1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/GlobalsModRef.h" 23 #include "llvm/Analysis/StackSafetyAnalysis.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/Bitcode/BitcodeReader.h" 27 #include "llvm/Bitcode/BitcodeWriter.h" 28 #include "llvm/Bitcode/BitcodeWriterPass.h" 29 #include "llvm/CodeGen/RegAllocRegistry.h" 30 #include "llvm/CodeGen/SchedulerRegistry.h" 31 #include "llvm/CodeGen/TargetSubtargetInfo.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/LegacyPassManager.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/ModuleSummaryIndex.h" 37 #include "llvm/IR/PassManager.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/IRPrinter/IRPrintingPasses.h" 40 #include "llvm/LTO/LTOBackend.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/MC/SubtargetFeature.h" 43 #include "llvm/MC/TargetRegistry.h" 44 #include "llvm/Object/OffloadBinary.h" 45 #include "llvm/Passes/PassBuilder.h" 46 #include "llvm/Passes/PassPlugin.h" 47 #include "llvm/Passes/StandardInstrumentations.h" 48 #include "llvm/Support/BuryPointer.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/MemoryBuffer.h" 51 #include "llvm/Support/PrettyStackTrace.h" 52 #include "llvm/Support/TimeProfiler.h" 53 #include "llvm/Support/Timer.h" 54 #include "llvm/Support/ToolOutputFile.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Target/TargetMachine.h" 57 #include "llvm/Target/TargetOptions.h" 58 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 59 #include "llvm/Transforms/Coroutines/CoroEarly.h" 60 #include "llvm/Transforms/Coroutines/CoroElide.h" 61 #include "llvm/Transforms/Coroutines/CoroSplit.h" 62 #include "llvm/Transforms/IPO.h" 63 #include "llvm/Transforms/IPO/AlwaysInliner.h" 64 #include "llvm/Transforms/IPO/LowerTypeTests.h" 65 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 66 #include "llvm/Transforms/InstCombine/InstCombine.h" 67 #include "llvm/Transforms/Instrumentation.h" 68 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 69 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 70 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 71 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 72 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 73 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 74 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 75 #include "llvm/Transforms/Instrumentation/KCFI.h" 76 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 77 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 78 #include "llvm/Transforms/Instrumentation/SanitizerBinaryMetadata.h" 79 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 80 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 81 #include "llvm/Transforms/ObjCARC.h" 82 #include "llvm/Transforms/Scalar.h" 83 #include "llvm/Transforms/Scalar/EarlyCSE.h" 84 #include "llvm/Transforms/Scalar/GVN.h" 85 #include "llvm/Transforms/Scalar/JumpThreading.h" 86 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 87 #include "llvm/Transforms/Utils.h" 88 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 89 #include "llvm/Transforms/Utils/Debugify.h" 90 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 91 #include "llvm/Transforms/Utils/ModuleUtils.h" 92 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 93 #include "llvm/Transforms/Utils/SymbolRewriter.h" 94 #include <memory> 95 #include <optional> 96 using namespace clang; 97 using namespace llvm; 98 99 #define HANDLE_EXTENSION(Ext) \ 100 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 101 #include "llvm/Support/Extension.def" 102 103 namespace llvm { 104 extern cl::opt<bool> DebugInfoCorrelate; 105 106 // Experiment to move sanitizers earlier. 107 static cl::opt<bool> ClSanitizeOnOptimizerEarlyEP( 108 "sanitizer-early-opt-ep", cl::Optional, 109 cl::desc("Insert sanitizers on OptimizerEarlyEP."), cl::init(false)); 110 } 111 112 namespace { 113 114 // Default filename used for profile generation. 115 std::string getDefaultProfileGenName() { 116 return DebugInfoCorrelate ? "default_%p.proflite" : "default_%m.profraw"; 117 } 118 119 class EmitAssemblyHelper { 120 DiagnosticsEngine &Diags; 121 const HeaderSearchOptions &HSOpts; 122 const CodeGenOptions &CodeGenOpts; 123 const clang::TargetOptions &TargetOpts; 124 const LangOptions &LangOpts; 125 Module *TheModule; 126 127 Timer CodeGenerationTime; 128 129 std::unique_ptr<raw_pwrite_stream> OS; 130 131 Triple TargetTriple; 132 133 TargetIRAnalysis getTargetIRAnalysis() const { 134 if (TM) 135 return TM->getTargetIRAnalysis(); 136 137 return TargetIRAnalysis(); 138 } 139 140 /// Generates the TargetMachine. 141 /// Leaves TM unchanged if it is unable to create the target machine. 142 /// Some of our clang tests specify triples which are not built 143 /// into clang. This is okay because these tests check the generated 144 /// IR, and they require DataLayout which depends on the triple. 145 /// In this case, we allow this method to fail and not report an error. 146 /// When MustCreateTM is used, we print an error if we are unable to load 147 /// the requested target. 148 void CreateTargetMachine(bool MustCreateTM); 149 150 /// Add passes necessary to emit assembly or LLVM IR. 151 /// 152 /// \return True on success. 153 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 154 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 155 156 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 157 std::error_code EC; 158 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 159 llvm::sys::fs::OF_None); 160 if (EC) { 161 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 162 F.reset(); 163 } 164 return F; 165 } 166 167 void 168 RunOptimizationPipeline(BackendAction Action, 169 std::unique_ptr<raw_pwrite_stream> &OS, 170 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS); 171 void RunCodegenPipeline(BackendAction Action, 172 std::unique_ptr<raw_pwrite_stream> &OS, 173 std::unique_ptr<llvm::ToolOutputFile> &DwoOS); 174 175 /// Check whether we should emit a module summary for regular LTO. 176 /// The module summary should be emitted by default for regular LTO 177 /// except for ld64 targets. 178 /// 179 /// \return True if the module summary should be emitted. 