1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "clang/CodeGen/BackendUtil.h"
10 #include "BackendConsumer.h"
11 #include "LinkInModulesPass.h"
12 #include "clang/Basic/CodeGenOptions.h"
13 #include "clang/Basic/Diagnostic.h"
14 #include "clang/Basic/LangOptions.h"
15 #include "clang/Basic/TargetOptions.h"
16 #include "clang/Frontend/FrontendDiagnostic.h"
17 #include "clang/Frontend/Utils.h"
18 #include "clang/Lex/HeaderSearchOptions.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringSwitch.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/Bitcode/BitcodeReader.h"
27 #include "llvm/Bitcode/BitcodeWriter.h"
28 #include "llvm/Bitcode/BitcodeWriterPass.h"
29 #include "llvm/CodeGen/RegAllocRegistry.h"
30 #include "llvm/CodeGen/SchedulerRegistry.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/Frontend/Driver/CodeGenOptions.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DebugInfo.h"
35 #include "llvm/IR/LegacyPassManager.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/IR/ModuleSummaryIndex.h"
38 #include "llvm/IR/PassManager.h"
39 #include "llvm/IR/Verifier.h"
40 #include "llvm/IRPrinter/IRPrintingPasses.h"
41 #include "llvm/LTO/LTOBackend.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/MC/TargetRegistry.h"
44 #include "llvm/Object/OffloadBinary.h"
45 #include "llvm/Passes/PassBuilder.h"
46 #include "llvm/Passes/PassPlugin.h"
47 #include "llvm/Passes/StandardInstrumentations.h"
48 #include "llvm/ProfileData/InstrProfCorrelator.h"
49 #include "llvm/Support/BuryPointer.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/MemoryBuffer.h"
52 #include "llvm/Support/PrettyStackTrace.h"
53 #include "llvm/Support/TimeProfiler.h"
54 #include "llvm/Support/Timer.h"
55 #include "llvm/Support/ToolOutputFile.h"
56 #include "llvm/Support/VirtualFileSystem.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include "llvm/Target/TargetOptions.h"
60 #include "llvm/TargetParser/SubtargetFeature.h"
61 #include "llvm/TargetParser/Triple.h"
62 #include "llvm/Transforms/HipStdPar/HipStdPar.h"
63 #include "llvm/Transforms/IPO/EmbedBitcodePass.h"
64 #include "llvm/Transforms/IPO/LowerTypeTests.h"
65 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
66 #include "llvm/Transforms/InstCombine/InstCombine.h"
67 #include "llvm/Transforms/Instrumentation.h"
68 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
69 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h"
70 #include "llvm/Transforms/Instrumentation/BoundsChecking.h"
71 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
72 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h"
73 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h"
74 #include "llvm/Transforms/Instrumentation/InstrProfiling.h"
75 #include "llvm/Transforms/Instrumentation/KCFI.h"
76 #include "llvm/Transforms/Instrumentation/LowerAllowCheckPass.h"
77 #include "llvm/Transforms/Instrumentation/MemProfiler.h"
78 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
79 #include "llvm/Transforms/Instrumentation/NumericalStabilitySanitizer.h"
80 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
81 #include "llvm/Transforms/Instrumentation/SanitizerBinaryMetadata.h"
82 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h"
83 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
84 #include "llvm/Transforms/ObjCARC.h"
85 #include "llvm/Transforms/Scalar/EarlyCSE.h"
86 #include "llvm/Transforms/Scalar/GVN.h"
87 #include "llvm/Transforms/Scalar/JumpThreading.h"
88 #include "llvm/Transforms/Utils/Debugify.h"
89 #include "llvm/Transforms/Utils/ModuleUtils.h"
90 #include <memory>
91 #include <optional>
92 using namespace clang;
93 using namespace llvm;
94
95 #define HANDLE_EXTENSION(Ext) \
96 llvm::PassPluginLibraryInfo get##Ext##PluginInfo();
97 #include "llvm/Support/Extension.def"
98
99 namespace llvm {
100 extern cl::opt<bool> PrintPipelinePasses;
101
102 // Experiment to move sanitizers earlier.
103 static cl::opt<bool> ClSanitizeOnOptimizerEarlyEP(
104 "sanitizer-early-opt-ep", cl::Optional,
105 cl::desc("Insert sanitizers on OptimizerEarlyEP."));
106
107 // Experiment to mark cold functions as optsize/minsize/optnone.
108 // TODO: remove once this is exposed as a proper driver flag.
109 static cl::opt<PGOOptions::ColdFuncOpt> ClPGOColdFuncAttr(
110 "pgo-cold-func-opt", cl::init(PGOOptions::ColdFuncOpt::Default), cl::Hidden,
111 cl::desc(
112 "Function attribute to apply to cold functions as determined by PGO"),
113 cl::values(clEnumValN(PGOOptions::ColdFuncOpt::Default, "default",
114 "Default (no attribute)"),
115 clEnumValN(PGOOptions::ColdFuncOpt::OptSize, "optsize",
116 "Mark cold functions with optsize."),
117 clEnumValN(PGOOptions::ColdFuncOpt::MinSize, "minsize",
118 "Mark cold functions with minsize."),
119 clEnumValN(PGOOptions::ColdFuncOpt::OptNone, "optnone",
120 "Mark cold functions with optnone.")));
121
122 extern cl::opt<InstrProfCorrelator::ProfCorrelatorKind> ProfileCorrelate;
123 } // namespace llvm
124
125 namespace {
126
127 // Default filename used for profile generation.
getDefaultProfileGenName()128 std::string getDefaultProfileGenName() {
129 return DebugInfoCorrelate || ProfileCorrelate != InstrProfCorrelator::NONE
130 ? "default_%m.proflite"
131 : "default_%m.profraw";
132 }
133
134 class EmitAssemblyHelper {
135 DiagnosticsEngine &Diags;
136 const HeaderSearchOptions &HSOpts;
137 const CodeGenOptions &CodeGenOpts;
138 const clang::TargetOptions &TargetOpts;
139 const LangOptions &LangOpts;
140 llvm::Module *TheModule;
141 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS;
142
143 Timer CodeGenerationTime;
144
145 std::unique_ptr<raw_pwrite_stream> OS;
146
147 Triple TargetTriple;
148
getTargetIRAnalysis() const149 TargetIRAnalysis getTargetIRAnalysis() const {
150 if (TM)
151 return TM->getTargetIRAnalysis();
152
153 return TargetIRAnalysis();
154 }
155
156 /// Generates the TargetMachine.
157 /// Leaves TM unchanged if it is unable to create the target machine.
158 /// Some of our clang tests specify triples which are not built
159 /// into clang. This is okay because these tests check the generated
160 /// IR, and they require DataLayout which depends on the triple.
161 /// In this case, we allow this method to fail and not report an error.
162 /// When MustCreateTM is used, we print an error if we are unable to load
163 /// the requested target.
164 void CreateTargetMachine(bool MustCreateTM);
165
166 /// Add passes necessary to emit assembly or LLVM IR.
167 ///
168 /// \return True on success.
169 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action,
170 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS);
171
openOutputFile(StringRef Path)172 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) {
173 std::error_code EC;
174 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC,
175 llvm::sys::fs::OF_None);
176 if (EC) {
177 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message();
178 F.reset();
179 }
180 return F;
181 }
182
183 void RunOptimizationPipeline(
184 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS,
185 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS, BackendConsumer *BC);
186 void RunCodegenPipeline(BackendAction Action,
187 std::unique_ptr<raw_pwrite_stream> &OS,
188 std::unique_ptr<llvm::ToolOutputFile> &DwoOS);
189
190 /// Check whether we should emit a module summary for regular LTO.
