1 //===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a class for CUDA code generation targeting the NVIDIA CUDA 10 // runtime library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCUDARuntime.h" 15 #include "CGCXXABI.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/Basic/Cuda.h" 20 #include "clang/CodeGen/CodeGenABITypes.h" 21 #include "clang/CodeGen/ConstantInitBuilder.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/ReplaceConstant.h" 26 #include "llvm/Support/Format.h" 27 28 using namespace clang; 29 using namespace CodeGen; 30 31 namespace { 32 constexpr unsigned CudaFatMagic = 0x466243b1; 33 constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF" 34 35 class CGNVCUDARuntime : public CGCUDARuntime { 36 37 private: 38 llvm::IntegerType *IntTy, *SizeTy; 39 llvm::Type *VoidTy; 40 llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy; 41 42 /// Convenience reference to LLVM Context 43 llvm::LLVMContext &Context; 44 /// Convenience reference to the current module 45 llvm::Module &TheModule; 46 /// Keeps track of kernel launch stubs and handles emitted in this module 47 struct KernelInfo { 48 llvm::Function *Kernel; // stub function to help launch kernel 49 const Decl *D; 50 }; 51 llvm::SmallVector<KernelInfo, 16> EmittedKernels; 52 // Map a kernel mangled name to a symbol for identifying kernel in host code 53 // For CUDA, the symbol for identifying the kernel is the same as the device 54 // stub function. For HIP, they are different. 55 llvm::DenseMap<StringRef, llvm::GlobalValue *> KernelHandles; 56 // Map a kernel handle to the kernel stub. 57 llvm::DenseMap<llvm::GlobalValue *, llvm::Function *> KernelStubs; 58 struct VarInfo { 59 llvm::GlobalVariable *Var; 60 const VarDecl *D; 61 DeviceVarFlags Flags; 62 }; 63 llvm::SmallVector<VarInfo, 16> DeviceVars; 64 /// Keeps track of variable containing handle of GPU binary. Populated by 65 /// ModuleCtorFunction() and used to create corresponding cleanup calls in 66 /// ModuleDtorFunction() 67 llvm::GlobalVariable *GpuBinaryHandle = nullptr; 68 /// Whether we generate relocatable device code. 69 bool RelocatableDeviceCode; 70 /// Mangle context for device. 71 std::unique_ptr<MangleContext> DeviceMC; 72 /// Some zeros used for GEPs. 73 llvm::Constant *Zeros[2]; 74 75 llvm::FunctionCallee getSetupArgumentFn() const; 76 llvm::FunctionCallee getLaunchFn() const; 77 78 llvm::FunctionType *getRegisterGlobalsFnTy() const; 79 llvm::FunctionType *getCallbackFnTy() const; 80 llvm::FunctionType *getRegisterLinkedBinaryFnTy() const; 81 std::string addPrefixToName(StringRef FuncName) const; 82 std::string addUnderscoredPrefixToName(StringRef FuncName) const; 83 84 /// Creates a function to register all kernel stubs generated in this module. 85 llvm::Function *makeRegisterGlobalsFn(); 86 87 /// Helper function that generates a constant string and returns a pointer to 88 /// the start of the string. The result of this function can be used anywhere 89 /// where the C code specifies const char*. 90 llvm::Constant *makeConstantString(const std::string &Str, 91 const std::string &Name = "") { 92 auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str()); 93 return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(), 94 ConstStr.getPointer(), Zeros); 95 } 96 97 /// Helper function which generates an initialized constant array from Str, 98 /// and optionally sets section name and alignment. AddNull specifies whether 99 /// the array should nave NUL termination. 100 llvm::Constant *makeConstantArray(StringRef Str, 101 StringRef Name = "", 102 StringRef SectionName = "", 103 unsigned Alignment = 0, 104 bool AddNull = false) { 105 llvm::Constant *Value = 106 llvm::ConstantDataArray::getString(Context, Str, AddNull); 107 auto *GV = new llvm::GlobalVariable( 108 TheModule, Value->getType(), /*isConstant=*/true, 109 llvm::GlobalValue::PrivateLinkage, Value, Name); 110 if (!SectionName.empty()) { 111 GV->setSection(SectionName); 112 // Mark the address as used which make sure that this section isn't 113 // merged and we will really have it in the object file. 114 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); 115 } 116 if (Alignment) 117 GV->setAlignment(llvm::Align(Alignment)); 118 return llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 119 } 120 121 /// Helper function that generates an empty dummy function returning void. 122 llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) { 123 assert(FnTy->getReturnType()->isVoidTy() && 124 "Can only generate dummy functions returning void!"); 125 llvm::Function *DummyFunc = llvm::Function::Create( 126 FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule); 127 128 llvm::BasicBlock *DummyBlock = 129 llvm::BasicBlock::Create(Context, "", DummyFunc); 130 CGBuilderTy FuncBuilder(CGM, Context); 131 FuncBuilder.SetInsertPoint(DummyBlock); 132 FuncBuilder.CreateRetVoid(); 133 134 return DummyFunc; 135 } 136 137 void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args); 138 void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args); 139 std::string getDeviceSideName(const NamedDecl *ND) override; 140 141 void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var, 142 bool Extern, bool Constant) { 143 DeviceVars.push_back({&Var, 144 VD, 145 {DeviceVarFlags::Variable, Extern, Constant, 146 VD->hasAttr<HIPManagedAttr>(), 147 /*Normalized*/ false, 0}}); 148 } 149 void registerDeviceSurf(const VarDecl *VD, llvm::GlobalVariable &Var, 150 bool Extern, int Type) { 151 DeviceVars.push_back({&Var, 152 VD, 153 {DeviceVarFlags::Surface, Extern, /*Constant*/ false, 154 /*Managed*/ false, 155 /*Normalized*/ false, Type}}); 156 } 157 void registerDeviceTex(const VarDecl *VD, llvm::GlobalVariable &Var, 158 bool Extern, int Type, bool Normalized) { 159 DeviceVars.push_back({&Var, 160 VD, 161 {DeviceVarFlags::Texture, Extern, /*Constant*/ false, 162 /*Managed*/ false, Normalized, Type}}); 163 } 164 165 /// Creates module constructor function 166 llvm::Function *makeModuleCtorFunction(); 167 /// Creates module destructor function 168 llvm::Function *makeModuleDtorFunction(); 169 /// Transform managed variables for device compilation. 