180 bool shouldEmitRegularLTOSummary() const { 181 return CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses && 182 TargetTriple.getVendor() != llvm::Triple::Apple; 183 } 184 185 public: 186 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 187 const HeaderSearchOptions &HeaderSearchOpts, 188 const CodeGenOptions &CGOpts, 189 const clang::TargetOptions &TOpts, 190 const LangOptions &LOpts, Module *M) 191 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 192 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 193 CodeGenerationTime("codegen", "Code Generation Time"), 194 TargetTriple(TheModule->getTargetTriple()) {} 195 196 ~EmitAssemblyHelper() { 197 if (CodeGenOpts.DisableFree) 198 BuryPointer(std::move(TM)); 199 } 200 201 std::unique_ptr<TargetMachine> TM; 202 203 // Emit output using the new pass manager for the optimization pipeline. 204 void EmitAssembly(BackendAction Action, 205 std::unique_ptr<raw_pwrite_stream> OS); 206 }; 207 } 208 209 static SanitizerCoverageOptions 210 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 211 SanitizerCoverageOptions Opts; 212 Opts.CoverageType = 213 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 214 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 215 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 216 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 217 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 218 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 219 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 220 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 221 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 222 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 223 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 224 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 225 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 226 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 227 Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads; 228 Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores; 229 Opts.CollectControlFlow = CGOpts.SanitizeCoverageControlFlow; 230 return Opts; 231 } 232 233 static SanitizerBinaryMetadataOptions 234 getSanitizerBinaryMetadataOptions(const CodeGenOptions &CGOpts) { 235 SanitizerBinaryMetadataOptions Opts; 236 Opts.Covered = CGOpts.SanitizeBinaryMetadataCovered; 237 Opts.Atomics = CGOpts.SanitizeBinaryMetadataAtomics; 238 Opts.UAR = CGOpts.SanitizeBinaryMetadataUAR; 239 return Opts; 240 } 241 242 // Check if ASan should use GC-friendly instrumentation for globals. 243 // First of all, there is no point if -fdata-sections is off (expect for MachO, 244 // where this is not a factor). Also, on ELF this feature requires an assembler 245 // extension that only works with -integrated-as at the moment. 246 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 247 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 248 return false; 249 switch (T.getObjectFormat()) { 250 case Triple::MachO: 251 case Triple::COFF: 252 return true; 253 case Triple::ELF: 254 return !CGOpts.DisableIntegratedAS; 255 case Triple::GOFF: 256 llvm::report_fatal_error("ASan not implemented for GOFF"); 257 case Triple::XCOFF: 258 llvm::report_fatal_error("ASan not implemented for XCOFF."); 259 case Triple::Wasm: 260 case Triple::DXContainer: 261 case Triple::SPIRV: 262 case Triple::UnknownObjectFormat: 263 break; 264 } 265 return false; 266 } 267 268 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 269 const CodeGenOptions &CodeGenOpts) { 270 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 271 272 switch (CodeGenOpts.getVecLib()) { 273 case CodeGenOptions::Accelerate: 274 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate, 275 TargetTriple); 276 break; 277 case CodeGenOptions::LIBMVEC: 278 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::LIBMVEC_X86, 279 TargetTriple); 280 break; 281 case CodeGenOptions::MASSV: 282 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV, 283 TargetTriple); 284 break; 285 case CodeGenOptions::SVML: 286 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML, 287 TargetTriple); 288 break; 289 case CodeGenOptions::SLEEF: 290 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SLEEFGNUABI, 291 TargetTriple); 292 break; 293 case CodeGenOptions::Darwin_libsystem_m: 294 TLII->addVectorizableFunctionsFromVecLib( 295 TargetLibraryInfoImpl::DarwinLibSystemM, TargetTriple); 296 break; 297 default: 298 break; 299 } 300 return TLII; 301 } 302 303 static std::optional<llvm::CodeModel::Model> 304 getCodeModel(const CodeGenOptions &CodeGenOpts) { 305 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 306 .Case("tiny", llvm::CodeModel::Tiny) 307 .Case("small", llvm::CodeModel::Small) 308 .Case("kernel", llvm::CodeModel::Kernel) 309 .Case("medium", llvm::CodeModel::Medium) 310 .Case("large", llvm::CodeModel::Large) 311 .Case("default", ~1u) 312 .Default(~0u); 313 assert(CodeModel != ~0u && "invalid code model!"); 314 if (CodeModel == ~1u) 315 return std::nullopt; 316 return static_cast<llvm::CodeModel::Model>(CodeModel); 317 } 318 319 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 320 if (Action == Backend_EmitObj) 321 return CGFT_ObjectFile; 322 else if (Action == Backend_EmitMCNull) 323 return CGFT_Null; 324 else { 325 assert(Action == Backend_EmitAssembly && "Invalid action!"); 326 return CGFT_AssemblyFile; 327 } 328 } 329 330 static bool actionRequiresCodeGen(BackendAction Action) { 331 return Action != Backend_EmitNothing && Action != Backend_EmitBC && 332 Action != Backend_EmitLL; 333 } 334 335 static bool initTargetOptions(DiagnosticsEngine &Diags, 336 llvm::TargetOptions &Options, 337 const CodeGenOptions &CodeGenOpts, 338 const clang::TargetOptions &TargetOpts, 339 const LangOptions &LangOpts, 340 const HeaderSearchOptions &HSOpts) { 341 switch (LangOpts.getThreadModel()) { 342 case LangOptions::ThreadModelKind::POSIX: 343 Options.ThreadModel = llvm::ThreadModel::POSIX; 344 break; 345 case LangOptions::ThreadModelKind::Single: 346 Options.ThreadModel = llvm::ThreadModel::Single; 347 break; 348 } 349 350 // Set float ABI type. 351 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 352 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 353 "Invalid Floating Point ABI!"); 354 Options.FloatABIType = 355 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 356 .Case("soft", llvm::FloatABI::Soft) 357 .Case("softfp", llvm::FloatABI::Soft) 358 .Case("hard", llvm::FloatABI::Hard) 359 .Default(llvm::FloatABI::Default); 360 361 // Set FP fusion mode. 362 switch (LangOpts.getDefaultFPContractMode()) { 363 case LangOptions::FPM_Off: 364 // Preserve any contraction performed by the front-end. (Strict performs 365 // splitting of the muladd intrinsic in the backend.) 