1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "BackendConsumer.h" 11 #include "LinkInModulesPass.h" 12 #include "clang/Basic/CodeGenOptions.h" 13 #include "clang/Basic/Diagnostic.h" 14 #include "clang/Basic/LangOptions.h" 15 #include "clang/Basic/TargetOptions.h" 16 #include "clang/Frontend/FrontendDiagnostic.h" 17 #include "clang/Frontend/Utils.h" 18 #include "clang/Lex/HeaderSearchOptions.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringSwitch.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/Bitcode/BitcodeReader.h" 27 #include "llvm/Bitcode/BitcodeWriter.h" 28 #include "llvm/Bitcode/BitcodeWriterPass.h" 29 #include "llvm/CodeGen/RegAllocRegistry.h" 30 #include "llvm/CodeGen/SchedulerRegistry.h" 31 #include "llvm/CodeGen/TargetSubtargetInfo.h" 32 #include "llvm/Frontend/Driver/CodeGenOptions.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DebugInfo.h" 35 #include "llvm/IR/LegacyPassManager.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/IR/ModuleSummaryIndex.h" 38 #include "llvm/IR/PassManager.h" 39 #include "llvm/IR/Verifier.h" 40 #include "llvm/IRPrinter/IRPrintingPasses.h" 41 #include "llvm/LTO/LTOBackend.h" 42 #include "llvm/MC/MCAsmInfo.h" 43 #include "llvm/MC/TargetRegistry.h" 44 #include "llvm/Object/OffloadBinary.h" 45 #include "llvm/Passes/PassBuilder.h" 46 #include "llvm/Passes/PassPlugin.h" 47 #include "llvm/Passes/StandardInstrumentations.h" 48 #include "llvm/ProfileData/InstrProfCorrelator.h" 49 #include "llvm/Support/BuryPointer.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/MemoryBuffer.h" 52 #include "llvm/Support/PrettyStackTrace.h" 53 #include "llvm/Support/TimeProfiler.h" 54 #include "llvm/Support/Timer.h" 55 #include "llvm/Support/ToolOutputFile.h" 56 #include "llvm/Support/VirtualFileSystem.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/TargetParser/SubtargetFeature.h" 61 #include "llvm/TargetParser/Triple.h" 62 #include "llvm/Transforms/HipStdPar/HipStdPar.h" 63 #include "llvm/Transforms/IPO/EmbedBitcodePass.h" 64 #include "llvm/Transforms/IPO/LowerTypeTests.h" 65 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 66 #include "llvm/Transforms/InstCombine/InstCombine.h" 67 #include "llvm/Transforms/Instrumentation.h" 68 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 69 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 70 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 71 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 72 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 73 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 74 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 75 #include "llvm/Transforms/Instrumentation/KCFI.h" 76 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 77 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 78 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" 79 #include "llvm/Transforms/Instrumentation/SanitizerBinaryMetadata.h" 80 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 81 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 82 #include "llvm/Transforms/ObjCARC.h" 83 #include "llvm/Transforms/Scalar/EarlyCSE.h" 84 #include "llvm/Transforms/Scalar/GVN.h" 85 #include "llvm/Transforms/Scalar/JumpThreading.h" 86 #include "llvm/Transforms/Utils/Debugify.h" 87 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 88 #include "llvm/Transforms/Utils/ModuleUtils.h" 89 #include <memory> 90 #include <optional> 91 using namespace clang; 92 using namespace llvm; 93 94 #define HANDLE_EXTENSION(Ext) \ 95 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 96 #include "llvm/Support/Extension.def" 97 98 namespace llvm { 99 extern cl::opt<bool> PrintPipelinePasses; 100 101 // Experiment to move sanitizers earlier. 102 static cl::opt<bool> ClSanitizeOnOptimizerEarlyEP( 103 "sanitizer-early-opt-ep", cl::Optional, 104 cl::desc("Insert sanitizers on OptimizerEarlyEP."), cl::init(false)); 105 106 extern cl::opt<InstrProfCorrelator::ProfCorrelatorKind> ProfileCorrelate; 107 108 // Re-link builtin bitcodes after optimization 109 cl::opt<bool> ClRelinkBuiltinBitcodePostop( 110 "relink-builtin-bitcode-postop", cl::Optional, 111 cl::desc("Re-link builtin bitcodes after optimization."), cl::init(false)); 112 } // namespace llvm 113 114 namespace { 115 116 // Default filename used for profile generation. 117 std::string getDefaultProfileGenName() { 118 return DebugInfoCorrelate || ProfileCorrelate != InstrProfCorrelator::NONE 119 ? "default_%m.proflite" 120 : "default_%m.profraw"; 121 } 122 123 class EmitAssemblyHelper { 124 DiagnosticsEngine &Diags; 125 const HeaderSearchOptions &HSOpts; 126 const CodeGenOptions &CodeGenOpts; 127 const clang::TargetOptions &TargetOpts; 128 const LangOptions &LangOpts; 129 llvm::Module *TheModule; 130 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS; 131 132 Timer CodeGenerationTime; 133 134 std::unique_ptr<raw_pwrite_stream> OS; 135 136 Triple TargetTriple; 137 138 TargetIRAnalysis getTargetIRAnalysis() const { 139 if (TM) 140 return TM->getTargetIRAnalysis(); 141 142 return TargetIRAnalysis(); 143 } 144 145 /// Generates the TargetMachine. 146 /// Leaves TM unchanged if it is unable to create the target machine. 147 /// Some of our clang tests specify triples which are not built 148 /// into clang. This is okay because these tests check the generated 149 /// IR, and they require DataLayout which depends on the triple. 150 /// In this case, we allow this method to fail and not report an error. 151 /// When MustCreateTM is used, we print an error if we are unable to load 152 /// the requested target. 153 void CreateTargetMachine(bool MustCreateTM); 154 155 /// Add passes necessary to emit assembly or LLVM IR. 156 /// 157 /// \return True on success. 158 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 159 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 160 161 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 162 std::error_code EC; 163 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 164 llvm::sys::fs::OF_None); 165 if (EC) { 166 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 167 F.reset(); 168 } 169 return F; 170 } 171 172 void RunOptimizationPipeline( 173 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 174 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS, BackendConsumer *BC); 175 void RunCodegenPipeline(BackendAction Action, 176 std::unique_ptr<raw_pwrite_stream> &OS, 177 std::unique_ptr<llvm::ToolOutputFile> &DwoOS); 178 179 /// Check whether we should emit a module summary for regular LTO. 180 /// The module summary should be emitted by default for regular LTO 181 /// except for ld64 targets. 182 /// 183 /// \return True if the module summary should be emitted. 