191 /// The module summary should be emitted by default for regular LTO
192 /// except for ld64 targets.
193 ///
194 /// \return True if the module summary should be emitted.
shouldEmitRegularLTOSummary() const195 bool shouldEmitRegularLTOSummary() const {
196 return CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses &&
197 TargetTriple.getVendor() != llvm::Triple::Apple;
198 }
199
200 /// Check whether we should emit a flag for UnifiedLTO.
201 /// The UnifiedLTO module flag should be set when UnifiedLTO is enabled for
202 /// ThinLTO or Full LTO with module summaries.
shouldEmitUnifiedLTOModueFlag() const203 bool shouldEmitUnifiedLTOModueFlag() const {
204 return CodeGenOpts.UnifiedLTO &&
205 (CodeGenOpts.PrepareForThinLTO || shouldEmitRegularLTOSummary());
206 }
207
208 public:
EmitAssemblyHelper(DiagnosticsEngine & _Diags,const HeaderSearchOptions & HeaderSearchOpts,const CodeGenOptions & CGOpts,const clang::TargetOptions & TOpts,const LangOptions & LOpts,llvm::Module * M,IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)209 EmitAssemblyHelper(DiagnosticsEngine &_Diags,
210 const HeaderSearchOptions &HeaderSearchOpts,
211 const CodeGenOptions &CGOpts,
212 const clang::TargetOptions &TOpts,
213 const LangOptions &LOpts, llvm::Module *M,
214 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
215 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts),
216 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), VFS(std::move(VFS)),
217 CodeGenerationTime("codegen", "Code Generation Time"),
218 TargetTriple(TheModule->getTargetTriple()) {}
219
~EmitAssemblyHelper()220 ~EmitAssemblyHelper() {
221 if (CodeGenOpts.DisableFree)
222 BuryPointer(std::move(TM));
223 }
224
225 std::unique_ptr<TargetMachine> TM;
226
227 // Emit output using the new pass manager for the optimization pipeline.
228 void EmitAssembly(BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS,
229 BackendConsumer *BC);
230 };
231 } // namespace
232
233 static SanitizerCoverageOptions
getSancovOptsFromCGOpts(const CodeGenOptions & CGOpts)234 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) {
235 SanitizerCoverageOptions Opts;
236 Opts.CoverageType =
237 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType);
238 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls;
239 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB;
240 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp;
241 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv;
242 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep;
243 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters;
244 Opts.TracePC = CGOpts.SanitizeCoverageTracePC;
245 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard;
246 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune;
247 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters;
248 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag;
249 Opts.PCTable = CGOpts.SanitizeCoveragePCTable;
250 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth;
251 Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads;
252 Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores;
253 Opts.CollectControlFlow = CGOpts.SanitizeCoverageControlFlow;
254 return Opts;
255 }
256
257 static SanitizerBinaryMetadataOptions
getSanitizerBinaryMetadataOptions(const CodeGenOptions & CGOpts)258 getSanitizerBinaryMetadataOptions(const CodeGenOptions &CGOpts) {
259 SanitizerBinaryMetadataOptions Opts;
260 Opts.Covered = CGOpts.SanitizeBinaryMetadataCovered;
261 Opts.Atomics = CGOpts.SanitizeBinaryMetadataAtomics;
262 Opts.UAR = CGOpts.SanitizeBinaryMetadataUAR;
263 return Opts;
264 }
265
266 // Check if ASan should use GC-friendly instrumentation for globals.
267 // First of all, there is no point if -fdata-sections is off (expect for MachO,
268 // where this is not a factor). Also, on ELF this feature requires an assembler
269 // extension that only works with -integrated-as at the moment.
asanUseGlobalsGC(const Triple & T,const CodeGenOptions & CGOpts)270 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) {
271 if (!CGOpts.SanitizeAddressGlobalsDeadStripping)
272 return false;
273 switch (T.getObjectFormat()) {
274 case Triple::MachO:
275 case Triple::COFF:
276 return true;
277 case Triple::ELF:
278 return !CGOpts.DisableIntegratedAS;
279 case Triple::GOFF:
280 llvm::report_fatal_error("ASan not implemented for GOFF");
281 case Triple::XCOFF:
282 llvm::report_fatal_error("ASan not implemented for XCOFF.");
283 case Triple::Wasm:
284 case Triple::DXContainer:
285 case Triple::SPIRV:
286 case Triple::UnknownObjectFormat:
287 break;
288 }
289 return false;
290 }
291
292 static std::optional<llvm::CodeModel::Model>
getCodeModel(const CodeGenOptions & CodeGenOpts)293 getCodeModel(const CodeGenOptions &CodeGenOpts) {
294 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel)
295 .Case("tiny", llvm::CodeModel::Tiny)
296 .Case("small", llvm::CodeModel::Small)
297 .Case("kernel", llvm::CodeModel::Kernel)
298 .Case("medium", llvm::CodeModel::Medium)
299 .Case("large", llvm::CodeModel::Large)
300 .Case("default", ~1u)
301 .Default(~0u);
302 assert(CodeModel != ~0u && "invalid code model!");
303 if (CodeModel == ~1u)
304 return std::nullopt;
305 return static_cast<llvm::CodeModel::Model>(CodeModel);
306 }
307
getCodeGenFileType(BackendAction Action)308 static CodeGenFileType getCodeGenFileType(BackendAction Action) {
309 if (Action == Backend_EmitObj)
310 return CodeGenFileType::ObjectFile;
311 else if (Action == Backend_EmitMCNull)
312 return CodeGenFileType::Null;
313 else {
314 assert(Action == Backend_EmitAssembly && "Invalid action!");
315 return CodeGenFileType::AssemblyFile;
316 }
317 }
318
actionRequiresCodeGen(BackendAction Action)319 static bool actionRequiresCodeGen(BackendAction Action) {
320 return Action != Backend_EmitNothing && Action != Backend_EmitBC &&
321 Action != Backend_EmitLL;
322 }
323
initTargetOptions(DiagnosticsEngine & Diags,llvm::TargetOptions & Options,const CodeGenOptions & CodeGenOpts,const clang::TargetOptions & TargetOpts,const LangOptions & LangOpts,const HeaderSearchOptions & HSOpts)324 static bool initTargetOptions(DiagnosticsEngine &Diags,
325 llvm::TargetOptions &Options,
326 const CodeGenOptions &CodeGenOpts,
327 const clang::TargetOptions &TargetOpts,
328 const LangOptions &LangOpts,
329 const HeaderSearchOptions &HSOpts) {
330 switch (LangOpts.getThreadModel()) {
331 case LangOptions::ThreadModelKind::POSIX:
332 Options.ThreadModel = llvm::ThreadModel::POSIX;
333 break;
334 case LangOptions::ThreadModelKind::Single:
335 Options.ThreadModel = llvm::ThreadModel::Single;
336 break;
337 }
338
339 // Set float ABI type.
340 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" ||
341 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) &&
342 "Invalid Floating Point ABI!");
343 Options.FloatABIType =
344 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI)
345 .Case("soft", llvm::FloatABI::Soft)
346 .Case("softfp", llvm::FloatABI::Soft)
347 .Case("hard", llvm::FloatABI::Hard)
348 .Default(llvm::FloatABI::Default);
349
350 // Set FP fusion mode.
351 switch (LangOpts.getDefaultFPContractMode()) {
352 case LangOptions::FPM_Off:
353 // Preserve any contraction performed by the front-end. (Strict performs
354 // splitting of the muladd intrinsic in the backend.)