170 void transformManagedVars(); 171 /// Create offloading entries to register globals in RDC mode. 172 void createOffloadingEntries(); 173 174 public: 175 CGNVCUDARuntime(CodeGenModule &CGM); 176 177 llvm::GlobalValue *getKernelHandle(llvm::Function *F, GlobalDecl GD) override; 178 llvm::Function *getKernelStub(llvm::GlobalValue *Handle) override { 179 auto Loc = KernelStubs.find(Handle); 180 assert(Loc != KernelStubs.end()); 181 return Loc->second; 182 } 183 void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override; 184 void handleVarRegistration(const VarDecl *VD, 185 llvm::GlobalVariable &Var) override; 186 void 187 internalizeDeviceSideVar(const VarDecl *D, 188 llvm::GlobalValue::LinkageTypes &Linkage) override; 189 190 llvm::Function *finalizeModule() override; 191 }; 192 193 } // end anonymous namespace 194 195 std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const { 196 if (CGM.getLangOpts().HIP) 197 return ((Twine("hip") + Twine(FuncName)).str()); 198 return ((Twine("cuda") + Twine(FuncName)).str()); 199 } 200 std::string 201 CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const { 202 if (CGM.getLangOpts().HIP) 203 return ((Twine("__hip") + Twine(FuncName)).str()); 204 return ((Twine("__cuda") + Twine(FuncName)).str()); 205 } 206 207 static std::unique_ptr<MangleContext> InitDeviceMC(CodeGenModule &CGM) { 208 // If the host and device have different C++ ABIs, mark it as the device 209 // mangle context so that the mangling needs to retrieve the additional 210 // device lambda mangling number instead of the regular host one. 211 if (CGM.getContext().getAuxTargetInfo() && 212 CGM.getContext().getTargetInfo().getCXXABI().isMicrosoft() && 213 CGM.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()) { 214 return std::unique_ptr<MangleContext>( 215 CGM.getContext().createDeviceMangleContext( 216 *CGM.getContext().getAuxTargetInfo())); 217 } 218 219 return std::unique_ptr<MangleContext>(CGM.getContext().createMangleContext( 220 CGM.getContext().getAuxTargetInfo())); 221 } 222 223 CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM) 224 : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()), 225 TheModule(CGM.getModule()), 226 RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode), 227 DeviceMC(InitDeviceMC(CGM)) { 228 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 229 ASTContext &Ctx = CGM.getContext(); 230 231 IntTy = CGM.IntTy; 232 SizeTy = CGM.SizeTy; 233 VoidTy = CGM.VoidTy; 234 Zeros[0] = llvm::ConstantInt::get(SizeTy, 0); 235 Zeros[1] = Zeros[0]; 236 237 CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy)); 238 VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy)); 239 VoidPtrPtrTy = VoidPtrTy->getPointerTo(); 240 } 241 242 llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const { 243 // cudaError_t cudaSetupArgument(void *, size_t, size_t) 244 llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy}; 245 return CGM.CreateRuntimeFunction( 246 llvm::FunctionType::get(IntTy, Params, false), 247 addPrefixToName("SetupArgument")); 248 } 249 250 llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const { 251 if (CGM.getLangOpts().HIP) { 252 // hipError_t hipLaunchByPtr(char *); 253 return CGM.CreateRuntimeFunction( 254 llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr"); 255 } 256 // cudaError_t cudaLaunch(char *); 257 return CGM.CreateRuntimeFunction( 258 llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch"); 259 } 260 261 llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const { 262 return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false); 263 } 264 265 llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const { 266 return llvm::FunctionType::get(VoidTy, VoidPtrTy, false); 267 } 268 269 llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const { 270 auto *CallbackFnTy = getCallbackFnTy(); 271 auto *RegisterGlobalsFnTy = getRegisterGlobalsFnTy(); 272 llvm::Type *Params[] = {RegisterGlobalsFnTy->getPointerTo(), VoidPtrTy, 273 VoidPtrTy, CallbackFnTy->getPointerTo()}; 274 return llvm::FunctionType::get(VoidTy, Params, false); 275 } 276 277 std::string CGNVCUDARuntime::getDeviceSideName(const NamedDecl *ND) { 278 GlobalDecl GD; 279 // D could be either a kernel or a variable. 280 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 281 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 282 else 283 GD = GlobalDecl(ND); 284 std::string DeviceSideName; 285 MangleContext *MC; 286 if (CGM.getLangOpts().CUDAIsDevice) 287 MC = &CGM.getCXXABI().getMangleContext(); 288 else 289 MC = DeviceMC.get(); 290 if (MC->shouldMangleDeclName(ND)) { 291 SmallString<256> Buffer; 292 llvm::raw_svector_ostream Out(Buffer); 293 MC->mangleName(GD, Out); 294 DeviceSideName = std::string(Out.str()); 295 } else 296 DeviceSideName = std::string(ND->getIdentifier()->getName()); 297 298 // Make unique name for device side static file-scope variable for HIP. 299 if (CGM.getContext().shouldExternalize(ND) && 300 CGM.getLangOpts().GPURelocatableDeviceCode) { 301 SmallString<256> Buffer; 302 llvm::raw_svector_ostream Out(Buffer); 303 Out << DeviceSideName; 304 CGM.printPostfixForExternalizedDecl(Out, ND); 305 DeviceSideName = std::string(Out.str()); 306 } 307 return DeviceSideName; 308 } 309 310 void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF, 311 FunctionArgList &Args) { 312 EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl}); 313 if (auto *GV = 314 dyn_cast<llvm::GlobalVariable>(KernelHandles[CGF.CurFn->getName()])) { 315 GV->setLinkage(CGF.CurFn->getLinkage()); 316 GV->setInitializer(CGF.CurFn); 317 } 318 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(), 319 CudaFeature::CUDA_USES_NEW_LAUNCH) || 320 (CGF.getLangOpts().HIP && CGF.getLangOpts().HIPUseNewLaunchAPI)) 321 emitDeviceStubBodyNew(CGF, Args); 322 else 323 emitDeviceStubBodyLegacy(CGF, Args); 324 } 325 326 // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local 327 // array and kernels are launched using cudaLaunchKernel(). 328 void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF, 329 FunctionArgList &Args) { 330 // Build the shadow stack entry at the very start of the function. 