184 bool shouldEmitRegularLTOSummary() const { 185 return CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses && 186 TargetTriple.getVendor() != llvm::Triple::Apple; 187 } 188 189 public: 190 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 191 const HeaderSearchOptions &HeaderSearchOpts, 192 const CodeGenOptions &CGOpts, 193 const clang::TargetOptions &TOpts, 194 const LangOptions &LOpts, llvm::Module *M, 195 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS) 196 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 197 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), VFS(std::move(VFS)), 198 CodeGenerationTime("codegen", "Code Generation Time"), 199 TargetTriple(TheModule->getTargetTriple()) {} 200 201 ~EmitAssemblyHelper() { 202 if (CodeGenOpts.DisableFree) 203 BuryPointer(std::move(TM)); 204 } 205 206 std::unique_ptr<TargetMachine> TM; 207 208 // Emit output using the new pass manager for the optimization pipeline. 209 void EmitAssembly(BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS, 210 BackendConsumer *BC); 211 }; 212 } // namespace 213 214 static SanitizerCoverageOptions 215 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 216 SanitizerCoverageOptions Opts; 217 Opts.CoverageType = 218 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 219 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 220 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 221 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 222 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 223 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 224 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 225 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 226 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 227 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 228 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 229 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 230 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 231 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 232 Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads; 233 Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores; 234 Opts.CollectControlFlow = CGOpts.SanitizeCoverageControlFlow; 235 return Opts; 236 } 237 238 static SanitizerBinaryMetadataOptions 239 getSanitizerBinaryMetadataOptions(const CodeGenOptions &CGOpts) { 240 SanitizerBinaryMetadataOptions Opts; 241 Opts.Covered = CGOpts.SanitizeBinaryMetadataCovered; 242 Opts.Atomics = CGOpts.SanitizeBinaryMetadataAtomics; 243 Opts.UAR = CGOpts.SanitizeBinaryMetadataUAR; 244 return Opts; 245 } 246 247 // Check if ASan should use GC-friendly instrumentation for globals. 248 // First of all, there is no point if -fdata-sections is off (expect for MachO, 249 // where this is not a factor). Also, on ELF this feature requires an assembler 250 // extension that only works with -integrated-as at the moment. 251 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 252 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 253 return false; 254 switch (T.getObjectFormat()) { 255 case Triple::MachO: 256 case Triple::COFF: 257 return true; 258 case Triple::ELF: 259 return !CGOpts.DisableIntegratedAS; 260 case Triple::GOFF: 261 llvm::report_fatal_error("ASan not implemented for GOFF"); 262 case Triple::XCOFF: 263 llvm::report_fatal_error("ASan not implemented for XCOFF."); 264 case Triple::Wasm: 265 case Triple::DXContainer: 266 case Triple::SPIRV: 267 case Triple::UnknownObjectFormat: 268 break; 269 } 270 return false; 271 } 272 273 static std::optional<llvm::CodeModel::Model> 274 getCodeModel(const CodeGenOptions &CodeGenOpts) { 275 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 276 .Case("tiny", llvm::CodeModel::Tiny) 277 .Case("small", llvm::CodeModel::Small) 278 .Case("kernel", llvm::CodeModel::Kernel) 279 .Case("medium", llvm::CodeModel::Medium) 280 .Case("large", llvm::CodeModel::Large) 281 .Case("default", ~1u) 282 .Default(~0u); 283 assert(CodeModel != ~0u && "invalid code model!"); 284 if (CodeModel == ~1u) 285 return std::nullopt; 286 return static_cast<llvm::CodeModel::Model>(CodeModel); 287 } 288 289 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 290 if (Action == Backend_EmitObj) 291 return CodeGenFileType::ObjectFile; 292 else if (Action == Backend_EmitMCNull) 293 return CodeGenFileType::Null; 294 else { 295 assert(Action == Backend_EmitAssembly && "Invalid action!"); 296 return CodeGenFileType::AssemblyFile; 297 } 298 } 299 300 static bool actionRequiresCodeGen(BackendAction Action) { 301 return Action != Backend_EmitNothing && Action != Backend_EmitBC && 302 Action != Backend_EmitLL; 303 } 304 305 static bool initTargetOptions(DiagnosticsEngine &Diags, 306 llvm::TargetOptions &Options, 307 const CodeGenOptions &CodeGenOpts, 308 const clang::TargetOptions &TargetOpts, 309 const LangOptions &LangOpts, 310 const HeaderSearchOptions &HSOpts) { 311 switch (LangOpts.getThreadModel()) { 312 case LangOptions::ThreadModelKind::POSIX: 313 Options.ThreadModel = llvm::ThreadModel::POSIX; 314 break; 315 case LangOptions::ThreadModelKind::Single: 316 Options.ThreadModel = llvm::ThreadModel::Single; 317 break; 318 } 319 320 // Set float ABI type. 321 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 322 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 323 "Invalid Floating Point ABI!"); 324 Options.FloatABIType = 325 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 326 .Case("soft", llvm::FloatABI::Soft) 327 .Case("softfp", llvm::FloatABI::Soft) 328 .Case("hard", llvm::FloatABI::Hard) 329 .Default(llvm::FloatABI::Default); 330 331 // Set FP fusion mode. 332 switch (LangOpts.getDefaultFPContractMode()) { 333 case LangOptions::FPM_Off: 334 // Preserve any contraction performed by the front-end. (Strict performs 335 // splitting of the muladd intrinsic in the backend.) 336 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 337 break; 338 case LangOptions::FPM_On: 339 case LangOptions::FPM_FastHonorPragmas: 340 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 341 break; 342 case LangOptions::FPM_Fast: 343 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 344 break; 345 } 346 347 Options.BinutilsVersion = 348 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 349 Options.UseInitArray = CodeGenOpts.UseInitArray; 350 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 351 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 352 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 353 354 // Set EABI version. 