366 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 367 break; 368 case LangOptions::FPM_On: 369 case LangOptions::FPM_FastHonorPragmas: 370 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 371 break; 372 case LangOptions::FPM_Fast: 373 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 374 break; 375 } 376 377 Options.BinutilsVersion = 378 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 379 Options.UseInitArray = CodeGenOpts.UseInitArray; 380 Options.LowerGlobalDtorsViaCxaAtExit = 381 CodeGenOpts.RegisterGlobalDtorsWithAtExit; 382 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 383 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 384 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 385 386 // Set EABI version. 387 Options.EABIVersion = TargetOpts.EABIVersion; 388 389 if (LangOpts.hasSjLjExceptions()) 390 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 391 if (LangOpts.hasSEHExceptions()) 392 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 393 if (LangOpts.hasDWARFExceptions()) 394 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 395 if (LangOpts.hasWasmExceptions()) 396 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 397 398 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 399 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 400 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 401 Options.UnsafeFPMath = LangOpts.AllowFPReassoc && LangOpts.AllowRecip && 402 LangOpts.NoSignedZero && LangOpts.ApproxFunc && 403 (LangOpts.getDefaultFPContractMode() == 404 LangOptions::FPModeKind::FPM_Fast || 405 LangOpts.getDefaultFPContractMode() == 406 LangOptions::FPModeKind::FPM_FastHonorPragmas); 407 Options.ApproxFuncFPMath = LangOpts.ApproxFunc; 408 409 Options.BBSections = 410 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 411 .Case("all", llvm::BasicBlockSection::All) 412 .Case("labels", llvm::BasicBlockSection::Labels) 413 .StartsWith("list=", llvm::BasicBlockSection::List) 414 .Case("none", llvm::BasicBlockSection::None) 415 .Default(llvm::BasicBlockSection::None); 416 417 if (Options.BBSections == llvm::BasicBlockSection::List) { 418 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 419 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 420 if (!MBOrErr) { 421 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 422 << MBOrErr.getError().message(); 423 return false; 424 } 425 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 426 } 427 428 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 429 Options.FunctionSections = CodeGenOpts.FunctionSections; 430 Options.DataSections = CodeGenOpts.DataSections; 431 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 432 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 433 Options.UniqueBasicBlockSectionNames = 434 CodeGenOpts.UniqueBasicBlockSectionNames; 435 Options.TLSSize = CodeGenOpts.TLSSize; 436 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 437 Options.ExplicitEmulatedTLS = true; 438 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 439 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 440 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 441 Options.EmitAddrsig = CodeGenOpts.Addrsig; 442 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 443 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 444 Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI; 445 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 446 Options.LoopAlignment = CodeGenOpts.LoopAlignment; 447 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 448 Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug; 449 Options.Hotpatch = CodeGenOpts.HotPatch; 450 Options.JMCInstrument = CodeGenOpts.JMCInstrument; 451 452 switch (CodeGenOpts.getSwiftAsyncFramePointer()) { 453 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto: 454 Options.SwiftAsyncFramePointer = 455 SwiftAsyncFramePointerMode::DeploymentBased; 456 break; 457 458 case CodeGenOptions::SwiftAsyncFramePointerKind::Always: 459 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always; 460 break; 461 462 case CodeGenOptions::SwiftAsyncFramePointerKind::Never: 463 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never; 464 break; 465 } 466 467 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 468 Options.MCOptions.EmitDwarfUnwind = CodeGenOpts.getEmitDwarfUnwind(); 469 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 470 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 471 Options.MCOptions.MCUseDwarfDirectory = 472 CodeGenOpts.NoDwarfDirectoryAsm 473 ? llvm::MCTargetOptions::DisableDwarfDirectory 474 : llvm::MCTargetOptions::EnableDwarfDirectory; 475 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 476 Options.MCOptions.MCIncrementalLinkerCompatible = 477 CodeGenOpts.IncrementalLinkerCompatible; 478 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 479 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 480 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 481 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 482 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 483 Options.MCOptions.ABIName = TargetOpts.ABI; 484 for (const auto &Entry : HSOpts.UserEntries) 485 if (!Entry.IsFramework && 486 (Entry.Group == frontend::IncludeDirGroup::Quoted || 487 Entry.Group == frontend::IncludeDirGroup::Angled || 488 Entry.Group == frontend::IncludeDirGroup::System)) 489 Options.MCOptions.IASSearchPaths.push_back( 490 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 491 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 492 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 493 Options.MCOptions.AsSecureLogFile = CodeGenOpts.AsSecureLogFile; 494 Options.MisExpect = CodeGenOpts.MisExpect; 495 496 return true; 497 } 498 499 static std::optional<GCOVOptions> 500 getGCOVOptions(const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts) { 501 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 502 return std::nullopt; 503 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 504 // LLVM's -default-gcov-version flag is set to something invalid. 