355 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
356 break;
357 case LangOptions::FPM_On:
358 case LangOptions::FPM_FastHonorPragmas:
359 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
360 break;
361 case LangOptions::FPM_Fast:
362 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast;
363 break;
364 }
365
366 Options.BinutilsVersion =
367 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion);
368 Options.UseInitArray = CodeGenOpts.UseInitArray;
369 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS;
370
371 // Set EABI version.
372 Options.EABIVersion = TargetOpts.EABIVersion;
373
374 if (LangOpts.hasSjLjExceptions())
375 Options.ExceptionModel = llvm::ExceptionHandling::SjLj;
376 if (LangOpts.hasSEHExceptions())
377 Options.ExceptionModel = llvm::ExceptionHandling::WinEH;
378 if (LangOpts.hasDWARFExceptions())
379 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI;
380 if (LangOpts.hasWasmExceptions())
381 Options.ExceptionModel = llvm::ExceptionHandling::Wasm;
382
383 Options.NoInfsFPMath = LangOpts.NoHonorInfs;
384 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs;
385 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS;
386 Options.UnsafeFPMath = LangOpts.AllowFPReassoc && LangOpts.AllowRecip &&
387 LangOpts.NoSignedZero && LangOpts.ApproxFunc &&
388 (LangOpts.getDefaultFPContractMode() ==
389 LangOptions::FPModeKind::FPM_Fast ||
390 LangOpts.getDefaultFPContractMode() ==
391 LangOptions::FPModeKind::FPM_FastHonorPragmas);
392 Options.ApproxFuncFPMath = LangOpts.ApproxFunc;
393
394 Options.BBAddrMap = CodeGenOpts.BBAddrMap;
395 Options.BBSections =
396 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections)
397 .Case("all", llvm::BasicBlockSection::All)
398 .Case("labels", llvm::BasicBlockSection::Labels)
399 .StartsWith("list=", llvm::BasicBlockSection::List)
400 .Case("none", llvm::BasicBlockSection::None)
401 .Default(llvm::BasicBlockSection::None);
402
403 if (Options.BBSections == llvm::BasicBlockSection::List) {
404 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr =
405 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5));
406 if (!MBOrErr) {
407 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file)
408 << MBOrErr.getError().message();
409 return false;
410 }
411 Options.BBSectionsFuncListBuf = std::move(*MBOrErr);
412 }
413
414 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions;
415 Options.FunctionSections = CodeGenOpts.FunctionSections;
416 Options.DataSections = CodeGenOpts.DataSections;
417 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility;
418 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames;
419 Options.UniqueBasicBlockSectionNames =
420 CodeGenOpts.UniqueBasicBlockSectionNames;
421 Options.SeparateNamedSections = CodeGenOpts.SeparateNamedSections;
422 Options.TLSSize = CodeGenOpts.TLSSize;
423 Options.EnableTLSDESC = CodeGenOpts.EnableTLSDESC;
424 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS;
425 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning();
426 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection;
427 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput;
428 Options.EmitAddrsig = CodeGenOpts.Addrsig;
429 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection;
430 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo;
431 Options.EnableAIXExtendedAltivecABI = LangOpts.EnableAIXExtendedAltivecABI;
432 Options.XRayFunctionIndex = CodeGenOpts.XRayFunctionIndex;
433 Options.LoopAlignment = CodeGenOpts.LoopAlignment;
434 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf;
435 Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug;
436 Options.Hotpatch = CodeGenOpts.HotPatch;
437 Options.JMCInstrument = CodeGenOpts.JMCInstrument;
438 Options.XCOFFReadOnlyPointers = CodeGenOpts.XCOFFReadOnlyPointers;
439
440 switch (CodeGenOpts.getSwiftAsyncFramePointer()) {
441 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto:
442 Options.SwiftAsyncFramePointer =
443 SwiftAsyncFramePointerMode::DeploymentBased;
444 break;
445
446 case CodeGenOptions::SwiftAsyncFramePointerKind::Always:
447 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always;
448 break;
449
450 case CodeGenOptions::SwiftAsyncFramePointerKind::Never:
451 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never;
452 break;
453 }
454
455 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile;
456 Options.MCOptions.EmitDwarfUnwind = CodeGenOpts.getEmitDwarfUnwind();
457 Options.MCOptions.EmitCompactUnwindNonCanonical =
458 CodeGenOpts.EmitCompactUnwindNonCanonical;
459 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll;
460 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels;
461 Options.MCOptions.MCUseDwarfDirectory =
462 CodeGenOpts.NoDwarfDirectoryAsm
463 ? llvm::MCTargetOptions::DisableDwarfDirectory
464 : llvm::MCTargetOptions::EnableDwarfDirectory;
465 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack;
466 Options.MCOptions.MCIncrementalLinkerCompatible =
467 CodeGenOpts.IncrementalLinkerCompatible;
468 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings;
469 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn;
470 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose;
471 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64;
472 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments;
473 Options.MCOptions.Crel = CodeGenOpts.Crel;
474 Options.MCOptions.X86RelaxRelocations = CodeGenOpts.RelaxELFRelocations;
475 Options.MCOptions.CompressDebugSections =
476 CodeGenOpts.getCompressDebugSections();
477 Options.MCOptions.ABIName = TargetOpts.ABI;
478 for (const auto &Entry : HSOpts.UserEntries)
479 if (!Entry.IsFramework &&
480 (Entry.Group == frontend::IncludeDirGroup::Quoted ||
481 Entry.Group == frontend::IncludeDirGroup::Angled ||
482 Entry.Group == frontend::IncludeDirGroup::System))
483 Options.MCOptions.IASSearchPaths.push_back(
484 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path);
485 Options.MCOptions.Argv0 = CodeGenOpts.Argv0;
486 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs;
487 Options.MCOptions.AsSecureLogFile = CodeGenOpts.AsSecureLogFile;
488 Options.MCOptions.PPCUseFullRegisterNames =
489 CodeGenOpts.PPCUseFullRegisterNames;
490 Options.MisExpect = CodeGenOpts.MisExpect;
491
492 return true;
493 }
494
495 static std::optional<GCOVOptions>
getGCOVOptions(const CodeGenOptions & CodeGenOpts,const LangOptions & LangOpts)496 getGCOVOptions(const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts) {
497 if (CodeGenOpts.CoverageNotesFile.empty() &&
498 CodeGenOpts.CoverageDataFile.empty())
499 return std::nullopt;
500 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if
501 // LLVM's -default-gcov-version flag is set to something invalid.
502 GCOVOptions Options;
503 Options.EmitNotes = !CodeGenOpts.CoverageNotesFile.empty();
504 Options.EmitData = !CodeGenOpts.CoverageDataFile.empty();
505 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version));
506 Options.NoRedZone = CodeGenOpts.DisableRedZone;
507 Options.Filter = CodeGenOpts.ProfileFilterFiles;
508 Options.Exclude = CodeGenOpts.ProfileExcludeFiles;
509 Options.Atomic = CodeGenOpts.AtomicProfileUpdate;
510 return Options;
511 }
512
513 static std::optional<InstrProfOptions>
getInstrProfOptions(const CodeGenOptions & CodeGenOpts,const LangOptions & LangOpts)514 getInstrProfOptions(const CodeGenOptions &CodeGenOpts,
515 const LangOptions &LangOpts) {
516 if (!CodeGenOpts.hasProfileClangInstr())
517 return std::nullopt;
518 InstrProfOptions Options;
519 Options.NoRedZone = CodeGenOpts.DisableRedZone;
520 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput;
521 Options.Atomic = CodeGenOpts.AtomicProfileUpdate;
522 return Options;
523 }
524
setCommandLineOpts(const CodeGenOptions & CodeGenOpts)525 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) {
526 SmallVector<const char *, 16> BackendArgs;
527 BackendArgs.push_back("clang"); // Fake program name.
528 if (!CodeGenOpts.DebugPass.empty()) {
529 BackendArgs.push_back("-debug-pass");
530 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str());
531 }
532 if (!CodeGenOpts.LimitFloatPrecision.empty()) {
533 BackendArgs.push_back("-limit-float-precision");
534 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str());
535 }
536 // Check for the default "clang" invocation that won't set any cl::opt values.