331 332 // Calculate amount of space we will need for all arguments. If we have no 333 // args, allocate a single pointer so we still have a valid pointer to the 334 // argument array that we can pass to runtime, even if it will be unused. 335 Address KernelArgs = CGF.CreateTempAlloca( 336 VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args", 337 llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size()))); 338 // Store pointers to the arguments in a locally allocated launch_args. 339 for (unsigned i = 0; i < Args.size(); ++i) { 340 llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer(); 341 llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy); 342 CGF.Builder.CreateDefaultAlignedStore( 343 VoidVarPtr, 344 CGF.Builder.CreateConstGEP1_32(VoidPtrTy, KernelArgs.getPointer(), i)); 345 } 346 347 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end"); 348 349 // Lookup cudaLaunchKernel/hipLaunchKernel function. 350 // HIP kernel launching API name depends on -fgpu-default-stream option. For 351 // the default value 'legacy', it is hipLaunchKernel. For 'per-thread', 352 // it is hipLaunchKernel_spt. 353 // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim, 354 // void **args, size_t sharedMem, 355 // cudaStream_t stream); 356 // hipError_t hipLaunchKernel[_spt](const void *func, dim3 gridDim, 357 // dim3 blockDim, void **args, 358 // size_t sharedMem, hipStream_t stream); 359 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 360 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 361 std::string KernelLaunchAPI = "LaunchKernel"; 362 if (CGF.getLangOpts().HIP && CGF.getLangOpts().GPUDefaultStream == 363 LangOptions::GPUDefaultStreamKind::PerThread) 364 KernelLaunchAPI = KernelLaunchAPI + "_spt"; 365 auto LaunchKernelName = addPrefixToName(KernelLaunchAPI); 366 IdentifierInfo &cudaLaunchKernelII = 367 CGM.getContext().Idents.get(LaunchKernelName); 368 FunctionDecl *cudaLaunchKernelFD = nullptr; 369 for (auto *Result : DC->lookup(&cudaLaunchKernelII)) { 370 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result)) 371 cudaLaunchKernelFD = FD; 372 } 373 374 if (cudaLaunchKernelFD == nullptr) { 375 CGM.Error(CGF.CurFuncDecl->getLocation(), 376 "Can't find declaration for " + LaunchKernelName); 377 return; 378 } 379 // Create temporary dim3 grid_dim, block_dim. 380 ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1); 381 QualType Dim3Ty = GridDimParam->getType(); 382 Address GridDim = 383 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim"); 384 Address BlockDim = 385 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim"); 386 Address ShmemSize = 387 CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size"); 388 Address Stream = 389 CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream"); 390 llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction( 391 llvm::FunctionType::get(IntTy, 392 {/*gridDim=*/GridDim.getType(), 393 /*blockDim=*/BlockDim.getType(), 394 /*ShmemSize=*/ShmemSize.getType(), 395 /*Stream=*/Stream.getType()}, 396 /*isVarArg=*/false), 397 addUnderscoredPrefixToName("PopCallConfiguration")); 398 399 CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn, 400 {GridDim.getPointer(), BlockDim.getPointer(), 401 ShmemSize.getPointer(), Stream.getPointer()}); 402 403 // Emit the call to cudaLaunch 404 llvm::Value *Kernel = CGF.Builder.CreatePointerCast( 405 KernelHandles[CGF.CurFn->getName()], VoidPtrTy); 406 CallArgList LaunchKernelArgs; 407 LaunchKernelArgs.add(RValue::get(Kernel), 408 cudaLaunchKernelFD->getParamDecl(0)->getType()); 409 LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty); 410 LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty); 411 LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()), 412 cudaLaunchKernelFD->getParamDecl(3)->getType()); 413 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)), 414 cudaLaunchKernelFD->getParamDecl(4)->getType()); 415 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)), 416 cudaLaunchKernelFD->getParamDecl(5)->getType()); 417 418 QualType QT = cudaLaunchKernelFD->getType(); 419 QualType CQT = QT.getCanonicalType(); 420 llvm::Type *Ty = CGM.getTypes().ConvertType(CQT); 421 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); 422 423 const CGFunctionInfo &FI = 424 CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD); 425 llvm::FunctionCallee cudaLaunchKernelFn = 426 CGM.CreateRuntimeFunction(FTy, LaunchKernelName); 427 CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(), 428 LaunchKernelArgs); 429 CGF.EmitBranch(EndBlock); 430 431 CGF.EmitBlock(EndBlock); 432 } 433 434 void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF, 435 FunctionArgList &Args) { 436 // Emit a call to cudaSetupArgument for each arg in Args. 437 llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn(); 438 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end"); 439 CharUnits Offset = CharUnits::Zero(); 440 for (const VarDecl *A : Args) { 441 auto TInfo = CGM.getContext().getTypeInfoInChars(A->getType()); 442 Offset = Offset.alignTo(TInfo.Align); 443 llvm::Value *Args[] = { 444 CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(), 445 VoidPtrTy), 446 llvm::ConstantInt::get(SizeTy, TInfo.Width.getQuantity()), 447 llvm::ConstantInt::get(SizeTy, Offset.getQuantity()), 448 }; 449 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args); 450 llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0); 451 llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero); 452 llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next"); 453 CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock); 454 CGF.EmitBlock(NextBlock); 455 Offset += TInfo.Width; 456 } 457 458 // Emit the call to cudaLaunch 459 llvm::FunctionCallee cudaLaunchFn = getLaunchFn(); 460 llvm::Value *Arg = CGF.Builder.CreatePointerCast( 461 KernelHandles[CGF.CurFn->getName()], CharPtrTy); 462 CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg); 463 CGF.EmitBranch(EndBlock); 464 465 CGF.EmitBlock(EndBlock); 466 } 467 468 // Replace the original variable Var with the address loaded from variable 469 // ManagedVar populated by HIP runtime. 