//===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This provides a class for CUDA code generation targeting the NVIDIA CUDA // runtime library. // //===----------------------------------------------------------------------===// #include "CGCUDARuntime.h" #include "CGCXXABI.h" #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "clang/AST/Decl.h" #include "clang/Basic/Cuda.h" #include "clang/CodeGen/CodeGenABITypes.h" #include "clang/CodeGen/ConstantInitBuilder.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/ReplaceConstant.h" #include "llvm/Support/Format.h" using namespace clang; using namespace CodeGen; namespace { constexpr unsigned CudaFatMagic = 0x466243b1; constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF" class CGNVCUDARuntime : public CGCUDARuntime { private: llvm::IntegerType *IntTy, *SizeTy; llvm::Type *VoidTy; llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy; /// Convenience reference to LLVM Context llvm::LLVMContext &Context; /// Convenience reference to the current module llvm::Module &TheModule; /// Keeps track of kernel launch stubs and handles emitted in this module struct KernelInfo { llvm::Function *Kernel; // stub function to help launch kernel const Decl *D; }; llvm::SmallVector EmittedKernels; // Map a kernel mangled name to a symbol for identifying kernel in host code // For CUDA, the symbol for identifying the kernel is the same as the device // stub function. For HIP, they are different. llvm::DenseMap KernelHandles; // Map a kernel handle to the kernel stub. llvm::DenseMap KernelStubs; struct VarInfo { llvm::GlobalVariable *Var; const VarDecl *D; DeviceVarFlags Flags; }; llvm::SmallVector DeviceVars; /// Keeps track of variable containing handle of GPU binary. Populated by /// ModuleCtorFunction() and used to create corresponding cleanup calls in /// ModuleDtorFunction() llvm::GlobalVariable *GpuBinaryHandle = nullptr; /// Whether we generate relocatable device code. bool RelocatableDeviceCode; /// Mangle context for device. std::unique_ptr DeviceMC; /// Some zeros used for GEPs. llvm::Constant *Zeros[2]; llvm::FunctionCallee getSetupArgumentFn() const; llvm::FunctionCallee getLaunchFn() const; llvm::FunctionType *getRegisterGlobalsFnTy() const; llvm::FunctionType *getCallbackFnTy() const; llvm::FunctionType *getRegisterLinkedBinaryFnTy() const; std::string addPrefixToName(StringRef FuncName) const; std::string addUnderscoredPrefixToName(StringRef FuncName) const; /// Creates a function to register all kernel stubs generated in this module. llvm::Function *makeRegisterGlobalsFn(); /// Helper function that generates a constant string and returns a pointer to /// the start of the string. The result of this function can be used anywhere /// where the C code specifies const char*. llvm::Constant *makeConstantString(const std::string &Str, const std::string &Name = "") { auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str()); return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(), ConstStr.getPointer(), Zeros); } /// Helper function which generates an initialized constant array from Str, /// and optionally sets section name and alignment. AddNull specifies whether /// the array should nave NUL termination. llvm::Constant *makeConstantArray(StringRef Str, StringRef Name = "", StringRef SectionName = "", unsigned Alignment = 0, bool AddNull = false) { llvm::Constant *Value = llvm::ConstantDataArray::getString(Context, Str, AddNull); auto *GV = new llvm::GlobalVariable( TheModule, Value->getType(), /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Value, Name); if (!SectionName.empty()) { GV->setSection(SectionName); // Mark the address as used which make sure that this section isn't // merged and we will really have it in the object file. GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); } if (Alignment) GV->setAlignment(llvm::Align(Alignment)); return llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); } /// Helper function that generates an empty dummy function returning void. llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) { assert(FnTy->getReturnType()->isVoidTy() && "Can only generate dummy functions returning void!"); llvm::Function *DummyFunc = llvm::Function::Create( FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule); llvm::BasicBlock *DummyBlock = llvm::BasicBlock::Create(Context, "", DummyFunc); CGBuilderTy FuncBuilder(CGM, Context); FuncBuilder.SetInsertPoint(DummyBlock); FuncBuilder.CreateRetVoid(); return DummyFunc; } void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args); void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args); std::string getDeviceSideName(const NamedDecl *ND) override; void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var, bool Extern, bool Constant) { DeviceVars.push_back({&Var, VD, {DeviceVarFlags::Variable, Extern, Constant, VD->hasAttr(), /*Normalized*/ false, 0}}); } void registerDeviceSurf(const VarDecl *VD, llvm::GlobalVariable &Var, bool Extern, int Type) { DeviceVars.push_back({&Var, VD, {DeviceVarFlags::Surface, Extern, /*Constant*/ false, /*Managed*/ false, /*Normalized*/ false, Type}}); } void registerDeviceTex(const VarDecl *VD, llvm::GlobalVariable &Var, bool Extern, int Type, bool Normalized) { DeviceVars.push_back({&Var, VD, {DeviceVarFlags::Texture, Extern, /*Constant*/ false, /*Managed*/ false, Normalized, Type}}); } /// Creates module constructor function llvm::Function *makeModuleCtorFunction(); /// Creates