1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Bitcode/BitcodeReader.h" 24 #include "llvm/Bitcode/BitcodeWriter.h" 25 #include "llvm/Bitcode/BitcodeWriterPass.h" 26 #include "llvm/CodeGen/RegAllocRegistry.h" 27 #include "llvm/CodeGen/SchedulerRegistry.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Passes/PassPlugin.h" 40 #include "llvm/Passes/StandardInstrumentations.h" 41 #include "llvm/Support/BuryPointer.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/MemoryBuffer.h" 44 #include "llvm/Support/PrettyStackTrace.h" 45 #include "llvm/Support/TargetRegistry.h" 46 #include "llvm/Support/TimeProfiler.h" 47 #include "llvm/Support/Timer.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include "llvm/Target/TargetOptions.h" 51 #include "llvm/Transforms/Coroutines.h" 52 #include "llvm/Transforms/IPO.h" 53 #include "llvm/Transforms/IPO/AlwaysInliner.h" 54 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 55 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 56 #include "llvm/Transforms/InstCombine/InstCombine.h" 57 #include "llvm/Transforms/Instrumentation.h" 58 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 59 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 60 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 61 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 62 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 63 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 64 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 65 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 66 #include "llvm/Transforms/ObjCARC.h" 67 #include "llvm/Transforms/Scalar.h" 68 #include "llvm/Transforms/Scalar/GVN.h" 69 #include "llvm/Transforms/Utils.h" 70 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 71 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 72 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 73 #include "llvm/Transforms/Utils/SymbolRewriter.h" 74 #include <memory> 75 using namespace clang; 76 using namespace llvm; 77 78 namespace { 79 80 // Default filename used for profile generation. 81 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 82 83 class EmitAssemblyHelper { 84 DiagnosticsEngine &Diags; 85 const HeaderSearchOptions &HSOpts; 86 const CodeGenOptions &CodeGenOpts; 87 const clang::TargetOptions &TargetOpts; 88 const LangOptions &LangOpts; 89 Module *TheModule; 90 91 Timer CodeGenerationTime; 92 93 std::unique_ptr<raw_pwrite_stream> OS; 94 95 TargetIRAnalysis getTargetIRAnalysis() const { 96 if (TM) 97 return TM->getTargetIRAnalysis(); 98 99 return TargetIRAnalysis(); 100 } 101 102 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 103 104 /// Generates the TargetMachine. 105 /// Leaves TM unchanged if it is unable to create the target machine. 106 /// Some of our clang tests specify triples which are not built 107 /// into clang. This is okay because these tests check the generated 108 /// IR, and they require DataLayout which depends on the triple. 109 /// In this case, we allow this method to fail and not report an error. 110 /// When MustCreateTM is used, we print an error if we are unable to load 111 /// the requested target. 112 void CreateTargetMachine(bool MustCreateTM); 113 114 /// Add passes necessary to emit assembly or LLVM IR. 115 /// 116 /// \return True on success. 117 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 118 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 119 120 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 121 std::error_code EC; 122 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 123 llvm::sys::fs::OF_None); 124 if (EC) { 125 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 126 F.reset(); 127 } 128 return F; 129 } 130 131 public: 132 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 133 const HeaderSearchOptions &HeaderSearchOpts, 134 const CodeGenOptions &CGOpts, 135 const clang::TargetOptions &TOpts, 136 const LangOptions &LOpts, Module *M) 137 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 138 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 139 CodeGenerationTime("codegen", "Code Generation Time") {} 140 141 ~EmitAssemblyHelper() { 142 if (CodeGenOpts.DisableFree) 143 BuryPointer(std::move(TM)); 144 } 145 146 std::unique_ptr<TargetMachine> TM; 147 148 void EmitAssembly(BackendAction Action, 149 std::unique_ptr<raw_pwrite_stream> OS); 150 151 void EmitAssemblyWithNewPassManager(BackendAction Action, 152 std::unique_ptr<raw_pwrite_stream> OS); 153 }; 154 155 // We need this wrapper to access LangOpts and CGOpts from extension functions 156 // that we add to the PassManagerBuilder. 157 class PassManagerBuilderWrapper : public PassManagerBuilder { 158 public: 159 PassManagerBuilderWrapper(const Triple &TargetTriple, 160 const CodeGenOptions &CGOpts, 161 const LangOptions &LangOpts) 162 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 163 LangOpts(LangOpts) {} 164 const Triple &getTargetTriple() const { return TargetTriple; } 165 const CodeGenOptions &getCGOpts() const { return CGOpts; } 166 const LangOptions &getLangOpts() const { return LangOpts; } 167 168 private: 169 const Triple &TargetTriple; 170 const CodeGenOptions &CGOpts; 171 const LangOptions &LangOpts; 172 }; 173 } 174 175 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 176 if (Builder.OptLevel > 0) 177 PM.add(createObjCARCAPElimPass()); 178 } 179 180 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 181 if (Builder.OptLevel > 0) 182 PM.add(createObjCARCExpandPass()); 183 } 184 185 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 186 if (Builder.OptLevel > 0) 187 PM.add(createObjCARCOptPass()); 188 } 189 190 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 191 legacy::PassManagerBase &PM) { 192 PM.add(createAddDiscriminatorsPass()); 193 } 194 195 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 196 legacy::PassManagerBase &PM) { 197 PM.add(createBoundsCheckingLegacyPass()); 198 } 199 200 static SanitizerCoverageOptions 201 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 202 SanitizerCoverageOptions Opts; 203 Opts.CoverageType = 204 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 205 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 206 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 207 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 208 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 209 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 210 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 211 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 212 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 213 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 214 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 215 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 216 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 217 return Opts; 218 } 219 220 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 221 legacy::PassManagerBase &PM) { 222 const PassManagerBuilderWrapper &BuilderWrapper = 223 static_cast<const PassManagerBuilderWrapper &>(Builder); 224 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 225 auto Opts = getSancovOptsFromCGOpts(CGOpts); 226 PM.add(createModuleSanitizerCoverageLegacyPassPass(Opts)); 227 } 228 229 // Check if ASan should use GC-friendly instrumentation for globals. 230 // First of all, there is no point if -fdata-sections is off (expect for MachO, 231 // where this is not a factor). Also, on ELF this feature requires an assembler 232 // extension that only works with -integrated-as at the moment. 