470 static void replaceManagedVar(llvm::GlobalVariable *Var, 471 llvm::GlobalVariable *ManagedVar) { 472 SmallVector<SmallVector<llvm::User *, 8>, 8> WorkList; 473 for (auto &&VarUse : Var->uses()) { 474 WorkList.push_back({VarUse.getUser()}); 475 } 476 while (!WorkList.empty()) { 477 auto &&WorkItem = WorkList.pop_back_val(); 478 auto *U = WorkItem.back(); 479 if (isa<llvm::ConstantExpr>(U)) { 480 for (auto &&UU : U->uses()) { 481 WorkItem.push_back(UU.getUser()); 482 WorkList.push_back(WorkItem); 483 WorkItem.pop_back(); 484 } 485 continue; 486 } 487 if (auto *I = dyn_cast<llvm::Instruction>(U)) { 488 llvm::Value *OldV = Var; 489 llvm::Instruction *NewV = 490 new llvm::LoadInst(Var->getType(), ManagedVar, "ld.managed", false, 491 llvm::Align(Var->getAlignment()), I); 492 WorkItem.pop_back(); 493 // Replace constant expressions directly or indirectly using the managed 494 // variable with instructions. 495 for (auto &&Op : WorkItem) { 496 auto *CE = cast<llvm::ConstantExpr>(Op); 497 auto *NewInst = CE->getAsInstruction(I); 498 NewInst->replaceUsesOfWith(OldV, NewV); 499 OldV = CE; 500 NewV = NewInst; 501 } 502 I->replaceUsesOfWith(OldV, NewV); 503 } else { 504 llvm_unreachable("Invalid use of managed variable"); 505 } 506 } 507 } 508 509 /// Creates a function that sets up state on the host side for CUDA objects that 510 /// have a presence on both the host and device sides. Specifically, registers 511 /// the host side of kernel functions and device global variables with the CUDA 512 /// runtime. 513 /// \code 514 /// void __cuda_register_globals(void** GpuBinaryHandle) { 515 /// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...); 516 /// ... 517 /// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...); 518 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...); 519 /// ... 520 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...); 521 /// } 522 /// \endcode 523 llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() { 524 // No need to register anything 525 if (EmittedKernels.empty() && DeviceVars.empty()) 526 return nullptr; 527 528 llvm::Function *RegisterKernelsFunc = llvm::Function::Create( 529 getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage, 530 addUnderscoredPrefixToName("_register_globals"), &TheModule); 531 llvm::BasicBlock *EntryBB = 532 llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc); 533 CGBuilderTy Builder(CGM, Context); 534 Builder.SetInsertPoint(EntryBB); 535 536 // void __cudaRegisterFunction(void **, const char *, char *, const char *, 537 // int, uint3*, uint3*, dim3*, dim3*, int*) 538 llvm::Type *RegisterFuncParams[] = { 539 VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy, 540 VoidPtrTy, VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()}; 541 llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction( 542 llvm::FunctionType::get(IntTy, RegisterFuncParams, false), 543 addUnderscoredPrefixToName("RegisterFunction")); 544 545 // Extract GpuBinaryHandle passed as the first argument passed to 546 // __cuda_register_globals() and generate __cudaRegisterFunction() call for 547 // each emitted kernel. 548 llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin(); 549 for (auto &&I : EmittedKernels) { 550 llvm::Constant *KernelName = 551 makeConstantString(getDeviceSideName(cast<NamedDecl>(I.D))); 552 llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy); 553 llvm::Value *Args[] = { 554 &GpuBinaryHandlePtr, 555 Builder.CreateBitCast(KernelHandles[I.Kernel->getName()], VoidPtrTy), 556 KernelName, 557 KernelName, 558 llvm::ConstantInt::get(IntTy, -1), 559 NullPtr, 560 NullPtr, 561 NullPtr, 562 NullPtr, 563 llvm::ConstantPointerNull::get(IntTy->getPointerTo())}; 564 Builder.CreateCall(RegisterFunc, Args); 565 } 566 567 llvm::Type *VarSizeTy = IntTy; 568 // For HIP or CUDA 9.0+, device variable size is type of `size_t`. 569 if (CGM.getLangOpts().HIP || 570 ToCudaVersion(CGM.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90) 571 VarSizeTy = SizeTy; 572 573 // void __cudaRegisterVar(void **, char *, char *, const char *, 574 // int, int, int, int) 575 llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy, 576 CharPtrTy, IntTy, VarSizeTy, 577 IntTy, IntTy}; 578 llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction( 579 llvm::FunctionType::get(VoidTy, RegisterVarParams, false), 580 addUnderscoredPrefixToName("RegisterVar")); 581 // void __hipRegisterManagedVar(void **, char *, char *, const char *, 582 // size_t, unsigned) 583 llvm::Type *RegisterManagedVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy, 584 CharPtrTy, VarSizeTy, IntTy}; 585 llvm::FunctionCallee RegisterManagedVar = CGM.CreateRuntimeFunction( 586 llvm::FunctionType::get(VoidTy, RegisterManagedVarParams, false), 587 addUnderscoredPrefixToName("RegisterManagedVar")); 588 // void __cudaRegisterSurface(void **, const struct surfaceReference *, 589 // const void **, const char *, int, int); 590 llvm::FunctionCallee RegisterSurf = CGM.CreateRuntimeFunction( 591 llvm::FunctionType::get( 592 VoidTy, {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy}, 593 false), 594 addUnderscoredPrefixToName("RegisterSurface")); 595 // void __cudaRegisterTexture(void **, const struct textureReference *, 596 // const void **, const char *, int, int, int) 597 llvm::FunctionCallee RegisterTex = CGM.CreateRuntimeFunction( 598 llvm::FunctionType::get( 599 VoidTy, 600 {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy, IntTy}, 601 false), 602 addUnderscoredPrefixToName("RegisterTexture")); 603 for (auto &&Info : DeviceVars) { 604 llvm::GlobalVariable *Var = Info.Var; 605 assert((!Var->isDeclaration() || Info.Flags.isManaged()) && 606 "External variables should not show up here, except HIP managed " 607 "variables"); 608 llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D)); 609 switch (Info.Flags.getKind()) { 610 case DeviceVarFlags::Variable: { 611 uint64_t VarSize = 612 CGM.getDataLayout().getTypeAllocSize(Var->getValueType()); 613 if (Info.Flags.isManaged()) { 614 auto *ManagedVar = new llvm::GlobalVariable( 615 CGM.getModule(), Var->getType(), 616 /*isConstant=*/false, Var->getLinkage(), 617 /*Init=*/Var->isDeclaration() 618 ? nullptr 619 : llvm::ConstantPointerNull::get(Var->getType()), 620 /*Name=*/"", /*InsertBefore=*/nullptr, 621 