505 GCOVOptions Options; 506 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 507 Options.EmitData = CodeGenOpts.EmitGcovArcs; 508 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 509 Options.NoRedZone = CodeGenOpts.DisableRedZone; 510 Options.Filter = CodeGenOpts.ProfileFilterFiles; 511 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 512 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 513 return Options; 514 } 515 516 static std::optional<InstrProfOptions> 517 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 518 const LangOptions &LangOpts) { 519 if (!CodeGenOpts.hasProfileClangInstr()) 520 return std::nullopt; 521 InstrProfOptions Options; 522 Options.NoRedZone = CodeGenOpts.DisableRedZone; 523 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 524 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 525 return Options; 526 } 527 528 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 529 SmallVector<const char *, 16> BackendArgs; 530 BackendArgs.push_back("clang"); // Fake program name. 531 if (!CodeGenOpts.DebugPass.empty()) { 532 BackendArgs.push_back("-debug-pass"); 533 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 534 } 535 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 536 BackendArgs.push_back("-limit-float-precision"); 537 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 538 } 539 // Check for the default "clang" invocation that won't set any cl::opt values. 540 // Skip trying to parse the command line invocation to avoid the issues 541 // described below. 542 if (BackendArgs.size() == 1) 543 return; 544 BackendArgs.push_back(nullptr); 545 // FIXME: The command line parser below is not thread-safe and shares a global 546 // state, so this call might crash or overwrite the options of another Clang 547 // instance in the same process. 548 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 549 BackendArgs.data()); 550 } 551 552 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 553 // Create the TargetMachine for generating code. 554 std::string Error; 555 std::string Triple = TheModule->getTargetTriple(); 556 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 557 if (!TheTarget) { 558 if (MustCreateTM) 559 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 560 return; 561 } 562 563 std::optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 564 std::string FeaturesStr = 565 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 566 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 567 std::optional<CodeGenOpt::Level> OptLevelOrNone = 568 CodeGenOpt::getLevel(CodeGenOpts.OptimizationLevel); 569 assert(OptLevelOrNone && "Invalid optimization level!"); 570 CodeGenOpt::Level OptLevel = *OptLevelOrNone; 571 572 llvm::TargetOptions Options; 573 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 574 HSOpts)) 575 return; 576 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 577 Options, RM, CM, OptLevel)); 578 } 579 580 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 581 BackendAction Action, 582 raw_pwrite_stream &OS, 583 raw_pwrite_stream *DwoOS) { 584 // Add LibraryInfo. 585 std::unique_ptr<TargetLibraryInfoImpl> TLII( 586 createTLII(TargetTriple, CodeGenOpts)); 587 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 588 589 // Normal mode, emit a .s or .o file by running the code generator. Note, 590 // this also adds codegenerator level optimization passes. 591 CodeGenFileType CGFT = getCodeGenFileType(Action); 592 593 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 594 // "codegen" passes so that it isn't run multiple times when there is 595 // inlining happening. 596 if (CodeGenOpts.OptimizationLevel > 0) 597 CodeGenPasses.add(createObjCARCContractPass()); 598 599 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 600 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 601 Diags.Report(diag::err_fe_unable_to_interface_with_target); 602 return false; 603 } 604 605 return true; 606 } 607 608 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 609 switch (Opts.OptimizationLevel) { 610 default: 611 llvm_unreachable("Invalid optimization level!"); 612 613 case 0: 614 return OptimizationLevel::O0; 615 616 case 1: 617 return OptimizationLevel::O1; 618 619 case 2: 620 switch (Opts.OptimizeSize) { 621 default: 622 llvm_unreachable("Invalid optimization level for size!"); 623 624 case 0: 625 return OptimizationLevel::O2; 626 627 case 1: 628 return OptimizationLevel::Os; 629 630 case 2: 631 return OptimizationLevel::Oz; 632 } 633 634 case 3: 635 return OptimizationLevel::O3; 636 } 637 } 638 639 static void addKCFIPass(const Triple &TargetTriple, const LangOptions &LangOpts, 640 PassBuilder &PB) { 641 // If the back-end supports KCFI operand bundle lowering, skip KCFIPass. 642 if (TargetTriple.getArch() == llvm::Triple::x86_64 || 643 TargetTriple.isAArch64(64)) 644 return; 645 646 // Ensure we lower KCFI operand bundles with -O0. 647 PB.registerOptimizerLastEPCallback( 648 [&](ModulePassManager &MPM, OptimizationLevel Level) { 649 if (Level == OptimizationLevel::O0 && 650 LangOpts.Sanitize.has(SanitizerKind::KCFI)) 651 MPM.addPass(createModuleToFunctionPassAdaptor(KCFIPass())); 652 }); 653 654 // When optimizations are requested, run KCIFPass after InstCombine to 655 // avoid unnecessary checks. 