233 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 234 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 235 return false; 236 switch (T.getObjectFormat()) { 237 case Triple::MachO: 238 case Triple::COFF: 239 return true; 240 case Triple::ELF: 241 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 242 case Triple::XCOFF: 243 llvm::report_fatal_error("ASan not implemented for XCOFF."); 244 case Triple::Wasm: 245 case Triple::UnknownObjectFormat: 246 break; 247 } 248 return false; 249 } 250 251 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 252 legacy::PassManagerBase &PM) { 253 const PassManagerBuilderWrapper &BuilderWrapper = 254 static_cast<const PassManagerBuilderWrapper&>(Builder); 255 const Triple &T = BuilderWrapper.getTargetTriple(); 256 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 257 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 258 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 259 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 260 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 261 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 262 UseAfterScope)); 263 PM.add(createModuleAddressSanitizerLegacyPassPass( 264 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 265 } 266 267 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 268 legacy::PassManagerBase &PM) { 269 PM.add(createAddressSanitizerFunctionPass( 270 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 271 PM.add(createModuleAddressSanitizerLegacyPassPass( 272 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 273 /*UseOdrIndicator*/ false)); 274 } 275 276 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 277 legacy::PassManagerBase &PM) { 278 const PassManagerBuilderWrapper &BuilderWrapper = 279 static_cast<const PassManagerBuilderWrapper &>(Builder); 280 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 281 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 282 PM.add( 283 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 284 } 285 286 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 287 legacy::PassManagerBase &PM) { 288 PM.add(createHWAddressSanitizerLegacyPassPass( 289 /*CompileKernel*/ true, /*Recover*/ true)); 290 } 291 292 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 293 legacy::PassManagerBase &PM, 294 bool CompileKernel) { 295 const PassManagerBuilderWrapper &BuilderWrapper = 296 static_cast<const PassManagerBuilderWrapper&>(Builder); 297 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 298 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 299 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 300 PM.add(createMemorySanitizerLegacyPassPass( 301 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 302 303 // MemorySanitizer inserts complex instrumentation that mostly follows 304 // the logic of the original code, but operates on "shadow" values. 305 // It can benefit from re-running some general purpose optimization passes. 306 if (Builder.OptLevel > 0) { 307 PM.add(createEarlyCSEPass()); 308 PM.add(createReassociatePass()); 309 PM.add(createLICMPass()); 310 PM.add(createGVNPass()); 311 PM.add(createInstructionCombiningPass()); 312 PM.add(createDeadStoreEliminationPass()); 313 } 314 } 315 316 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 317 legacy::PassManagerBase &PM) { 318 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 319 } 320 321 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 322 legacy::PassManagerBase &PM) { 323 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 324 } 325 326 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 327 legacy::PassManagerBase &PM) { 328 PM.add(createThreadSanitizerLegacyPassPass()); 329 } 330 331 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 332 legacy::PassManagerBase &PM) { 333 const PassManagerBuilderWrapper &BuilderWrapper = 334 static_cast<const PassManagerBuilderWrapper&>(Builder); 335 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 336 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 337 } 338 339 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 340 const CodeGenOptions &CodeGenOpts) { 341 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 342 if (!CodeGenOpts.SimplifyLibCalls) 343 TLII->disableAllFunctions(); 344 else { 345 // Disable individual libc/libm calls in TargetLibraryInfo. 346 LibFunc F; 347 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 348 if (TLII->getLibFunc(FuncName, F)) 349 TLII->setUnavailable(F); 350 } 351 352 switch (CodeGenOpts.getVecLib()) { 353 case CodeGenOptions::Accelerate: 354 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 355 break; 356 case CodeGenOptions::MASSV: 357 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 358 break; 359 case CodeGenOptions::SVML: 360 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 361 break; 362 default: 363 break; 364 } 365 return TLII; 366 } 367 368 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 369 legacy::PassManager *MPM) { 370 llvm::SymbolRewriter::RewriteDescriptorList DL; 371 372 llvm::SymbolRewriter::RewriteMapParser MapParser; 373 for (const auto &MapFile : Opts.RewriteMapFiles) 374 MapParser.parse(MapFile, &DL); 375 376 MPM->add(createRewriteSymbolsPass(DL)); 377 } 378 379 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 380 switch (CodeGenOpts.OptimizationLevel) { 381 default: 382 llvm_unreachable("Invalid optimization level!"); 383 case 0: 384 return CodeGenOpt::None; 385 case 1: 386 return CodeGenOpt::Less; 387 case 2: 388 return CodeGenOpt::Default; // O2/Os/Oz 389 case 3: 390 return CodeGenOpt::Aggressive; 391 } 392 } 393 394 static Optional<llvm::CodeModel::Model> 395 getCodeModel(const CodeGenOptions &CodeGenOpts) { 396 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 397 .Case("tiny", llvm::CodeModel::Tiny) 398 .Case("small", llvm::CodeModel::Small) 399 .Case("kernel", llvm::CodeModel::Kernel) 400 .Case("medium", llvm::CodeModel::Medium) 401 .Case("large", llvm::CodeModel::Large) 402 .Case("default", ~1u) 403 .Default(~0u); 404 assert(CodeModel != ~0u && "invalid code model!"); 405 if (CodeModel == ~1u) 406 return None; 407 return static_cast<llvm::CodeModel::Model>(CodeModel); 408 } 409 410 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 411 if (Action == Backend_EmitObj) 412 return TargetMachine::CGFT_ObjectFile; 413 else if (Action == Backend_EmitMCNull) 414 return TargetMachine::CGFT_Null; 415 else { 416 assert(Action == Backend_EmitAssembly && "Invalid action!"); 417 return TargetMachine::CGFT_AssemblyFile; 418 } 419 } 420 421 static void initTargetOptions(llvm::TargetOptions &Options, 422 const CodeGenOptions &CodeGenOpts, 423 const clang::TargetOptions &TargetOpts, 424 const LangOptions &LangOpts, 425 const HeaderSearchOptions &HSOpts) { 426 Options.ThreadModel = 427 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 428 .Case("posix", llvm::ThreadModel::POSIX) 429 .Case("single", llvm::ThreadModel::Single); 430 431 // Set float ABI type. 432 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 433 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 434 "Invalid Floating Point ABI!"); 435 Options.FloatABIType = 436 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 437 .Case("soft", llvm::FloatABI::Soft) 438 .Case("softfp", llvm::FloatABI::Soft) 439 .Case("hard", llvm::FloatABI::Hard) 440 .Default(llvm::FloatABI::Default); 441 442 // Set FP fusion mode. 443 switch (LangOpts.getDefaultFPContractMode()) { 444 case LangOptions::FPC_Off: 445 // Preserve any contraction performed by the front-end. (Strict performs 446 // splitting of the muladd intrinsic in the backend.) 