537 // Skip trying to parse the command line invocation to avoid the issues
538 // described below.
539 if (BackendArgs.size() == 1)
540 return;
541 BackendArgs.push_back(nullptr);
542 // FIXME: The command line parser below is not thread-safe and shares a global
543 // state, so this call might crash or overwrite the options of another Clang
544 // instance in the same process.
545 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1,
546 BackendArgs.data());
547 }
548
CreateTargetMachine(bool MustCreateTM)549 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) {
550 // Create the TargetMachine for generating code.
551 std::string Error;
552 std::string Triple = TheModule->getTargetTriple();
553 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
554 if (!TheTarget) {
555 if (MustCreateTM)
556 Diags.Report(diag::err_fe_unable_to_create_target) << Error;
557 return;
558 }
559
560 std::optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts);
561 std::string FeaturesStr =
562 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ",");
563 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel;
564 std::optional<CodeGenOptLevel> OptLevelOrNone =
565 CodeGenOpt::getLevel(CodeGenOpts.OptimizationLevel);
566 assert(OptLevelOrNone && "Invalid optimization level!");
567 CodeGenOptLevel OptLevel = *OptLevelOrNone;
568
569 llvm::TargetOptions Options;
570 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts,
571 HSOpts))
572 return;
573 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr,
574 Options, RM, CM, OptLevel));
575 TM->setLargeDataThreshold(CodeGenOpts.LargeDataThreshold);
576 }
577
AddEmitPasses(legacy::PassManager & CodeGenPasses,BackendAction Action,raw_pwrite_stream & OS,raw_pwrite_stream * DwoOS)578 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses,
579 BackendAction Action,
580 raw_pwrite_stream &OS,
581 raw_pwrite_stream *DwoOS) {
582 // Add LibraryInfo.
583 std::unique_ptr<TargetLibraryInfoImpl> TLII(
584 llvm::driver::createTLII(TargetTriple, CodeGenOpts.getVecLib()));
585 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII));
586
587 // Normal mode, emit a .s or .o file by running the code generator. Note,
588 // this also adds codegenerator level optimization passes.
589 CodeGenFileType CGFT = getCodeGenFileType(Action);
590
591 // Add ObjC ARC final-cleanup optimizations. This is done as part of the
592 // "codegen" passes so that it isn't run multiple times when there is
593 // inlining happening.
594 if (CodeGenOpts.OptimizationLevel > 0)
595 CodeGenPasses.add(createObjCARCContractPass());
596
597 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT,
598 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) {
599 Diags.Report(diag::err_fe_unable_to_interface_with_target);
600 return false;
601 }
602
603 return true;
604 }
605
mapToLevel(const CodeGenOptions & Opts)606 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) {
607 switch (Opts.OptimizationLevel) {
608 default:
609 llvm_unreachable("Invalid optimization level!");
610
611 case 0:
612 return OptimizationLevel::O0;
613
614 case 1:
615 return OptimizationLevel::O1;
616
617 case 2:
618 switch (Opts.OptimizeSize) {
619 default:
620 llvm_unreachable("Invalid optimization level for size!");
621
622 case 0:
623 return OptimizationLevel::O2;
624
625 case 1:
626 return OptimizationLevel::Os;
627
628 case 2:
629 return OptimizationLevel::Oz;
630 }
631
632 case 3:
633 return OptimizationLevel::O3;
634 }
635 }
636
addKCFIPass(const Triple & TargetTriple,const LangOptions & LangOpts,PassBuilder & PB)637 static void addKCFIPass(const Triple &TargetTriple, const LangOptions &LangOpts,
638 PassBuilder &PB) {
639 // If the back-end supports KCFI operand bundle lowering, skip KCFIPass.
640 if (TargetTriple.getArch() == llvm::Triple::x86_64 ||
641 TargetTriple.isAArch64(64) || TargetTriple.isRISCV())
642 return;
643
644 // Ensure we lower KCFI operand bundles with -O0.
645 PB.registerOptimizerLastEPCallback(
646 [&](ModulePassManager &MPM, OptimizationLevel Level) {
647 if (Level == OptimizationLevel::O0 &&
648 LangOpts.Sanitize.has(SanitizerKind::KCFI))
649 MPM.addPass(createModuleToFunctionPassAdaptor(KCFIPass()));
650 });
651
652 // When optimizations are requested, run KCIFPass after InstCombine to
653 // avoid unnecessary checks.
654 PB.registerPeepholeEPCallback(
655 [&](FunctionPassManager &FPM, OptimizationLevel Level) {
656 if (Level != OptimizationLevel::O0 &&
657 LangOpts.Sanitize.has(SanitizerKind::KCFI))
658 FPM.addPass(KCFIPass());
659 });
660 }
661
addSanitizers(const Triple & TargetTriple,const CodeGenOptions & CodeGenOpts,const LangOptions & LangOpts,PassBuilder & PB)662 static void addSanitizers(const Triple &TargetTriple,
663 const CodeGenOptions &CodeGenOpts,
664 const LangOptions &LangOpts, PassBuilder &PB) {
665 auto SanitizersCallback = [&](ModulePassManager &MPM,
666 OptimizationLevel Level) {
667 if (CodeGenOpts.hasSanitizeCoverage()) {
668 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts);
669 MPM.addPass(SanitizerCoveragePass(
670 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles,
671 CodeGenOpts.SanitizeCoverageIgnorelistFiles));
672 }
673
674 if (CodeGenOpts.hasSanitizeBinaryMetadata()) {
675 MPM.addPass(SanitizerBinaryMetadataPass(
676 getSanitizerBinaryMetadataOptions(CodeGenOpts),
677 CodeGenOpts.SanitizeMetadataIgnorelistFiles));
678 }
679
680 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) {
681 if (LangOpts.Sanitize.has(Mask)) {
682 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins;
683 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask);
684
685 MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel,
686 CodeGenOpts.SanitizeMemoryParamRetval);
687 MPM.addPass(MemorySanitizerPass(options));
688 if (Level != OptimizationLevel::O0) {
689 // MemorySanitizer inserts complex instrumentation that mostly follows
690 // the logic of the original code, but operates on "shadow" values. It
691 // can benefit from re-running some general purpose optimization
692 // passes.