355 Options.EABIVersion = TargetOpts.EABIVersion; 356 357 if (LangOpts.hasSjLjExceptions()) 358 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 359 if (LangOpts.hasSEHExceptions()) 360 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 361 if (LangOpts.hasDWARFExceptions()) 362 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 363 if (LangOpts.hasWasmExceptions()) 364 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 365 366 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 367 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 368 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 369 Options.UnsafeFPMath = LangOpts.AllowFPReassoc && LangOpts.AllowRecip && 370 LangOpts.NoSignedZero && LangOpts.ApproxFunc && 371 (LangOpts.getDefaultFPContractMode() == 372 LangOptions::FPModeKind::FPM_Fast || 373 LangOpts.getDefaultFPContractMode() == 374 LangOptions::FPModeKind::FPM_FastHonorPragmas); 375 Options.ApproxFuncFPMath = LangOpts.ApproxFunc; 376 377 Options.BBSections = 378 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 379 .Case("all", llvm::BasicBlockSection::All) 380 .Case("labels", llvm::BasicBlockSection::Labels) 381 .StartsWith("list=", llvm::BasicBlockSection::List) 382 .Case("none", llvm::BasicBlockSection::None) 383 .Default(llvm::BasicBlockSection::None); 384 385 if (Options.BBSections == llvm::BasicBlockSection::List) { 386 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 387 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 388 if (!MBOrErr) { 389 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 390 << MBOrErr.getError().message(); 391 return false; 392 } 393 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 394 } 395 396 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 397 Options.FunctionSections = CodeGenOpts.FunctionSections; 398 Options.DataSections = CodeGenOpts.DataSections; 399 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 400 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 401 Options.UniqueBasicBlockSectionNames = 402 CodeGenOpts.UniqueBasicBlockSectionNames; 403 Options.TLSSize = CodeGenOpts.TLSSize; 404 Options.EnableTLSDESC = CodeGenOpts.EnableTLSDESC; 405 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 406 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 407 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 408 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 409 Options.EmitAddrsig = CodeGenOpts.Addrsig; 410 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 411 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 412 Options.EnableAIXExtendedAltivecABI = LangOpts.EnableAIXExtendedAltivecABI; 413 Options.XRayFunctionIndex = CodeGenOpts.XRayFunctionIndex; 414 Options.LoopAlignment = CodeGenOpts.LoopAlignment; 415 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 416 Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug; 417 Options.Hotpatch = CodeGenOpts.HotPatch; 418 Options.JMCInstrument = CodeGenOpts.JMCInstrument; 419 Options.XCOFFReadOnlyPointers = CodeGenOpts.XCOFFReadOnlyPointers; 420 421 switch (CodeGenOpts.getSwiftAsyncFramePointer()) { 422 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto: 423 Options.SwiftAsyncFramePointer = 424 SwiftAsyncFramePointerMode::DeploymentBased; 425 break; 426 427 case CodeGenOptions::SwiftAsyncFramePointerKind::Always: 428 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always; 429 break; 430 431 case CodeGenOptions::SwiftAsyncFramePointerKind::Never: 432 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never; 433 break; 434 } 435 436 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 437 Options.MCOptions.EmitDwarfUnwind = CodeGenOpts.getEmitDwarfUnwind(); 438 Options.MCOptions.EmitCompactUnwindNonCanonical = 439 CodeGenOpts.EmitCompactUnwindNonCanonical; 440 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 441 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 442 Options.MCOptions.MCUseDwarfDirectory = 443 CodeGenOpts.NoDwarfDirectoryAsm 444 ? llvm::MCTargetOptions::DisableDwarfDirectory 445 : llvm::MCTargetOptions::EnableDwarfDirectory; 446 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 447 Options.MCOptions.MCIncrementalLinkerCompatible = 448 CodeGenOpts.IncrementalLinkerCompatible; 449 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 450 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 451 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 452 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 453 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 454 Options.MCOptions.ABIName = TargetOpts.ABI; 455 for (const auto &Entry : HSOpts.UserEntries) 456 if (!Entry.IsFramework && 457 (Entry.Group == frontend::IncludeDirGroup::Quoted || 458 Entry.Group == frontend::IncludeDirGroup::Angled || 459 Entry.Group == frontend::IncludeDirGroup::System)) 460 Options.MCOptions.IASSearchPaths.push_back( 461 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 462 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 463 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 464 Options.MCOptions.AsSecureLogFile = CodeGenOpts.AsSecureLogFile; 465 Options.MCOptions.PPCUseFullRegisterNames = 466 CodeGenOpts.PPCUseFullRegisterNames; 467 Options.MisExpect = CodeGenOpts.MisExpect; 468 469 return true; 470 } 471 472 static std::optional<GCOVOptions> 473 getGCOVOptions(const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts) { 474 if (CodeGenOpts.CoverageNotesFile.empty() && 475 CodeGenOpts.CoverageDataFile.empty()) 476 return std::nullopt; 477 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 478 // LLVM's -default-gcov-version flag is set to something invalid. 479 GCOVOptions Options; 480 Options.EmitNotes = !CodeGenOpts.CoverageNotesFile.empty(); 481 Options.EmitData = !CodeGenOpts.CoverageDataFile.empty(); 482 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 483 Options.NoRedZone = CodeGenOpts.DisableRedZone; 484 Options.Filter = CodeGenOpts.ProfileFilterFiles; 485 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 486 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 487 return Options; 488 } 489 490 static std::optional<InstrProfOptions> 491 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 492 const LangOptions &LangOpts) { 493 if (!CodeGenOpts.hasProfileClangInstr()) 494 return std::nullopt; 495 InstrProfOptions Options; 496 Options.NoRedZone = CodeGenOpts.DisableRedZone; 497 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 498 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 499 return Options; 500 } 501 502 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 503 SmallVector<const char *, 16> BackendArgs; 504 BackendArgs.push_back("clang"); // Fake program name. 505 if (!CodeGenOpts.DebugPass.empty()) { 506 BackendArgs.push_back("-debug-pass"); 507 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 508 } 509 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 510 BackendArgs.push_back("-limit-float-precision"); 511 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 512 } 513 // Check for the default "clang" invocation that won't set any cl::opt values. 