447 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 448 break; 449 case LangOptions::FPC_On: 450 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 451 break; 452 case LangOptions::FPC_Fast: 453 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 454 break; 455 } 456 457 Options.UseInitArray = CodeGenOpts.UseInitArray; 458 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 459 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 460 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 461 462 // Set EABI version. 463 Options.EABIVersion = TargetOpts.EABIVersion; 464 465 if (LangOpts.SjLjExceptions) 466 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 467 if (LangOpts.SEHExceptions) 468 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 469 if (LangOpts.DWARFExceptions) 470 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 471 if (LangOpts.WasmExceptions) 472 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 473 474 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 475 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 476 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 477 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 478 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 479 Options.FunctionSections = CodeGenOpts.FunctionSections; 480 Options.DataSections = CodeGenOpts.DataSections; 481 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 482 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 483 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 484 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 485 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 486 Options.EmitAddrsig = CodeGenOpts.Addrsig; 487 Options.EnableDebugEntryValues = CodeGenOpts.EnableDebugEntryValues; 488 489 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 490 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 491 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 492 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 493 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 494 Options.MCOptions.MCIncrementalLinkerCompatible = 495 CodeGenOpts.IncrementalLinkerCompatible; 496 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 497 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 498 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 499 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 500 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 501 Options.MCOptions.ABIName = TargetOpts.ABI; 502 for (const auto &Entry : HSOpts.UserEntries) 503 if (!Entry.IsFramework && 504 (Entry.Group == frontend::IncludeDirGroup::Quoted || 505 Entry.Group == frontend::IncludeDirGroup::Angled || 506 Entry.Group == frontend::IncludeDirGroup::System)) 507 Options.MCOptions.IASSearchPaths.push_back( 508 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 509 } 510 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 511 if (CodeGenOpts.DisableGCov) 512 return None; 513 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 514 return None; 515 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 516 // LLVM's -default-gcov-version flag is set to something invalid. 517 GCOVOptions Options; 518 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 519 Options.EmitData = CodeGenOpts.EmitGcovArcs; 520 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 521 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 522 Options.NoRedZone = CodeGenOpts.DisableRedZone; 523 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 524 Options.Filter = CodeGenOpts.ProfileFilterFiles; 525 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 526 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 527 return Options; 528 } 529 530 static Optional<InstrProfOptions> 531 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 532 const LangOptions &LangOpts) { 533 if (!CodeGenOpts.hasProfileClangInstr()) 534 return None; 535 InstrProfOptions Options; 536 Options.NoRedZone = CodeGenOpts.DisableRedZone; 537 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 538 539 // TODO: Surface the option to emit atomic profile counter increments at 540 // the driver level. 541 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 542 return Options; 543 } 544 545 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 546 legacy::FunctionPassManager &FPM) { 547 // Handle disabling of all LLVM passes, where we want to preserve the 548 // internal module before any optimization. 549 if (CodeGenOpts.DisableLLVMPasses) 550 return; 551 552 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 553 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 554 // are inserted before PMBuilder ones - they'd get the default-constructed 555 // TLI with an unknown target otherwise. 556 Triple TargetTriple(TheModule->getTargetTriple()); 557 std::unique_ptr<TargetLibraryInfoImpl> TLII( 558 createTLII(TargetTriple, CodeGenOpts)); 559 560 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 561 562 // At O0 and O1 we only run the always inliner which is more efficient. At 563 // higher optimization levels we run the normal inliner. 564 if (CodeGenOpts.OptimizationLevel <= 1) { 565 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 566 !CodeGenOpts.DisableLifetimeMarkers); 567 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 568 } else { 569 // We do not want to inline hot callsites for SamplePGO module-summary build 570 // because profile annotation will happen again in ThinLTO backend, and we 571 // want the IR of the hot path to match the profile. 572 PMBuilder.Inliner = createFunctionInliningPass( 573 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 574 (!CodeGenOpts.SampleProfileFile.empty() && 575 CodeGenOpts.PrepareForThinLTO)); 576 } 577 578 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 579 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 580 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 581 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 582 583 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 584 // Loop interleaving in the loop vectorizer has historically been set to be 585 // enabled when loop unrolling is enabled. 586 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 587 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 588 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 589 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 590 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 591 592 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 593 594 if (TM) 595 TM->adjustPassManager(PMBuilder); 596 597 if (CodeGenOpts.DebugInfoForProfiling || 598 !CodeGenOpts.SampleProfileFile.empty()) 599 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 600 addAddDiscriminatorsPass); 601 602 // In ObjC ARC mode, add the main ARC optimization passes. 