693 MPM.addPass(RequireAnalysisPass<GlobalsAA, llvm::Module>());
694 FunctionPassManager FPM;
695 FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */));
696 FPM.addPass(InstCombinePass());
697 FPM.addPass(JumpThreadingPass());
698 FPM.addPass(GVNPass());
699 FPM.addPass(InstCombinePass());
700 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
701 }
702 }
703 };
704 MSanPass(SanitizerKind::Memory, false);
705 MSanPass(SanitizerKind::KernelMemory, true);
706
707 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
708 MPM.addPass(ModuleThreadSanitizerPass());
709 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass()));
710 }
711
712 if (LangOpts.Sanitize.has(SanitizerKind::NumericalStability))
713 MPM.addPass(NumericalStabilitySanitizerPass());
714
715 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) {
716 if (LangOpts.Sanitize.has(Mask)) {
717 bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts);
718 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator;
719 llvm::AsanDtorKind DestructorKind =
720 CodeGenOpts.getSanitizeAddressDtor();
721 AddressSanitizerOptions Opts;
722 Opts.CompileKernel = CompileKernel;
723 Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask);
724 Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope;
725 Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn();
726 MPM.addPass(AddressSanitizerPass(Opts, UseGlobalGC, UseOdrIndicator,
727 DestructorKind));
728 }
729 };
730 ASanPass(SanitizerKind::Address, false);
731 ASanPass(SanitizerKind::KernelAddress, true);
732
733 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) {
734 if (LangOpts.Sanitize.has(Mask)) {
735 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask);
736 MPM.addPass(HWAddressSanitizerPass(
737 {CompileKernel, Recover,
738 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0}));
739 }
740 };
741 HWASanPass(SanitizerKind::HWAddress, false);
742 HWASanPass(SanitizerKind::KernelHWAddress, true);
743
744 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
745 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles));
746 }
747 };
748 if (ClSanitizeOnOptimizerEarlyEP) {
749 PB.registerOptimizerEarlyEPCallback(
750 [SanitizersCallback](ModulePassManager &MPM, OptimizationLevel Level) {
751 ModulePassManager NewMPM;
752 SanitizersCallback(NewMPM, Level);
753 if (!NewMPM.isEmpty()) {
754 // Sanitizers can abandon<GlobalsAA>.
755 NewMPM.addPass(RequireAnalysisPass<GlobalsAA, llvm::Module>());
756 MPM.addPass(std::move(NewMPM));
757 }
758 });
759 } else {
760 // LastEP does not need GlobalsAA.
761 PB.registerOptimizerLastEPCallback(SanitizersCallback);
762 }
763
764 if (LowerAllowCheckPass::IsRequested()) {
765 // We can optimize after inliner, and PGO profile matching. The hook below
766 // is called at the end `buildFunctionSimplificationPipeline`, which called
767 // from `buildInlinerPipeline`, which called after profile matching.
768 PB.registerScalarOptimizerLateEPCallback(
769 [](FunctionPassManager &FPM, OptimizationLevel Level) {
770 FPM.addPass(LowerAllowCheckPass());
771 });
772 }
773 }
774
RunOptimizationPipeline(BackendAction Action,std::unique_ptr<raw_pwrite_stream> & OS,std::unique_ptr<llvm::ToolOutputFile> & ThinLinkOS,BackendConsumer * BC)775 void EmitAssemblyHelper::RunOptimizationPipeline(
776 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS,
777 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS, BackendConsumer *BC) {
778 std::optional<PGOOptions> PGOOpt;
779
780 if (CodeGenOpts.hasProfileIRInstr())
781 // -fprofile-generate.
782 PGOOpt = PGOOptions(
783 CodeGenOpts.InstrProfileOutput.empty() ? getDefaultProfileGenName()
784 : CodeGenOpts.InstrProfileOutput,
785 "", "", CodeGenOpts.MemoryProfileUsePath, nullptr, PGOOptions::IRInstr,
786 PGOOptions::NoCSAction, ClPGOColdFuncAttr,
787 CodeGenOpts.DebugInfoForProfiling,
788 /*PseudoProbeForProfiling=*/false, CodeGenOpts.AtomicProfileUpdate);
789 else if (CodeGenOpts.hasProfileIRUse()) {
790 // -fprofile-use.
791 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse
792 : PGOOptions::NoCSAction;
793 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "",
794 CodeGenOpts.ProfileRemappingFile,
795 CodeGenOpts.MemoryProfileUsePath, VFS,
796 PGOOptions::IRUse, CSAction, ClPGOColdFuncAttr,
797 CodeGenOpts.DebugInfoForProfiling);
798 } else if (!CodeGenOpts.SampleProfileFile.empty())
799 // -fprofile-sample-use
800 PGOOpt = PGOOptions(
801 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile,
802 CodeGenOpts.MemoryProfileUsePath, VFS, PGOOptions::SampleUse,
803 PGOOptions::NoCSAction, ClPGOColdFuncAttr,
804 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling);
805 else if (!CodeGenOpts.MemoryProfileUsePath.empty())
806 // -fmemory-profile-use (without any of the above options)
807 PGOOpt = PGOOptions("", "", "", CodeGenOpts.MemoryProfileUsePath, VFS,
808 PGOOptions::NoAction, PGOOptions::NoCSAction,
809 ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling);
810 else if (CodeGenOpts.PseudoProbeForProfiling)
811 // -fpseudo-probe-for-profiling
812 PGOOpt =
813 PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr,
814 PGOOptions::NoAction, PGOOptions::NoCSAction,
815 ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling, true);
816 else if (CodeGenOpts.DebugInfoForProfiling)
817 // -fdebug-info-for-profiling
818 PGOOpt = PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr,
819 PGOOptions::NoAction, PGOOptions::NoCSAction,
820 ClPGOColdFuncAttr, true);
821
822 // Check to see if we want to generate a CS profile.
823 if (CodeGenOpts.hasProfileCSIRInstr()) {
824 assert(!CodeGenOpts.hasProfileCSIRUse() &&
825 "Cannot have both CSProfileUse pass and CSProfileGen pass at "
826 "the same time");
827 if (PGOOpt) {
828 assert(PGOOpt->Action != PGOOptions::IRInstr &&
829 PGOOpt->Action != PGOOptions::SampleUse &&
830 "Cannot run CSProfileGen pass with ProfileGen or SampleUse "
831 " pass");
832 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty()
833 ? getDefaultProfileGenName()
834 : CodeGenOpts.InstrProfileOutput;
835 PGOOpt->CSAction = PGOOptions::CSIRInstr;
836 } else
837 PGOOpt = PGOOptions("",
838 CodeGenOpts.InstrProfileOutput.empty()
839 ? getDefaultProfileGenName()
840 : CodeGenOpts.InstrProfileOutput,
841 "", /*MemoryProfile=*/"", nullptr,
842 PGOOptions::NoAction, PGOOptions::CSIRInstr,
843 ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling);
844 }
845 if (TM)
846 TM->setPGOOption(PGOOpt);
847
848 PipelineTuningOptions PTO;
849 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops;
850 // For historical reasons, loop interleaving is set to mirror setting for loop
851 // unrolling.
852 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops;
853 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop;
854 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP;
855 PTO.MergeFunctions = CodeGenOpts.MergeFunctions;
856 // Only enable CGProfilePass when using integrated assembler, since
857 // non-integrated assemblers don't recognize .cgprofile section.
858 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS;
859 PTO.UnifiedLTO = CodeGenOpts.UnifiedLTO;
860
861 LoopAnalysisManager LAM;
862 FunctionAnalysisManager FAM;
863 CGSCCAnalysisManager CGAM;
864 ModuleAnalysisManager MAM;
865
866 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure";
867 PassInstrumentationCallbacks PIC;
868 PrintPassOptions PrintPassOpts;
869 PrintPassOpts.Indent = DebugPassStructure;
870 PrintPassOpts.SkipAnalyses = DebugPassStructure;
871 StandardInstrumentations SI(
872 TheModule->getContext(),
873 (CodeGenOpts.DebugPassManager || DebugPassStructure),
874 CodeGenOpts.VerifyEach, PrintPassOpts);
875 SI.registerCallbacks(PIC, &MAM);
876 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC);
877
878 // Handle the assignment tracking feature options.