656 PB.registerPeepholeEPCallback( 657 [&](FunctionPassManager &FPM, OptimizationLevel Level) { 658 if (Level != OptimizationLevel::O0 && 659 LangOpts.Sanitize.has(SanitizerKind::KCFI)) 660 FPM.addPass(KCFIPass()); 661 }); 662 } 663 664 static void addSanitizers(const Triple &TargetTriple, 665 const CodeGenOptions &CodeGenOpts, 666 const LangOptions &LangOpts, PassBuilder &PB) { 667 auto SanitizersCallback = [&](ModulePassManager &MPM, 668 OptimizationLevel Level) { 669 if (CodeGenOpts.hasSanitizeCoverage()) { 670 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 671 MPM.addPass(SanitizerCoveragePass( 672 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 673 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 674 } 675 676 if (CodeGenOpts.hasSanitizeBinaryMetadata()) { 677 MPM.addPass(SanitizerBinaryMetadataPass( 678 getSanitizerBinaryMetadataOptions(CodeGenOpts))); 679 } 680 681 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 682 if (LangOpts.Sanitize.has(Mask)) { 683 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 684 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 685 686 MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel, 687 CodeGenOpts.SanitizeMemoryParamRetval); 688 MPM.addPass(MemorySanitizerPass(options)); 689 if (Level != OptimizationLevel::O0) { 690 // MemorySanitizer inserts complex instrumentation that mostly follows 691 // the logic of the original code, but operates on "shadow" values. It 692 // can benefit from re-running some general purpose optimization 693 // passes. 694 MPM.addPass(RequireAnalysisPass<GlobalsAA, Module>()); 695 FunctionPassManager FPM; 696 FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */)); 697 FPM.addPass(InstCombinePass()); 698 FPM.addPass(JumpThreadingPass()); 699 FPM.addPass(GVNPass()); 700 FPM.addPass(InstCombinePass()); 701 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 702 } 703 } 704 }; 705 MSanPass(SanitizerKind::Memory, false); 706 MSanPass(SanitizerKind::KernelMemory, true); 707 708 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 709 MPM.addPass(ModuleThreadSanitizerPass()); 710 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 711 } 712 713 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 714 if (LangOpts.Sanitize.has(Mask)) { 715 bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 716 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 717 llvm::AsanDtorKind DestructorKind = 718 CodeGenOpts.getSanitizeAddressDtor(); 719 AddressSanitizerOptions Opts; 720 Opts.CompileKernel = CompileKernel; 721 Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask); 722 Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 723 Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn(); 724 MPM.addPass(AddressSanitizerPass(Opts, UseGlobalGC, UseOdrIndicator, 725 DestructorKind)); 726 } 727 }; 728 ASanPass(SanitizerKind::Address, false); 729 ASanPass(SanitizerKind::KernelAddress, true); 730 731 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 732 if (LangOpts.Sanitize.has(Mask)) { 733 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 734 MPM.addPass(HWAddressSanitizerPass( 735 {CompileKernel, Recover, 736 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0})); 737 } 738 }; 739 HWASanPass(SanitizerKind::HWAddress, false); 740 HWASanPass(SanitizerKind::KernelHWAddress, true); 741 742 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 743 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 744 } 745 }; 746 if (ClSanitizeOnOptimizerEarlyEP) { 747 PB.registerOptimizerEarlyEPCallback( 748 [SanitizersCallback](ModulePassManager &MPM, OptimizationLevel Level) { 749 ModulePassManager NewMPM; 750 SanitizersCallback(NewMPM, Level); 751 if (!NewMPM.isEmpty()) { 752 // Sanitizers can abandon<GlobalsAA>. 753 NewMPM.addPass(RequireAnalysisPass<GlobalsAA, Module>()); 754 MPM.addPass(std::move(NewMPM)); 755 } 756 }); 757 } else { 758 // LastEP does not need GlobalsAA. 759 PB.registerOptimizerLastEPCallback(SanitizersCallback); 760 } 761 } 762 763 void EmitAssemblyHelper::RunOptimizationPipeline( 764 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 765 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS) { 766 std::optional<PGOOptions> PGOOpt; 767 768 if (CodeGenOpts.hasProfileIRInstr()) 769 // -fprofile-generate. 770 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 771 ? getDefaultProfileGenName() 772 : CodeGenOpts.InstrProfileOutput, 773 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 774 CodeGenOpts.DebugInfoForProfiling); 775 else if (CodeGenOpts.hasProfileIRUse()) { 776 // -fprofile-use. 777 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 778 : PGOOptions::NoCSAction; 779 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 780 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 781 CSAction, CodeGenOpts.DebugInfoForProfiling); 782 } else if (!CodeGenOpts.SampleProfileFile.empty()) 783 // -fprofile-sample-use 784 PGOOpt = PGOOptions( 785 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 786 PGOOptions::SampleUse, PGOOptions::NoCSAction, 787 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 788 else if (CodeGenOpts.PseudoProbeForProfiling) 789 // -fpseudo-probe-for-profiling 790 PGOOpt = 791 PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction, 792 CodeGenOpts.DebugInfoForProfiling, true); 793 else if (CodeGenOpts.DebugInfoForProfiling) 794 // -fdebug-info-for-profiling 795 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 796 PGOOptions::NoCSAction, true); 797 798 // Check to see if we want to generate a CS profile. 799 if (CodeGenOpts.hasProfileCSIRInstr()) { 800 assert(!CodeGenOpts.hasProfileCSIRUse() && 801 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 802 "the same time"); 803 if (PGOOpt) { 804 assert(PGOOpt->Action != PGOOptions::IRInstr && 805 PGOOpt->Action != PGOOptions::SampleUse && 806 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 807 " pass"); 808 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 809 ? getDefaultProfileGenName() 810 : CodeGenOpts.InstrProfileOutput; 811 PGOOpt->CSAction = PGOOptions::CSIRInstr; 812 } else 813 PGOOpt = PGOOptions("", 814 CodeGenOpts.InstrProfileOutput.empty() 815 ? getDefaultProfileGenName() 816 : CodeGenOpts.InstrProfileOutput, 817 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 818 CodeGenOpts.DebugInfoForProfiling); 819 } 820 if (TM) 821 TM->setPGOOption(PGOOpt); 822 823 PipelineTuningOptions PTO; 824 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 825 // For historical reasons, loop interleaving is set to mirror setting for loop 826 // unrolling. 