603 if (LangOpts.ObjCAutoRefCount) { 604 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 605 addObjCARCExpandPass); 606 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 607 addObjCARCAPElimPass); 608 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 609 addObjCARCOptPass); 610 } 611 612 if (LangOpts.Coroutines) 613 addCoroutinePassesToExtensionPoints(PMBuilder); 614 615 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 616 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 617 addBoundsCheckingPass); 618 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 619 addBoundsCheckingPass); 620 } 621 622 if (CodeGenOpts.SanitizeCoverageType || 623 CodeGenOpts.SanitizeCoverageIndirectCalls || 624 CodeGenOpts.SanitizeCoverageTraceCmp) { 625 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 626 addSanitizerCoveragePass); 627 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 628 addSanitizerCoveragePass); 629 } 630 631 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 632 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 633 addAddressSanitizerPasses); 634 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 635 addAddressSanitizerPasses); 636 } 637 638 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 639 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 640 addKernelAddressSanitizerPasses); 641 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 642 addKernelAddressSanitizerPasses); 643 } 644 645 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 646 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 647 addHWAddressSanitizerPasses); 648 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 649 addHWAddressSanitizerPasses); 650 } 651 652 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 653 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 654 addKernelHWAddressSanitizerPasses); 655 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 656 addKernelHWAddressSanitizerPasses); 657 } 658 659 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 660 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 661 addMemorySanitizerPass); 662 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 663 addMemorySanitizerPass); 664 } 665 666 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 667 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 668 addKernelMemorySanitizerPass); 669 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 670 addKernelMemorySanitizerPass); 671 } 672 673 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 674 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 675 addThreadSanitizerPass); 676 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 677 addThreadSanitizerPass); 678 } 679 680 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 681 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 682 addDataFlowSanitizerPass); 683 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 684 addDataFlowSanitizerPass); 685 } 686 687 // Set up the per-function pass manager. 688 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 689 if (CodeGenOpts.VerifyModule) 690 FPM.add(createVerifierPass()); 691 692 // Set up the per-module pass manager. 693 if (!CodeGenOpts.RewriteMapFiles.empty()) 694 addSymbolRewriterPass(CodeGenOpts, &MPM); 695 696 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 697 MPM.add(createGCOVProfilerPass(*Options)); 698 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 699 MPM.add(createStripSymbolsPass(true)); 700 } 701 702 if (Optional<InstrProfOptions> Options = 703 getInstrProfOptions(CodeGenOpts, LangOpts)) 704 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 705 706 bool hasIRInstr = false; 707 if (CodeGenOpts.hasProfileIRInstr()) { 708 PMBuilder.EnablePGOInstrGen = true; 709 hasIRInstr = true; 710 } 711 if (CodeGenOpts.hasProfileCSIRInstr()) { 712 assert(!CodeGenOpts.hasProfileCSIRUse() && 713 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 714 "same time"); 715 assert(!hasIRInstr && 716 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 717 "same time"); 718 PMBuilder.EnablePGOCSInstrGen = true; 719 hasIRInstr = true; 720 } 721 if (hasIRInstr) { 722 if (!CodeGenOpts.InstrProfileOutput.empty()) 723 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 724 else 725 PMBuilder.PGOInstrGen = DefaultProfileGenName; 726 } 727 if (CodeGenOpts.hasProfileIRUse()) { 728 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 729 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 730 } 731 732 if (!CodeGenOpts.SampleProfileFile.empty()) 733 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 734 735 PMBuilder.populateFunctionPassManager(FPM); 736 PMBuilder.populateModulePassManager(MPM); 737 } 738 739 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 740 SmallVector<const char *, 16> BackendArgs; 741 BackendArgs.push_back("clang"); // Fake program name. 742 if (!CodeGenOpts.DebugPass.empty()) { 743 BackendArgs.push_back("-debug-pass"); 744 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 745 } 746 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 747 BackendArgs.push_back("-limit-float-precision"); 748 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 749 } 750 BackendArgs.push_back(nullptr); 751 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 752 BackendArgs.data()); 753 } 754 755 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 756 // Create the TargetMachine for generating code. 757 std::string Error; 758 std::string Triple = TheModule->getTargetTriple(); 759 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 760 if (!TheTarget) { 761 if (MustCreateTM) 762 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 763 return; 764 } 765 766 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 767 std::string FeaturesStr = 768 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 769 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 770 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 771 772 llvm::TargetOptions Options; 773 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 774 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 775 Options, RM, CM, OptLevel)); 776 } 777 778 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 779 BackendAction Action, 780 raw_pwrite_stream &OS, 781 raw_pwrite_stream *DwoOS) { 782 // Add LibraryInfo. 783 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 784 std::unique_ptr<TargetLibraryInfoImpl> TLII( 785 createTLII(TargetTriple, CodeGenOpts)); 786 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 787 788 // Normal mode, emit a .s or .o file by running the code generator. Note, 789 // this also adds codegenerator level optimization passes. 790 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 791 792 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 793 // "codegen" passes so that it isn't run multiple times when there is 794 // inlining happening. 795 if (CodeGenOpts.OptimizationLevel > 0) 796 CodeGenPasses.add(createObjCARCContractPass()); 797 798 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 799 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 800 Diags.Report(diag::err_fe_unable_to_interface_with_target); 801 return false; 802 } 803 804 return true; 805 } 806 807 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 808 std::unique_ptr<raw_pwrite_stream> OS) { 809 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 810 811 setCommandLineOpts(CodeGenOpts); 812 813 bool UsesCodeGen = (Action != Backend_EmitNothing && 814 Action != Backend_EmitBC && 815 Action != Backend_EmitLL); 816 CreateTargetMachine(UsesCodeGen); 817 818 if (UsesCodeGen && !TM) 819 return; 820 if (TM) 821 TheModule->setDataLayout(TM->createDataLayout()); 822 823 legacy::PassManager PerModulePasses; 824 PerModulePasses.add( 825 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 826 827 legacy::FunctionPassManager PerFunctionPasses(TheModule); 828 PerFunctionPasses.add( 829 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 830 831 CreatePasses(PerModulePasses, PerFunctionPasses); 832 833 legacy::PassManager CodeGenPasses; 834 CodeGenPasses.add( 835 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 836 837 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 838 839 switch (Action) { 840 case Backend_EmitNothing: 841 break; 842 843 case Backend_EmitBC: 844 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 