1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Bitcode/BitcodeReader.h" 24 #include "llvm/Bitcode/BitcodeWriter.h" 25 #include "llvm/Bitcode/BitcodeWriterPass.h" 26 #include "llvm/CodeGen/RegAllocRegistry.h" 27 #include "llvm/CodeGen/SchedulerRegistry.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Passes/PassPlugin.h" 40 #include "llvm/Passes/StandardInstrumentations.h" 41 #include "llvm/Support/BuryPointer.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/MemoryBuffer.h" 44 #include "llvm/Support/PrettyStackTrace.h" 45 #include "llvm/Support/TargetRegistry.h" 46 #include "llvm/Support/TimeProfiler.h" 47 #include "llvm/Support/Timer.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include "llvm/Target/TargetOptions.h" 51 #include "llvm/Transforms/Coroutines.h" 52 #include "llvm/Transforms/IPO.h" 53 #include "llvm/Transforms/IPO/AlwaysInliner.h" 54 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 55 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 56 #include "llvm/Transforms/InstCombine/InstCombine.h" 57 #include "llvm/Transforms/Instrumentation.h" 58 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 59 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 60 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 61 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 62 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 63 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 64 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 65 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 66 #include "llvm/Transforms/ObjCARC.h" 67 #include "llvm/Transforms/Scalar.h" 68 #include "llvm/Transforms/Scalar/GVN.h" 69 #include "llvm/Transforms/Utils.h" 70 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 71 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 72 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 73 #include "llvm/Transforms/Utils/SymbolRewriter.h" 74 #include <memory> 75 using namespace clang; 76 using namespace llvm; 77 78 #define HANDLE_EXTENSION(Ext) \ 79 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 80 #include "llvm/Support/Extension.def" 81 82 namespace { 83 84 // Default filename used for profile generation. 85 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 86 87 class EmitAssemblyHelper { 88 DiagnosticsEngine &Diags; 89 const HeaderSearchOptions &HSOpts; 90 const CodeGenOptions &CodeGenOpts; 91 const clang::TargetOptions &TargetOpts; 92 const LangOptions &LangOpts; 93 Module *TheModule; 94 95 Timer CodeGenerationTime; 96 97 std::unique_ptr<raw_pwrite_stream> OS; 98 99 TargetIRAnalysis getTargetIRAnalysis() const { 100 if (TM) 101 return TM->getTargetIRAnalysis(); 102 103 return TargetIRAnalysis(); 104 } 105 106 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 107 108 /// Generates the TargetMachine. 109 /// Leaves TM unchanged if it is unable to create the target machine. 110 /// Some of our clang tests specify triples which are not built 111 /// into clang. This is okay because these tests check the generated 112 /// IR, and they require DataLayout which depends on the triple. 113 /// In this case, we allow this method to fail and not report an error. 114 /// When MustCreateTM is used, we print an error if we are unable to load 115 /// the requested target. 116 void CreateTargetMachine(bool MustCreateTM); 117 118 /// Add passes necessary to emit assembly or LLVM IR. 119 /// 120 /// \return True on success. 121 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 122 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 123 124 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 125 std::error_code EC; 126 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 127 llvm::sys::fs::OF_None); 128 if (EC) { 129 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 130 F.reset(); 131 } 132 return F; 133 } 134 135 public: 136 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 137 const HeaderSearchOptions &HeaderSearchOpts, 138 const CodeGenOptions &CGOpts, 139 const clang::TargetOptions &TOpts, 140 const LangOptions &LOpts, Module *M) 141 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 142 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 143 CodeGenerationTime("codegen", "Code Generation Time") {} 144 145 ~EmitAssemblyHelper() { 146 if (CodeGenOpts.DisableFree) 147 BuryPointer(std::move(TM)); 148 } 149 150 std::unique_ptr<TargetMachine> TM; 151 152 void EmitAssembly(BackendAction Action, 153 std::unique_ptr<raw_pwrite_stream> OS); 154 155 void EmitAssemblyWithNewPassManager(BackendAction Action, 156 std::unique_ptr<raw_pwrite_stream> OS); 157 }; 158 159 // We need this wrapper to access LangOpts and CGOpts from extension functions 160 // that we add to the PassManagerBuilder. 161 class PassManagerBuilderWrapper : public PassManagerBuilder { 162 public: 163 PassManagerBuilderWrapper(const Triple &TargetTriple, 164 const CodeGenOptions &CGOpts, 165 const LangOptions &LangOpts) 166 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 167 LangOpts(LangOpts) {} 168 const Triple &getTargetTriple() const { return TargetTriple; } 169 const CodeGenOptions &getCGOpts() const { return CGOpts; } 170 const LangOptions &getLangOpts() const { return LangOpts; } 171 172 private: 173 const Triple &TargetTriple; 174 const CodeGenOptions &CGOpts; 175 const LangOptions &LangOpts; 176 }; 177 } 178 179 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 180 if (Builder.OptLevel > 0) 181 PM.add(createObjCARCAPElimPass()); 182 } 183 184 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 185 if (Builder.OptLevel > 0) 186 PM.add(createObjCARCExpandPass()); 187 } 188 189 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 190 if (Builder.OptLevel > 0) 191 PM.add(createObjCARCOptPass()); 192 } 193 194 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 195 legacy::PassManagerBase &PM) { 196 PM.add(createAddDiscriminatorsPass()); 197 } 198 199 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 200 legacy::PassManagerBase &PM) { 201 PM.add(createBoundsCheckingLegacyPass()); 202 } 203 204 static SanitizerCoverageOptions 205 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 206 SanitizerCoverageOptions Opts; 207 Opts.CoverageType = 208 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 209 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 210 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 211 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 212 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 213 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 214 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 215 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 216 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 217 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 218 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 219 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 220 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 221 return Opts; 222 } 223 224 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 225 legacy::PassManagerBase &PM) { 226 const PassManagerBuilderWrapper &BuilderWrapper = 227 static_cast<const PassManagerBuilderWrapper &>(Builder); 228 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 229 auto Opts = getSancovOptsFromCGOpts(CGOpts); 230 PM.add(createModuleSanitizerCoverageLegacyPassPass(Opts)); 231 } 232 233 // Check if ASan should use GC-friendly instrumentation for globals. 