827 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 828 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 829 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 830 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 831 // Only enable CGProfilePass when using integrated assembler, since 832 // non-integrated assemblers don't recognize .cgprofile section. 833 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 834 835 LoopAnalysisManager LAM; 836 FunctionAnalysisManager FAM; 837 CGSCCAnalysisManager CGAM; 838 ModuleAnalysisManager MAM; 839 840 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure"; 841 PassInstrumentationCallbacks PIC; 842 PrintPassOptions PrintPassOpts; 843 PrintPassOpts.Indent = DebugPassStructure; 844 PrintPassOpts.SkipAnalyses = DebugPassStructure; 845 StandardInstrumentations SI( 846 TheModule->getContext(), 847 (CodeGenOpts.DebugPassManager || DebugPassStructure), 848 /*VerifyEach*/ false, PrintPassOpts); 849 SI.registerCallbacks(PIC, &FAM); 850 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 851 852 if (CodeGenOpts.EnableAssignmentTracking) { 853 PB.registerPipelineStartEPCallback( 854 [&](ModulePassManager &MPM, OptimizationLevel Level) { 855 MPM.addPass(AssignmentTrackingPass()); 856 }); 857 } 858 859 // Enable verify-debuginfo-preserve-each for new PM. 860 DebugifyEachInstrumentation Debugify; 861 DebugInfoPerPass DebugInfoBeforePass; 862 if (CodeGenOpts.EnableDIPreservationVerify) { 863 Debugify.setDebugifyMode(DebugifyMode::OriginalDebugInfo); 864 Debugify.setDebugInfoBeforePass(DebugInfoBeforePass); 865 866 if (!CodeGenOpts.DIBugsReportFilePath.empty()) 867 Debugify.setOrigDIVerifyBugsReportFilePath( 868 CodeGenOpts.DIBugsReportFilePath); 869 Debugify.registerCallbacks(PIC); 870 } 871 // Attempt to load pass plugins and register their callbacks with PB. 872 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 873 auto PassPlugin = PassPlugin::Load(PluginFN); 874 if (PassPlugin) { 875 PassPlugin->registerPassBuilderCallbacks(PB); 876 } else { 877 Diags.Report(diag::err_fe_unable_to_load_plugin) 878 << PluginFN << toString(PassPlugin.takeError()); 879 } 880 } 881 #define HANDLE_EXTENSION(Ext) \ 882 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 883 #include "llvm/Support/Extension.def" 884 885 // Register the target library analysis directly and give it a customized 886 // preset TLI. 887 std::unique_ptr<TargetLibraryInfoImpl> TLII( 888 createTLII(TargetTriple, CodeGenOpts)); 889 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 890 891 // Register all the basic analyses with the managers. 892 PB.registerModuleAnalyses(MAM); 893 PB.registerCGSCCAnalyses(CGAM); 894 PB.registerFunctionAnalyses(FAM); 895 PB.registerLoopAnalyses(LAM); 896 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 897 898 ModulePassManager MPM; 899 900 if (!CodeGenOpts.DisableLLVMPasses) { 901 // Map our optimization levels into one of the distinct levels used to 902 // configure the pipeline. 903 OptimizationLevel Level = mapToLevel(CodeGenOpts); 904 905 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 906 bool IsLTO = CodeGenOpts.PrepareForLTO; 907 908 if (LangOpts.ObjCAutoRefCount) { 909 PB.registerPipelineStartEPCallback( 910 [](ModulePassManager &MPM, OptimizationLevel Level) { 911 if (Level != OptimizationLevel::O0) 912 MPM.addPass( 913 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 914 }); 915 PB.registerPipelineEarlySimplificationEPCallback( 916 [](ModulePassManager &MPM, OptimizationLevel Level) { 917 if (Level != OptimizationLevel::O0) 918 MPM.addPass(ObjCARCAPElimPass()); 919 }); 920 PB.registerScalarOptimizerLateEPCallback( 921 [](FunctionPassManager &FPM, OptimizationLevel Level) { 922 if (Level != OptimizationLevel::O0) 923 FPM.addPass(ObjCARCOptPass()); 924 }); 925 } 926 927 // If we reached here with a non-empty index file name, then the index 928 // file was empty and we are not performing ThinLTO backend compilation 929 // (used in testing in a distributed build environment). 930 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 931 // If so drop any the type test assume sequences inserted for whole program 932 // vtables so that codegen doesn't complain. 933 if (IsThinLTOPostLink) 934 PB.registerPipelineStartEPCallback( 935 [](ModulePassManager &MPM, OptimizationLevel Level) { 936 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 937 /*ImportSummary=*/nullptr, 938 /*DropTypeTests=*/true)); 939 }); 940 941 if (CodeGenOpts.InstrumentFunctions || 942 CodeGenOpts.InstrumentFunctionEntryBare || 943 CodeGenOpts.InstrumentFunctionsAfterInlining || 944 CodeGenOpts.InstrumentForProfiling) { 945 PB.registerPipelineStartEPCallback( 946 [](ModulePassManager &MPM, OptimizationLevel Level) { 947 MPM.addPass(createModuleToFunctionPassAdaptor( 948 EntryExitInstrumenterPass(/*PostInlining=*/false))); 949 }); 950 PB.registerOptimizerLastEPCallback( 951 [](ModulePassManager &MPM, OptimizationLevel Level) { 952 MPM.addPass(createModuleToFunctionPassAdaptor( 953 EntryExitInstrumenterPass(/*PostInlining=*/true))); 954 }); 955 } 956 957 // Register callbacks to schedule sanitizer passes at the appropriate part 958 // of the pipeline. 959 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 960 PB.registerScalarOptimizerLateEPCallback( 961 [](FunctionPassManager &FPM, OptimizationLevel Level) { 962 FPM.addPass(BoundsCheckingPass()); 963 }); 964 965 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 966 // done on PreLink stage. 