514 // Skip trying to parse the command line invocation to avoid the issues 515 // described below. 516 if (BackendArgs.size() == 1) 517 return; 518 BackendArgs.push_back(nullptr); 519 // FIXME: The command line parser below is not thread-safe and shares a global 520 // state, so this call might crash or overwrite the options of another Clang 521 // instance in the same process. 522 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 523 BackendArgs.data()); 524 } 525 526 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 527 // Create the TargetMachine for generating code. 528 std::string Error; 529 std::string Triple = TheModule->getTargetTriple(); 530 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 531 if (!TheTarget) { 532 if (MustCreateTM) 533 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 534 return; 535 } 536 537 std::optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 538 std::string FeaturesStr = 539 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 540 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 541 std::optional<CodeGenOptLevel> OptLevelOrNone = 542 CodeGenOpt::getLevel(CodeGenOpts.OptimizationLevel); 543 assert(OptLevelOrNone && "Invalid optimization level!"); 544 CodeGenOptLevel OptLevel = *OptLevelOrNone; 545 546 llvm::TargetOptions Options; 547 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 548 HSOpts)) 549 return; 550 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 551 Options, RM, CM, OptLevel)); 552 TM->setLargeDataThreshold(CodeGenOpts.LargeDataThreshold); 553 } 554 555 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 556 BackendAction Action, 557 raw_pwrite_stream &OS, 558 raw_pwrite_stream *DwoOS) { 559 // Add LibraryInfo. 560 std::unique_ptr<TargetLibraryInfoImpl> TLII( 561 llvm::driver::createTLII(TargetTriple, CodeGenOpts.getVecLib())); 562 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 563 564 // Normal mode, emit a .s or .o file by running the code generator. Note, 565 // this also adds codegenerator level optimization passes. 566 CodeGenFileType CGFT = getCodeGenFileType(Action); 567 568 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 569 // "codegen" passes so that it isn't run multiple times when there is 570 // inlining happening. 571 if (CodeGenOpts.OptimizationLevel > 0) 572 CodeGenPasses.add(createObjCARCContractPass()); 573 574 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 575 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 576 Diags.Report(diag::err_fe_unable_to_interface_with_target); 577 return false; 578 } 579 580 return true; 581 } 582 583 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 584 switch (Opts.OptimizationLevel) { 585 default: 586 llvm_unreachable("Invalid optimization level!"); 587 588 case 0: 589 return OptimizationLevel::O0; 590 591 case 1: 592 return OptimizationLevel::O1; 593 594 case 2: 595 switch (Opts.OptimizeSize) { 596 default: 597 llvm_unreachable("Invalid optimization level for size!"); 598 599 case 0: 600 return OptimizationLevel::O2; 601 602 case 1: 603 return OptimizationLevel::Os; 604 605 case 2: 606 return OptimizationLevel::Oz; 607 } 608 609 case 3: 610 return OptimizationLevel::O3; 611 } 612 } 613 614 static void addKCFIPass(const Triple &TargetTriple, const LangOptions &LangOpts, 615 PassBuilder &PB) { 616 // If the back-end supports KCFI operand bundle lowering, skip KCFIPass. 617 if (TargetTriple.getArch() == llvm::Triple::x86_64 || 618 TargetTriple.isAArch64(64) || TargetTriple.isRISCV()) 619 return; 620 621 // Ensure we lower KCFI operand bundles with -O0. 622 PB.registerOptimizerLastEPCallback( 623 [&](ModulePassManager &MPM, OptimizationLevel Level) { 624 if (Level == OptimizationLevel::O0 && 625 LangOpts.Sanitize.has(SanitizerKind::KCFI)) 626 MPM.addPass(createModuleToFunctionPassAdaptor(KCFIPass())); 627 }); 628 629 // When optimizations are requested, run KCIFPass after InstCombine to 630 // avoid unnecessary checks. 631 PB.registerPeepholeEPCallback( 632 [&](FunctionPassManager &FPM, OptimizationLevel Level) { 633 if (Level != OptimizationLevel::O0 && 634 LangOpts.Sanitize.has(SanitizerKind::KCFI)) 635 FPM.addPass(KCFIPass()); 636 }); 637 } 638 639 static void addSanitizers(const Triple &TargetTriple, 640 const CodeGenOptions &CodeGenOpts, 641 const LangOptions &LangOpts, PassBuilder &PB) { 642 auto SanitizersCallback = [&](ModulePassManager &MPM, 643 OptimizationLevel Level) { 644 if (CodeGenOpts.hasSanitizeCoverage()) { 645 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 646 MPM.addPass(SanitizerCoveragePass( 647 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 648 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 649 } 650 651 if (CodeGenOpts.hasSanitizeBinaryMetadata()) { 652 MPM.addPass(SanitizerBinaryMetadataPass( 653 getSanitizerBinaryMetadataOptions(CodeGenOpts), 654 CodeGenOpts.SanitizeMetadataIgnorelistFiles)); 655 } 656 657 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 658 if (LangOpts.Sanitize.has(Mask)) { 659 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 660 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 661 662 MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel, 663 CodeGenOpts.SanitizeMemoryParamRetval); 664 MPM.addPass(MemorySanitizerPass(options)); 665 if (Level != OptimizationLevel::O0) { 666 // MemorySanitizer inserts complex instrumentation that mostly follows 667 // the logic of the original code, but operates on "shadow" values. It 668 // can benefit from re-running some general purpose optimization 669 // passes. 670 MPM.addPass(RequireAnalysisPass<GlobalsAA, llvm::Module>()); 671 FunctionPassManager FPM; 672 FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */)); 673 FPM.addPass(InstCombinePass()); 674 FPM.addPass(JumpThreadingPass()); 675 FPM.addPass(GVNPass()); 676 FPM.addPass(InstCombinePass()); 677 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 678 } 679 } 680 }; 681 MSanPass(SanitizerKind::Memory, false); 682 MSanPass(SanitizerKind::KernelMemory, true); 683 684 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 685 MPM.addPass(ModuleThreadSanitizerPass()); 686 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 687 } 688 689 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 690 if (LangOpts.Sanitize.has(Mask)) { 691 bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 692 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 693 llvm::AsanDtorKind DestructorKind = 694 CodeGenOpts.getSanitizeAddressDtor(); 695 AddressSanitizerOptions Opts; 696 Opts.CompileKernel = CompileKernel; 