234 // First of all, there is no point if -fdata-sections is off (expect for MachO, 235 // where this is not a factor). Also, on ELF this feature requires an assembler 236 // extension that only works with -integrated-as at the moment. 237 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 238 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 239 return false; 240 switch (T.getObjectFormat()) { 241 case Triple::MachO: 242 case Triple::COFF: 243 return true; 244 case Triple::ELF: 245 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 246 case Triple::XCOFF: 247 llvm::report_fatal_error("ASan not implemented for XCOFF."); 248 case Triple::Wasm: 249 case Triple::UnknownObjectFormat: 250 break; 251 } 252 return false; 253 } 254 255 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 256 legacy::PassManagerBase &PM) { 257 const PassManagerBuilderWrapper &BuilderWrapper = 258 static_cast<const PassManagerBuilderWrapper&>(Builder); 259 const Triple &T = BuilderWrapper.getTargetTriple(); 260 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 261 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 262 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 263 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 264 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 265 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 266 UseAfterScope)); 267 PM.add(createModuleAddressSanitizerLegacyPassPass( 268 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 269 } 270 271 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 272 legacy::PassManagerBase &PM) { 273 PM.add(createAddressSanitizerFunctionPass( 274 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 275 PM.add(createModuleAddressSanitizerLegacyPassPass( 276 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 277 /*UseOdrIndicator*/ false)); 278 } 279 280 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 281 legacy::PassManagerBase &PM) { 282 const PassManagerBuilderWrapper &BuilderWrapper = 283 static_cast<const PassManagerBuilderWrapper &>(Builder); 284 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 285 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 286 PM.add( 287 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 288 } 289 290 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 291 legacy::PassManagerBase &PM) { 292 PM.add(createHWAddressSanitizerLegacyPassPass( 293 /*CompileKernel*/ true, /*Recover*/ true)); 294 } 295 296 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 297 legacy::PassManagerBase &PM, 298 bool CompileKernel) { 299 const PassManagerBuilderWrapper &BuilderWrapper = 300 static_cast<const PassManagerBuilderWrapper&>(Builder); 301 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 302 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 303 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 304 PM.add(createMemorySanitizerLegacyPassPass( 305 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 306 307 // MemorySanitizer inserts complex instrumentation that mostly follows 308 // the logic of the original code, but operates on "shadow" values. 309 // It can benefit from re-running some general purpose optimization passes. 310 if (Builder.OptLevel > 0) { 311 PM.add(createEarlyCSEPass()); 312 PM.add(createReassociatePass()); 313 PM.add(createLICMPass()); 314 PM.add(createGVNPass()); 315 PM.add(createInstructionCombiningPass()); 316 PM.add(createDeadStoreEliminationPass()); 317 } 318 } 319 320 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 321 legacy::PassManagerBase &PM) { 322 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 323 } 324 325 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 326 legacy::PassManagerBase &PM) { 327 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 328 } 329 330 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 331 legacy::PassManagerBase &PM) { 332 PM.add(createThreadSanitizerLegacyPassPass()); 333 } 334 335 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 336 legacy::PassManagerBase &PM) { 337 const PassManagerBuilderWrapper &BuilderWrapper = 338 static_cast<const PassManagerBuilderWrapper&>(Builder); 339 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 340 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 341 } 342 343 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 344 const CodeGenOptions &CodeGenOpts) { 345 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 346 347 switch (CodeGenOpts.getVecLib()) { 348 case CodeGenOptions::Accelerate: 349 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 350 break; 351 case CodeGenOptions::MASSV: 352 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 353 break; 354 case CodeGenOptions::SVML: 355 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 356 break; 357 default: 358 break; 359 } 360 return TLII; 361 } 362 363 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 364 legacy::PassManager *MPM) { 365 llvm::SymbolRewriter::RewriteDescriptorList DL; 366 367 llvm::SymbolRewriter::RewriteMapParser MapParser; 368 for (const auto &MapFile : Opts.RewriteMapFiles) 369 MapParser.parse(MapFile, &DL); 370 371 MPM->add(createRewriteSymbolsPass(DL)); 372 } 373 374 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 375 switch (CodeGenOpts.OptimizationLevel) { 376 default: 377 llvm_unreachable("Invalid optimization level!"); 378 case 0: 379 return CodeGenOpt::None; 380 case 1: 381 return CodeGenOpt::Less; 382 case 2: 383 return CodeGenOpt::Default; // O2/Os/Oz 384 case 3: 385 return CodeGenOpt::Aggressive; 386 } 387 } 388 389 static Optional<llvm::CodeModel::Model> 390 getCodeModel(const CodeGenOptions &CodeGenOpts) { 391 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 392 .Case("tiny", llvm::CodeModel::Tiny) 393 .Case("small", llvm::CodeModel::Small) 394 .Case("kernel", llvm::CodeModel::Kernel) 395 .Case("medium", llvm::CodeModel::Medium) 396 .Case("large", llvm::CodeModel::Large) 397 .Case("default", ~1u) 398 .Default(~0u); 399 assert(CodeModel != ~0u && "invalid code model!"); 400 if (CodeModel == ~1u) 401 return None; 402 return static_cast<llvm::CodeModel::Model>(CodeModel); 403 } 404 405 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 406 if (Action == Backend_EmitObj) 407 return CGFT_ObjectFile; 408 else if (Action == Backend_EmitMCNull) 409 return CGFT_Null; 410 else { 411 assert(Action == Backend_EmitAssembly && "Invalid action!"); 412 return CGFT_AssemblyFile; 413 } 414 } 415 416 static void initTargetOptions(llvm::TargetOptions &Options, 417 const CodeGenOptions &CodeGenOpts, 418 const clang::TargetOptions &TargetOpts, 419 const LangOptions &LangOpts, 420 const HeaderSearchOptions &HSOpts) { 421 Options.ThreadModel = 422 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 423 .Case("posix", llvm::ThreadModel::POSIX) 424 .Case("single", llvm::ThreadModel::Single); 425 426 // Set float ABI type. 427 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 428 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 429 "Invalid Floating Point ABI!"); 430 Options.FloatABIType = 431 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 432 .Case("soft", llvm::FloatABI::Soft) 433 .Case("softfp", llvm::FloatABI::Soft) 434 .Case("hard", llvm::FloatABI::Hard) 435 .Default(llvm::FloatABI::Default); 436 437 // Set FP fusion mode. 438 switch (LangOpts.getDefaultFPContractMode()) { 439 case LangOptions::FPC_Off: 440 // Preserve any contraction performed by the front-end. (Strict performs 441 // splitting of the muladd intrinsic in the backend.) 