845 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 846 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 847 if (!ThinLinkOS) 848 return; 849 } 850 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 851 CodeGenOpts.EnableSplitLTOUnit); 852 PerModulePasses.add(createWriteThinLTOBitcodePass( 853 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 854 } else { 855 // Emit a module summary by default for Regular LTO except for ld64 856 // targets 857 bool EmitLTOSummary = 858 (CodeGenOpts.PrepareForLTO && 859 !CodeGenOpts.DisableLLVMPasses && 860 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 861 llvm::Triple::Apple); 862 if (EmitLTOSummary) { 863 if (!TheModule->getModuleFlag("ThinLTO")) 864 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 865 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 866 uint32_t(1)); 867 } 868 869 PerModulePasses.add(createBitcodeWriterPass( 870 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 871 } 872 break; 873 874 case Backend_EmitLL: 875 PerModulePasses.add( 876 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 877 break; 878 879 default: 880 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 881 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 882 if (!DwoOS) 883 return; 884 } 885 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 886 DwoOS ? &DwoOS->os() : nullptr)) 887 return; 888 } 889 890 // Before executing passes, print the final values of the LLVM options. 891 cl::PrintOptionValues(); 892 893 // Run passes. For now we do all passes at once, but eventually we 894 // would like to have the option of streaming code generation. 895 896 { 897 PrettyStackTraceString CrashInfo("Per-function optimization"); 898 llvm::TimeTraceScope TimeScope("PerFunctionPasses", StringRef("")); 899 900 PerFunctionPasses.doInitialization(); 901 for (Function &F : *TheModule) 902 if (!F.isDeclaration()) 903 PerFunctionPasses.run(F); 904 PerFunctionPasses.doFinalization(); 905 } 906 907 { 908 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 909 llvm::TimeTraceScope TimeScope("PerModulePasses", StringRef("")); 910 PerModulePasses.run(*TheModule); 911 } 912 913 { 914 PrettyStackTraceString CrashInfo("Code generation"); 915 llvm::TimeTraceScope TimeScope("CodeGenPasses", StringRef("")); 916 CodeGenPasses.run(*TheModule); 917 } 918 919 if (ThinLinkOS) 920 ThinLinkOS->keep(); 921 if (DwoOS) 922 DwoOS->keep(); 923 } 924 925 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 926 switch (Opts.OptimizationLevel) { 927 default: 928 llvm_unreachable("Invalid optimization level!"); 929 930 case 1: 931 return PassBuilder::O1; 932 933 case 2: 934 switch (Opts.OptimizeSize) { 935 default: 936 llvm_unreachable("Invalid optimization level for size!"); 937 938 case 0: 939 return PassBuilder::O2; 940 941 case 1: 942 return PassBuilder::Os; 943 944 case 2: 945 return PassBuilder::Oz; 946 } 947 948 case 3: 949 return PassBuilder::O3; 950 } 951 } 952 953 static void addSanitizersAtO0(ModulePassManager &MPM, 954 const Triple &TargetTriple, 955 const LangOptions &LangOpts, 956 const CodeGenOptions &CodeGenOpts) { 957 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 958 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 959 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 960 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 961 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 962 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 963 MPM.addPass( 964 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 965 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 966 }; 967 968 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 969 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 970 } 971 972 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 973 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 974 } 975 976 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 977 MPM.addPass(MemorySanitizerPass({})); 978 MPM.addPass(createModuleToFunctionPassAdaptor(MemorySanitizerPass({}))); 979 } 980 981 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 982 MPM.addPass(createModuleToFunctionPassAdaptor( 983 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 984 } 985 986 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 987 MPM.addPass(ThreadSanitizerPass()); 988 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 989 } 990 } 991 992 /// A clean version of `EmitAssembly` that uses the new pass manager. 993 /// 994 /// Not all features are currently supported in this system, but where 995 /// necessary it falls back to the legacy pass manager to at least provide 996 /// basic functionality. 997 /// 998 /// This API is planned to have its functionality finished and then to replace 999 /// `EmitAssembly` at some point in the future when the default switches. 1000 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1001 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1002 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 1003 setCommandLineOpts(CodeGenOpts); 1004 1005 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1006 Action != Backend_EmitBC && 1007 Action != Backend_EmitLL); 1008 CreateTargetMachine(RequiresCodeGen); 1009 1010 if (RequiresCodeGen && !TM) 1011 return; 1012 if (TM) 1013 TheModule->setDataLayout(TM->createDataLayout()); 1014 1015 Optional<PGOOptions> PGOOpt; 1016 1017 if (CodeGenOpts.hasProfileIRInstr()) 1018 // -fprofile-generate. 1019 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1020 ? DefaultProfileGenName 1021 : CodeGenOpts.InstrProfileOutput, 1022 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1023 CodeGenOpts.DebugInfoForProfiling); 1024 else if (CodeGenOpts.hasProfileIRUse()) { 1025 // -fprofile-use. 1026 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1027 : PGOOptions::NoCSAction; 1028 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1029 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1030 CSAction, CodeGenOpts.DebugInfoForProfiling); 1031 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1032 // -fprofile-sample-use 1033 PGOOpt = 1034 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1035 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1036 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1037 else if (CodeGenOpts.DebugInfoForProfiling) 1038 // -fdebug-info-for-profiling 1039 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1040 PGOOptions::NoCSAction, true); 1041 1042 // Check to see if we want to generate a CS profile. 1043 if (CodeGenOpts.hasProfileCSIRInstr()) { 1044 assert(!CodeGenOpts.hasProfileCSIRUse() && 1045 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1046 "the same time"); 1047 if (PGOOpt.hasValue()) { 1048 assert(PGOOpt->Action != PGOOptions::IRInstr && 1049 PGOOpt->Action != PGOOptions::SampleUse && 1050 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1051 " pass"); 1052 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1053 ? DefaultProfileGenName 1054 : CodeGenOpts.InstrProfileOutput; 1055 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1056 } else 1057 PGOOpt = PGOOptions("", 1058 CodeGenOpts.InstrProfileOutput.empty() 1059 ? DefaultProfileGenName 1060 : CodeGenOpts.InstrProfileOutput, 1061 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1062 CodeGenOpts.DebugInfoForProfiling); 1063 } 1064 1065 PipelineTuningOptions PTO; 1066 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1067 // For historical reasons, loop interleaving is set to mirror setting for loop 1068 // unrolling. 