697 Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask); 698 Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 699 Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn(); 700 MPM.addPass(AddressSanitizerPass(Opts, UseGlobalGC, UseOdrIndicator, 701 DestructorKind)); 702 } 703 }; 704 ASanPass(SanitizerKind::Address, false); 705 ASanPass(SanitizerKind::KernelAddress, true); 706 707 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 708 if (LangOpts.Sanitize.has(Mask)) { 709 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 710 MPM.addPass(HWAddressSanitizerPass( 711 {CompileKernel, Recover, 712 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0})); 713 } 714 }; 715 HWASanPass(SanitizerKind::HWAddress, false); 716 HWASanPass(SanitizerKind::KernelHWAddress, true); 717 718 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 719 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 720 } 721 }; 722 if (ClSanitizeOnOptimizerEarlyEP) { 723 PB.registerOptimizerEarlyEPCallback( 724 [SanitizersCallback](ModulePassManager &MPM, OptimizationLevel Level) { 725 ModulePassManager NewMPM; 726 SanitizersCallback(NewMPM, Level); 727 if (!NewMPM.isEmpty()) { 728 // Sanitizers can abandon<GlobalsAA>. 729 NewMPM.addPass(RequireAnalysisPass<GlobalsAA, llvm::Module>()); 730 MPM.addPass(std::move(NewMPM)); 731 } 732 }); 733 } else { 734 // LastEP does not need GlobalsAA. 735 PB.registerOptimizerLastEPCallback(SanitizersCallback); 736 } 737 } 738 739 void EmitAssemblyHelper::RunOptimizationPipeline( 740 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 741 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS, BackendConsumer *BC) { 742 std::optional<PGOOptions> PGOOpt; 743 744 if (CodeGenOpts.hasProfileIRInstr()) 745 // -fprofile-generate. 746 PGOOpt = PGOOptions( 747 CodeGenOpts.InstrProfileOutput.empty() ? getDefaultProfileGenName() 748 : CodeGenOpts.InstrProfileOutput, 749 "", "", CodeGenOpts.MemoryProfileUsePath, nullptr, PGOOptions::IRInstr, 750 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling, 751 /*PseudoProbeForProfiling=*/false, CodeGenOpts.AtomicProfileUpdate); 752 else if (CodeGenOpts.hasProfileIRUse()) { 753 // -fprofile-use. 754 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 755 : PGOOptions::NoCSAction; 756 PGOOpt = PGOOptions( 757 CodeGenOpts.ProfileInstrumentUsePath, "", 758 CodeGenOpts.ProfileRemappingFile, CodeGenOpts.MemoryProfileUsePath, VFS, 759 PGOOptions::IRUse, CSAction, CodeGenOpts.DebugInfoForProfiling); 760 } else if (!CodeGenOpts.SampleProfileFile.empty()) 761 // -fprofile-sample-use 762 PGOOpt = PGOOptions( 763 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 764 CodeGenOpts.MemoryProfileUsePath, VFS, PGOOptions::SampleUse, 765 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling, 766 CodeGenOpts.PseudoProbeForProfiling); 767 else if (!CodeGenOpts.MemoryProfileUsePath.empty()) 768 // -fmemory-profile-use (without any of the above options) 769 PGOOpt = PGOOptions("", "", "", CodeGenOpts.MemoryProfileUsePath, VFS, 770 PGOOptions::NoAction, PGOOptions::NoCSAction, 771 CodeGenOpts.DebugInfoForProfiling); 772 else if (CodeGenOpts.PseudoProbeForProfiling) 773 // -fpseudo-probe-for-profiling 774 PGOOpt = PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr, 775 PGOOptions::NoAction, PGOOptions::NoCSAction, 776 CodeGenOpts.DebugInfoForProfiling, true); 777 else if (CodeGenOpts.DebugInfoForProfiling) 778 // -fdebug-info-for-profiling 779 PGOOpt = PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr, 780 PGOOptions::NoAction, PGOOptions::NoCSAction, true); 781 782 // Check to see if we want to generate a CS profile. 783 if (CodeGenOpts.hasProfileCSIRInstr()) { 784 assert(!CodeGenOpts.hasProfileCSIRUse() && 785 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 786 "the same time"); 787 if (PGOOpt) { 788 assert(PGOOpt->Action != PGOOptions::IRInstr && 789 PGOOpt->Action != PGOOptions::SampleUse && 790 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 791 " pass"); 792 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 793 ? getDefaultProfileGenName() 794 : CodeGenOpts.InstrProfileOutput; 795 PGOOpt->CSAction = PGOOptions::CSIRInstr; 796 } else 797 PGOOpt = 798 PGOOptions("", 799 CodeGenOpts.InstrProfileOutput.empty() 800 ? getDefaultProfileGenName() 801 : CodeGenOpts.InstrProfileOutput, 802 "", /*MemoryProfile=*/"", nullptr, PGOOptions::NoAction, 803 PGOOptions::CSIRInstr, CodeGenOpts.DebugInfoForProfiling); 804 } 805 if (TM) 806 TM->setPGOOption(PGOOpt); 807 808 PipelineTuningOptions PTO; 809 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 810 // For historical reasons, loop interleaving is set to mirror setting for loop 811 // unrolling. 812 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 813 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 814 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 815 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 816 // Only enable CGProfilePass when using integrated assembler, since 817 // non-integrated assemblers don't recognize .cgprofile section. 818 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 819 PTO.UnifiedLTO = CodeGenOpts.UnifiedLTO; 820 821 LoopAnalysisManager LAM; 822 FunctionAnalysisManager FAM; 823 CGSCCAnalysisManager CGAM; 824 ModuleAnalysisManager MAM; 825 826 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure"; 827 PassInstrumentationCallbacks PIC; 828 PrintPassOptions PrintPassOpts; 829 PrintPassOpts.Indent = DebugPassStructure; 830 PrintPassOpts.SkipAnalyses = DebugPassStructure; 831 StandardInstrumentations SI( 832 TheModule->getContext(), 833 (CodeGenOpts.DebugPassManager || DebugPassStructure), 834 CodeGenOpts.VerifyEach, PrintPassOpts); 835 SI.registerCallbacks(PIC, &MAM); 836 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 837 838 // Handle the assignment tracking feature options. 839 switch (CodeGenOpts.getAssignmentTrackingMode()) { 840 case CodeGenOptions::AssignmentTrackingOpts::Forced: 841 PB.registerPipelineStartEPCallback( 842 [&](ModulePassManager &MPM, OptimizationLevel Level) { 843 MPM.addPass(AssignmentTrackingPass()); 844 }); 845 break; 846 case CodeGenOptions::AssignmentTrackingOpts::Enabled: 847 // Disable assignment tracking in LTO builds for now as the performance 848 // cost is too high. Disable for LLDB tuning due to llvm.org/PR43126. 849 if (!CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.PrepareForLTO && 850 CodeGenOpts.getDebuggerTuning() != llvm::DebuggerKind::LLDB) { 851 PB.registerPipelineStartEPCallback( 852 [&](ModulePassManager &MPM, OptimizationLevel Level) { 853 // Only use assignment tracking if optimisations are enabled. 