442 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 443 break; 444 case LangOptions::FPC_On: 445 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 446 break; 447 case LangOptions::FPC_Fast: 448 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 449 break; 450 } 451 452 Options.UseInitArray = CodeGenOpts.UseInitArray; 453 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 454 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 455 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 456 457 // Set EABI version. 458 Options.EABIVersion = TargetOpts.EABIVersion; 459 460 if (LangOpts.SjLjExceptions) 461 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 462 if (LangOpts.SEHExceptions) 463 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 464 if (LangOpts.DWARFExceptions) 465 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 466 if (LangOpts.WasmExceptions) 467 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 468 469 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 470 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 471 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 472 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 473 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 474 Options.FunctionSections = CodeGenOpts.FunctionSections; 475 Options.DataSections = CodeGenOpts.DataSections; 476 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 477 Options.TLSSize = CodeGenOpts.TLSSize; 478 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 479 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 480 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 481 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 482 Options.EmitAddrsig = CodeGenOpts.Addrsig; 483 Options.EnableDebugEntryValues = CodeGenOpts.EnableDebugEntryValues; 484 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 485 486 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 487 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 488 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 489 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 490 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 491 Options.MCOptions.MCIncrementalLinkerCompatible = 492 CodeGenOpts.IncrementalLinkerCompatible; 493 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 494 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 495 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 496 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 497 Options.MCOptions.ABIName = TargetOpts.ABI; 498 for (const auto &Entry : HSOpts.UserEntries) 499 if (!Entry.IsFramework && 500 (Entry.Group == frontend::IncludeDirGroup::Quoted || 501 Entry.Group == frontend::IncludeDirGroup::Angled || 502 Entry.Group == frontend::IncludeDirGroup::System)) 503 Options.MCOptions.IASSearchPaths.push_back( 504 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 505 } 506 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 507 if (CodeGenOpts.DisableGCov) 508 return None; 509 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 510 return None; 511 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 512 // LLVM's -default-gcov-version flag is set to something invalid. 513 GCOVOptions Options; 514 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 515 Options.EmitData = CodeGenOpts.EmitGcovArcs; 516 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 517 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 518 Options.NoRedZone = CodeGenOpts.DisableRedZone; 519 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 520 Options.Filter = CodeGenOpts.ProfileFilterFiles; 521 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 522 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 523 return Options; 524 } 525 526 static Optional<InstrProfOptions> 527 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 528 const LangOptions &LangOpts) { 529 if (!CodeGenOpts.hasProfileClangInstr()) 530 return None; 531 InstrProfOptions Options; 532 Options.NoRedZone = CodeGenOpts.DisableRedZone; 533 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 534 535 // TODO: Surface the option to emit atomic profile counter increments at 536 // the driver level. 537 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 538 return Options; 539 } 540 541 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 542 legacy::FunctionPassManager &FPM) { 543 // Handle disabling of all LLVM passes, where we want to preserve the 544 // internal module before any optimization. 545 if (CodeGenOpts.DisableLLVMPasses) 546 return; 547 548 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 549 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 550 // are inserted before PMBuilder ones - they'd get the default-constructed 551 // TLI with an unknown target otherwise. 552 Triple TargetTriple(TheModule->getTargetTriple()); 553 std::unique_ptr<TargetLibraryInfoImpl> TLII( 554 createTLII(TargetTriple, CodeGenOpts)); 555 556 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 557 558 // At O0 and O1 we only run the always inliner which is more efficient. At 559 // higher optimization levels we run the normal inliner. 560 if (CodeGenOpts.OptimizationLevel <= 1) { 561 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 562 !CodeGenOpts.DisableLifetimeMarkers); 563 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 564 } else { 565 // We do not want to inline hot callsites for SamplePGO module-summary build 566 // because profile annotation will happen again in ThinLTO backend, and we 567 // want the IR of the hot path to match the profile. 568 PMBuilder.Inliner = createFunctionInliningPass( 569 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 570 (!CodeGenOpts.SampleProfileFile.empty() && 571 CodeGenOpts.PrepareForThinLTO)); 572 } 573 574 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 575 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 576 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 577 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 578 579 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 580 // Loop interleaving in the loop vectorizer has historically been set to be 581 // enabled when loop unrolling is enabled. 