879 switch (CodeGenOpts.getAssignmentTrackingMode()) {
880 case CodeGenOptions::AssignmentTrackingOpts::Forced:
881 PB.registerPipelineStartEPCallback(
882 [&](ModulePassManager &MPM, OptimizationLevel Level) {
883 MPM.addPass(AssignmentTrackingPass());
884 });
885 break;
886 case CodeGenOptions::AssignmentTrackingOpts::Enabled:
887 // Disable assignment tracking in LTO builds for now as the performance
888 // cost is too high. Disable for LLDB tuning due to llvm.org/PR43126.
889 if (!CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.PrepareForLTO &&
890 CodeGenOpts.getDebuggerTuning() != llvm::DebuggerKind::LLDB) {
891 PB.registerPipelineStartEPCallback(
892 [&](ModulePassManager &MPM, OptimizationLevel Level) {
893 // Only use assignment tracking if optimisations are enabled.
894 if (Level != OptimizationLevel::O0)
895 MPM.addPass(AssignmentTrackingPass());
896 });
897 }
898 break;
899 case CodeGenOptions::AssignmentTrackingOpts::Disabled:
900 break;
901 }
902
903 // Enable verify-debuginfo-preserve-each for new PM.
904 DebugifyEachInstrumentation Debugify;
905 DebugInfoPerPass DebugInfoBeforePass;
906 if (CodeGenOpts.EnableDIPreservationVerify) {
907 Debugify.setDebugifyMode(DebugifyMode::OriginalDebugInfo);
908 Debugify.setDebugInfoBeforePass(DebugInfoBeforePass);
909
910 if (!CodeGenOpts.DIBugsReportFilePath.empty())
911 Debugify.setOrigDIVerifyBugsReportFilePath(
912 CodeGenOpts.DIBugsReportFilePath);
913 Debugify.registerCallbacks(PIC, MAM);
914 }
915 // Attempt to load pass plugins and register their callbacks with PB.
916 for (auto &PluginFN : CodeGenOpts.PassPlugins) {
917 auto PassPlugin = PassPlugin::Load(PluginFN);
918 if (PassPlugin) {
919 PassPlugin->registerPassBuilderCallbacks(PB);
920 } else {
921 Diags.Report(diag::err_fe_unable_to_load_plugin)
922 << PluginFN << toString(PassPlugin.takeError());
923 }
924 }
925 for (const auto &PassCallback : CodeGenOpts.PassBuilderCallbacks)
926 PassCallback(PB);
927 #define HANDLE_EXTENSION(Ext) \
928 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB);
929 #include "llvm/Support/Extension.def"
930
931 // Register the target library analysis directly and give it a customized
932 // preset TLI.
933 std::unique_ptr<TargetLibraryInfoImpl> TLII(
934 llvm::driver::createTLII(TargetTriple, CodeGenOpts.getVecLib()));
935 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
936
937 // Register all the basic analyses with the managers.
938 PB.registerModuleAnalyses(MAM);
939 PB.registerCGSCCAnalyses(CGAM);
940 PB.registerFunctionAnalyses(FAM);
941 PB.registerLoopAnalyses(LAM);
942 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
943
944 ModulePassManager MPM;
945 // Add a verifier pass, before any other passes, to catch CodeGen issues.
946 if (CodeGenOpts.VerifyModule)
947 MPM.addPass(VerifierPass());
948
949 if (!CodeGenOpts.DisableLLVMPasses) {
950 // Map our optimization levels into one of the distinct levels used to
951 // configure the pipeline.
952 OptimizationLevel Level = mapToLevel(CodeGenOpts);
953
954 const bool PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO;
955 const bool PrepareForLTO = CodeGenOpts.PrepareForLTO;
956
957 if (LangOpts.ObjCAutoRefCount) {
958 PB.registerPipelineStartEPCallback(
959 [](ModulePassManager &MPM, OptimizationLevel Level) {
960 if (Level != OptimizationLevel::O0)
961 MPM.addPass(
962 createModuleToFunctionPassAdaptor(ObjCARCExpandPass()));
963 });
964 PB.registerPipelineEarlySimplificationEPCallback(
965 [](ModulePassManager &MPM, OptimizationLevel Level) {
966 if (Level != OptimizationLevel::O0)
967 MPM.addPass(ObjCARCAPElimPass());
968 });
969 PB.registerScalarOptimizerLateEPCallback(
970 [](FunctionPassManager &FPM, OptimizationLevel Level) {
971 if (Level != OptimizationLevel::O0)
972 FPM.addPass(ObjCARCOptPass());
973 });
974 }
975
976 // If we reached here with a non-empty index file name, then the index
977 // file was empty and we are not performing ThinLTO backend compilation
978 // (used in testing in a distributed build environment).
979 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty();
980 // If so drop any the type test assume sequences inserted for whole program
981 // vtables so that codegen doesn't complain.
982 if (IsThinLTOPostLink)
983 PB.registerPipelineStartEPCallback(
984 [](ModulePassManager &MPM, OptimizationLevel Level) {
985 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr,
986 /*ImportSummary=*/nullptr,
987 /*DropTypeTests=*/true));
988 });
989
990 // Register callbacks to schedule sanitizer passes at the appropriate part
991 // of the pipeline.
992 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
993 PB.registerScalarOptimizerLateEPCallback(
994 [](FunctionPassManager &FPM, OptimizationLevel Level) {
995 FPM.addPass(BoundsCheckingPass());
996 });
997
998 // Don't add sanitizers if we are here from ThinLTO PostLink. That already
999 // done on PreLink stage.
1000 if (!IsThinLTOPostLink) {
1001 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB);
1002 addKCFIPass(TargetTriple, LangOpts, PB);
1003 }
1004
1005 if (std::optional<GCOVOptions> Options =
1006 getGCOVOptions(CodeGenOpts, LangOpts))
1007 PB.registerPipelineStartEPCallback(
1008 [Options](ModulePassManager &MPM, OptimizationLevel Level) {
1009 MPM.addPass(GCOVProfilerPass(*Options));
1010 });
1011 if (std::optional<InstrProfOptions> Options =
1012 getInstrProfOptions(CodeGenOpts, LangOpts))
1013 PB.registerPipelineStartEPCallback(
1014 [Options](ModulePassManager &MPM, OptimizationLevel Level) {
1015 MPM.addPass(InstrProfilingLoweringPass(*Options, false));
1016 });
1017
1018 // TODO: Consider passing the MemoryProfileOutput to the pass builder via
1019 // the PGOOptions, and set this up there.
1020 if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1021 PB.registerOptimizerLastEPCallback(
1022 [](ModulePassManager &MPM, OptimizationLevel Level) {
1023 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass()));
1024 MPM.addPass(ModuleMemProfilerPass());
1025 });
1026 }
1027
1028 if (CodeGenOpts.FatLTO) {
1029 MPM.addPass(PB.buildFatLTODefaultPipeline(
1030 Level, PrepareForThinLTO,
1031 PrepareForThinLTO || shouldEmitRegularLTOSummary()));
1032 } else if (PrepareForThinLTO) {
1033 MPM.addPass(PB.buildThinLTOPreLinkDefaultPipeline(Level));
1034 } else if (PrepareForLTO) {
1035 MPM.addPass(PB.buildLTOPreLinkDefaultPipeline(Level));
1036 } else {
1037 MPM.addPass(PB.buildPerModuleDefaultPipeline(Level));
1038 }
1039 }
1040
1041 // Link against bitcodes supplied via the -mlink-builtin-bitcode option
1042 if (CodeGenOpts.LinkBitcodePostopt)
1043 MPM.addPass(LinkInModulesPass(BC));
1044
1045 // Add a verifier pass if requested. We don't have to do this if the action
1046 // requires code generation because there will already be a verifier pass in
1047 // the code-generation pipeline.