967 if (!IsThinLTOPostLink) { 968 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 969 addKCFIPass(TargetTriple, LangOpts, PB); 970 } 971 972 if (std::optional<GCOVOptions> Options = 973 getGCOVOptions(CodeGenOpts, LangOpts)) 974 PB.registerPipelineStartEPCallback( 975 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 976 MPM.addPass(GCOVProfilerPass(*Options)); 977 }); 978 if (std::optional<InstrProfOptions> Options = 979 getInstrProfOptions(CodeGenOpts, LangOpts)) 980 PB.registerPipelineStartEPCallback( 981 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 982 MPM.addPass(InstrProfiling(*Options, false)); 983 }); 984 985 if (CodeGenOpts.OptimizationLevel == 0) { 986 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO); 987 } else if (IsThinLTO) { 988 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 989 } else if (IsLTO) { 990 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 991 } else { 992 MPM = PB.buildPerModuleDefaultPipeline(Level); 993 } 994 995 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 996 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 997 MPM.addPass(ModuleMemProfilerPass()); 998 } 999 } 1000 1001 // Add a verifier pass if requested. We don't have to do this if the action 1002 // requires code generation because there will already be a verifier pass in 1003 // the code-generation pipeline. 1004 if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule) 1005 MPM.addPass(VerifierPass()); 1006 1007 if (Action == Backend_EmitBC || Action == Backend_EmitLL) { 1008 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1009 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1010 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1011 CodeGenOpts.EnableSplitLTOUnit); 1012 if (Action == Backend_EmitBC) { 1013 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1014 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1015 if (!ThinLinkOS) 1016 return; 1017 } 1018 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1019 : nullptr)); 1020 } else { 1021 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists, 1022 /*EmitLTOSummary=*/true)); 1023 } 1024 1025 } else { 1026 // Emit a module summary by default for Regular LTO except for ld64 1027 // targets 1028 bool EmitLTOSummary = shouldEmitRegularLTOSummary(); 1029 if (EmitLTOSummary) { 1030 if (!TheModule->getModuleFlag("ThinLTO")) 1031 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1032 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1033 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1034 uint32_t(1)); 1035 } 1036 if (Action == Backend_EmitBC) 1037 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 1038 EmitLTOSummary)); 1039 else 1040 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists, 1041 EmitLTOSummary)); 1042 } 1043 } 1044 1045 // Now that we have all of the passes ready, run them. 1046 { 1047 PrettyStackTraceString CrashInfo("Optimizer"); 1048 llvm::TimeTraceScope TimeScope("Optimizer"); 1049 MPM.run(*TheModule, MAM); 1050 } 1051 } 1052 1053 void EmitAssemblyHelper::RunCodegenPipeline( 1054 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1055 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) { 1056 // We still use the legacy PM to run the codegen pipeline since the new PM 1057 // does not work with the codegen pipeline. 1058 // FIXME: make the new PM work with the codegen pipeline. 1059 legacy::PassManager CodeGenPasses; 1060 1061 // Append any output we need to the pass manager. 1062 switch (Action) { 1063 case Backend_EmitAssembly: 1064 case Backend_EmitMCNull: 1065 case Backend_EmitObj: 1066 CodeGenPasses.add( 1067 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1068 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1069 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1070 if (!DwoOS) 1071 return; 1072 } 1073 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1074 DwoOS ? &DwoOS->os() : nullptr)) 1075 // FIXME: Should we handle this error differently? 1076 return; 1077 break; 1078 default: 1079 return; 1080 } 1081 1082 { 1083 PrettyStackTraceString CrashInfo("Code generation"); 1084 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1085 CodeGenPasses.run(*TheModule); 1086 } 1087 } 1088 1089 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 1090 std::unique_ptr<raw_pwrite_stream> OS) { 1091 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1092 setCommandLineOpts(CodeGenOpts); 1093 1094 bool RequiresCodeGen = actionRequiresCodeGen(Action); 1095 CreateTargetMachine(RequiresCodeGen); 1096 1097 if (RequiresCodeGen && !TM) 1098 return; 1099 if (TM) 1100 TheModule->setDataLayout(TM->createDataLayout()); 1101 1102 // Before executing passes, print the final values of the LLVM options. 1103 cl::PrintOptionValues(); 1104 1105 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1106 RunOptimizationPipeline(Action, OS, ThinLinkOS); 1107 RunCodegenPipeline(Action, OS, DwoOS); 1108 1109 if (ThinLinkOS) 1110 ThinLinkOS->keep(); 1111 if (DwoOS) 1112 DwoOS->keep(); 1113 } 1114 1115 static void runThinLTOBackend( 1116 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1117 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1118 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1119 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1120 std::string ProfileRemapping, BackendAction Action) { 1121 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1122 ModuleToDefinedGVSummaries; 1123 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1124 1125 setCommandLineOpts(CGOpts); 1126 1127 // We can simply import the values mentioned in the combined index, since 1128 // we should only invoke this using the individual indexes written out 1129 // via a WriteIndexesThinBackend. 1130 FunctionImporter::ImportMapTy ImportList; 1131 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1132 return; 1133 1134 auto AddStream = [&](size_t Task, const Twine &ModuleName) { 1135 return std::make_unique<CachedFileStream>(std::move(OS), 1136 CGOpts.ObjectFilenameForDebug); 1137 }; 1138 lto::Config Conf; 1139 if (CGOpts.SaveTempsFilePrefix != "") { 1140 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1141 /* UseInputModulePath */ false)) { 1142 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1143 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1144 << '\n'; 1145 }); 1146 } 1147 } 1148 Conf.CPU = TOpts.CPU; 1149 Conf.CodeModel = getCodeModel(CGOpts); 1150 Conf.MAttrs = TOpts.Features; 1151 Conf.RelocModel = CGOpts.RelocationModel; 1152 std::optional<CodeGenOpt::Level> OptLevelOrNone = 1153 CodeGenOpt::getLevel(CGOpts.OptimizationLevel); 1154 assert(OptLevelOrNone && "Invalid optimization level!"); 1155 Conf.CGOptLevel = *OptLevelOrNone; 1156 Conf.OptLevel = CGOpts.OptimizationLevel; 1157 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1158 Conf.SampleProfile = std::move(SampleProfile); 1159 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1160 // For historical reasons, loop interleaving is set to mirror setting for loop 1161 // unrolling. 