582 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 583 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 584 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 585 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 586 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 587 588 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 589 590 if (TM) 591 TM->adjustPassManager(PMBuilder); 592 593 if (CodeGenOpts.DebugInfoForProfiling || 594 !CodeGenOpts.SampleProfileFile.empty()) 595 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 596 addAddDiscriminatorsPass); 597 598 // In ObjC ARC mode, add the main ARC optimization passes. 599 if (LangOpts.ObjCAutoRefCount) { 600 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 601 addObjCARCExpandPass); 602 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 603 addObjCARCAPElimPass); 604 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 605 addObjCARCOptPass); 606 } 607 608 if (LangOpts.Coroutines) 609 addCoroutinePassesToExtensionPoints(PMBuilder); 610 611 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 612 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 613 addBoundsCheckingPass); 614 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 615 addBoundsCheckingPass); 616 } 617 618 if (CodeGenOpts.SanitizeCoverageType || 619 CodeGenOpts.SanitizeCoverageIndirectCalls || 620 CodeGenOpts.SanitizeCoverageTraceCmp) { 621 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 622 addSanitizerCoveragePass); 623 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 624 addSanitizerCoveragePass); 625 } 626 627 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 628 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 629 addAddressSanitizerPasses); 630 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 631 addAddressSanitizerPasses); 632 } 633 634 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 635 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 636 addKernelAddressSanitizerPasses); 637 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 638 addKernelAddressSanitizerPasses); 639 } 640 641 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 642 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 643 addHWAddressSanitizerPasses); 644 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 645 addHWAddressSanitizerPasses); 646 } 647 648 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 649 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 650 addKernelHWAddressSanitizerPasses); 651 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 652 addKernelHWAddressSanitizerPasses); 653 } 654 655 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 656 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 657 addMemorySanitizerPass); 658 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 659 addMemorySanitizerPass); 660 } 661 662 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 663 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 664 addKernelMemorySanitizerPass); 665 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 666 addKernelMemorySanitizerPass); 667 } 668 669 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 670 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 671 addThreadSanitizerPass); 672 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 673 addThreadSanitizerPass); 674 } 675 676 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 677 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 678 addDataFlowSanitizerPass); 679 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 680 addDataFlowSanitizerPass); 681 } 682 683 // Set up the per-function pass manager. 684 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 685 if (CodeGenOpts.VerifyModule) 686 FPM.add(createVerifierPass()); 687 688 // Set up the per-module pass manager. 689 if (!CodeGenOpts.RewriteMapFiles.empty()) 690 addSymbolRewriterPass(CodeGenOpts, &MPM); 691 692 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 693 MPM.add(createGCOVProfilerPass(*Options)); 694 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 695 MPM.add(createStripSymbolsPass(true)); 696 } 697 698 if (Optional<InstrProfOptions> Options = 699 getInstrProfOptions(CodeGenOpts, LangOpts)) 700 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 701 702 bool hasIRInstr = false; 703 if (CodeGenOpts.hasProfileIRInstr()) { 704 PMBuilder.EnablePGOInstrGen = true; 705 hasIRInstr = true; 706 } 707 if (CodeGenOpts.hasProfileCSIRInstr()) { 708 assert(!CodeGenOpts.hasProfileCSIRUse() && 709 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 710 "same time"); 711 assert(!hasIRInstr && 712 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 713 "same time"); 714 PMBuilder.EnablePGOCSInstrGen = true; 715 hasIRInstr = true; 716 } 717 if (hasIRInstr) { 718 if (!CodeGenOpts.InstrProfileOutput.empty()) 719 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 720 else 721 PMBuilder.PGOInstrGen = DefaultProfileGenName; 722 } 723 if (CodeGenOpts.hasProfileIRUse()) { 724 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 725 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 726 } 727 728 if (!CodeGenOpts.SampleProfileFile.empty()) 729 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 730 731 PMBuilder.populateFunctionPassManager(FPM); 732 PMBuilder.populateModulePassManager(MPM); 733 } 734 735 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 736 SmallVector<const char *, 16> BackendArgs; 737 BackendArgs.push_back("clang"); // Fake program name. 738 if (!CodeGenOpts.DebugPass.empty()) { 739 BackendArgs.push_back("-debug-pass"); 740 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 741 } 742 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 743 BackendArgs.push_back("-limit-float-precision"); 744 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 745 } 746 BackendArgs.push_back(nullptr); 747 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 748 BackendArgs.data()); 749 } 750 751 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 752 // Create the TargetMachine for generating code. 753 std::string Error; 754 std::string Triple = TheModule->getTargetTriple(); 755 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 756 if (!TheTarget) { 757 if (MustCreateTM) 758 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 759 return; 760 } 761 762 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 763 std::string FeaturesStr = 764 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 765 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 766 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 767 768 llvm::TargetOptions Options; 769 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 770 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 771 Options, RM, CM, OptLevel)); 772 } 773 774 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 775 BackendAction Action, 776 raw_pwrite_stream &OS, 777 raw_pwrite_stream *DwoOS) { 778 // Add LibraryInfo. 779 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 780 std::unique_ptr<TargetLibraryInfoImpl> TLII( 781 createTLII(TargetTriple, CodeGenOpts)); 782 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 783 784 // Normal mode, emit a .s or .o file by running the code generator. Note, 785 // this also adds codegenerator level optimization passes. 