1048 // Since we already added a verifier pass above, this
1049 // might even not run the analysis, if previous passes caused no changes.
1050 if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule)
1051 MPM.addPass(VerifierPass());
1052
1053 if (Action == Backend_EmitBC || Action == Backend_EmitLL ||
1054 CodeGenOpts.FatLTO) {
1055 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
1056 if (!TheModule->getModuleFlag("EnableSplitLTOUnit"))
1057 TheModule->addModuleFlag(llvm::Module::Error, "EnableSplitLTOUnit",
1058 CodeGenOpts.EnableSplitLTOUnit);
1059 if (Action == Backend_EmitBC) {
1060 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
1061 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
1062 if (!ThinLinkOS)
1063 return;
1064 }
1065 MPM.addPass(ThinLTOBitcodeWriterPass(
1066 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr));
1067 } else if (Action == Backend_EmitLL) {
1068 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists,
1069 /*EmitLTOSummary=*/true));
1070 }
1071 } else {
1072 // Emit a module summary by default for Regular LTO except for ld64
1073 // targets
1074 bool EmitLTOSummary = shouldEmitRegularLTOSummary();
1075 if (EmitLTOSummary) {
1076 if (!TheModule->getModuleFlag("ThinLTO") && !CodeGenOpts.UnifiedLTO)
1077 TheModule->addModuleFlag(llvm::Module::Error, "ThinLTO", uint32_t(0));
1078 if (!TheModule->getModuleFlag("EnableSplitLTOUnit"))
1079 TheModule->addModuleFlag(llvm::Module::Error, "EnableSplitLTOUnit",
1080 uint32_t(1));
1081 }
1082 if (Action == Backend_EmitBC) {
1083 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists,
1084 EmitLTOSummary));
1085 } else if (Action == Backend_EmitLL) {
1086 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists,
1087 EmitLTOSummary));
1088 }
1089 }
1090
1091 if (shouldEmitUnifiedLTOModueFlag())
1092 TheModule->addModuleFlag(llvm::Module::Error, "UnifiedLTO", uint32_t(1));
1093 }
1094
1095 // Print a textual, '-passes=' compatible, representation of pipeline if
1096 // requested.
1097 if (PrintPipelinePasses) {
1098 MPM.printPipeline(outs(), [&PIC](StringRef ClassName) {
1099 auto PassName = PIC.getPassNameForClassName(ClassName);
1100 return PassName.empty() ? ClassName : PassName;
1101 });
1102 outs() << "\n";
1103 return;
1104 }
1105
1106 if (LangOpts.HIPStdPar && !LangOpts.CUDAIsDevice &&
1107 LangOpts.HIPStdParInterposeAlloc)
1108 MPM.addPass(HipStdParAllocationInterpositionPass());
1109
1110 // Now that we have all of the passes ready, run them.
1111 {
1112 PrettyStackTraceString CrashInfo("Optimizer");
1113 llvm::TimeTraceScope TimeScope("Optimizer");
1114 MPM.run(*TheModule, MAM);
1115 }
1116 }
1117
RunCodegenPipeline(BackendAction Action,std::unique_ptr<raw_pwrite_stream> & OS,std::unique_ptr<llvm::ToolOutputFile> & DwoOS)1118 void EmitAssemblyHelper::RunCodegenPipeline(
1119 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS,
1120 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) {
1121 // We still use the legacy PM to run the codegen pipeline since the new PM
1122 // does not work with the codegen pipeline.
1123 // FIXME: make the new PM work with the codegen pipeline.
1124 legacy::PassManager CodeGenPasses;
1125
1126 // Append any output we need to the pass manager.
1127 switch (Action) {
1128 case Backend_EmitAssembly:
1129 case Backend_EmitMCNull:
1130 case Backend_EmitObj:
1131 CodeGenPasses.add(
1132 createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
1133 if (!CodeGenOpts.SplitDwarfOutput.empty()) {
1134 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput);
1135 if (!DwoOS)
1136 return;
1137 }
1138 if (!AddEmitPasses(CodeGenPasses, Action, *OS,
1139 DwoOS ? &DwoOS->os() : nullptr))
1140 // FIXME: Should we handle this error differently?
1141 return;
1142 break;
1143 default:
1144 return;
1145 }
1146
1147 // If -print-pipeline-passes is requested, don't run the legacy pass manager.
1148 // FIXME: when codegen is switched to use the new pass manager, it should also
1149 // emit pass names here.
1150 if (PrintPipelinePasses) {
1151 return;
1152 }
1153
1154 {
1155 PrettyStackTraceString CrashInfo("Code generation");
1156 llvm::TimeTraceScope TimeScope("CodeGenPasses");
1157 CodeGenPasses.run(*TheModule);
1158 }
1159 }
1160
EmitAssembly(BackendAction Action,std::unique_ptr<raw_pwrite_stream> OS,BackendConsumer * BC)1161 void EmitAssemblyHelper::EmitAssembly(BackendAction Action,
1162 std::unique_ptr<raw_pwrite_stream> OS,
1163 BackendConsumer *BC) {
1164 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr);
1165 setCommandLineOpts(CodeGenOpts);
1166
1167 bool RequiresCodeGen = actionRequiresCodeGen(Action);
1168 CreateTargetMachine(RequiresCodeGen);
1169
1170 if (RequiresCodeGen && !TM)
1171 return;
1172 if (TM)
1173 TheModule->setDataLayout(TM->createDataLayout());
1174
1175 // Before executing passes, print the final values of the LLVM options.
1176 cl::PrintOptionValues();
1177
1178 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
1179 RunOptimizationPipeline(Action, OS, ThinLinkOS, BC);
1180 RunCodegenPipeline(Action, OS, DwoOS);
1181
1182 if (ThinLinkOS)
1183 ThinLinkOS->keep();
1184 if (DwoOS)
1185 DwoOS->keep();
1186 }
1187
runThinLTOBackend(DiagnosticsEngine & Diags,ModuleSummaryIndex * CombinedIndex,llvm::Module * M,const HeaderSearchOptions & HeaderOpts,const CodeGenOptions & CGOpts,const clang::TargetOptions & TOpts,const LangOptions & LOpts,std::unique_ptr<raw_pwrite_stream> OS,std::string SampleProfile,std::string ProfileRemapping,BackendAction Action)1188 static void runThinLTOBackend(
1189 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex,
1190 llvm::Module *M, const HeaderSearchOptions &HeaderOpts,
1191 const CodeGenOptions &CGOpts, const clang::TargetOptions &TOpts,
1192 const LangOptions &LOpts, std::unique_ptr<raw_pwrite_stream> OS,
1193 std::string SampleProfile, std::string ProfileRemapping,
1194 BackendAction Action) {
1195 DenseMap<StringRef, DenseMap<GlobalValue::GUID, GlobalValueSummary *>>
1196 ModuleToDefinedGVSummaries;
1197 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
1198
1199 setCommandLineOpts(CGOpts);
1200
1201 // We can simply import the values mentioned in the combined index, since
1202 // we should only invoke this using the individual indexes written out
1203 // via a WriteIndexesThinBackend.