1069 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1070 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1071 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1072 1073 PassInstrumentationCallbacks PIC; 1074 StandardInstrumentations SI; 1075 SI.registerCallbacks(PIC); 1076 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1077 1078 // Attempt to load pass plugins and register their callbacks with PB. 1079 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1080 auto PassPlugin = PassPlugin::Load(PluginFN); 1081 if (PassPlugin) { 1082 PassPlugin->registerPassBuilderCallbacks(PB); 1083 } else { 1084 Diags.Report(diag::err_fe_unable_to_load_plugin) 1085 << PluginFN << toString(PassPlugin.takeError()); 1086 } 1087 } 1088 1089 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1090 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1091 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1092 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1093 1094 // Register the AA manager first so that our version is the one used. 1095 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1096 1097 // Register the target library analysis directly and give it a customized 1098 // preset TLI. 1099 Triple TargetTriple(TheModule->getTargetTriple()); 1100 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1101 createTLII(TargetTriple, CodeGenOpts)); 1102 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1103 1104 // Register all the basic analyses with the managers. 1105 PB.registerModuleAnalyses(MAM); 1106 PB.registerCGSCCAnalyses(CGAM); 1107 PB.registerFunctionAnalyses(FAM); 1108 PB.registerLoopAnalyses(LAM); 1109 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1110 1111 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1112 1113 if (!CodeGenOpts.DisableLLVMPasses) { 1114 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1115 bool IsLTO = CodeGenOpts.PrepareForLTO; 1116 1117 if (CodeGenOpts.OptimizationLevel == 0) { 1118 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1119 MPM.addPass(GCOVProfilerPass(*Options)); 1120 if (Optional<InstrProfOptions> Options = 1121 getInstrProfOptions(CodeGenOpts, LangOpts)) 1122 MPM.addPass(InstrProfiling(*Options, false)); 1123 1124 // Build a minimal pipeline based on the semantics required by Clang, 1125 // which is just that always inlining occurs. Further, disable generating 1126 // lifetime intrinsics to avoid enabling further optimizations during 1127 // code generation. 1128 MPM.addPass(AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/false)); 1129 1130 // At -O0, we can still do PGO. Add all the requested passes for 1131 // instrumentation PGO, if requested. 1132 if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr || 1133 PGOOpt->Action == PGOOptions::IRUse)) 1134 PB.addPGOInstrPassesForO0( 1135 MPM, CodeGenOpts.DebugPassManager, 1136 /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr), 1137 /* IsCS */ false, PGOOpt->ProfileFile, 1138 PGOOpt->ProfileRemappingFile); 1139 1140 // At -O0 we directly run necessary sanitizer passes. 1141 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1142 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1143 1144 // Lastly, add semantically necessary passes for LTO. 1145 if (IsLTO || IsThinLTO) { 1146 MPM.addPass(CanonicalizeAliasesPass()); 1147 MPM.addPass(NameAnonGlobalPass()); 1148 } 1149 } else { 1150 // Map our optimization levels into one of the distinct levels used to 1151 // configure the pipeline. 1152 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1153 1154 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1155 MPM.addPass(createModuleToFunctionPassAdaptor( 1156 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1157 }); 1158 1159 // Register callbacks to schedule sanitizer passes at the appropriate part of 1160 // the pipeline. 1161 // FIXME: either handle asan/the remaining sanitizers or error out 1162 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1163 PB.registerScalarOptimizerLateEPCallback( 1164 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1165 FPM.addPass(BoundsCheckingPass()); 1166 }); 1167 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1168 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1169 MPM.addPass(MemorySanitizerPass({})); 1170 }); 1171 PB.registerOptimizerLastEPCallback( 1172 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1173 FPM.addPass(MemorySanitizerPass({})); 1174 }); 1175 } 1176 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1177 PB.registerPipelineStartEPCallback( 1178 [](ModulePassManager &MPM) { MPM.addPass(ThreadSanitizerPass()); }); 1179 PB.registerOptimizerLastEPCallback( 1180 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1181 FPM.addPass(ThreadSanitizerPass()); 1182 }); 1183 } 1184 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1185 PB.registerPipelineStartEPCallback([&](ModulePassManager &MPM) { 1186 MPM.addPass( 1187 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1188 }); 1189 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1190 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1191 PB.registerOptimizerLastEPCallback( 1192 [Recover, UseAfterScope](FunctionPassManager &FPM, 1193 PassBuilder::OptimizationLevel Level) { 1194 FPM.addPass(AddressSanitizerPass( 1195 /*CompileKernel=*/false, Recover, UseAfterScope)); 1196 }); 1197 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1198 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1199 PB.registerPipelineStartEPCallback( 1200 [Recover, ModuleUseAfterScope, 1201 UseOdrIndicator](ModulePassManager &MPM) { 1202 MPM.addPass(ModuleAddressSanitizerPass( 1203 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1204 UseOdrIndicator)); 1205 }); 1206 } 1207 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1208 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1209 MPM.addPass(GCOVProfilerPass(*Options)); 1210 }); 1211 if (Optional<InstrProfOptions> Options = 1212 getInstrProfOptions(CodeGenOpts, LangOpts)) 1213 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1214 MPM.addPass(InstrProfiling(*Options, false)); 1215 }); 1216 1217 if (IsThinLTO) { 1218 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1219 Level, CodeGenOpts.DebugPassManager); 1220 MPM.addPass(CanonicalizeAliasesPass()); 1221 MPM.addPass(NameAnonGlobalPass()); 1222 } else if (IsLTO) { 1223 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1224 CodeGenOpts.DebugPassManager); 1225 MPM.addPass(CanonicalizeAliasesPass()); 1226 MPM.addPass(NameAnonGlobalPass()); 1227 } else { 1228 MPM = PB.buildPerModuleDefaultPipeline(Level, 1229 CodeGenOpts.DebugPassManager); 1230 } 1231 } 1232 1233 if (CodeGenOpts.SanitizeCoverageType || 1234 CodeGenOpts.SanitizeCoverageIndirectCalls || 1235 CodeGenOpts.SanitizeCoverageTraceCmp) { 1236 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1237 MPM.addPass(ModuleSanitizerCoveragePass(SancovOpts)); 1238 } 1239 1240 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1241 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1242 MPM.addPass(HWAddressSanitizerPass( 1243 /*CompileKernel=*/false, Recover)); 1244 } 1245 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1246 MPM.addPass(HWAddressSanitizerPass( 1247 /*CompileKernel=*/true, /*Recover=*/true)); 1248 } 1249 1250 if (CodeGenOpts.OptimizationLevel == 0) { 1251 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1252 } 1253 } 1254 1255 // FIXME: We still use the legacy pass manager to do code generation. We 1256 // create that pass manager here and use it as needed below. 