llvm::GlobalVariable::NotThreadLocal); 622 ManagedVar->setDSOLocal(Var->isDSOLocal()); 623 ManagedVar->setVisibility(Var->getVisibility()); 624 ManagedVar->setExternallyInitialized(true); 625 ManagedVar->takeName(Var); 626 Var->setName(Twine(ManagedVar->getName() + ".managed")); 627 replaceManagedVar(Var, ManagedVar); 628 llvm::Value *Args[] = { 629 &GpuBinaryHandlePtr, 630 Builder.CreateBitCast(ManagedVar, VoidPtrTy), 631 Builder.CreateBitCast(Var, VoidPtrTy), 632 VarName, 633 llvm::ConstantInt::get(VarSizeTy, VarSize), 634 llvm::ConstantInt::get(IntTy, Var->getAlignment())}; 635 if (!Var->isDeclaration()) 636 Builder.CreateCall(RegisterManagedVar, Args); 637 } else { 638 llvm::Value *Args[] = { 639 &GpuBinaryHandlePtr, 640 Builder.CreateBitCast(Var, VoidPtrTy), 641 VarName, 642 VarName, 643 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern()), 644 llvm::ConstantInt::get(VarSizeTy, VarSize), 645 llvm::ConstantInt::get(IntTy, Info.Flags.isConstant()), 646 llvm::ConstantInt::get(IntTy, 0)}; 647 Builder.CreateCall(RegisterVar, Args); 648 } 649 break; 650 } 651 case DeviceVarFlags::Surface: 652 Builder.CreateCall( 653 RegisterSurf, 654 {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName, 655 VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()), 656 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())}); 657 break; 658 case DeviceVarFlags::Texture: 659 Builder.CreateCall( 660 RegisterTex, 661 {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName, 662 VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()), 663 llvm::ConstantInt::get(IntTy, Info.Flags.isNormalized()), 664 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())}); 665 break; 666 } 667 } 668 669 Builder.CreateRetVoid(); 670 return RegisterKernelsFunc; 671 } 672 673 /// Creates a global constructor function for the module: 674 /// 675 /// For CUDA: 676 /// \code 677 /// void __cuda_module_ctor() { 678 /// Handle = __cudaRegisterFatBinary(GpuBinaryBlob); 679 /// __cuda_register_globals(Handle); 680 /// } 681 /// \endcode 682 /// 683 /// For HIP: 684 /// \code 685 /// void __hip_module_ctor() { 686 /// if (__hip_gpubin_handle == 0) { 687 /// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob); 688 /// __hip_register_globals(__hip_gpubin_handle); 689 /// } 690 /// } 691 /// \endcode 692 llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() { 693 bool IsHIP = CGM.getLangOpts().HIP; 694 bool IsCUDA = CGM.getLangOpts().CUDA; 695 // No need to generate ctors/dtors if there is no GPU binary. 696 StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName; 697 if (CudaGpuBinaryFileName.empty() && !IsHIP) 698 return nullptr; 699 if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() && 700 DeviceVars.empty()) 701 return nullptr; 702 703 // void __{cuda|hip}_register_globals(void* handle); 704 llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn(); 705 // We always need a function to pass in as callback. Create a dummy 706 // implementation if we don't need to register anything. 707 if (RelocatableDeviceCode && !RegisterGlobalsFunc) 708 RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy()); 709 710 // void ** __{cuda|hip}RegisterFatBinary(void *); 711 llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction( 712 llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false), 713 addUnderscoredPrefixToName("RegisterFatBinary")); 714 // struct { int magic, int version, void * gpu_binary, void * dont_care }; 715 llvm::StructType *FatbinWrapperTy = 716 llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy); 717 718 // Register GPU binary with the CUDA runtime, store returned handle in a 719 // global variable and save a reference in GpuBinaryHandle to be cleaned up 720 // in destructor on exit. Then associate all known kernels with the GPU binary 721 // handle so CUDA runtime can figure out what to call on the GPU side. 722 std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr; 723 if (!CudaGpuBinaryFileName.empty()) { 724 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CudaGpuBinaryOrErr = 725 llvm::MemoryBuffer::getFileOrSTDIN(CudaGpuBinaryFileName); 726 if (std::error_code EC = CudaGpuBinaryOrErr.getError()) { 727 CGM.getDiags().Report(diag::err_cannot_open_file) 728 << CudaGpuBinaryFileName << EC.message(); 729 return nullptr; 730 } 731 CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get()); 732 } 733 734 llvm::Function *ModuleCtorFunc = llvm::Function::Create( 735 llvm::FunctionType::get(VoidTy, false), 736 llvm::GlobalValue::InternalLinkage, 737 addUnderscoredPrefixToName("_module_ctor"), &TheModule); 738 llvm::BasicBlock *CtorEntryBB = 739 llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc); 740 CGBuilderTy CtorBuilder(CGM, Context); 741 742 CtorBuilder.SetInsertPoint(CtorEntryBB); 743 744 const char *FatbinConstantName; 745 const char *FatbinSectionName; 746 const char *ModuleIDSectionName; 747 StringRef ModuleIDPrefix; 748 llvm::Constant *FatBinStr; 749 unsigned FatMagic; 750 if (IsHIP) { 751 FatbinConstantName = ".hip_fatbin"; 752 FatbinSectionName = ".hipFatBinSegment"; 753 754 ModuleIDSectionName = "__hip_module_id"; 755 ModuleIDPrefix = "__hip_"; 756 757 if (CudaGpuBinary) { 758 // If fatbin is available from early finalization, create a string 759 // literal containing the fat binary loaded from the given file. 760 const unsigned HIPCodeObjectAlign = 4096; 761 FatBinStr = makeConstantArray(std::string(CudaGpuBinary->getBuffer()), "", 762 FatbinConstantName, HIPCodeObjectAlign); 763 } else { 764 // If fatbin is not available, create an external symbol 765 // __hip_fatbin in section .hip_fatbin. The external symbol is supposed 766 // to contain the fat binary but will be populated somewhere else, 767 // e.g. by lld through link script. 768 FatBinStr = new llvm::GlobalVariable( 769 CGM.getModule(), CGM.Int8Ty, 770 /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr, 771 "__hip_fatbin", nullptr, 772 llvm::GlobalVariable::NotThreadLocal); 773 cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName); 774 } 775 776 FatMagic = HIPFatMagic; 777 } else { 778 if (RelocatableDeviceCode) 779 FatbinConstantName = CGM.getTriple().isMacOSX() 780 ? "__NV_CUDA,__nv_relfatbin" 781 : "__nv_relfatbin"; 782 else 783 FatbinConstantName = 784 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin"; 785 // NVIDIA's cuobjdump looks for fatbins in this section. 