1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Bitcode/BitcodeReader.h" 24 #include "llvm/Bitcode/BitcodeWriter.h" 25 #include "llvm/Bitcode/BitcodeWriterPass.h" 26 #include "llvm/CodeGen/RegAllocRegistry.h" 27 #include "llvm/CodeGen/SchedulerRegistry.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IRPrintingPasses.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/LTO/LTOBackend.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/SubtargetFeature.h" 38 #include "llvm/Passes/PassBuilder.h" 39 #include "llvm/Passes/PassPlugin.h" 40 #include "llvm/Support/BuryPointer.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/MemoryBuffer.h" 43 #include "llvm/Support/PrettyStackTrace.h" 44 #include "llvm/Support/TargetRegistry.h" 45 #include "llvm/Support/TimeProfiler.h" 46 #include "llvm/Support/Timer.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetOptions.h" 50 #include "llvm/Transforms/Coroutines.h" 51 #include "llvm/Transforms/IPO.h" 52 #include "llvm/Transforms/IPO/AlwaysInliner.h" 53 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 54 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 55 #include "llvm/Transforms/InstCombine/InstCombine.h" 56 #include "llvm/Transforms/Instrumentation.h" 57 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 58 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 59 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 60 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 61 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 62 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 63 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 64 #include "llvm/Transforms/ObjCARC.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Scalar/GVN.h" 67 #include "llvm/Transforms/Utils.h" 68 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 69 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 70 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 71 #include "llvm/Transforms/Utils/SymbolRewriter.h" 72 #include <memory> 73 using namespace clang; 74 using namespace llvm; 75 76 namespace { 77 78 // Default filename used for profile generation. 79 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 80 81 class EmitAssemblyHelper { 82 DiagnosticsEngine &Diags; 83 const HeaderSearchOptions &HSOpts; 84 const CodeGenOptions &CodeGenOpts; 85 const clang::TargetOptions &TargetOpts; 86 const LangOptions &LangOpts; 87 Module *TheModule; 88 89 Timer CodeGenerationTime; 90 91 std::unique_ptr<raw_pwrite_stream> OS; 92 93 TargetIRAnalysis getTargetIRAnalysis() const { 94 if (TM) 95 return TM->getTargetIRAnalysis(); 96 97 return TargetIRAnalysis(); 98 } 99 100 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 101 102 /// Generates the TargetMachine. 103 /// Leaves TM unchanged if it is unable to create the target machine. 104 /// Some of our clang tests specify triples which are not built 105 /// into clang. This is okay because these tests check the generated 106 /// IR, and they require DataLayout which depends on the triple. 107 /// In this case, we allow this method to fail and not report an error. 108 /// When MustCreateTM is used, we print an error if we are unable to load 109 /// the requested target. 110 void CreateTargetMachine(bool MustCreateTM); 111 112 /// Add passes necessary to emit assembly or LLVM IR. 113 /// 114 /// \return True on success. 115 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 116 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 117 118 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 119 std::error_code EC; 120 auto F = llvm::make_unique<llvm::ToolOutputFile>(Path, EC, 121 llvm::sys::fs::F_None); 122 if (EC) { 123 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 124 F.reset(); 125 } 126 return F; 127 } 128 129 public: 130 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 131 const HeaderSearchOptions &HeaderSearchOpts, 132 const CodeGenOptions &CGOpts, 133 const clang::TargetOptions &TOpts, 134 const LangOptions &LOpts, Module *M) 135 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 136 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 137 CodeGenerationTime("codegen", "Code Generation Time") {} 138 139 ~EmitAssemblyHelper() { 140 if (CodeGenOpts.DisableFree) 141 BuryPointer(std::move(TM)); 142 } 143 144 std::unique_ptr<TargetMachine> TM; 145 146 void EmitAssembly(BackendAction Action, 147 std::unique_ptr<raw_pwrite_stream> OS); 148 149 void EmitAssemblyWithNewPassManager(BackendAction Action, 150 std::unique_ptr<raw_pwrite_stream> OS); 151 }; 152 153 // We need this wrapper to access LangOpts and CGOpts from extension functions 154 // that we add to the PassManagerBuilder. 