1162 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1163 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1164 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1165 // Only enable CGProfilePass when using integrated assembler, since 1166 // non-integrated assemblers don't recognize .cgprofile section. 1167 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1168 1169 // Context sensitive profile. 1170 if (CGOpts.hasProfileCSIRInstr()) { 1171 Conf.RunCSIRInstr = true; 1172 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1173 } else if (CGOpts.hasProfileCSIRUse()) { 1174 Conf.RunCSIRInstr = false; 1175 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1176 } 1177 1178 Conf.ProfileRemapping = std::move(ProfileRemapping); 1179 Conf.DebugPassManager = CGOpts.DebugPassManager; 1180 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1181 Conf.RemarksFilename = CGOpts.OptRecordFile; 1182 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1183 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1184 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1185 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1186 switch (Action) { 1187 case Backend_EmitNothing: 1188 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1189 return false; 1190 }; 1191 break; 1192 case Backend_EmitLL: 1193 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1194 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1195 return false; 1196 }; 1197 break; 1198 case Backend_EmitBC: 1199 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1200 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1201 return false; 1202 }; 1203 break; 1204 default: 1205 Conf.CGFileType = getCodeGenFileType(Action); 1206 break; 1207 } 1208 if (Error E = 1209 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1210 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1211 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) { 1212 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1213 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1214 }); 1215 } 1216 } 1217 1218 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1219 const HeaderSearchOptions &HeaderOpts, 1220 const CodeGenOptions &CGOpts, 1221 const clang::TargetOptions &TOpts, 1222 const LangOptions &LOpts, 1223 StringRef TDesc, Module *M, 1224 BackendAction Action, 1225 std::unique_ptr<raw_pwrite_stream> OS) { 1226 1227 llvm::TimeTraceScope TimeScope("Backend"); 1228 1229 std::unique_ptr<llvm::Module> EmptyModule; 1230 if (!CGOpts.ThinLTOIndexFile.empty()) { 1231 // If we are performing a ThinLTO importing compile, load the function index 1232 // into memory and pass it into runThinLTOBackend, which will run the 1233 // function importer and invoke LTO passes. 1234 std::unique_ptr<ModuleSummaryIndex> CombinedIndex; 1235 if (Error E = llvm::getModuleSummaryIndexForFile( 1236 CGOpts.ThinLTOIndexFile, 1237 /*IgnoreEmptyThinLTOIndexFile*/ true) 1238 .moveInto(CombinedIndex)) { 1239 logAllUnhandledErrors(std::move(E), errs(), 1240 "Error loading index file '" + 1241 CGOpts.ThinLTOIndexFile + "': "); 1242 return; 1243 } 1244 1245 // A null CombinedIndex means we should skip ThinLTO compilation 1246 // (LLVM will optionally ignore empty index files, returning null instead 1247 // of an error). 1248 if (CombinedIndex) { 1249 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1250 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1251 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1252 CGOpts.ProfileRemappingFile, Action); 1253 return; 1254 } 1255 // Distributed indexing detected that nothing from the module is needed 1256 // for the final linking. So we can skip the compilation. We sill need to 1257 // output an empty object file to make sure that a linker does not fail 1258 // trying to read it. Also for some features, like CFI, we must skip 1259 // the compilation as CombinedIndex does not contain all required 1260 // information. 1261 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1262 EmptyModule->setTargetTriple(M->getTargetTriple()); 1263 M = EmptyModule.get(); 1264 } 1265 } 1266 1267 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1268 AsmHelper.EmitAssembly(Action, std::move(OS)); 1269 1270 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1271 // DataLayout. 1272 if (AsmHelper.TM) { 1273 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1274 if (DLDesc != TDesc) { 1275 unsigned DiagID = Diags.getCustomDiagID( 1276 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1277 "expected target description '%1'"); 1278 Diags.Report(DiagID) << DLDesc << TDesc; 1279 } 1280 } 1281 } 1282 1283 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1284 // __LLVM,__bitcode section. 1285 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1286 llvm::MemoryBufferRef Buf) { 1287 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1288 return; 1289 llvm::embedBitcodeInModule( 1290 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1291 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1292 CGOpts.CmdArgs); 1293 } 1294 1295 void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts, 1296 DiagnosticsEngine &Diags) { 1297 if (CGOpts.OffloadObjects.empty()) 1298 return; 1299 1300 for (StringRef OffloadObject : CGOpts.OffloadObjects) { 1301 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ObjectOrErr = 1302 llvm::MemoryBuffer::getFileOrSTDIN(OffloadObject); 1303 if (std::error_code EC = ObjectOrErr.getError()) { 1304 auto DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1305 "could not open '%0' for embedding"); 1306 Diags.Report(DiagID) << OffloadObject; 1307 return; 1308 } 1309 1310 llvm::embedBufferInModule(*M, **ObjectOrErr, ".llvm.offloading", 1311 Align(object::OffloadBinary::getAlignment())); 1312 } 1313 } 1314