786 CodeGenFileType CGFT = getCodeGenFileType(Action); 787 788 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 789 // "codegen" passes so that it isn't run multiple times when there is 790 // inlining happening. 791 if (CodeGenOpts.OptimizationLevel > 0) 792 CodeGenPasses.add(createObjCARCContractPass()); 793 794 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 795 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 796 Diags.Report(diag::err_fe_unable_to_interface_with_target); 797 return false; 798 } 799 800 return true; 801 } 802 803 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 804 std::unique_ptr<raw_pwrite_stream> OS) { 805 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 806 807 setCommandLineOpts(CodeGenOpts); 808 809 bool UsesCodeGen = (Action != Backend_EmitNothing && 810 Action != Backend_EmitBC && 811 Action != Backend_EmitLL); 812 CreateTargetMachine(UsesCodeGen); 813 814 if (UsesCodeGen && !TM) 815 return; 816 if (TM) 817 TheModule->setDataLayout(TM->createDataLayout()); 818 819 legacy::PassManager PerModulePasses; 820 PerModulePasses.add( 821 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 822 823 legacy::FunctionPassManager PerFunctionPasses(TheModule); 824 PerFunctionPasses.add( 825 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 826 827 CreatePasses(PerModulePasses, PerFunctionPasses); 828 829 legacy::PassManager CodeGenPasses; 830 CodeGenPasses.add( 831 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 832 833 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 834 835 switch (Action) { 836 case Backend_EmitNothing: 837 break; 838 839 case Backend_EmitBC: 840 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 841 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 842 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 843 if (!ThinLinkOS) 844 return; 845 } 846 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 847 CodeGenOpts.EnableSplitLTOUnit); 848 PerModulePasses.add(createWriteThinLTOBitcodePass( 849 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 850 } else { 851 // Emit a module summary by default for Regular LTO except for ld64 852 // targets 853 bool EmitLTOSummary = 854 (CodeGenOpts.PrepareForLTO && 855 !CodeGenOpts.DisableLLVMPasses && 856 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 857 llvm::Triple::Apple); 858 if (EmitLTOSummary) { 859 if (!TheModule->getModuleFlag("ThinLTO")) 860 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 861 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 862 uint32_t(1)); 863 } 864 865 PerModulePasses.add(createBitcodeWriterPass( 866 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 867 } 868 break; 869 870 case Backend_EmitLL: 871 PerModulePasses.add( 872 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 873 break; 874 875 default: 876 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 877 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 878 if (!DwoOS) 879 return; 880 } 881 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 882 DwoOS ? &DwoOS->os() : nullptr)) 883 return; 884 } 885 886 // Before executing passes, print the final values of the LLVM options. 887 cl::PrintOptionValues(); 888 889 // Run passes. For now we do all passes at once, but eventually we 890 // would like to have the option of streaming code generation. 891 892 { 893 PrettyStackTraceString CrashInfo("Per-function optimization"); 894 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 895 896 PerFunctionPasses.doInitialization(); 897 for (Function &F : *TheModule) 898 if (!F.isDeclaration()) 899 PerFunctionPasses.run(F); 900 PerFunctionPasses.doFinalization(); 901 } 902 903 { 904 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 905 llvm::TimeTraceScope TimeScope("PerModulePasses"); 906 PerModulePasses.run(*TheModule); 907 } 908 909 { 910 PrettyStackTraceString CrashInfo("Code generation"); 911 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 912 CodeGenPasses.run(*TheModule); 913 } 914 915 if (ThinLinkOS) 916 ThinLinkOS->keep(); 917 if (DwoOS) 918 DwoOS->keep(); 919 } 920 921 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 922 switch (Opts.OptimizationLevel) { 923 default: 924 llvm_unreachable("Invalid optimization level!"); 925 926 case 1: 927 return PassBuilder::O1; 928 929 case 2: 930 switch (Opts.OptimizeSize) { 931 default: 932 llvm_unreachable("Invalid optimization level for size!"); 933 934 case 0: 935 return PassBuilder::O2; 936 937 case 1: 938 return PassBuilder::Os; 939 940 case 2: 941 return PassBuilder::Oz; 942 } 943 944 case 3: 945 return PassBuilder::O3; 946 } 947 } 948 949 static void addSanitizersAtO0(ModulePassManager &MPM, 950 const Triple &TargetTriple, 951 const LangOptions &LangOpts, 952 const CodeGenOptions &CodeGenOpts) { 953 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 954 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 955 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 956 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 957 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 958 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 959 MPM.addPass( 960 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 961 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 962 }; 963 964 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 965 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 966 } 967 968 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 969 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 970 } 971 972 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 973 MPM.addPass(MemorySanitizerPass({})); 974 MPM.addPass(createModuleToFunctionPassAdaptor(MemorySanitizerPass({}))); 975 } 976 977 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 978 MPM.addPass(createModuleToFunctionPassAdaptor( 979 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 980 } 981 982 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 983 MPM.addPass(ThreadSanitizerPass()); 984 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 985 } 986 } 987 988 /// A clean version of `EmitAssembly` that uses the new pass manager. 989 /// 990 /// Not all features are currently supported in this system, but where 991 /// necessary it falls back to the legacy pass manager to at least provide 992 /// basic functionality. 993 /// 994 /// This API is planned to have its functionality finished and then to replace 995 /// `EmitAssembly` at some point in the future when the default switches. 996 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 997 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 998 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 999 setCommandLineOpts(CodeGenOpts); 1000 1001 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1002 Action != Backend_EmitBC && 1003 Action != Backend_EmitLL); 1004 CreateTargetMachine(RequiresCodeGen); 1005 1006 if (RequiresCodeGen && !TM) 1007 return; 1008 if (TM) 1009 TheModule->setDataLayout(TM->createDataLayout()); 1010 1011 Optional<PGOOptions> PGOOpt; 1012 1013 if (CodeGenOpts.hasProfileIRInstr()) 1014 // -fprofile-generate. 