1257 legacy::PassManager CodeGenPasses; 1258 bool NeedCodeGen = false; 1259 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1260 1261 // Append any output we need to the pass manager. 1262 switch (Action) { 1263 case Backend_EmitNothing: 1264 break; 1265 1266 case Backend_EmitBC: 1267 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1268 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1269 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1270 if (!ThinLinkOS) 1271 return; 1272 } 1273 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1274 CodeGenOpts.EnableSplitLTOUnit); 1275 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1276 : nullptr)); 1277 } else { 1278 // Emit a module summary by default for Regular LTO except for ld64 1279 // targets 1280 bool EmitLTOSummary = 1281 (CodeGenOpts.PrepareForLTO && 1282 !CodeGenOpts.DisableLLVMPasses && 1283 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1284 llvm::Triple::Apple); 1285 if (EmitLTOSummary) { 1286 if (!TheModule->getModuleFlag("ThinLTO")) 1287 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1288 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1289 uint32_t(1)); 1290 } 1291 MPM.addPass( 1292 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1293 } 1294 break; 1295 1296 case Backend_EmitLL: 1297 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1298 break; 1299 1300 case Backend_EmitAssembly: 1301 case Backend_EmitMCNull: 1302 case Backend_EmitObj: 1303 NeedCodeGen = true; 1304 CodeGenPasses.add( 1305 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1306 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1307 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1308 if (!DwoOS) 1309 return; 1310 } 1311 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1312 DwoOS ? &DwoOS->os() : nullptr)) 1313 // FIXME: Should we handle this error differently? 1314 return; 1315 break; 1316 } 1317 1318 // Before executing passes, print the final values of the LLVM options. 1319 cl::PrintOptionValues(); 1320 1321 // Now that we have all of the passes ready, run them. 1322 { 1323 PrettyStackTraceString CrashInfo("Optimizer"); 1324 MPM.run(*TheModule, MAM); 1325 } 1326 1327 // Now if needed, run the legacy PM for codegen. 1328 if (NeedCodeGen) { 1329 PrettyStackTraceString CrashInfo("Code generation"); 1330 CodeGenPasses.run(*TheModule); 1331 } 1332 1333 if (ThinLinkOS) 1334 ThinLinkOS->keep(); 1335 if (DwoOS) 1336 DwoOS->keep(); 1337 } 1338 1339 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1340 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1341 if (!BMsOrErr) 1342 return BMsOrErr.takeError(); 1343 1344 // The bitcode file may contain multiple modules, we want the one that is 1345 // marked as being the ThinLTO module. 1346 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1347 return *Bm; 1348 1349 return make_error<StringError>("Could not find module summary", 1350 inconvertibleErrorCode()); 1351 } 1352 1353 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1354 for (BitcodeModule &BM : BMs) { 1355 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1356 if (LTOInfo && LTOInfo->IsThinLTO) 1357 return &BM; 1358 } 1359 return nullptr; 1360 } 1361 1362 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1363 const HeaderSearchOptions &HeaderOpts, 1364 const CodeGenOptions &CGOpts, 1365 const clang::TargetOptions &TOpts, 1366 const LangOptions &LOpts, 1367 std::unique_ptr<raw_pwrite_stream> OS, 1368 std::string SampleProfile, 1369 std::string ProfileRemapping, 1370 BackendAction Action) { 1371 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1372 ModuleToDefinedGVSummaries; 1373 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1374 1375 setCommandLineOpts(CGOpts); 1376 1377 // We can simply import the values mentioned in the combined index, since 1378 // we should only invoke this using the individual indexes written out 1379 // via a WriteIndexesThinBackend. 1380 FunctionImporter::ImportMapTy ImportList; 1381 for (auto &GlobalList : *CombinedIndex) { 1382 // Ignore entries for undefined references. 1383 if (GlobalList.second.SummaryList.empty()) 1384 continue; 1385 1386 auto GUID = GlobalList.first; 1387 for (auto &Summary : GlobalList.second.SummaryList) { 1388 // Skip the summaries for the importing module. These are included to 1389 // e.g. record required linkage changes. 1390 if (Summary->modulePath() == M->getModuleIdentifier()) 1391 continue; 1392 // Add an entry to provoke importing by thinBackend. 1393 ImportList[Summary->modulePath()].insert(GUID); 1394 } 1395 } 1396 1397 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1398 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1399 1400 for (auto &I : ImportList) { 1401 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1402 llvm::MemoryBuffer::getFile(I.first()); 1403 if (!MBOrErr) { 1404 errs() << "Error loading imported file '" << I.first() 1405 << "': " << MBOrErr.getError().message() << "\n"; 1406 return; 1407 } 1408 1409 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1410 if (!BMOrErr) { 1411 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1412 errs() << "Error loading imported file '" << I.first() 1413 << "': " << EIB.message() << '\n'; 1414 }); 1415 return; 1416 } 1417 ModuleMap.insert({I.first(), *BMOrErr}); 1418 1419 OwnedImports.push_back(std::move(*MBOrErr)); 1420 } 1421 auto AddStream = [&](size_t Task) { 1422 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1423 }; 1424 lto::Config Conf; 1425 if (CGOpts.SaveTempsFilePrefix != "") { 1426 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1427 /* UseInputModulePath */ false)) { 1428 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1429 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1430 << '\n'; 1431 }); 1432 } 1433 } 1434 Conf.CPU = TOpts.CPU; 1435 Conf.CodeModel = getCodeModel(CGOpts); 1436 Conf.MAttrs = TOpts.Features; 1437 Conf.RelocModel = CGOpts.RelocationModel; 1438 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1439 Conf.OptLevel = CGOpts.OptimizationLevel; 1440 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1441 Conf.SampleProfile = std::move(SampleProfile); 1442 1443 // Context sensitive profile. 1444 if (CGOpts.hasProfileCSIRInstr()) { 1445 Conf.RunCSIRInstr = true; 1446 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1447 } else if (CGOpts.hasProfileCSIRUse()) { 1448 Conf.RunCSIRInstr = false; 1449 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1450 } 1451 1452 Conf.ProfileRemapping = std::move(ProfileRemapping); 1453 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1454 Conf.DebugPassManager = CGOpts.DebugPassManager; 1455 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1456 Conf.RemarksFilename = CGOpts.OptRecordFile; 1457 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1458 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1459 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1460 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1461 switch (Action) { 1462 case Backend_EmitNothing: 1463 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1464 return false; 1465 }; 1466 break; 1467 case Backend_EmitLL: 1468 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1469 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1470 return false; 1471 }; 1472 break; 1473 case Backend_EmitBC: 1474 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1475 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1476 return false; 1477 }; 1478 break; 1479 default: 1480 Conf.CGFileType = getCodeGenFileType(Action); 1481 break; 1482 } 1483 if (Error E = thinBackend( 1484 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1485 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1486 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1487 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1488 }); 1489 } 1490 } 1491 1492 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1493 const HeaderSearchOptions &HeaderOpts, 1494 const CodeGenOptions &CGOpts, 1495 const clang::TargetOptions &TOpts, 1496 const LangOptions &LOpts, 1497 const llvm::DataLayout &TDesc, Module *M, 1498 BackendAction Action, 1499 std::unique_ptr<raw_pwrite_stream> OS) { 1500 1501 llvm::TimeTraceScope TimeScope("Backend", StringRef("")); 1502 1503 std::unique_ptr<llvm::Module> EmptyModule; 1504 if (!CGOpts.ThinLTOIndexFile.empty()) { 1505 // If we are performing a ThinLTO importing compile, load the function index 1506 // into memory and pass it into runThinLTOBackend, which will run the 1507 // function importer and invoke LTO passes. 