155 class PassManagerBuilderWrapper : public PassManagerBuilder { 156 public: 157 PassManagerBuilderWrapper(const Triple &TargetTriple, 158 const CodeGenOptions &CGOpts, 159 const LangOptions &LangOpts) 160 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 161 LangOpts(LangOpts) {} 162 const Triple &getTargetTriple() const { return TargetTriple; } 163 const CodeGenOptions &getCGOpts() const { return CGOpts; } 164 const LangOptions &getLangOpts() const { return LangOpts; } 165 166 private: 167 const Triple &TargetTriple; 168 const CodeGenOptions &CGOpts; 169 const LangOptions &LangOpts; 170 }; 171 } 172 173 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 174 if (Builder.OptLevel > 0) 175 PM.add(createObjCARCAPElimPass()); 176 } 177 178 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 179 if (Builder.OptLevel > 0) 180 PM.add(createObjCARCExpandPass()); 181 } 182 183 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 184 if (Builder.OptLevel > 0) 185 PM.add(createObjCARCOptPass()); 186 } 187 188 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 189 legacy::PassManagerBase &PM) { 190 PM.add(createAddDiscriminatorsPass()); 191 } 192 193 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 194 legacy::PassManagerBase &PM) { 195 PM.add(createBoundsCheckingLegacyPass()); 196 } 197 198 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 199 legacy::PassManagerBase &PM) { 200 const PassManagerBuilderWrapper &BuilderWrapper = 201 static_cast<const PassManagerBuilderWrapper&>(Builder); 202 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 203 SanitizerCoverageOptions Opts; 204 Opts.CoverageType = 205 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 206 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 207 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 208 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 209 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 210 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 211 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 212 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 213 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 214 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 215 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 216 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 217 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 218 PM.add(createSanitizerCoverageModulePass(Opts)); 219 } 220 221 // Check if ASan should use GC-friendly instrumentation for globals. 222 // First of all, there is no point if -fdata-sections is off (expect for MachO, 223 // where this is not a factor). Also, on ELF this feature requires an assembler 224 // extension that only works with -integrated-as at the moment. 225 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 226 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 227 return false; 228 switch (T.getObjectFormat()) { 229 case Triple::MachO: 230 case Triple::COFF: 231 return true; 232 case Triple::ELF: 233 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 234 default: 235 return false; 236 } 237 } 238 239 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 240 legacy::PassManagerBase &PM) { 241 const PassManagerBuilderWrapper &BuilderWrapper = 242 static_cast<const PassManagerBuilderWrapper&>(Builder); 243 const Triple &T = BuilderWrapper.getTargetTriple(); 244 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 245 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 246 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 247 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 248 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 249 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 250 UseAfterScope)); 251 PM.add(createModuleAddressSanitizerLegacyPassPass( 252 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 253 } 254 255 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 256 legacy::PassManagerBase &PM) { 257 PM.add(createAddressSanitizerFunctionPass( 258 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 259 PM.add(createModuleAddressSanitizerLegacyPassPass( 260 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 261 /*UseOdrIndicator*/ false)); 262 } 263 264 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 265 legacy::PassManagerBase &PM) { 266 const PassManagerBuilderWrapper &BuilderWrapper = 267 static_cast<const PassManagerBuilderWrapper &>(Builder); 268 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 269 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 270 PM.add( 271 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 272 } 273 274 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 275 legacy::PassManagerBase &PM) { 276 PM.add(createHWAddressSanitizerLegacyPassPass( 277 /*CompileKernel*/ true, /*Recover*/ true)); 278 } 279 280 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 281 legacy::PassManagerBase &PM, 282 bool CompileKernel) { 283 const PassManagerBuilderWrapper &BuilderWrapper = 284 static_cast<const PassManagerBuilderWrapper&>(Builder); 285 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 286 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 287 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 288 PM.add(createMemorySanitizerLegacyPassPass( 289 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 290 291 // MemorySanitizer inserts complex instrumentation that mostly follows 292 // the logic of the original code, but operates on "shadow" values. 