786 FatbinSectionName = 787 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment"; 788 789 ModuleIDSectionName = CGM.getTriple().isMacOSX() 790 ? "__NV_CUDA,__nv_module_id" 791 : "__nv_module_id"; 792 ModuleIDPrefix = "__nv_"; 793 794 // For CUDA, create a string literal containing the fat binary loaded from 795 // the given file. 796 FatBinStr = makeConstantArray(std::string(CudaGpuBinary->getBuffer()), "", 797 FatbinConstantName, 8); 798 FatMagic = CudaFatMagic; 799 } 800 801 // Create initialized wrapper structure that points to the loaded GPU binary 802 ConstantInitBuilder Builder(CGM); 803 auto Values = Builder.beginStruct(FatbinWrapperTy); 804 // Fatbin wrapper magic. 805 Values.addInt(IntTy, FatMagic); 806 // Fatbin version. 807 Values.addInt(IntTy, 1); 808 // Data. 809 Values.add(FatBinStr); 810 // Unused in fatbin v1. 811 Values.add(llvm::ConstantPointerNull::get(VoidPtrTy)); 812 llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal( 813 addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(), 814 /*constant*/ true); 815 FatbinWrapper->setSection(FatbinSectionName); 816 817 // There is only one HIP fat binary per linked module, however there are 818 // multiple constructor functions. Make sure the fat binary is registered 819 // only once. The constructor functions are executed by the dynamic loader 820 // before the program gains control. The dynamic loader cannot execute the 821 // constructor functions concurrently since doing that would not guarantee 822 // thread safety of the loaded program. Therefore we can assume sequential 823 // execution of constructor functions here. 824 if (IsHIP) { 825 auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage : 826 llvm::GlobalValue::LinkOnceAnyLinkage; 827 llvm::BasicBlock *IfBlock = 828 llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc); 829 llvm::BasicBlock *ExitBlock = 830 llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc); 831 // The name, size, and initialization pattern of this variable is part 832 // of HIP ABI. 833 GpuBinaryHandle = new llvm::GlobalVariable( 834 TheModule, VoidPtrPtrTy, /*isConstant=*/false, 835 Linkage, 836 /*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy), 837 "__hip_gpubin_handle"); 838 if (Linkage == llvm::GlobalValue::LinkOnceAnyLinkage) 839 GpuBinaryHandle->setComdat( 840 CGM.getModule().getOrInsertComdat(GpuBinaryHandle->getName())); 841 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign()); 842 // Prevent the weak symbol in different shared libraries being merged. 843 if (Linkage != llvm::GlobalValue::InternalLinkage) 844 GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility); 845 Address GpuBinaryAddr( 846 GpuBinaryHandle, VoidPtrPtrTy, 847 CharUnits::fromQuantity(GpuBinaryHandle->getAlignment())); 848 { 849 auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr); 850 llvm::Constant *Zero = 851 llvm::Constant::getNullValue(HandleValue->getType()); 852 llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero); 853 CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock); 854 } 855 { 856 CtorBuilder.SetInsertPoint(IfBlock); 857 // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper); 858 llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall( 859 RegisterFatbinFunc, 860 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy)); 861 CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr); 862 CtorBuilder.CreateBr(ExitBlock); 863 } 864 { 865 CtorBuilder.SetInsertPoint(ExitBlock); 866 // Call __hip_register_globals(GpuBinaryHandle); 867 if (RegisterGlobalsFunc) { 868 auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr); 869 CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue); 870 } 871 } 872 } else if (!RelocatableDeviceCode) { 873 // Register binary with CUDA runtime. This is substantially different in 874 // default mode vs. separate compilation! 875 // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper); 876 llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall( 877 RegisterFatbinFunc, 878 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy)); 879 GpuBinaryHandle = new llvm::GlobalVariable( 880 TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage, 881 llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle"); 882 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign()); 883 CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle, 884 CGM.getPointerAlign()); 885 886 // Call __cuda_register_globals(GpuBinaryHandle); 887 if (RegisterGlobalsFunc) 888 CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall); 889 890 // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it. 891 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(), 892 CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) { 893 // void __cudaRegisterFatBinaryEnd(void **); 894 llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction( 895 llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false), 896 "__cudaRegisterFatBinaryEnd"); 897 CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall); 898 } 899 } else { 900 // Generate a unique module ID. 901 SmallString<64> ModuleID; 902 llvm::raw_svector_ostream OS(ModuleID); 903 OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID()); 904 llvm::Constant *ModuleIDConstant = makeConstantArray( 905 std::string(ModuleID.str()), "", ModuleIDSectionName, 32, /*AddNull=*/true); 906 907 // Create an alias for the FatbinWrapper that nvcc will look for. 908 llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage, 909 Twine("__fatbinwrap") + ModuleID, FatbinWrapper); 910 911 // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *, 912 // void *, void (*)(void **)) 913 SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary"); 914 RegisterLinkedBinaryName += ModuleID; 915 llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction( 916 getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName); 917 918 assert(RegisterGlobalsFunc && "Expecting at least dummy function!"); 919 llvm::Value *Args[] = {RegisterGlobalsFunc, 920 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy), 921 ModuleIDConstant, 922 makeDummyFunction(getCallbackFnTy())}; 923 CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args); 924 } 925 926 // Create destructor and register it with atexit() the way NVCC does it. Doing 927 // it during regular destructor phase worked in CUDA before 9.2 but results in 928 // double-free in 9.2. 