1508 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1509 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1510 /*IgnoreEmptyThinLTOIndexFile*/true); 1511 if (!IndexOrErr) { 1512 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1513 "Error loading index file '" + 1514 CGOpts.ThinLTOIndexFile + "': "); 1515 return; 1516 } 1517 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1518 // A null CombinedIndex means we should skip ThinLTO compilation 1519 // (LLVM will optionally ignore empty index files, returning null instead 1520 // of an error). 1521 if (CombinedIndex) { 1522 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1523 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1524 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1525 CGOpts.ProfileRemappingFile, Action); 1526 return; 1527 } 1528 // Distributed indexing detected that nothing from the module is needed 1529 // for the final linking. So we can skip the compilation. We sill need to 1530 // output an empty object file to make sure that a linker does not fail 1531 // trying to read it. Also for some features, like CFI, we must skip 1532 // the compilation as CombinedIndex does not contain all required 1533 // information. 1534 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1535 EmptyModule->setTargetTriple(M->getTargetTriple()); 1536 M = EmptyModule.get(); 1537 } 1538 } 1539 1540 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1541 1542 if (CGOpts.ExperimentalNewPassManager) 1543 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1544 else 1545 AsmHelper.EmitAssembly(Action, std::move(OS)); 1546 1547 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1548 // DataLayout. 1549 if (AsmHelper.TM) { 1550 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1551 if (DLDesc != TDesc.getStringRepresentation()) { 1552 unsigned DiagID = Diags.getCustomDiagID( 1553 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1554 "expected target description '%1'"); 1555 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1556 } 1557 } 1558 } 1559 1560 static const char* getSectionNameForBitcode(const Triple &T) { 1561 switch (T.getObjectFormat()) { 1562 case Triple::MachO: 1563 return "__LLVM,__bitcode"; 1564 case Triple::COFF: 1565 case Triple::ELF: 1566 case Triple::Wasm: 1567 case Triple::UnknownObjectFormat: 1568 return ".llvmbc"; 1569 case Triple::XCOFF: 1570 llvm_unreachable("XCOFF is not yet implemented"); 1571 break; 1572 } 1573 llvm_unreachable("Unimplemented ObjectFormatType"); 1574 } 1575 1576 static const char* getSectionNameForCommandline(const Triple &T) { 1577 switch (T.getObjectFormat()) { 1578 case Triple::MachO: 1579 return "__LLVM,__cmdline"; 1580 case Triple::COFF: 1581 case Triple::ELF: 1582 case Triple::Wasm: 1583 case Triple::UnknownObjectFormat: 1584 return ".llvmcmd"; 1585 case Triple::XCOFF: 1586 llvm_unreachable("XCOFF is not yet implemented"); 1587 break; 1588 } 1589 llvm_unreachable("Unimplemented ObjectFormatType"); 1590 } 1591 1592 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1593 // __LLVM,__bitcode section. 1594 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1595 llvm::MemoryBufferRef Buf) { 1596 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1597 return; 1598 1599 // Save llvm.compiler.used and remote it. 1600 SmallVector<Constant*, 2> UsedArray; 1601 SmallPtrSet<GlobalValue*, 4> UsedGlobals; 1602 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1603 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1604 for (auto *GV : UsedGlobals) { 1605 if (GV->getName() != "llvm.embedded.module" && 1606 GV->getName() != "llvm.cmdline") 1607 UsedArray.push_back( 1608 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1609 } 1610 if (Used) 1611 Used->eraseFromParent(); 1612 1613 // Embed the bitcode for the llvm module. 1614 std::string Data; 1615 ArrayRef<uint8_t> ModuleData; 1616 Triple T(M->getTargetTriple()); 1617 // Create a constant that contains the bitcode. 1618 // In case of embedding a marker, ignore the input Buf and use the empty 1619 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1620 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1621 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1622 (const unsigned char *)Buf.getBufferEnd())) { 1623 // If the input is LLVM Assembly, bitcode is produced by serializing 1624 // the module. Use-lists order need to be perserved in this case. 1625 llvm::raw_string_ostream OS(Data); 1626 llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); 1627 ModuleData = 1628 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1629 } else 1630 // If the input is LLVM bitcode, write the input byte stream directly. 1631 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1632 Buf.getBufferSize()); 1633 } 1634 llvm::Constant *ModuleConstant = 1635 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1636 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1637 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1638 ModuleConstant); 1639 GV->setSection(getSectionNameForBitcode(T)); 1640 UsedArray.push_back( 1641 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1642 if (llvm::GlobalVariable *Old = 1643 M->getGlobalVariable("llvm.embedded.module", true)) { 1644 assert(Old->hasOneUse() && 1645 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1646 GV->takeName(Old); 1647 Old->eraseFromParent(); 1648 } else { 1649 GV->setName("llvm.embedded.module"); 1650 } 1651 1652 // Skip if only bitcode needs to be embedded. 1653 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1654 // Embed command-line options. 1655 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1656 CGOpts.CmdArgs.size()); 1657 llvm::Constant *CmdConstant = 1658 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1659 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1660 llvm::GlobalValue::PrivateLinkage, 1661 CmdConstant); 1662 GV->setSection(getSectionNameForCommandline(T)); 1663 UsedArray.push_back( 1664 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1665 if (llvm::GlobalVariable *Old = 1666 M->getGlobalVariable("llvm.cmdline", true)) { 1667 assert(Old->hasOneUse() && 1668 "llvm.cmdline can only be used once in llvm.compiler.used"); 1669 GV->takeName(Old); 1670 Old->eraseFromParent(); 1671 } else { 1672 GV->setName("llvm.cmdline"); 1673 } 1674 } 1675 1676 if (UsedArray.empty()) 1677 return; 1678 1679 // Recreate llvm.compiler.used. 1680 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1681 auto *NewUsed = new GlobalVariable( 1682 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1683 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1684 NewUsed->setSection("llvm.metadata"); 1685 } 1686