293 // It can benefit from re-running some general purpose optimization passes. 294 if (Builder.OptLevel > 0) { 295 PM.add(createEarlyCSEPass()); 296 PM.add(createReassociatePass()); 297 PM.add(createLICMPass()); 298 PM.add(createGVNPass()); 299 PM.add(createInstructionCombiningPass()); 300 PM.add(createDeadStoreEliminationPass()); 301 } 302 } 303 304 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 305 legacy::PassManagerBase &PM) { 306 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 307 } 308 309 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 310 legacy::PassManagerBase &PM) { 311 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 312 } 313 314 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 315 legacy::PassManagerBase &PM) { 316 PM.add(createThreadSanitizerLegacyPassPass()); 317 } 318 319 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 320 legacy::PassManagerBase &PM) { 321 const PassManagerBuilderWrapper &BuilderWrapper = 322 static_cast<const PassManagerBuilderWrapper&>(Builder); 323 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 324 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 325 } 326 327 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 328 const CodeGenOptions &CodeGenOpts) { 329 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 330 if (!CodeGenOpts.SimplifyLibCalls) 331 TLII->disableAllFunctions(); 332 else { 333 // Disable individual libc/libm calls in TargetLibraryInfo. 334 LibFunc F; 335 for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs()) 336 if (TLII->getLibFunc(FuncName, F)) 337 TLII->setUnavailable(F); 338 } 339 340 switch (CodeGenOpts.getVecLib()) { 341 case CodeGenOptions::Accelerate: 342 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 343 break; 344 case CodeGenOptions::MASSV: 345 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 346 break; 347 case CodeGenOptions::SVML: 348 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 349 break; 350 default: 351 break; 352 } 353 return TLII; 354 } 355 356 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 357 legacy::PassManager *MPM) { 358 llvm::SymbolRewriter::RewriteDescriptorList DL; 359 360 llvm::SymbolRewriter::RewriteMapParser MapParser; 361 for (const auto &MapFile : Opts.RewriteMapFiles) 362 MapParser.parse(MapFile, &DL); 363 364 MPM->add(createRewriteSymbolsPass(DL)); 365 } 366 367 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 368 switch (CodeGenOpts.OptimizationLevel) { 369 default: 370 llvm_unreachable("Invalid optimization level!"); 371 case 0: 372 return CodeGenOpt::None; 373 case 1: 374 return CodeGenOpt::Less; 375 case 2: 376 return CodeGenOpt::Default; // O2/Os/Oz 377 case 3: 378 return CodeGenOpt::Aggressive; 379 } 380 } 381 382 static Optional<llvm::CodeModel::Model> 383 getCodeModel(const CodeGenOptions &CodeGenOpts) { 384 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 385 .Case("tiny", llvm::CodeModel::Tiny) 386 .Case("small", llvm::CodeModel::Small) 387 .Case("kernel", llvm::CodeModel::Kernel) 388 .Case("medium", llvm::CodeModel::Medium) 389 .Case("large", llvm::CodeModel::Large) 390 .Case("default", ~1u) 391 .Default(~0u); 392 assert(CodeModel != ~0u && "invalid code model!"); 393 if (CodeModel == ~1u) 394 return None; 395 return static_cast<llvm::CodeModel::Model>(CodeModel); 396 } 397 398 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) { 399 if (Action == Backend_EmitObj) 400 return TargetMachine::CGFT_ObjectFile; 401 else if (Action == Backend_EmitMCNull) 402 return TargetMachine::CGFT_Null; 403 else { 404 assert(Action == Backend_EmitAssembly && "Invalid action!"); 405 return TargetMachine::CGFT_AssemblyFile; 406 } 407 } 408 409 static void initTargetOptions(llvm::TargetOptions &Options, 410 const CodeGenOptions &CodeGenOpts, 411 const clang::TargetOptions &TargetOpts, 412 const LangOptions &LangOpts, 413 const HeaderSearchOptions &HSOpts) { 414 Options.ThreadModel = 415 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 416 .Case("posix", llvm::ThreadModel::POSIX) 417 .Case("single", llvm::ThreadModel::Single); 418 419 // Set float ABI type. 420 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 421 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 422 "Invalid Floating Point ABI!"); 423 Options.FloatABIType = 424 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 425 .Case("soft", llvm::FloatABI::Soft) 426 .Case("softfp", llvm::FloatABI::Soft) 427 .Case("hard", llvm::FloatABI::Hard) 428 .Default(llvm::FloatABI::Default); 429 430 // Set FP fusion mode. 431 switch (LangOpts.getDefaultFPContractMode()) { 432 case LangOptions::FPC_Off: 433 // Preserve any contraction performed by the front-end. (Strict performs 434 // splitting of the muladd intrinsic in the backend.) 