1015 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1016 ? DefaultProfileGenName 1017 : CodeGenOpts.InstrProfileOutput, 1018 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1019 CodeGenOpts.DebugInfoForProfiling); 1020 else if (CodeGenOpts.hasProfileIRUse()) { 1021 // -fprofile-use. 1022 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1023 : PGOOptions::NoCSAction; 1024 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1025 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1026 CSAction, CodeGenOpts.DebugInfoForProfiling); 1027 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1028 // -fprofile-sample-use 1029 PGOOpt = 1030 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1031 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1032 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1033 else if (CodeGenOpts.DebugInfoForProfiling) 1034 // -fdebug-info-for-profiling 1035 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1036 PGOOptions::NoCSAction, true); 1037 1038 // Check to see if we want to generate a CS profile. 1039 if (CodeGenOpts.hasProfileCSIRInstr()) { 1040 assert(!CodeGenOpts.hasProfileCSIRUse() && 1041 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1042 "the same time"); 1043 if (PGOOpt.hasValue()) { 1044 assert(PGOOpt->Action != PGOOptions::IRInstr && 1045 PGOOpt->Action != PGOOptions::SampleUse && 1046 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1047 " pass"); 1048 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1049 ? DefaultProfileGenName 1050 : CodeGenOpts.InstrProfileOutput; 1051 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1052 } else 1053 PGOOpt = PGOOptions("", 1054 CodeGenOpts.InstrProfileOutput.empty() 1055 ? DefaultProfileGenName 1056 : CodeGenOpts.InstrProfileOutput, 1057 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1058 CodeGenOpts.DebugInfoForProfiling); 1059 } 1060 1061 PipelineTuningOptions PTO; 1062 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1063 // For historical reasons, loop interleaving is set to mirror setting for loop 1064 // unrolling. 1065 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1066 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1067 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1068 1069 PassInstrumentationCallbacks PIC; 1070 StandardInstrumentations SI; 1071 SI.registerCallbacks(PIC); 1072 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1073 1074 // Attempt to load pass plugins and register their callbacks with PB. 1075 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1076 auto PassPlugin = PassPlugin::Load(PluginFN); 1077 if (PassPlugin) { 1078 PassPlugin->registerPassBuilderCallbacks(PB); 1079 } else { 1080 Diags.Report(diag::err_fe_unable_to_load_plugin) 1081 << PluginFN << toString(PassPlugin.takeError()); 1082 } 1083 } 1084 #define HANDLE_EXTENSION(Ext) \ 1085 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1086 #include "llvm/Support/Extension.def" 1087 1088 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1089 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1090 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1091 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1092 1093 // Register the AA manager first so that our version is the one used. 1094 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1095 1096 // Register the target library analysis directly and give it a customized 1097 // preset TLI. 1098 Triple TargetTriple(TheModule->getTargetTriple()); 1099 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1100 createTLII(TargetTriple, CodeGenOpts)); 1101 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1102 1103 // Register all the basic analyses with the managers. 1104 PB.registerModuleAnalyses(MAM); 1105 PB.registerCGSCCAnalyses(CGAM); 1106 PB.registerFunctionAnalyses(FAM); 1107 PB.registerLoopAnalyses(LAM); 1108 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1109 1110 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1111 1112 if (!CodeGenOpts.DisableLLVMPasses) { 1113 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1114 bool IsLTO = CodeGenOpts.PrepareForLTO; 1115 1116 if (CodeGenOpts.OptimizationLevel == 0) { 1117 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1118 MPM.addPass(GCOVProfilerPass(*Options)); 1119 if (Optional<InstrProfOptions> Options = 1120 getInstrProfOptions(CodeGenOpts, LangOpts)) 1121 MPM.addPass(InstrProfiling(*Options, false)); 1122 1123 // Build a minimal pipeline based on the semantics required by Clang, 1124 // which is just that always inlining occurs. Further, disable generating 1125 // lifetime intrinsics to avoid enabling further optimizations during 1126 // code generation. 1127 MPM.addPass(AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/false)); 1128 1129 // At -O0, we can still do PGO. Add all the requested passes for 1130 // instrumentation PGO, if requested. 1131 if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr || 1132 PGOOpt->Action == PGOOptions::IRUse)) 1133 PB.addPGOInstrPassesForO0( 1134 MPM, CodeGenOpts.DebugPassManager, 1135 /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr), 1136 /* IsCS */ false, PGOOpt->ProfileFile, 1137 PGOOpt->ProfileRemappingFile); 1138 1139 // At -O0 we directly run necessary sanitizer passes. 1140 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1141 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1142 1143 // Lastly, add semantically necessary passes for LTO. 1144 if (IsLTO || IsThinLTO) { 1145 MPM.addPass(CanonicalizeAliasesPass()); 1146 MPM.addPass(NameAnonGlobalPass()); 1147 } 1148 } else { 1149 // Map our optimization levels into one of the distinct levels used to 1150 // configure the pipeline. 1151 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1152 1153 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1154 MPM.addPass(createModuleToFunctionPassAdaptor( 1155 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1156 }); 1157 1158 // Register callbacks to schedule sanitizer passes at the appropriate part of 1159 // the pipeline. 