854 if (Level != OptimizationLevel::O0) 855 MPM.addPass(AssignmentTrackingPass()); 856 }); 857 } 858 break; 859 case CodeGenOptions::AssignmentTrackingOpts::Disabled: 860 break; 861 } 862 863 // Enable verify-debuginfo-preserve-each for new PM. 864 DebugifyEachInstrumentation Debugify; 865 DebugInfoPerPass DebugInfoBeforePass; 866 if (CodeGenOpts.EnableDIPreservationVerify) { 867 Debugify.setDebugifyMode(DebugifyMode::OriginalDebugInfo); 868 Debugify.setDebugInfoBeforePass(DebugInfoBeforePass); 869 870 if (!CodeGenOpts.DIBugsReportFilePath.empty()) 871 Debugify.setOrigDIVerifyBugsReportFilePath( 872 CodeGenOpts.DIBugsReportFilePath); 873 Debugify.registerCallbacks(PIC, MAM); 874 } 875 // Attempt to load pass plugins and register their callbacks with PB. 876 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 877 auto PassPlugin = PassPlugin::Load(PluginFN); 878 if (PassPlugin) { 879 PassPlugin->registerPassBuilderCallbacks(PB); 880 } else { 881 Diags.Report(diag::err_fe_unable_to_load_plugin) 882 << PluginFN << toString(PassPlugin.takeError()); 883 } 884 } 885 for (const auto &PassCallback : CodeGenOpts.PassBuilderCallbacks) 886 PassCallback(PB); 887 #define HANDLE_EXTENSION(Ext) \ 888 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 889 #include "llvm/Support/Extension.def" 890 891 // Register the target library analysis directly and give it a customized 892 // preset TLI. 893 std::unique_ptr<TargetLibraryInfoImpl> TLII( 894 llvm::driver::createTLII(TargetTriple, CodeGenOpts.getVecLib())); 895 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 896 897 // Register all the basic analyses with the managers. 898 PB.registerModuleAnalyses(MAM); 899 PB.registerCGSCCAnalyses(CGAM); 900 PB.registerFunctionAnalyses(FAM); 901 PB.registerLoopAnalyses(LAM); 902 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 903 904 ModulePassManager MPM; 905 // Add a verifier pass, before any other passes, to catch CodeGen issues. 906 if (CodeGenOpts.VerifyModule) 907 MPM.addPass(VerifierPass()); 908 909 if (!CodeGenOpts.DisableLLVMPasses) { 910 // Map our optimization levels into one of the distinct levels used to 911 // configure the pipeline. 912 OptimizationLevel Level = mapToLevel(CodeGenOpts); 913 914 const bool PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 915 const bool PrepareForLTO = CodeGenOpts.PrepareForLTO; 916 917 if (LangOpts.ObjCAutoRefCount) { 918 PB.registerPipelineStartEPCallback( 919 [](ModulePassManager &MPM, OptimizationLevel Level) { 920 if (Level != OptimizationLevel::O0) 921 MPM.addPass( 922 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 923 }); 924 PB.registerPipelineEarlySimplificationEPCallback( 925 [](ModulePassManager &MPM, OptimizationLevel Level) { 926 if (Level != OptimizationLevel::O0) 927 MPM.addPass(ObjCARCAPElimPass()); 928 }); 929 PB.registerScalarOptimizerLateEPCallback( 930 [](FunctionPassManager &FPM, OptimizationLevel Level) { 931 if (Level != OptimizationLevel::O0) 932 FPM.addPass(ObjCARCOptPass()); 933 }); 934 } 935 936 // If we reached here with a non-empty index file name, then the index 937 // file was empty and we are not performing ThinLTO backend compilation 938 // (used in testing in a distributed build environment). 939 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 940 // If so drop any the type test assume sequences inserted for whole program 941 // vtables so that codegen doesn't complain. 942 if (IsThinLTOPostLink) 943 PB.registerPipelineStartEPCallback( 944 [](ModulePassManager &MPM, OptimizationLevel Level) { 945 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 946 /*ImportSummary=*/nullptr, 947 /*DropTypeTests=*/true)); 948 }); 949 950 if (CodeGenOpts.InstrumentFunctions || 951 CodeGenOpts.InstrumentFunctionEntryBare || 952 CodeGenOpts.InstrumentFunctionsAfterInlining || 953 CodeGenOpts.InstrumentForProfiling) { 954 PB.registerPipelineStartEPCallback( 955 [](ModulePassManager &MPM, OptimizationLevel Level) { 956 MPM.addPass(createModuleToFunctionPassAdaptor( 957 EntryExitInstrumenterPass(/*PostInlining=*/false))); 958 }); 959 PB.registerOptimizerLastEPCallback( 960 [](ModulePassManager &MPM, OptimizationLevel Level) { 961 MPM.addPass(createModuleToFunctionPassAdaptor( 962 EntryExitInstrumenterPass(/*PostInlining=*/true))); 963 }); 964 } 965 966 // Register callbacks to schedule sanitizer passes at the appropriate part 967 // of the pipeline. 968 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 969 PB.registerScalarOptimizerLateEPCallback( 970 [](FunctionPassManager &FPM, OptimizationLevel Level) { 971 FPM.addPass(BoundsCheckingPass()); 972 }); 973 974 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 975 // done on PreLink stage. 976 if (!IsThinLTOPostLink) { 977 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 978 addKCFIPass(TargetTriple, LangOpts, PB); 979 } 980 981 if (std::optional<GCOVOptions> Options = 982 getGCOVOptions(CodeGenOpts, LangOpts)) 983 PB.registerPipelineStartEPCallback( 984 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 985 MPM.addPass(GCOVProfilerPass(*Options)); 986 }); 987 if (std::optional<InstrProfOptions> Options = 988 getInstrProfOptions(CodeGenOpts, LangOpts)) 989 PB.registerPipelineStartEPCallback( 990 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 991 MPM.addPass(InstrProfilingLoweringPass(*Options, false)); 992 }); 993 994 // TODO: Consider passing the MemoryProfileOutput to the pass builder via 995 // the PGOOptions, and set this up there. 996 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 997 PB.registerOptimizerLastEPCallback( 998 [](ModulePassManager &MPM, OptimizationLevel Level) { 999 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1000 MPM.addPass(ModuleMemProfilerPass()); 1001 }); 1002 } 1003 1004 if (CodeGenOpts.FatLTO) { 1005 MPM.addPass(PB.buildFatLTODefaultPipeline( 1006 Level, PrepareForThinLTO, 1007 PrepareForThinLTO || shouldEmitRegularLTOSummary())); 1008 } else if (PrepareForThinLTO) { 1009 MPM.addPass(PB.buildThinLTOPreLinkDefaultPipeline(Level)); 1010 } else if (PrepareForLTO) { 1011 MPM.addPass(PB.buildLTOPreLinkDefaultPipeline(Level)); 1012 } else { 1013 MPM.addPass(PB.buildPerModuleDefaultPipeline(Level)); 1014 } 1015 } 1016 1017 // Re-link against any bitcodes supplied via the -mlink-builtin-bitcode option 1018 // Some optimizations may generate new function calls that would not have 1019 // been linked pre-optimization (i.e. fused sincos calls generated by 1020 // AMDGPULibCalls::fold_sincos.) 1021 if (ClRelinkBuiltinBitcodePostop) 1022 MPM.addPass(LinkInModulesPass(BC, false)); 1023 1024 // Add a verifier pass if requested. We don't have to do this if the action 1025 // requires code generation because there will already be a verifier pass in 1026 // the code-generation pipeline. 