module destructor function llvm::Function *makeModuleDtorFunction(); /// Transform managed variables for device compilation. void transformManagedVars(); /// Create offloading entries to register globals in RDC mode. void createOffloadingEntries(); public: CGNVCUDARuntime(CodeGenModule &CGM); llvm::GlobalValue *getKernelHandle(llvm::Function *F, GlobalDecl GD) override; llvm::Function *getKernelStub(llvm::GlobalValue *Handle) override { auto Loc = KernelStubs.find(Handle); assert(Loc != KernelStubs.end()); return Loc->second; } void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override; void handleVarRegistration(const VarDecl *VD, llvm::GlobalVariable &Var) override; void internalizeDeviceSideVar(const VarDecl *D, llvm::GlobalValue::LinkageTypes &Linkage) override; llvm::Function *finalizeModule() override; }; } // end anonymous namespace std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const { if (CGM.getLangOpts().HIP) return ((Twine("hip") + Twine(FuncName)).str()); return ((Twine("cuda") + Twine(FuncName)).str()); } std::string CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const { if (CGM.getLangOpts().HIP) return ((Twine("__hip") + Twine(FuncName)).str()); return ((Twine("__cuda") + Twine(FuncName)).str()); } static std::unique_ptr InitDeviceMC(CodeGenModule &CGM) { // If the host and device have different C++ ABIs, mark it as the device // mangle context so that the mangling needs to retrieve the additional // device lambda mangling number instead of the regular host one. if (CGM.getContext().getAuxTargetInfo() && CGM.getContext().getTargetInfo().getCXXABI().isMicrosoft() && CGM.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()) { return std::unique_ptr( CGM.getContext().createDeviceMangleContext( *CGM.getContext().getAuxTargetInfo())); } return std::unique_ptr(CGM.getContext().createMangleContext( CGM.getContext().getAuxTargetInfo())); } CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM) : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()), TheModule(CGM.getModule()), RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode), DeviceMC(InitDeviceMC(CGM)) { CodeGen::CodeGenTypes &Types = CGM.getTypes(); ASTContext &Ctx = CGM.getContext(); IntTy = CGM.IntTy; SizeTy = CGM.SizeTy; VoidTy = CGM.VoidTy; Zeros[0] = llvm::ConstantInt::get(SizeTy, 0); Zeros[1] = Zeros[0]; CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy)); VoidPtrTy = cast(Types.ConvertType(Ctx.VoidPtrTy)); VoidPtrPtrTy = VoidPtrTy->getPointerTo(); } llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const { // cudaError_t cudaSetupArgument(void *, size_t, size_t) llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy}; return CGM.CreateRuntimeFunction( llvm::FunctionType::get(IntTy, Params, false), addPrefixToName("SetupArgument")); } llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const { if (CGM.getLangOpts().HIP) { // hipError_t hipLaunchByPtr(char *); return CGM.CreateRuntimeFunction( llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr"); } // cudaError_t cudaLaunch(char *); return CGM.CreateRuntimeFunction( llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch"); } llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const { return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false); } llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const { return llvm::FunctionType::get(VoidTy, VoidPtrTy, false); } llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const { auto *CallbackFnTy = getCallbackFnTy(); auto *RegisterGlobalsFnTy = getRegisterGlobalsFnTy(); llvm::Type *Params[] = {RegisterGlobalsFnTy->getPointerTo(), VoidPtrTy, VoidPtrTy, CallbackFnTy->getPointerTo()}; return llvm::FunctionType::get(VoidTy, Params, false); } std::string CGNVCUDARuntime::getDeviceSideName(const NamedDecl *ND) { GlobalDecl GD; // D could be either a kernel or a variable. if (auto *FD = dyn_cast(ND)) GD = GlobalDecl(FD, KernelReferenceKind::Kernel); else GD = GlobalDecl(ND); std::string DeviceSideName; MangleContext *MC; if (CGM.getLangOpts().CUDAIsDevice) MC = &CGM.getCXXABI().getMangleContext(); else MC = DeviceMC.get(); if (MC->shouldMangleDeclName(ND)) { SmallString<256> Buffer; llvm::raw_svector_ostream Out(Buffer); MC->mangleName(GD, Out); DeviceSideName = std::string(Out.str()); } else DeviceSideName = std::string(ND->getIdentifier()->getName()); // Make unique name for device side static file-scope variable for HIP. if (CGM.getContext().shouldExternalize(ND) && CGM.getLangOpts().GPURelocatableDeviceCode) { SmallString<256> Buffer; llvm::raw_svector_ostream Out(Buffer); Out << DeviceSideName; CGM.printPostfixForExternalizedDecl(Out, ND); DeviceSideName = std::string(Out.str()); } return DeviceSideName; } void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) { EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl}); if (auto *GV = dyn_cast(KernelHandles[CGF.CurFn->getName()])) { GV->setLinkage(CGF.CurFn->getLinkage()); GV->setInitializer(CGF.CurFn); } if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(), CudaFeature::CUDA_USES_NEW_LAUNCH) || (CGF.getLangOpts().HIP && CGF.getLangOpts().HIPUseNewLaunchAPI)) emitDeviceStubBodyNew(CGF, Args); else emitDeviceStubBodyLegacy(CGF, Args); } // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local // array and kernels are launched using cudaLaunchKernel(). void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args) { // Build the shadow stack entry at the very start of the