenLTOVisibility(RD) ? llvm::Intrinsic::type_test : llvm::Intrinsic::public_type_test; llvm::Value *TypeTest = Builder.CreateCall(CGM.getIntrinsic(IID), {CastedVTable, TypeId}); Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); } } void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, CFITypeCheckKind TCK, SourceLocation Loc) { if (!SanOpts.has(SanitizerKind::CFICastStrict)) RD = LeastDerivedClassWithSameLayout(RD); EmitVTablePtrCheck(RD, VTable, TCK, Loc); } void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull, CFITypeCheckKind TCK, SourceLocation Loc) { if (!getLangOpts().CPlusPlus) return; auto *ClassTy = T->getAs(); if (!ClassTy) return; const CXXRecordDecl *ClassDecl = cast(ClassTy->getDecl()); if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) return; if (!SanOpts.has(SanitizerKind::CFICastStrict)) ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); llvm::BasicBlock *ContBlock = nullptr; if (MayBeNull) { llvm::Value *DerivedNotNull = Builder.CreateIsNotNull(Derived.getPointer(), "cast.nonnull"); llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); ContBlock = createBasicBlock("cast.cont"); Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); EmitBlock(CheckBlock); } llvm::Value *VTable; std::tie(VTable, ClassDecl) = CGM.getCXXABI().LoadVTablePtr(*this, Derived, ClassDecl); EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); if (MayBeNull) { Builder.CreateBr(ContBlock); EmitBlock(ContBlock); } } void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, CFITypeCheckKind TCK, SourceLocation Loc) { if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && !CGM.HasHiddenLTOVisibility(RD)) return; SanitizerMask M; llvm::SanitizerStatKind SSK; switch (TCK) { case CFITCK_VCall: M = SanitizerKind::CFIVCall; SSK = llvm::SanStat_CFI_VCall; break; case CFITCK_NVCall: M = SanitizerKind::CFINVCall; SSK = llvm::SanStat_CFI_NVCall; break; case CFITCK_DerivedCast: M = SanitizerKind::CFIDerivedCast; SSK = llvm::SanStat_CFI_DerivedCast; break; case CFITCK_UnrelatedCast: M = SanitizerKind::CFIUnrelatedCast; SSK = llvm::SanStat_CFI_UnrelatedCast; break; case CFITCK_ICall: case CFITCK_NVMFCall: case CFITCK_VMFCall: llvm_unreachable("unexpected sanitizer kind"); } std::string TypeName = RD->getQualifiedNameAsString(); if (getContext().getNoSanitizeList().containsType(M, TypeName)) return; SanitizerScope SanScope(this); EmitSanitizerStatReport(SSK); llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); llvm::Value *TypeTest = Builder.CreateCall( CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId}); llvm::Constant *StaticData[] = { llvm::ConstantInt::get(Int8Ty, TCK), EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), }; auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData); return; } if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { EmitTrapCheck(TypeTest, SanitizerHandler::CFICheckFail); return; } llvm::Value *AllVtables = llvm::MetadataAsValue::get( CGM.getLLVMContext(), llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); llvm::Value *ValidVtable = Builder.CreateCall( CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables}); EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail, StaticData, {CastedVTable, ValidVtable}); } bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { if (!CGM.getCodeGenOpts().WholeProgramVTables || !CGM.HasHiddenLTOVisibility(RD)) return false; if (CGM.getCodeGenOpts().VirtualFunctionElimination) return true; if (!SanOpts.has(SanitizerKind::CFIVCall) || !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall)) return false; std::string TypeName = RD->getQualifiedNameAsString(); return !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall, TypeName); } llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( const CXXRecordDecl *RD, llvm::Value *VTable, llvm::Type *VTableTy, uint64_t VTableByteOffset) { SanitizerScope SanScope(this); EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); llvm::Value *CheckedLoad = Builder.CreateCall( CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), TypeId}); llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); std::string TypeName = RD->getQualifiedNameAsString(); if (SanOpts.has(SanitizerKind::CFIVCall) && !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall, TypeName)) { EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall), SanitizerHandler::CFICheckFail, {}, {}); } return Builder.CreateBitCast(Builder.CreateExtractValue(CheckedLoad, 0), VTableTy); } void CodeGenFunction::EmitForwardingCallToLambda( const CXXMethodDecl *callOperator, CallArgList &callArgs, const CGFunctionInfo *calleeFnInfo, llvm::Constant *calleePtr) { // Get the address of the call operator. if (!calleeFnInfo) calleeFnInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); if (!calleePtr) calleePtr = CGM.GetAddrOfFunction(GlobalDecl(callOperator), CGM.getTypes().GetFunctionType(*calleeFnInfo)); // Prepare the return slot. const FunctionProtoType *FPT = callOperator->getType()->castAs(); QualType resultType = FPT->getReturnType(); ReturnValueSlot returnSlot; if (!resultType->isVoidType() && calleeFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && !hasScalarEvaluationKind(calleeFnInfo->getReturnType())) returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(), /*IsUnused=*/false, /*IsExternallyDestructed=*/true); // We don't need to separately arrange the call arguments because // the call can't be variadic anyway --- it's impossible to forward // variadic