1027 // Since we already added a verifier pass above, this 1028 // might even not run the analysis, if previous passes caused no changes. 1029 if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule) 1030 MPM.addPass(VerifierPass()); 1031 1032 if (Action == Backend_EmitBC || Action == Backend_EmitLL) { 1033 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1034 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1035 TheModule->addModuleFlag(llvm::Module::Error, "EnableSplitLTOUnit", 1036 CodeGenOpts.EnableSplitLTOUnit); 1037 if (Action == Backend_EmitBC) { 1038 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1039 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1040 if (!ThinLinkOS) 1041 return; 1042 } 1043 if (CodeGenOpts.UnifiedLTO) 1044 TheModule->addModuleFlag(llvm::Module::Error, "UnifiedLTO", uint32_t(1)); 1045 MPM.addPass(ThinLTOBitcodeWriterPass( 1046 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 1047 } else { 1048 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists, 1049 /*EmitLTOSummary=*/true)); 1050 } 1051 } else { 1052 // Emit a module summary by default for Regular LTO except for ld64 1053 // targets 1054 bool EmitLTOSummary = shouldEmitRegularLTOSummary(); 1055 if (EmitLTOSummary) { 1056 if (!TheModule->getModuleFlag("ThinLTO") && !CodeGenOpts.UnifiedLTO) 1057 TheModule->addModuleFlag(llvm::Module::Error, "ThinLTO", uint32_t(0)); 1058 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1059 TheModule->addModuleFlag(llvm::Module::Error, "EnableSplitLTOUnit", 1060 uint32_t(1)); 1061 if (CodeGenOpts.UnifiedLTO) 1062 TheModule->addModuleFlag(llvm::Module::Error, "UnifiedLTO", uint32_t(1)); 1063 } 1064 if (Action == Backend_EmitBC) 1065 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 1066 EmitLTOSummary)); 1067 else 1068 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists, 1069 EmitLTOSummary)); 1070 } 1071 } 1072 if (CodeGenOpts.FatLTO) { 1073 // Set the EnableSplitLTOUnit and UnifiedLTO module flags, since FatLTO 1074 // uses a different action than Backend_EmitBC or Backend_EmitLL. 1075 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1076 TheModule->addModuleFlag(llvm::Module::Error, "EnableSplitLTOUnit", 1077 uint32_t(CodeGenOpts.EnableSplitLTOUnit)); 1078 if (CodeGenOpts.UnifiedLTO && !TheModule->getModuleFlag("UnifiedLTO")) 1079 TheModule->addModuleFlag(llvm::Module::Error, "UnifiedLTO", uint32_t(1)); 1080 } 1081 1082 // Print a textual, '-passes=' compatible, representation of pipeline if 1083 // requested. 1084 if (PrintPipelinePasses) { 1085 MPM.printPipeline(outs(), [&PIC](StringRef ClassName) { 1086 auto PassName = PIC.getPassNameForClassName(ClassName); 1087 return PassName.empty() ? ClassName : PassName; 1088 }); 1089 outs() << "\n"; 1090 return; 1091 } 1092 1093 if (LangOpts.HIPStdPar && !LangOpts.CUDAIsDevice && 1094 LangOpts.HIPStdParInterposeAlloc) 1095 MPM.addPass(HipStdParAllocationInterpositionPass()); 1096 1097 // Now that we have all of the passes ready, run them. 1098 { 1099 PrettyStackTraceString CrashInfo("Optimizer"); 1100 llvm::TimeTraceScope TimeScope("Optimizer"); 1101 MPM.run(*TheModule, MAM); 1102 } 1103 } 1104 1105 void EmitAssemblyHelper::RunCodegenPipeline( 1106 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1107 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) { 1108 // We still use the legacy PM to run the codegen pipeline since the new PM 1109 // does not work with the codegen pipeline. 1110 // FIXME: make the new PM work with the codegen pipeline. 1111 legacy::PassManager CodeGenPasses; 1112 1113 // Append any output we need to the pass manager. 1114 switch (Action) { 1115 case Backend_EmitAssembly: 1116 case Backend_EmitMCNull: 1117 case Backend_EmitObj: 1118 CodeGenPasses.add( 1119 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1120 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1121 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1122 if (!DwoOS) 1123 return; 1124 } 1125 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1126 DwoOS ? &DwoOS->os() : nullptr)) 1127 // FIXME: Should we handle this error differently? 1128 return; 1129 break; 1130 default: 1131 return; 1132 } 1133 1134 // If -print-pipeline-passes is requested, don't run the legacy pass manager. 1135 // FIXME: when codegen is switched to use the new pass manager, it should also 1136 // emit pass names here. 1137 if (PrintPipelinePasses) { 1138 return; 1139 } 1140 1141 { 1142 PrettyStackTraceString CrashInfo("Code generation"); 1143 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1144 CodeGenPasses.run(*TheModule); 1145 } 1146 } 1147 1148 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 1149 std::unique_ptr<raw_pwrite_stream> OS, 1150 BackendConsumer *BC) { 1151 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1152 setCommandLineOpts(CodeGenOpts); 1153 1154 bool RequiresCodeGen = actionRequiresCodeGen(Action); 1155 CreateTargetMachine(RequiresCodeGen); 1156 1157 if (RequiresCodeGen && !TM) 1158 return; 1159 if (TM) 1160 TheModule->setDataLayout(TM->createDataLayout()); 1161 1162 // Before executing passes, print the final values of the LLVM options. 1163 cl::PrintOptionValues(); 1164 1165 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1166 RunOptimizationPipeline(Action, OS, ThinLinkOS, BC); 1167 RunCodegenPipeline(Action, OS, DwoOS); 1168 1169 if (ThinLinkOS) 1170 ThinLinkOS->keep(); 1171 if (DwoOS) 1172 DwoOS->keep(); 1173 } 1174 1175 static void runThinLTOBackend( 1176 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, 1177 llvm::Module *M, const HeaderSearchOptions &HeaderOpts, 1178 const CodeGenOptions &CGOpts, const clang::TargetOptions &TOpts, 1179 const LangOptions &LOpts, std::unique_ptr<raw_pwrite_stream> OS, 1180 std::string SampleProfile, std::string ProfileRemapping, 1181 BackendAction Action) { 1182 DenseMap<StringRef, DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1183 ModuleToDefinedGVSummaries; 1184 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1185 1186 setCommandLineOpts(CGOpts); 1187 1188 // We can simply import the values mentioned in the combined index, since 1189 // we should only invoke this using the individual indexes written out 1190 // via a WriteIndexesThinBackend. 