929 if (llvm::Function *CleanupFn = makeModuleDtorFunction()) { 930 // extern "C" int atexit(void (*f)(void)); 931 llvm::FunctionType *AtExitTy = 932 llvm::FunctionType::get(IntTy, CleanupFn->getType(), false); 933 llvm::FunctionCallee AtExitFunc = 934 CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(), 935 /*Local=*/true); 936 CtorBuilder.CreateCall(AtExitFunc, CleanupFn); 937 } 938 939 CtorBuilder.CreateRetVoid(); 940 return ModuleCtorFunc; 941 } 942 943 /// Creates a global destructor function that unregisters the GPU code blob 944 /// registered by constructor. 945 /// 946 /// For CUDA: 947 /// \code 948 /// void __cuda_module_dtor() { 949 /// __cudaUnregisterFatBinary(Handle); 950 /// } 951 /// \endcode 952 /// 953 /// For HIP: 954 /// \code 955 /// void __hip_module_dtor() { 956 /// if (__hip_gpubin_handle) { 957 /// __hipUnregisterFatBinary(__hip_gpubin_handle); 958 /// __hip_gpubin_handle = 0; 959 /// } 960 /// } 961 /// \endcode 962 llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() { 963 // No need for destructor if we don't have a handle to unregister. 964 if (!GpuBinaryHandle) 965 return nullptr; 966 967 // void __cudaUnregisterFatBinary(void ** handle); 968 llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction( 969 llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false), 970 addUnderscoredPrefixToName("UnregisterFatBinary")); 971 972 llvm::Function *ModuleDtorFunc = llvm::Function::Create( 973 llvm::FunctionType::get(VoidTy, false), 974 llvm::GlobalValue::InternalLinkage, 975 addUnderscoredPrefixToName("_module_dtor"), &TheModule); 976 977 llvm::BasicBlock *DtorEntryBB = 978 llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc); 979 CGBuilderTy DtorBuilder(CGM, Context); 980 DtorBuilder.SetInsertPoint(DtorEntryBB); 981 982 Address GpuBinaryAddr( 983 GpuBinaryHandle, GpuBinaryHandle->getValueType(), 984 CharUnits::fromQuantity(GpuBinaryHandle->getAlignment())); 985 auto *HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr); 986 // There is only one HIP fat binary per linked module, however there are 987 // multiple destructor functions. Make sure the fat binary is unregistered 988 // only once. 989 if (CGM.getLangOpts().HIP) { 990 llvm::BasicBlock *IfBlock = 991 llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc); 992 llvm::BasicBlock *ExitBlock = 993 llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc); 994 llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType()); 995 llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero); 996 DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock); 997 998 DtorBuilder.SetInsertPoint(IfBlock); 999 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue); 1000 DtorBuilder.CreateStore(Zero, GpuBinaryAddr); 1001 DtorBuilder.CreateBr(ExitBlock); 1002 1003 DtorBuilder.SetInsertPoint(ExitBlock); 1004 } else { 1005 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue); 1006 } 1007 DtorBuilder.CreateRetVoid(); 1008 return ModuleDtorFunc; 1009 } 1010 1011 CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) { 1012 return new CGNVCUDARuntime(CGM); 1013 } 1014 1015 void CGNVCUDARuntime::internalizeDeviceSideVar( 1016 const VarDecl *D, llvm::GlobalValue::LinkageTypes &Linkage) { 1017 // For -fno-gpu-rdc, host-side shadows of external declarations of device-side 1018 // global variables become internal definitions. These have to be internal in 1019 // order to prevent name conflicts with global host variables with the same 1020 // name in a different TUs. 1021 // 1022 // For -fgpu-rdc, the shadow variables should not be internalized because 1023 // they may be accessed by different TU. 1024 if (CGM.getLangOpts().GPURelocatableDeviceCode) 1025 return; 1026 1027 // __shared__ variables are odd. Shadows do get created, but 1028 // they are not registered with the CUDA runtime, so they 1029 // can't really be used to access their device-side 1030 // counterparts. It's not clear yet whether it's nvcc's bug or 1031 // a feature, but we've got to do the same for compatibility. 1032 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 1033 D->hasAttr<CUDASharedAttr>() || 1034 D->getType()->isCUDADeviceBuiltinSurfaceType() || 1035 D->getType()->isCUDADeviceBuiltinTextureType()) { 1036 Linkage = llvm::GlobalValue::InternalLinkage; 1037 } 1038 } 1039 1040 void CGNVCUDARuntime::handleVarRegistration(const VarDecl *D, 1041 llvm::GlobalVariable &GV) { 1042 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 1043 // Shadow variables and their properties must be registered with CUDA 1044 // runtime. Skip Extern global variables, which will be registered in 1045 // the TU where they are defined. 1046 // 1047 // Don't register a C++17 inline variable. The local symbol can be 1048 // discarded and referencing a discarded local symbol from outside the 1049 // comdat (__cuda_register_globals) is disallowed by the ELF spec. 1050 // 1051 // HIP managed variables need to be always recorded in device and host 1052 // compilations for transformation. 1053 // 1054 // HIP managed variables and variables in CUDADeviceVarODRUsedByHost are 1055 // added to llvm.compiler-used, therefore they are safe to be registered. 1056 if ((!D->hasExternalStorage() && !D->isInline()) || 1057 CGM.getContext().CUDADeviceVarODRUsedByHost.contains(D) || 1058 D->hasAttr<HIPManagedAttr>()) { 1059 registerDeviceVar(D, GV, !D->hasDefinition(), 1060 D->hasAttr<CUDAConstantAttr>()); 1061 } 1062 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || 1063 D->getType()->isCUDADeviceBuiltinTextureType()) { 1064 // Builtin surfaces and textures and their template arguments are 1065 // also registered with CUDA runtime. 