function. // Calculate amount of space we will need for all arguments. If we have no // args, allocate a single pointer so we still have a valid pointer to the // argument array that we can pass to runtime, even if it will be unused. Address KernelArgs = CGF.CreateTempAlloca( VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args", llvm::ConstantInt::get(SizeTy, std::max(1, Args.size()))); // Store pointers to the arguments in a locally allocated launch_args. for (unsigned i = 0; i < Args.size(); ++i) { llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer(); llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy); CGF.Builder.CreateDefaultAlignedStore( VoidVarPtr, CGF.Builder.CreateConstGEP1_32(VoidPtrTy, KernelArgs.getPointer(), i)); } llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end"); // Lookup cudaLaunchKernel/hipLaunchKernel function. // HIP kernel launching API name depends on -fgpu-default-stream option. For // the default value 'legacy', it is hipLaunchKernel. For 'per-thread', // it is hipLaunchKernel_spt. // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim, // void **args, size_t sharedMem, // cudaStream_t stream); // hipError_t hipLaunchKernel[_spt](const void *func, dim3 gridDim, // dim3 blockDim, void **args, // size_t sharedMem, hipStream_t stream); TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); std::string KernelLaunchAPI = "LaunchKernel"; if (CGF.getLangOpts().HIP && CGF.getLangOpts().GPUDefaultStream == LangOptions::GPUDefaultStreamKind::PerThread) KernelLaunchAPI = KernelLaunchAPI + "_spt"; auto LaunchKernelName = addPrefixToName(KernelLaunchAPI); IdentifierInfo &cudaLaunchKernelII = CGM.getContext().Idents.get(LaunchKernelName); FunctionDecl *cudaLaunchKernelFD = nullptr; for (auto *Result : DC->lookup(&cudaLaunchKernelII)) { if (FunctionDecl *FD = dyn_cast(Result)) cudaLaunchKernelFD = FD; } if (cudaLaunchKernelFD == nullptr) { CGM.Error(CGF.CurFuncDecl->getLocation(), "Can't find declaration for " + LaunchKernelName); return; } // Create temporary dim3 grid_dim, block_dim. ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1); QualType Dim3Ty = GridDimParam->getType(); Address GridDim = CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim"); Address BlockDim = CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim"); Address ShmemSize = CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size"); Address Stream = CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream"); llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction( llvm::FunctionType::get(IntTy, {/*gridDim=*/GridDim.getType(), /*blockDim=*/BlockDim.getType(), /*ShmemSize=*/ShmemSize.getType(), /*Stream=*/Stream.getType()}, /*isVarArg=*/false), addUnderscoredPrefixToName("PopCallConfiguration")); CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn, {GridDim.getPointer(), BlockDim.getPointer(), ShmemSize.getPointer(), Stream.getPointer()}); // Emit the call to cudaLaunch llvm::Value *Kernel = CGF.Builder.CreatePointerCast( KernelHandles[CGF.CurFn->getName()], VoidPtrTy); CallArgList LaunchKernelArgs; LaunchKernelArgs.add(RValue::get(Kernel), cudaLaunchKernelFD->getParamDecl(0)->getType()); LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty); LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty); LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()), cudaLaunchKernelFD->getParamDecl(3)->getType()); LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)), cudaLaunchKernelFD->getParamDecl(4)->getType()); LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)), cudaLaunchKernelFD->getParamDecl(5)->getType()); QualType QT = cudaLaunchKernelFD->getType(); QualType CQT = QT.getCanonicalType(); llvm::Type *Ty = CGM.getTypes().ConvertType(CQT); llvm::FunctionType *FTy = cast(Ty); const CGFunctionInfo &FI = CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD); llvm::FunctionCallee cudaLaunchKernelFn = CGM.CreateRuntimeFunction(FTy, LaunchKernelName); CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(), LaunchKernelArgs); CGF.EmitBranch(EndBlock); CGF.EmitBlock(EndBlock); } void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args) { // Emit a call to cudaSetupArgument for each arg in Args. llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn(); llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end"); CharUnits Offset = CharUnits::Zero(); for (const VarDecl *A : Args) { auto TInfo = CGM.getContext().getTypeInfoInChars(A->getType()); Offset = Offset.alignTo(TInfo.Align); llvm::Value *Args[] = { CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(), VoidPtrTy), llvm::ConstantInt::get(SizeTy, TInfo.Width.getQuantity()), llvm::ConstantInt::get(SizeTy, Offset.getQuantity()), }; llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args); llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0); llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero); llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next"); CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock); CGF.EmitBlock(NextBlock); Offset += TInfo.Width; } // Emit the call to cudaLaunch llvm::FunctionCallee cudaLaunchFn = getLaunchFn(); llvm::Value *Arg = CGF.Builder.CreatePointerCast( KernelHandles[CGF.CurFn->getName()], CharPtrTy); CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg); CGF.EmitBranch(EndBlock); CGF.EmitBlock(EndBlock); } // Replace the original variable Var with the address loaded from variable // ManagedVar populated by HIP runtime. static