1191 FunctionImporter::ImportMapTy ImportList; 1192 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1193 return; 1194 1195 auto AddStream = [&](size_t Task, const Twine &ModuleName) { 1196 return std::make_unique<CachedFileStream>(std::move(OS), 1197 CGOpts.ObjectFilenameForDebug); 1198 }; 1199 lto::Config Conf; 1200 if (CGOpts.SaveTempsFilePrefix != "") { 1201 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1202 /* UseInputModulePath */ false)) { 1203 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1204 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1205 << '\n'; 1206 }); 1207 } 1208 } 1209 Conf.CPU = TOpts.CPU; 1210 Conf.CodeModel = getCodeModel(CGOpts); 1211 Conf.MAttrs = TOpts.Features; 1212 Conf.RelocModel = CGOpts.RelocationModel; 1213 std::optional<CodeGenOptLevel> OptLevelOrNone = 1214 CodeGenOpt::getLevel(CGOpts.OptimizationLevel); 1215 assert(OptLevelOrNone && "Invalid optimization level!"); 1216 Conf.CGOptLevel = *OptLevelOrNone; 1217 Conf.OptLevel = CGOpts.OptimizationLevel; 1218 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1219 Conf.SampleProfile = std::move(SampleProfile); 1220 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1221 // For historical reasons, loop interleaving is set to mirror setting for loop 1222 // unrolling. 1223 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1224 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1225 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1226 // Only enable CGProfilePass when using integrated assembler, since 1227 // non-integrated assemblers don't recognize .cgprofile section. 1228 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1229 1230 // Context sensitive profile. 1231 if (CGOpts.hasProfileCSIRInstr()) { 1232 Conf.RunCSIRInstr = true; 1233 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1234 } else if (CGOpts.hasProfileCSIRUse()) { 1235 Conf.RunCSIRInstr = false; 1236 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1237 } 1238 1239 Conf.ProfileRemapping = std::move(ProfileRemapping); 1240 Conf.DebugPassManager = CGOpts.DebugPassManager; 1241 Conf.VerifyEach = CGOpts.VerifyEach; 1242 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1243 Conf.RemarksFilename = CGOpts.OptRecordFile; 1244 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1245 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1246 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1247 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1248 switch (Action) { 1249 case Backend_EmitNothing: 1250 Conf.PreCodeGenModuleHook = [](size_t Task, const llvm::Module &Mod) { 1251 return false; 1252 }; 1253 break; 1254 case Backend_EmitLL: 1255 Conf.PreCodeGenModuleHook = [&](size_t Task, const llvm::Module &Mod) { 1256 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1257 return false; 1258 }; 1259 break; 1260 case Backend_EmitBC: 1261 Conf.PreCodeGenModuleHook = [&](size_t Task, const llvm::Module &Mod) { 1262 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1263 return false; 1264 }; 1265 break; 1266 default: 1267 Conf.CGFileType = getCodeGenFileType(Action); 1268 break; 1269 } 1270 if (Error E = 1271 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1272 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1273 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) { 1274 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1275 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1276 }); 1277 } 1278 } 1279 1280 void clang::EmitBackendOutput( 1281 DiagnosticsEngine &Diags, const HeaderSearchOptions &HeaderOpts, 1282 const CodeGenOptions &CGOpts, const clang::TargetOptions &TOpts, 1283 const LangOptions &LOpts, StringRef TDesc, llvm::Module *M, 1284 BackendAction Action, IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS, 1285 std::unique_ptr<raw_pwrite_stream> OS, BackendConsumer *BC) { 1286 1287 llvm::TimeTraceScope TimeScope("Backend"); 1288 1289 std::unique_ptr<llvm::Module> EmptyModule; 1290 if (!CGOpts.ThinLTOIndexFile.empty()) { 1291 // If we are performing a ThinLTO importing compile, load the function index 1292 // into memory and pass it into runThinLTOBackend, which will run the 1293 // function importer and invoke LTO passes. 1294 std::unique_ptr<ModuleSummaryIndex> CombinedIndex; 1295 if (Error E = llvm::getModuleSummaryIndexForFile( 1296 CGOpts.ThinLTOIndexFile, 1297 /*IgnoreEmptyThinLTOIndexFile*/ true) 1298 .moveInto(CombinedIndex)) { 1299 logAllUnhandledErrors(std::move(E), errs(), 1300 "Error loading index file '" + 1301 CGOpts.ThinLTOIndexFile + "': "); 1302 return; 1303 } 1304 1305 // A null CombinedIndex means we should skip ThinLTO compilation 1306 // (LLVM will optionally ignore empty index files, returning null instead 1307 // of an error). 1308 if (CombinedIndex) { 1309 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1310 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1311 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1312 CGOpts.ProfileRemappingFile, Action); 1313 return; 1314 } 1315 // Distributed indexing detected that nothing from the module is needed 1316 // for the final linking. So we can skip the compilation. We sill need to 1317 // output an empty object file to make sure that a linker does not fail 1318 // trying to read it. Also for some features, like CFI, we must skip 1319 // the compilation as CombinedIndex does not contain all required 1320 // information. 1321 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1322 EmptyModule->setTargetTriple(M->getTargetTriple()); 1323 M = EmptyModule.get(); 1324 } 1325 } 1326 1327 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M, VFS); 1328 AsmHelper.EmitAssembly(Action, std::move(OS), BC); 1329 1330 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1331 // DataLayout. 1332 if (AsmHelper.TM) { 1333 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1334 if (DLDesc != TDesc) { 1335 unsigned DiagID = Diags.getCustomDiagID( 1336 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1337 "expected target description '%1'"); 1338 Diags.Report(DiagID) << DLDesc << TDesc; 1339 } 1340 } 1341 } 1342 1343 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1344 // __LLVM,__bitcode section. 1345 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1346 llvm::MemoryBufferRef Buf) { 1347 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1348 return; 1349 llvm::embedBitcodeInModule( 1350 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1351 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1352 CGOpts.CmdArgs); 1353 } 1354 1355 void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts, 1356 DiagnosticsEngine &Diags) { 1357 if (CGOpts.OffloadObjects.empty()) 1358 return; 1359 1360 for (StringRef OffloadObject : CGOpts.OffloadObjects) { 1361 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ObjectOrErr = 1362 llvm::MemoryBuffer::getFileOrSTDIN(OffloadObject); 1363 if (ObjectOrErr.getError()) { 1364 auto DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1365 "could not open '%0' for embedding"); 1366 Diags.Report(DiagID) << OffloadObject; 1367 return; 1368 } 1369 1370 llvm::embedBufferInModule(*M, **ObjectOrErr, ".llvm.offloading", 1371 Align(object::OffloadBinary::getAlignment())); 1372 } 1373 } 1374