1160 // FIXME: either handle asan/the remaining sanitizers or error out 1161 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1162 PB.registerScalarOptimizerLateEPCallback( 1163 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1164 FPM.addPass(BoundsCheckingPass()); 1165 }); 1166 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1167 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1168 MPM.addPass(MemorySanitizerPass({})); 1169 }); 1170 PB.registerOptimizerLastEPCallback( 1171 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1172 FPM.addPass(MemorySanitizerPass({})); 1173 }); 1174 } 1175 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1176 PB.registerPipelineStartEPCallback( 1177 [](ModulePassManager &MPM) { MPM.addPass(ThreadSanitizerPass()); }); 1178 PB.registerOptimizerLastEPCallback( 1179 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1180 FPM.addPass(ThreadSanitizerPass()); 1181 }); 1182 } 1183 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1184 PB.registerPipelineStartEPCallback([&](ModulePassManager &MPM) { 1185 MPM.addPass( 1186 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1187 }); 1188 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1189 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1190 PB.registerOptimizerLastEPCallback( 1191 [Recover, UseAfterScope](FunctionPassManager &FPM, 1192 PassBuilder::OptimizationLevel Level) { 1193 FPM.addPass(AddressSanitizerPass( 1194 /*CompileKernel=*/false, Recover, UseAfterScope)); 1195 }); 1196 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1197 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1198 PB.registerPipelineStartEPCallback( 1199 [Recover, ModuleUseAfterScope, 1200 UseOdrIndicator](ModulePassManager &MPM) { 1201 MPM.addPass(ModuleAddressSanitizerPass( 1202 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1203 UseOdrIndicator)); 1204 }); 1205 } 1206 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1207 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1208 MPM.addPass(GCOVProfilerPass(*Options)); 1209 }); 1210 if (Optional<InstrProfOptions> Options = 1211 getInstrProfOptions(CodeGenOpts, LangOpts)) 1212 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1213 MPM.addPass(InstrProfiling(*Options, false)); 1214 }); 1215 1216 if (IsThinLTO) { 1217 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1218 Level, CodeGenOpts.DebugPassManager); 1219 MPM.addPass(CanonicalizeAliasesPass()); 1220 MPM.addPass(NameAnonGlobalPass()); 1221 } else if (IsLTO) { 1222 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1223 CodeGenOpts.DebugPassManager); 1224 MPM.addPass(CanonicalizeAliasesPass()); 1225 MPM.addPass(NameAnonGlobalPass()); 1226 } else { 1227 MPM = PB.buildPerModuleDefaultPipeline(Level, 1228 CodeGenOpts.DebugPassManager); 1229 } 1230 } 1231 1232 if (CodeGenOpts.SanitizeCoverageType || 1233 CodeGenOpts.SanitizeCoverageIndirectCalls || 1234 CodeGenOpts.SanitizeCoverageTraceCmp) { 1235 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1236 MPM.addPass(ModuleSanitizerCoveragePass(SancovOpts)); 1237 } 1238 1239 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1240 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1241 MPM.addPass(HWAddressSanitizerPass( 1242 /*CompileKernel=*/false, Recover)); 1243 } 1244 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1245 MPM.addPass(HWAddressSanitizerPass( 1246 /*CompileKernel=*/true, /*Recover=*/true)); 1247 } 1248 1249 if (CodeGenOpts.OptimizationLevel == 0) { 1250 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1251 } 1252 } 1253 1254 // FIXME: We still use the legacy pass manager to do code generation. We 1255 // create that pass manager here and use it as needed below. 1256 legacy::PassManager CodeGenPasses; 1257 bool NeedCodeGen = false; 1258 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1259 1260 // Append any output we need to the pass manager. 1261 switch (Action) { 1262 case Backend_EmitNothing: 1263 break; 1264 1265 case Backend_EmitBC: 1266 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1267 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1268 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1269 if (!ThinLinkOS) 1270 return; 1271 } 1272 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1273 CodeGenOpts.EnableSplitLTOUnit); 1274 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1275 : nullptr)); 1276 } else { 1277 // Emit a module summary by default for Regular LTO except for ld64 1278 // targets 1279 bool EmitLTOSummary = 1280 (CodeGenOpts.PrepareForLTO && 1281 !CodeGenOpts.DisableLLVMPasses && 1282 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1283 llvm::Triple::Apple); 1284 if (EmitLTOSummary) { 1285 if (!TheModule->getModuleFlag("ThinLTO")) 1286 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1287 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1288 uint32_t(1)); 1289 } 1290 MPM.addPass( 1291 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1292 } 1293 break; 1294 1295 case Backend_EmitLL: 1296 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1297 break; 1298 1299 case Backend_EmitAssembly: 1300 case Backend_EmitMCNull: 1301 case Backend_EmitObj: 1302 NeedCodeGen = true; 1303 CodeGenPasses.add( 1304 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1305 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1306 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1307 if (!DwoOS) 1308 return; 1309 } 1310 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1311 DwoOS ? &DwoOS->os() : nullptr)) 1312 // FIXME: Should we handle this error differently? 1313 return; 1314 break; 1315 } 1316 1317 // Before executing passes, print the final values of the LLVM options. 1318 cl::PrintOptionValues(); 1319 1320 // Now that we have all of the passes ready, run them. 1321 { 1322 PrettyStackTraceString CrashInfo("Optimizer"); 1323 MPM.run(*TheModule, MAM); 1324 } 1325 1326 // Now if needed, run the legacy PM for codegen. 1327 if (NeedCodeGen) { 1328 PrettyStackTraceString CrashInfo("Code generation"); 1329 CodeGenPasses.run(*TheModule); 1330 } 1331 1332 if (ThinLinkOS) 1333 ThinLinkOS->keep(); 1334 if (DwoOS) 1335 DwoOS->keep(); 1336 } 1337 1338 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1339 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1340 if (!BMsOrErr) 1341 return BMsOrErr.takeError(); 1342 1343 // The bitcode file may contain multiple modules, we want the one that is 1344 // marked as being the ThinLTO module. 1345 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1346 return *Bm; 1347 1348 return make_error<StringError>("Could not find module summary", 1349 inconvertibleErrorCode()); 1350 } 1351 1352 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1353 for (BitcodeModule &BM : BMs) { 1354 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1355 if (LTOInfo && LTOInfo->IsThinLTO) 1356 return &BM; 1357 } 1358 return nullptr; 1359 } 1360 1361 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1362 const HeaderSearchOptions &HeaderOpts, 1363 const CodeGenOptions &CGOpts, 1364 const clang::TargetOptions &TOpts, 1365 const LangOptions &LOpts, 1366 std::unique_ptr<raw_pwrite_stream> OS, 1367 std::string SampleProfile, 1368 std::string ProfileRemapping, 1369 BackendAction Action) { 1370 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1371 ModuleToDefinedGVSummaries; 1372 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1373 1374 setCommandLineOpts(CGOpts); 1375 1376 // We can simply import the values mentioned in the combined index, since 1377 // we should only invoke this using the individual indexes written out 1378 // via a WriteIndexesThinBackend. 1379 FunctionImporter::ImportMapTy ImportList; 1380 for (auto &GlobalList : *CombinedIndex) { 1381 // Ignore entries for undefined references. 1382 if (GlobalList.second.SummaryList.empty()) 1383 continue; 1384 1385 auto GUID = GlobalList.first; 1386 for (auto &Summary : GlobalList.second.SummaryList) { 1387 // Skip the summaries for the importing module. These are included to 1388 // e.g. record required linkage changes. 