void replaceManagedVar(llvm::GlobalVariable *Var, llvm::GlobalVariable *ManagedVar) { SmallVector, 8> WorkList; for (auto &&VarUse : Var->uses()) { WorkList.push_back({VarUse.getUser()}); } while (!WorkList.empty()) { auto &&WorkItem = WorkList.pop_back_val(); auto *U = WorkItem.back(); if (isa(U)) { for (auto &&UU : U->uses()) { WorkItem.push_back(UU.getUser()); WorkList.push_back(WorkItem); WorkItem.pop_back(); } continue; } if (auto *I = dyn_cast(U)) { llvm::Value *OldV = Var; llvm::Instruction *NewV = new llvm::LoadInst(Var->getType(), ManagedVar, "ld.managed", false, llvm::Align(Var->getAlignment()), I); WorkItem.pop_back(); // Replace constant expressions directly or indirectly using the managed // variable with instructions. for (auto &&Op : WorkItem) { auto *CE = cast(Op); auto *NewInst = CE->getAsInstruction(I); NewInst->replaceUsesOfWith(OldV, NewV); OldV = CE; NewV = NewInst; } I->replaceUsesOfWith(OldV, NewV); } else { llvm_unreachable("Invalid use of managed variable"); } } } /// Creates a function that sets up state on the host side for CUDA objects that /// have a presence on both the host and device sides. Specifically, registers /// the host side of kernel functions and device global variables with the CUDA /// runtime. /// \code /// void __cuda_register_globals(void** GpuBinaryHandle) { /// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...); /// ... /// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...); /// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...); /// ... /// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...); /// } /// \endcode llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() { // No need to register anything if (EmittedKernels.empty() && DeviceVars.empty()) return nullptr; llvm::Function *RegisterKernelsFunc = llvm::Function::Create( getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage, addUnderscoredPrefixToName("_register_globals"), &TheModule); llvm::BasicBlock *EntryBB = llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc); CGBuilderTy Builder(CGM, Context); Builder.SetInsertPoint(EntryBB); // void __cudaRegisterFunction(void **, const char *, char *, const char *, // int, uint3*, uint3*, dim3*, dim3*, int*) llvm::Type *RegisterFuncParams[] = { VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy, VoidPtrTy, VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()}; llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction( llvm::FunctionType::get(IntTy, RegisterFuncParams, false), addUnderscoredPrefixToName("RegisterFunction")); // Extract GpuBinaryHandle passed as the first argument passed to // __cuda_register_globals() and generate __cudaRegisterFunction() call for // each emitted kernel. llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin(); for (auto &&I : EmittedKernels) { llvm::Constant *KernelName = makeConstantString(getDeviceSideName(cast(I.D))); llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy); llvm::Value *Args[] = { &GpuBinaryHandlePtr, Builder.CreateBitCast(KernelHandles[I.Kernel->getName()], VoidPtrTy), KernelName, KernelName, llvm::ConstantInt::get(IntTy, -1), NullPtr, NullPtr, NullPtr, NullPtr, llvm::ConstantPointerNull::get(IntTy->getPointerTo())}; Builder.CreateCall(RegisterFunc, Args); } llvm::Type *VarSizeTy = IntTy; // For HIP or CUDA 9.0+, device variable size is type of `size_t`. if (CGM.getLangOpts().HIP || ToCudaVersion(CGM.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90) VarSizeTy = SizeTy; // void __cudaRegisterVar(void **, char *, char *, const char *, // int, int, int, int) llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy, VarSizeTy, IntTy, IntTy}; llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction( llvm::FunctionType::get(VoidTy, RegisterVarParams, false), addUnderscoredPrefixToName("RegisterVar")); // void __hipRegisterManagedVar(void **, char *, char *, const char *, // size_t, unsigned) llvm::Type *RegisterManagedVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, VarSizeTy, IntTy}; llvm::FunctionCallee RegisterManagedVar = CGM.CreateRuntimeFunction( llvm::FunctionType::get(VoidTy, RegisterManagedVarParams, false), addUnderscoredPrefixToName("RegisterManagedVar")); // void __cudaRegisterSurface(void **, const struct surfaceReference *, // const void **, const char *, int, int); llvm::FunctionCallee RegisterSurf = CGM.CreateRuntimeFunction( llvm::FunctionType::get( VoidTy, {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy}, false), addUnderscoredPrefixToName("RegisterSurface")); // void __cudaRegisterTexture(void **, const struct textureReference *, // const void **, const char *, int, int, int) llvm::FunctionCallee RegisterTex = CGM.CreateRuntimeFunction( llvm::FunctionType::get( VoidTy, {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy, IntTy}, false), addUnderscoredPrefixToName("RegisterTexture")); for (auto &&Info : DeviceVars) { llvm::GlobalVariable *Var = Info.Var; assert((!Var->isDeclaration() || Info.Flags.isManaged()) && "External variables should not show up here, except HIP managed " "variables"); llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D)); switch (Info.Flags.getKind()) { case DeviceVarFlags::Variable: { uint64_t VarSize = CGM.getDataLayout().getTypeAllocSize(Var->getValueType()); if (Info.Flags.isManaged()) { auto *ManagedVar = new llvm::GlobalVariable( CGM.getModule(), Var->getType(), /*isConstant=*/false, Var->getLinkage(), /*Init=*/Var->isDeclaration() ? nullptr : llvm::ConstantPointerNull::get(Var->getType()), /*Name=*/"", /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal); ManagedVar->setDSOLocal(Var->isDSOLocal()); ManagedVar->setVisibility(Var->getVisibility()); ManagedVar->setExternallyInitialized(true); ManagedVar->takeName(Var); Var->setName(Twine(ManagedVar->getName() + ".managed")); replaceManagedVar(Var, ManagedVar); llvm::Value *Args[] = { &GpuBinaryHandlePtr, Builder.CreateBitCast(ManagedVar, VoidPtrTy), Builder.CreateBitCast(Var, VoidPtrTy), VarName, llvm::ConstantInt::get(VarSizeTy, VarSize), llvm::ConstantInt::get(IntTy, Var->getAlignment())}; if (!Var->isDeclaration()) Builder.CreateCall(RegisterManagedVar, Args); } else { llvm::Value *Args[] = { &GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName, VarName, llvm::ConstantInt::get(IntTy, Info.Flags.isExtern()), llvm::ConstantInt::get(VarSizeTy, VarSize), llvm::ConstantInt::get(IntTy, Info.Flags.isConstant()), llvm::ConstantInt::get(IntTy, 0)}; Builder.CreateCall(RegisterVar, Args); } break; } case DeviceVarFlags::Surface: Builder.CreateCall( RegisterSurf, {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName, VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()), llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())}); break; case DeviceVarFlags::Texture: Builder.CreateCall( RegisterTex, {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName, VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()), llvm::ConstantInt::get(IntTy, Info.Flags.isNormalized()), llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())}); break; } } Builder.CreateRetVoid(); return RegisterKernelsFunc; } /// Creates a global constructor function for the module: /// /// For CUDA: /// \code /// void __cuda_module_ctor() { /// Handle = __cudaRegisterFatBinary(GpuBinaryBlob); /// __cuda_register_globals(Handle); /// } /// \endcode /// /// For HIP: /// \code /// void __hip_module_ctor() { /// if (__hip_gpubin_handle == 0) { /// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob); /// __hip_register_globals(__hip_gpubin_handle); /// } /// } /// \endcode llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() { bool IsHIP = CGM.getLangOpts().HIP; bool IsCUDA = CGM.getLangOpts().CUDA; // No need to generate ctors/dtors if there is no GPU binary. StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName; if (CudaGpuBinaryFileName.empty() && !IsHIP) return nullptr; if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() && DeviceVars.empty()) return nullptr; // void __{cuda|hip}_register_globals(void* handle); llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn(); // We always need a function to pass in as callback. Create a dummy // implementation if we don't need to register anything. if (RelocatableDeviceCode && !RegisterGlobalsFunc) RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy()); // void ** __{cuda|hip}RegisterFatBinary(void *); llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction( llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false), addUnderscoredPrefixToName("RegisterFatBinary")); // struct { int magic, int version, void * gpu_binary, void * dont_care }; llvm::StructType *FatbinWrapperTy = llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy); // Register GPU binary with the CUDA runtime, store returned handle in a // global variable and save a reference in GpuBinaryHandle to be cleaned up // in destructor on exit. Then associate all known kernels with the GPU binary // handle so CUDA runtime can figure out what to call on the GPU side. std::unique_ptr CudaGpuBinary = nullptr; if (!CudaGpuBinaryFileName.empty()) { llvm::ErrorOr> CudaGpuBinaryOrErr = llvm::MemoryBuffer::getFileOrSTDIN(CudaGpuBinaryFileName); if (std::error_code EC = CudaGpuBinaryOrErr.getError()) { CGM.getDiags().Report(diag::err_cannot_open_file) << CudaGpuBinaryFileName << EC.message(); return nullptr; } CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get()); } llvm::Function *ModuleCtorFunc = llvm::Function::Create( llvm::FunctionType::get(VoidTy, false), llvm::GlobalValue::InternalLinkage, addUnderscoredPrefixToName("_module_ctor"), &TheModule); llvm::BasicBlock *CtorEntryBB = llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc); CGBuilderTy CtorBuilder(CGM, Context); CtorBuilder.SetInsertPoint(CtorEntryBB); const char *FatbinConstantName; const char *FatbinSectionName; const char *ModuleIDSectionName; StringRef ModuleIDPrefix; llvm::Constant *FatBinStr; unsigned FatMagic; if (IsHIP) { FatbinConstantName = ".hip_fatbin"; FatbinSectionName = ".hipFatBinSegment"; ModuleIDSectionName = "__hip_module_id"; ModuleIDPrefix = "__hip_"; if (CudaGpuBinary) { // If fatbin is available from early finalization, create a string // literal containing the fat binary loaded from the given file. const unsigned HIPCodeObjectAlign = 4096; FatBinStr = makeConstantArray(std::string(CudaGpuBinary->getBuffer()), "", FatbinConstantName, HIPCodeObjectAlign); } else { // If fatbin is not available, create an external symbol // __hip_fatbin in section .hip_fatbin. The external symbol is supposed // to contain the fat binary but will be populated somewhere else, // e.g. by lld through link script. FatBinStr = new llvm::GlobalVariable( CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr, "__hip_fatbin", nullptr, llvm::GlobalVariable::NotThreadLocal); cast(FatBinStr)->setSection(FatbinConstantName); } FatMagic = HIPFatMagic; } else { if (RelocatableDeviceCode) FatbinConstantName = CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_relfatbin" : "__nv_relfatbin"; else FatbinConstantName = CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin"; // NVIDIA's cuobjdump looks for fatbins in this section. FatbinSectionName = CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment"; ModuleIDSectionName = CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_module_id" : "__nv_module_id"; ModuleIDPrefix = "__nv_"; // For CUDA, create a string literal containing the fat binary loaded from // the given file. FatBinStr = makeConstantArray(std::string(CudaGpuBinary->getBuffer()), "", FatbinConstantName, 8); FatMagic = CudaFatMagic; } // Create initialized wrapper structure that points to the loaded GPU binary ConstantInitBuilder Builder(CGM); auto Values = Builder.beginStruct(FatbinWrapperTy); // Fatbin wrapper magic. Values.addInt(IntTy, FatMagic); // Fatbin version. Values.addInt(IntTy, 1); // Data. Values.add(FatBinStr); // Unused in fatbin v1. Values.add(llvm::ConstantPointerNull::get(VoidPtrTy)); llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal( addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(), /*constant*/ true); FatbinWrapper->setSection(FatbinSectionName); // There is only one HIP fat binary per linked module, however there are // multiple constructor functions. Make sure the fat binary is registered // only once. The constructor functions are executed by the dynamic loader // before the program gains control. The dynamic loader cannot execute the // constructor functions concurrently since doing that would not guarantee // thread safety of the loaded program. Therefore we can assume sequential // execution of constructor functions here. if (IsHIP) { auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage : llvm::GlobalValue::LinkOnceAnyLinkage; llvm::BasicBlock *IfBlock = llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc); llvm::BasicBlock *ExitBlock = llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc); // The name, size, and initialization pattern of this variable is part // of HIP ABI. GpuBinaryHandle = new llvm::GlobalVariable( TheModule, VoidPtrPtrTy, /*isConstant=*/false, Linkage, /*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__hip_gpubin_handle"); if (Linkage == llvm::GlobalValue::LinkOnceAnyLinkage) GpuBinaryHandle->setComdat( CGM.getModule().getOrInsertComdat(GpuBinaryHandle->getName())); GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign()); // Prevent the weak symbol in different shared libraries being merged. if (Linkage != llvm::GlobalValue::InternalLinkage) GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility); Address GpuBinaryAddr( GpuBinaryHandle, VoidPtrPtrTy, CharUnits::fromQuantity(GpuBinaryHandle->getAlignment())); { auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr); llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType()); llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero); CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock); } { CtorBuilder.SetInsertPoint(IfBlock); // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper); llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall( RegisterFatbinFunc, CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy)); CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr); CtorBuilder.CreateBr(ExitBlock); } { CtorBuilder.SetInsertPoint(ExitBlock); // Call __hip_register_globals(GpuBinaryHandle); if (RegisterGlobalsFunc) { auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr); CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue); } } } else if (!RelocatableDeviceCode) { // Register binary with CUDA runtime. This is substantially different in // default mode vs. separate compilation! // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper); llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall( RegisterFatbinFunc, CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy)); GpuBinaryHandle = new llvm::GlobalVariable( TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage, llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle"); GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign()); CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle, CGM.getPointerAlign()); // Call __cuda_register_globals(GpuBinaryHandle); if (RegisterGlobalsFunc) CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall); // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it. if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(), CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) { // void __cudaRegisterFatBinaryEnd(void **); llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction( llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false), "__cudaRegisterFatBinaryEnd"); CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall); } } else { // Generate a unique module ID. SmallString<64> ModuleID; llvm::raw_svector_ostream OS(ModuleID); OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID()); llvm::Constant *ModuleIDConstant = makeConstantArray( std::string(ModuleID.str()), "", ModuleIDSectionName, 32, /*AddNull=*/true); // Create an alias for the FatbinWrapper that nvcc will look for. llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage, Twine("__fatbinwrap") + ModuleID, FatbinWrapper); // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *, // void *, void (*)(void **)) SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary"); RegisterLinkedBinaryName += ModuleID; llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction( getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName); assert(RegisterGlobalsFunc && "Expecting at least dummy function!"); llvm::Value *Args[] = {RegisterGlobalsFunc, CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy), ModuleIDConstant, makeDummyFunction(getCallbackFnTy())}; CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args); } // Create destructor and register it with atexit() the way NVCC does it. Doing // it during regular destructor phase worked in CUDA before 9.2 but results in // double-free in 9.2. if (llvm::Function *CleanupFn = makeModuleDtorFunction()) { // extern "C" int atexit(void (*f)(void)); llvm::FunctionType *AtExitTy = llvm::FunctionType::get(IntTy, CleanupFn->getType(), false); llvm::FunctionCallee AtExitFunc = CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(), /*Local=*/true); CtorBuilder.CreateCall(AtExitFunc, CleanupFn); } CtorBuilder.CreateRetVoid(); return ModuleCtorFunc; } /// Creates a global destructor function that unregisters the GPU code blob /// registered by constructor. /// /// For CUDA: /// \code /// void __cuda_module_dtor() { /// __cudaUnregisterFatBinary(Handle); /// } /// \endcode /// /// For HIP: /// \code /// void __hip_module_dtor() { /// if (__hip_gpubin_handle) { /// __hipUnregisterFatBinary(__hip_gpubin_handle); /// __hip_gpubin_handle = 0; /// } /// } /// \endcode llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() { // No need for destructor if we don't have a handle to unregister. if (!GpuBinaryHandle) return nullptr; // void __cudaUnregisterFatBinary(void ** handle); llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction( llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false), addUnderscoredPrefixToName("UnregisterFatBinary")); llvm::Function *ModuleDtorFunc = llvm::Function::Create( llvm::FunctionType::get(VoidTy, false), llvm::GlobalValue::InternalLinkage, addUnderscoredPrefixToName("_module_dtor"), &TheModule); llvm::BasicBlock *DtorEntryBB = llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc); CGBuilderTy DtorBuilder(CGM, Context); DtorBuilder.SetInsertPoint(DtorEntryBB); Address GpuBinaryAddr( GpuBinaryHandle, GpuBinaryHandle->getValueType(), CharUnits::fromQuantity(GpuBinaryHandle->getAlignment())); auto *HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr); // There is only one HIP fat binary per linked module, however there are // multiple destructor functions. Make sure the fat binary is unregistered // only once. if (CGM.getLangOpts().HIP) { llvm::BasicBlock *IfBlock = llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc); llvm::BasicBlock *ExitBlock = llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc); llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType()); llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero); DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock); DtorBuilder.SetInsertPoint(IfBlock); DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue); DtorBuilder.CreateStore(Zero, GpuBinaryAddr); DtorBuilder.CreateBr(ExitBlock); DtorBuilder.SetInsertPoint(ExitBlock); } else { DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue); } DtorBuilder.CreateRetVoid(); return ModuleDtorFunc; } CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) { return new CGNVCUDARuntime(CGM); } void CGNVCUDARuntime::internalizeDeviceSideVar( const VarDecl *D, llvm::GlobalValue::LinkageTypes &Linkage) { // For -fno-gpu-rdc, host-side shadows of external declarations of device-side // global variables become internal definitions. These have to be internal in // order to prevent name conflicts with global host variables with the same // name in a different TUs. // // For -fgpu-rdc, the shadow variables should not be internalized because // they may be accessed by different TU. if (CGM.getLangOpts().GPURelocatableDeviceCode) return; // __shared__ variables are odd. Shadows do get created, but // they are not registered with the CUDA runtime, so they // can't really be used to access their device-side // counterparts. It's not clear yet whether it's nvcc's bug or // a feature, but we've got to do the same for compatibility. if (D->hasAttr() || D->hasAttr() || D->hasAttr() || D->getType()->isCUDADeviceBuiltinSurfaceType() || D->getType()->isCUDADeviceBuiltinTextureType()) { Linkage = llvm::GlobalValue::InternalLinkage; } } void CGNVCUDARuntime::handleVarRegistration(const VarDecl *D, llvm::GlobalVariable &GV) { if (D->hasAttr() || D->hasAttr()) { // Shadow variables and their properties must be registered with CUDA // runtime. Skip Extern global variables, which will be registered in // the TU where they are defined. // // Don't register a C++17 inline variable. The local symbol can be // discarded and referencing a discarded local symbol from outside the // comdat (__cuda_register_globals) is disallowed by the ELF spec. // // HIP managed variables need to be always recorded in device and host // compilations for transformation. // // HIP managed variables and variables in CUDADeviceVarODRUsedByHost are // added to llvm.compiler-used, therefore they are safe to be registered. if ((!D->hasExternalStorage() && !D->isInline()) || CGM.getContext().CUDADeviceVarODRUsedByHost.contains(D) || D->hasAttr()) { registerDeviceVar(D, GV, !D->hasDefinition(), D->hasAttr()); } } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || D->getType()->isCUDADeviceBuiltinTextureType()) { // Builtin