1066 const auto *TD = cast<ClassTemplateSpecializationDecl>( 1067 D->getType()->castAs<RecordType>()->getDecl()); 1068 const TemplateArgumentList &Args = TD->getTemplateArgs(); 1069 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) { 1070 assert(Args.size() == 2 && 1071 "Unexpected number of template arguments of CUDA device " 1072 "builtin surface type."); 1073 auto SurfType = Args[1].getAsIntegral(); 1074 if (!D->hasExternalStorage()) 1075 registerDeviceSurf(D, GV, !D->hasDefinition(), SurfType.getSExtValue()); 1076 } else { 1077 assert(Args.size() == 3 && 1078 "Unexpected number of template arguments of CUDA device " 1079 "builtin texture type."); 1080 auto TexType = Args[1].getAsIntegral(); 1081 auto Normalized = Args[2].getAsIntegral(); 1082 if (!D->hasExternalStorage()) 1083 registerDeviceTex(D, GV, !D->hasDefinition(), TexType.getSExtValue(), 1084 Normalized.getZExtValue()); 1085 } 1086 } 1087 } 1088 1089 // Transform managed variables to pointers to managed variables in device code. 1090 // Each use of the original managed variable is replaced by a load from the 1091 // transformed managed variable. The transformed managed variable contains 1092 // the address of managed memory which will be allocated by the runtime. 1093 void CGNVCUDARuntime::transformManagedVars() { 1094 for (auto &&Info : DeviceVars) { 1095 llvm::GlobalVariable *Var = Info.Var; 1096 if (Info.Flags.getKind() == DeviceVarFlags::Variable && 1097 Info.Flags.isManaged()) { 1098 auto *ManagedVar = new llvm::GlobalVariable( 1099 CGM.getModule(), Var->getType(), 1100 /*isConstant=*/false, Var->getLinkage(), 1101 /*Init=*/Var->isDeclaration() 1102 ? nullptr 1103 : llvm::ConstantPointerNull::get(Var->getType()), 1104 /*Name=*/"", /*InsertBefore=*/nullptr, 1105 llvm::GlobalVariable::NotThreadLocal, 1106 CGM.getContext().getTargetAddressSpace(LangAS::cuda_device)); 1107 ManagedVar->setDSOLocal(Var->isDSOLocal()); 1108 ManagedVar->setVisibility(Var->getVisibility()); 1109 ManagedVar->setExternallyInitialized(true); 1110 replaceManagedVar(Var, ManagedVar); 1111 ManagedVar->takeName(Var); 1112 Var->setName(Twine(ManagedVar->getName()) + ".managed"); 1113 // Keep managed variables even if they are not used in device code since 1114 // they need to be allocated by the runtime. 1115 if (!Var->isDeclaration()) { 1116 assert(!ManagedVar->isDeclaration()); 1117 CGM.addCompilerUsedGlobal(Var); 1118 CGM.addCompilerUsedGlobal(ManagedVar); 1119 } 1120 } 1121 } 1122 } 1123 1124 // Creates offloading entries for all the kernels and globals that must be 1125 // registered. The linker will provide a pointer to this section so we can 1126 // register the symbols with the linked device image. 1127 void CGNVCUDARuntime::createOffloadingEntries() { 1128 llvm::OpenMPIRBuilder OMPBuilder(CGM.getModule()); 1129 OMPBuilder.initialize(); 1130 1131 StringRef Section = CGM.getLangOpts().HIP ? "hip_offloading_entries" 1132 : "cuda_offloading_entries"; 1133 for (KernelInfo &I : EmittedKernels) 1134 OMPBuilder.emitOffloadingEntry(KernelHandles[I.Kernel->getName()], 1135 getDeviceSideName(cast<NamedDecl>(I.D)), 0, 1136 DeviceVarFlags::OffloadGlobalEntry, Section); 1137 1138 for (VarInfo &I : DeviceVars) { 1139 uint64_t VarSize = 1140 CGM.getDataLayout().getTypeAllocSize(I.Var->getValueType()); 1141 if (I.Flags.getKind() == DeviceVarFlags::Variable) { 1142 OMPBuilder.emitOffloadingEntry( 1143 I.Var, getDeviceSideName(I.D), VarSize, 1144 I.Flags.isManaged() ? DeviceVarFlags::OffloadGlobalManagedEntry 1145 : DeviceVarFlags::OffloadGlobalEntry, 1146 Section); 1147 } else if (I.Flags.getKind() == DeviceVarFlags::Surface) { 1148 OMPBuilder.emitOffloadingEntry(I.Var, getDeviceSideName(I.D), VarSize, 1149 DeviceVarFlags::OffloadGlobalSurfaceEntry, 1150 Section); 1151 } else if (I.Flags.getKind() == DeviceVarFlags::Texture) { 1152 OMPBuilder.emitOffloadingEntry(I.Var, getDeviceSideName(I.D), VarSize, 1153 DeviceVarFlags::OffloadGlobalTextureEntry, 1154 Section); 1155 } 1156 } 1157 } 1158 1159 // Returns module constructor to be added. 1160 llvm::Function *CGNVCUDARuntime::finalizeModule() { 1161 if (CGM.getLangOpts().CUDAIsDevice) { 1162 transformManagedVars(); 1163 1164 // Mark ODR-used device variables as compiler used to prevent it from being 1165 // eliminated by optimization. This is necessary for device variables 1166 // ODR-used by host functions. Sema correctly marks them as ODR-used no 1167 // matter whether they are ODR-used by device or host functions. 1168 // 1169 // We do not need to do this if the variable has used attribute since it 1170 // has already been added. 1171 // 1172 // Static device variables have been externalized at this point, therefore 1173 // variables with LLVM private or internal linkage need not be added. 1174 for (auto &&Info : DeviceVars) { 1175 auto Kind = Info.Flags.getKind(); 1176 if (!Info.Var->isDeclaration() && 1177 !llvm::GlobalValue::isLocalLinkage(Info.Var->getLinkage()) && 1178 (Kind == DeviceVarFlags::Variable || 1179 Kind == DeviceVarFlags::Surface || 1180 Kind == DeviceVarFlags::Texture) && 1181 Info.D->isUsed() && !Info.D->hasAttr<UsedAttr>()) { 1182 CGM.addCompilerUsedGlobal(Info.Var); 1183 } 1184 } 1185 return nullptr; 1186 } 1187 if (CGM.getLangOpts().OffloadingNewDriver && RelocatableDeviceCode) 1188 createOffloadingEntries(); 1189 else 1190 return makeModuleCtorFunction(); 1191 1192 return nullptr; 1193 } 1194 1195 llvm::GlobalValue *CGNVCUDARuntime::getKernelHandle(llvm::Function *F, 1196 GlobalDecl GD) { 1197 auto Loc = KernelHandles.find(F->getName()); 1198 if (Loc != KernelHandles.end()) 1199 return Loc->second; 1200 1201 if (!CGM.getLangOpts().HIP) { 1202 KernelHandles[F->getName()] = F; 1203 KernelStubs[F] = F; 1204 return F; 1205 } 1206 1207 auto *Var = new llvm::GlobalVariable( 1208 TheModule, F->getType(), /*isConstant=*/true, F->getLinkage(), 1209 /*Initializer=*/nullptr, 1210 CGM.getMangledName( 1211 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel))); 1212 Var->setAlignment(CGM.getPointerAlign().getAsAlign()); 1213 Var->setDSOLocal(F->isDSOLocal()); 1214 Var->setVisibility(F->getVisibility()); 1215 CGM.maybeSetTrivialComdat(*GD.getDecl(), *Var); 1216 KernelHandles[F->getName()] = Var; 1217 KernelStubs[Var] = F; 1218 return Var; 1219 } 1220