1389 if (Summary->modulePath() == M->getModuleIdentifier()) 1390 continue; 1391 // Add an entry to provoke importing by thinBackend. 1392 ImportList[Summary->modulePath()].insert(GUID); 1393 } 1394 } 1395 1396 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1397 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1398 1399 for (auto &I : ImportList) { 1400 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1401 llvm::MemoryBuffer::getFile(I.first()); 1402 if (!MBOrErr) { 1403 errs() << "Error loading imported file '" << I.first() 1404 << "': " << MBOrErr.getError().message() << "\n"; 1405 return; 1406 } 1407 1408 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1409 if (!BMOrErr) { 1410 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1411 errs() << "Error loading imported file '" << I.first() 1412 << "': " << EIB.message() << '\n'; 1413 }); 1414 return; 1415 } 1416 ModuleMap.insert({I.first(), *BMOrErr}); 1417 1418 OwnedImports.push_back(std::move(*MBOrErr)); 1419 } 1420 auto AddStream = [&](size_t Task) { 1421 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1422 }; 1423 lto::Config Conf; 1424 if (CGOpts.SaveTempsFilePrefix != "") { 1425 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1426 /* UseInputModulePath */ false)) { 1427 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1428 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1429 << '\n'; 1430 }); 1431 } 1432 } 1433 Conf.CPU = TOpts.CPU; 1434 Conf.CodeModel = getCodeModel(CGOpts); 1435 Conf.MAttrs = TOpts.Features; 1436 Conf.RelocModel = CGOpts.RelocationModel; 1437 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1438 Conf.OptLevel = CGOpts.OptimizationLevel; 1439 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1440 Conf.SampleProfile = std::move(SampleProfile); 1441 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1442 // For historical reasons, loop interleaving is set to mirror setting for loop 1443 // unrolling. 1444 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1445 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1446 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1447 1448 // Context sensitive profile. 1449 if (CGOpts.hasProfileCSIRInstr()) { 1450 Conf.RunCSIRInstr = true; 1451 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1452 } else if (CGOpts.hasProfileCSIRUse()) { 1453 Conf.RunCSIRInstr = false; 1454 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1455 } 1456 1457 Conf.ProfileRemapping = std::move(ProfileRemapping); 1458 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1459 Conf.DebugPassManager = CGOpts.DebugPassManager; 1460 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1461 Conf.RemarksFilename = CGOpts.OptRecordFile; 1462 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1463 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1464 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1465 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1466 switch (Action) { 1467 case Backend_EmitNothing: 1468 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1469 return false; 1470 }; 1471 break; 1472 case Backend_EmitLL: 1473 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1474 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1475 return false; 1476 }; 1477 break; 1478 case Backend_EmitBC: 1479 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1480 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1481 return false; 1482 }; 1483 break; 1484 default: 1485 Conf.CGFileType = getCodeGenFileType(Action); 1486 break; 1487 } 1488 if (Error E = thinBackend( 1489 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1490 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1491 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1492 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1493 }); 1494 } 1495 } 1496 1497 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1498 const HeaderSearchOptions &HeaderOpts, 1499 const CodeGenOptions &CGOpts, 1500 const clang::TargetOptions &TOpts, 1501 const LangOptions &LOpts, 1502 const llvm::DataLayout &TDesc, Module *M, 1503 BackendAction Action, 1504 std::unique_ptr<raw_pwrite_stream> OS) { 1505 1506 llvm::TimeTraceScope TimeScope("Backend"); 1507 1508 std::unique_ptr<llvm::Module> EmptyModule; 1509 if (!CGOpts.ThinLTOIndexFile.empty()) { 1510 // If we are performing a ThinLTO importing compile, load the function index 1511 // into memory and pass it into runThinLTOBackend, which will run the 1512 // function importer and invoke LTO passes. 1513 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1514 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1515 /*IgnoreEmptyThinLTOIndexFile*/true); 1516 if (!IndexOrErr) { 1517 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1518 "Error loading index file '" + 1519 CGOpts.ThinLTOIndexFile + "': "); 1520 return; 1521 } 1522 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1523 // A null CombinedIndex means we should skip ThinLTO compilation 1524 // (LLVM will optionally ignore empty index files, returning null instead 1525 // of an error). 1526 if (CombinedIndex) { 1527 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1528 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1529 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1530 CGOpts.ProfileRemappingFile, Action); 1531 return; 1532 } 1533 // Distributed indexing detected that nothing from the module is needed 1534 // for the final linking. So we can skip the compilation. We sill need to 1535 // output an empty object file to make sure that a linker does not fail 1536 // trying to read it. Also for some features, like CFI, we must skip 1537 // the compilation as CombinedIndex does not contain all required 1538 // information. 1539 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1540 EmptyModule->setTargetTriple(M->getTargetTriple()); 1541 M = EmptyModule.get(); 1542 } 1543 } 1544 1545 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1546 1547 if (CGOpts.ExperimentalNewPassManager) 1548 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1549 else 1550 AsmHelper.EmitAssembly(Action, std::move(OS)); 1551 1552 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1553 // DataLayout. 1554 if (AsmHelper.TM) { 1555 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1556 if (DLDesc != TDesc.getStringRepresentation()) { 1557 unsigned DiagID = Diags.getCustomDiagID( 1558 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1559 "expected target description '%1'"); 1560 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1561 } 1562 } 1563 } 1564 1565 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1566 // __LLVM,__bitcode section. 1567 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1568 llvm::MemoryBufferRef Buf) { 1569 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1570 return; 1571 llvm::EmbedBitcodeInModule( 1572 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1573 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1574 &CGOpts.CmdArgs); 1575 } 1576