surfaces and textures and their template arguments are // also registered with CUDA runtime. const auto *TD = cast( D->getType()->castAs()->getDecl()); const TemplateArgumentList &Args = TD->getTemplateArgs(); if (TD->hasAttr()) { assert(Args.size() == 2 && "Unexpected number of template arguments of CUDA device " "builtin surface type."); auto SurfType = Args[1].getAsIntegral(); if (!D->hasExternalStorage()) registerDeviceSurf(D, GV, !D->hasDefinition(), SurfType.getSExtValue()); } else { assert(Args.size() == 3 && "Unexpected number of template arguments of CUDA device " "builtin texture type."); auto TexType = Args[1].getAsIntegral(); auto Normalized = Args[2].getAsIntegral(); if (!D->hasExternalStorage()) registerDeviceTex(D, GV, !D->hasDefinition(), TexType.getSExtValue(), Normalized.getZExtValue()); } } } // Transform managed variables to pointers to managed variables in device code. // Each use of the original managed variable is replaced by a load from the // transformed managed variable. The transformed managed variable contains // the address of managed memory which will be allocated by the runtime. void CGNVCUDARuntime::transformManagedVars() { for (auto &&Info : DeviceVars) { llvm::GlobalVariable *Var = Info.Var; if (Info.Flags.getKind() == DeviceVarFlags::Variable && Info.Flags.isManaged()) { auto *ManagedVar = new llvm::GlobalVariable( CGM.getModule(), Var->getType(), /*isConstant=*/false, Var->getLinkage(), /*Init=*/Var->isDeclaration() ? nullptr : llvm::ConstantPointerNull::get(Var->getType()), /*Name=*/"", /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, CGM.getContext().getTargetAddressSpace(LangAS::cuda_device)); ManagedVar->setDSOLocal(Var->isDSOLocal()); ManagedVar->setVisibility(Var->getVisibility()); ManagedVar->setExternallyInitialized(true); replaceManagedVar(Var, ManagedVar); ManagedVar->takeName(Var); Var->setName(Twine(ManagedVar->getName()) + ".managed"); // Keep managed variables even if they are not used in device code since // they need to be allocated by the runtime. if (!Var->isDeclaration()) { assert(!ManagedVar->isDeclaration()); CGM.addCompilerUsedGlobal(Var); CGM.addCompilerUsedGlobal(ManagedVar); } } } } // Creates offloading entries for all the kernels and globals that must be // registered. The linker will provide a pointer to this section so we can // register the symbols with the linked device image. void CGNVCUDARuntime::createOffloadingEntries() { llvm::OpenMPIRBuilder OMPBuilder(CGM.getModule()); OMPBuilder.initialize(); StringRef Section = CGM.getLangOpts().HIP ? "hip_offloading_entries" : "cuda_offloading_entries"; for (KernelInfo &I : EmittedKernels) OMPBuilder.emitOffloadingEntry(KernelHandles[I.Kernel->getName()], getDeviceSideName(cast(I.D)), 0, DeviceVarFlags::OffloadGlobalEntry, Section); for (VarInfo &I : DeviceVars) { uint64_t VarSize = CGM.getDataLayout().getTypeAllocSize(I.Var->getValueType()); if (I.Flags.getKind() == DeviceVarFlags::Variable) { OMPBuilder.emitOffloadingEntry( I.Var, getDeviceSideName(I.D), VarSize, I.Flags.isManaged() ? DeviceVarFlags::OffloadGlobalManagedEntry : DeviceVarFlags::OffloadGlobalEntry, Section); } else if (I.Flags.getKind() == DeviceVarFlags::Surface) { OMPBuilder.emitOffloadingEntry(I.Var, getDeviceSideName(I.D), VarSize, DeviceVarFlags::OffloadGlobalSurfaceEntry, Section); } else if (I.Flags.getKind() == DeviceVarFlags::Texture) { OMPBuilder.emitOffloadingEntry(I.Var, getDeviceSideName(I.D), VarSize, DeviceVarFlags::OffloadGlobalTextureEntry, Section); } } } // Returns module constructor to be added. llvm::Function *CGNVCUDARuntime::finalizeModule() { if (CGM.getLangOpts().CUDAIsDevice) { transformManagedVars(); // Mark ODR-used device variables as compiler used to prevent it from being // eliminated by optimization. This is necessary for device variables // ODR-used by host functions. Sema correctly marks them as ODR-used no // matter whether they are ODR-used by device or host functions. // // We do not need to do this if the variable has used attribute since it // has already been added. // // Static device variables have been externalized at this point, therefore // variables with LLVM private or internal linkage need not be added. for (auto &&Info : DeviceVars) { auto Kind = Info.Flags.getKind(); if (!Info.Var->isDeclaration() && !llvm::GlobalValue::isLocalLinkage(Info.Var->getLinkage()) && (Kind == DeviceVarFlags::Variable || Kind == DeviceVarFlags::Surface || Kind == DeviceVarFlags::Texture) && Info.D->isUsed() && !Info.D->hasAttr()) { CGM.addCompilerUsedGlobal(Info.Var); } } return nullptr; } if (CGM.getLangOpts().OffloadingNewDriver && RelocatableDeviceCode) createOffloadingEntries(); else return makeModuleCtorFunction(); return nullptr; } llvm::GlobalValue *CGNVCUDARuntime::getKernelHandle(llvm::Function *F, GlobalDecl GD) { auto Loc = KernelHandles.find(F->getName()); if (Loc != KernelHandles.end()) return Loc->second; if (!CGM.getLangOpts().HIP) { KernelHandles[F->getName()] = F; KernelStubs[F] = F; return F; } auto *Var = new llvm::GlobalVariable( TheModule, F->getType(), /*isConstant=*/true, F->getLinkage(), /*Initializer=*/nullptr, CGM.getMangledName( GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel))); Var->setAlignment(CGM.getPointerAlign().getAsAlign()); Var->setDSOLocal(F->isDSOLocal()); Var->setVisibility(F->getVisibility()); CGM.maybeSetTrivialComdat(*GD.getDecl(), *Var); KernelHandles[F->getName()] = Var; KernelStubs[Var] = F; return Var; }