arguments. // Now emit our call. auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator)); RValue RV = EmitCall(*calleeFnInfo, callee, returnSlot, callArgs); // If necessary, copy the returned value into the slot. if (!resultType->isVoidType() && returnSlot.isNull()) { if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) { RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal())); } EmitReturnOfRValue(RV, resultType); } else EmitBranchThroughCleanup(ReturnBlock); } void CodeGenFunction::EmitLambdaBlockInvokeBody() { const BlockDecl *BD = BlockInfo->getBlockDecl(); const VarDecl *variable = BD->capture_begin()->getVariable(); const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); if (CallOp->isVariadic()) { // FIXME: Making this work correctly is nasty because it requires either // cloning the body of the call operator or making the call operator // forward. CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); return; } // Start building arguments for forwarding call CallArgList CallArgs; QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); Address ThisPtr = GetAddrOfBlockDecl(variable); CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); // Add the rest of the parameters. for (auto *param : BD->parameters()) EmitDelegateCallArg(CallArgs, param, param->getBeginLoc()); assert(!Lambda->isGenericLambda() && "generic lambda interconversion to block not implemented"); EmitForwardingCallToLambda(CallOp, CallArgs); } void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) { if (MD->isVariadic()) { // FIXME: Making this work correctly is nasty because it requires either // cloning the body of the call operator or making the call operator // forward. CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); return; } const CXXRecordDecl *Lambda = MD->getParent(); // Start building arguments for forwarding call CallArgList CallArgs; QualType LambdaType = getContext().getRecordType(Lambda); QualType ThisType = getContext().getPointerType(LambdaType); Address ThisPtr = CreateMemTemp(LambdaType, "unused.capture"); CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); EmitLambdaDelegatingInvokeBody(MD, CallArgs); } void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD, CallArgList &CallArgs) { // Add the rest of the forwarded parameters. for (auto *Param : MD->parameters()) EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc()); const CXXRecordDecl *Lambda = MD->getParent(); const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); // For a generic lambda, find the corresponding call operator specialization // to which the call to the static-invoker shall be forwarded. if (Lambda->isGenericLambda()) { assert(MD->isFunctionTemplateSpecialization()); const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); void *InsertPos = nullptr; FunctionDecl *CorrespondingCallOpSpecialization = CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); assert(CorrespondingCallOpSpecialization); CallOp = cast(CorrespondingCallOpSpecialization); } // Special lambda forwarding when there are inalloca parameters. if (hasInAllocaArg(MD)) { const CGFunctionInfo *ImplFnInfo = nullptr; llvm::Function *ImplFn = nullptr; EmitLambdaInAllocaImplFn(CallOp, &ImplFnInfo, &ImplFn); EmitForwardingCallToLambda(CallOp, CallArgs, ImplFnInfo, ImplFn); return; } EmitForwardingCallToLambda(CallOp, CallArgs); } void CodeGenFunction::EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD) { if (MD->isVariadic()) { // FIXME: Making this work correctly is nasty because it requires either // cloning the body of the call operator or making the call operator forward. CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); return; } // Forward %this argument. CallArgList CallArgs; QualType LambdaType = getContext().getRecordType(MD->getParent()); QualType ThisType = getContext().getPointerType(LambdaType); llvm::Value *ThisArg = CurFn->getArg(0); CallArgs.add(RValue::get(ThisArg), ThisType); EmitLambdaDelegatingInvokeBody(MD, CallArgs); } void CodeGenFunction::EmitLambdaInAllocaImplFn( const CXXMethodDecl *CallOp, const CGFunctionInfo **ImplFnInfo, llvm::Function **ImplFn) { const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeCXXMethodDeclaration(CallOp); llvm::Function *CallOpFn = cast(CGM.GetAddrOfFunction(GlobalDecl(CallOp))); // Emit function containing the original call op body. __invoke will delegate // to this function. SmallVector ArgTypes; for (auto I = FnInfo.arg_begin(); I != FnInfo.arg_end(); ++I) ArgTypes.push_back(I->type); *ImplFnInfo = &CGM.getTypes().arrangeLLVMFunctionInfo( FnInfo.getReturnType(), FnInfoOpts::IsDelegateCall, ArgTypes, FnInfo.getExtInfo(), {}, FnInfo.getRequiredArgs()); // Create mangled name as if this was a method named __impl. If for some // reason the name doesn't look as expected then just tack __impl to the // front. // TODO: Use the name mangler to produce the right name instead of using // string replacement. StringRef CallOpName = CallOpFn->getName(); std::string ImplName; if (size_t Pos = CallOpName.find_first_of("getParent()->getFunction(ImplName); if (!Fn) { Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(**ImplFnInfo), llvm::GlobalValue::InternalLinkage, ImplName, CGM.getModule()); CGM.SetInternalFunctionAttributes(CallOp, Fn, **ImplFnInfo); const GlobalDecl &GD = GlobalDecl(CallOp); const auto *D = cast(GD.getDecl()); CodeGenFunction(CGM).GenerateCode(GD, Fn, **ImplFnInfo); CGM.SetLLVMFunctionAttributesForDefinition(D, Fn); } *ImplFn = Fn; }