1204 FunctionImporter::ImportMapTy ImportList;
1205 if (!lto::initImportList(*M, *CombinedIndex, ImportList))
1206 return;
1207
1208 auto AddStream = [&](size_t Task, const Twine &ModuleName) {
1209 return std::make_unique<CachedFileStream>(std::move(OS),
1210 CGOpts.ObjectFilenameForDebug);
1211 };
1212 lto::Config Conf;
1213 if (CGOpts.SaveTempsFilePrefix != "") {
1214 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".",
1215 /* UseInputModulePath */ false)) {
1216 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1217 errs() << "Error setting up ThinLTO save-temps: " << EIB.message()
1218 << '\n';
1219 });
1220 }
1221 }
1222 Conf.CPU = TOpts.CPU;
1223 Conf.CodeModel = getCodeModel(CGOpts);
1224 Conf.MAttrs = TOpts.Features;
1225 Conf.RelocModel = CGOpts.RelocationModel;
1226 std::optional<CodeGenOptLevel> OptLevelOrNone =
1227 CodeGenOpt::getLevel(CGOpts.OptimizationLevel);
1228 assert(OptLevelOrNone && "Invalid optimization level!");
1229 Conf.CGOptLevel = *OptLevelOrNone;
1230 Conf.OptLevel = CGOpts.OptimizationLevel;
1231 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts);
1232 Conf.SampleProfile = std::move(SampleProfile);
1233 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops;
1234 // For historical reasons, loop interleaving is set to mirror setting for loop
1235 // unrolling.
1236 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops;
1237 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop;
1238 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP;
1239 // Only enable CGProfilePass when using integrated assembler, since
1240 // non-integrated assemblers don't recognize .cgprofile section.
1241 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS;
1242
1243 // Context sensitive profile.
1244 if (CGOpts.hasProfileCSIRInstr()) {
1245 Conf.RunCSIRInstr = true;
1246 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput);
1247 } else if (CGOpts.hasProfileCSIRUse()) {
1248 Conf.RunCSIRInstr = false;
1249 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath);
1250 }
1251
1252 Conf.ProfileRemapping = std::move(ProfileRemapping);
1253 Conf.DebugPassManager = CGOpts.DebugPassManager;
1254 Conf.VerifyEach = CGOpts.VerifyEach;
1255 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness;
1256 Conf.RemarksFilename = CGOpts.OptRecordFile;
1257 Conf.RemarksPasses = CGOpts.OptRecordPasses;
1258 Conf.RemarksFormat = CGOpts.OptRecordFormat;
1259 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile;
1260 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput;
1261 switch (Action) {
1262 case Backend_EmitNothing:
1263 Conf.PreCodeGenModuleHook = [](size_t Task, const llvm::Module &Mod) {
1264 return false;
1265 };
1266 break;
1267 case Backend_EmitLL:
1268 Conf.PreCodeGenModuleHook = [&](size_t Task, const llvm::Module &Mod) {
1269 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists);
1270 return false;
1271 };
1272 break;
1273 case Backend_EmitBC:
1274 Conf.PreCodeGenModuleHook = [&](size_t Task, const llvm::Module &Mod) {
1275 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists);
1276 return false;
1277 };
1278 break;
1279 default:
1280 Conf.CGFileType = getCodeGenFileType(Action);
1281 break;
1282 }
1283 if (Error E =
1284 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList,
1285 ModuleToDefinedGVSummaries[M->getModuleIdentifier()],
1286 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) {
1287 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1288 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n';
1289 });
1290 }
1291 }
1292
EmitBackendOutput(DiagnosticsEngine & Diags,const HeaderSearchOptions & HeaderOpts,const CodeGenOptions & CGOpts,const clang::TargetOptions & TOpts,const LangOptions & LOpts,StringRef TDesc,llvm::Module * M,BackendAction Action,IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS,std::unique_ptr<raw_pwrite_stream> OS,BackendConsumer * BC)1293 void clang::EmitBackendOutput(
1294 DiagnosticsEngine &Diags, const HeaderSearchOptions &HeaderOpts,
1295 const CodeGenOptions &CGOpts, const clang::TargetOptions &TOpts,
1296 const LangOptions &LOpts, StringRef TDesc, llvm::Module *M,
1297 BackendAction Action, IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS,
1298 std::unique_ptr<raw_pwrite_stream> OS, BackendConsumer *BC) {
1299
1300 llvm::TimeTraceScope TimeScope("Backend");
1301
1302 std::unique_ptr<llvm::Module> EmptyModule;
1303 if (!CGOpts.ThinLTOIndexFile.empty()) {
1304 // If we are performing a ThinLTO importing compile, load the function index
1305 // into memory and pass it into runThinLTOBackend, which will run the
1306 // function importer and invoke LTO passes.
1307 std::unique_ptr<ModuleSummaryIndex> CombinedIndex;
1308 if (Error E = llvm::getModuleSummaryIndexForFile(
1309 CGOpts.ThinLTOIndexFile,
1310 /*IgnoreEmptyThinLTOIndexFile*/ true)
1311 .moveInto(CombinedIndex)) {
1312 logAllUnhandledErrors(std::move(E), errs(),
1313 "Error loading index file '" +
1314 CGOpts.ThinLTOIndexFile + "': ");
1315 return;
1316 }
1317
1318 // A null CombinedIndex means we should skip ThinLTO compilation
1319 // (LLVM will optionally ignore empty index files, returning null instead
1320 // of an error).
1321 if (CombinedIndex) {
1322 if (!CombinedIndex->skipModuleByDistributedBackend()) {
1323 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts,
1324 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile,
1325 CGOpts.ProfileRemappingFile, Action);
1326 return;
1327 }
1328 // Distributed indexing detected that nothing from the module is needed
1329 // for the final linking. So we can skip the compilation. We sill need to
1330 // output an empty object file to make sure that a linker does not fail
1331 // trying to read it. Also for some features, like CFI, we must skip
1332 // the compilation as CombinedIndex does not contain all required
1333 // information.
1334 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext());
1335 EmptyModule->setTargetTriple(M->getTargetTriple());
1336 M = EmptyModule.get();
1337 }
1338 }
1339
1340 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M, VFS);
1341 AsmHelper.EmitAssembly(Action, std::move(OS), BC);
1342
1343 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's
1344 // DataLayout.
1345 if (AsmHelper.TM) {
1346 std::string DLDesc = M->getDataLayout().getStringRepresentation();
1347 if (DLDesc != TDesc) {
1348 unsigned DiagID = Diags.getCustomDiagID(
1349 DiagnosticsEngine::Error, "backend data layout '%0' does not match "
1350 "expected target description '%1'");
1351 Diags.Report(DiagID) << DLDesc << TDesc;
1352 }
1353 }
1354 }
1355
1356 // With -fembed-bitcode, save a copy of the llvm IR as data in the
1357 // __LLVM,__bitcode section.
EmbedBitcode(llvm::Module * M,const CodeGenOptions & CGOpts,llvm::MemoryBufferRef Buf)1358 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts,
1359 llvm::MemoryBufferRef Buf) {
1360 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off)
1361 return;
1362 llvm::embedBitcodeInModule(
1363 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker,
1364 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode,
1365 CGOpts.CmdArgs);
1366 }
1367
EmbedObject(llvm::Module * M,const CodeGenOptions & CGOpts,DiagnosticsEngine & Diags)1368 void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts,
1369 DiagnosticsEngine &Diags) {
1370 if (CGOpts.OffloadObjects.empty())
1371 return;
1372
1373 for (StringRef OffloadObject : CGOpts.OffloadObjects) {
1374 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ObjectOrErr =
1375 llvm::MemoryBuffer::getFileOrSTDIN(OffloadObject);
1376 if (ObjectOrErr.getError()) {
1377 auto DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1378 "could not open '%0' for embedding");
1379 Diags.Report(DiagID) << OffloadObject;
1380 return;
1381 }
1382
1383 llvm::embedBufferInModule(*M, **ObjectOrErr, ".llvm.offloading",
1384 Align(object::OffloadBinary::getAlignment()));
1385 }
1386 }
1387