435 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 436 break; 437 case LangOptions::FPC_On: 438 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 439 break; 440 case LangOptions::FPC_Fast: 441 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 442 break; 443 } 444 445 Options.UseInitArray = CodeGenOpts.UseInitArray; 446 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 447 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 448 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 449 450 // Set EABI version. 451 Options.EABIVersion = TargetOpts.EABIVersion; 452 453 if (LangOpts.SjLjExceptions) 454 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 455 if (LangOpts.SEHExceptions) 456 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 457 if (LangOpts.DWARFExceptions) 458 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 459 460 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 461 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 462 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 463 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 464 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 465 Options.FunctionSections = CodeGenOpts.FunctionSections; 466 Options.DataSections = CodeGenOpts.DataSections; 467 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 468 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 469 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 470 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 471 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 472 Options.EmitAddrsig = CodeGenOpts.Addrsig; 473 Options.EnableDebugEntryValues = CodeGenOpts.EnableDebugEntryValues; 474 475 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 476 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 477 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 478 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 479 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 480 Options.MCOptions.MCIncrementalLinkerCompatible = 481 CodeGenOpts.IncrementalLinkerCompatible; 482 Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations; 483 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 484 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 485 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 486 Options.MCOptions.ABIName = TargetOpts.ABI; 487 for (const auto &Entry : HSOpts.UserEntries) 488 if (!Entry.IsFramework && 489 (Entry.Group == frontend::IncludeDirGroup::Quoted || 490 Entry.Group == frontend::IncludeDirGroup::Angled || 491 Entry.Group == frontend::IncludeDirGroup::System)) 492 Options.MCOptions.IASSearchPaths.push_back( 493 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 494 } 495 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 496 if (CodeGenOpts.DisableGCov) 497 return None; 498 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 499 return None; 500 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 501 // LLVM's -default-gcov-version flag is set to something invalid. 502 GCOVOptions Options; 503 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 504 Options.EmitData = CodeGenOpts.EmitGcovArcs; 505 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 506 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 507 Options.NoRedZone = CodeGenOpts.DisableRedZone; 508 Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; 509 Options.Filter = CodeGenOpts.ProfileFilterFiles; 510 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 511 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 512 return Options; 513 } 514 515 static Optional<InstrProfOptions> 516 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 517 const LangOptions &LangOpts) { 518 if (!CodeGenOpts.hasProfileClangInstr()) 519 return None; 520 InstrProfOptions Options; 521 Options.NoRedZone = CodeGenOpts.DisableRedZone; 522 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 523 524 // TODO: Surface the option to emit atomic profile counter increments at 525 // the driver level. 526 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 527 return Options; 528 } 529 530 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 531 legacy::FunctionPassManager &FPM) { 532 // Handle disabling of all LLVM passes, where we want to preserve the 533 // internal module before any optimization. 534 if (CodeGenOpts.DisableLLVMPasses) 535 return; 536 537 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 538 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 539 // are inserted before PMBuilder ones - they'd get the default-constructed 540 // TLI with an unknown target otherwise. 541 Triple TargetTriple(TheModule->getTargetTriple()); 542 std::unique_ptr<TargetLibraryInfoImpl> TLII( 543 createTLII(TargetTriple, CodeGenOpts)); 544 545 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 546 547 // At O0 and O1 we only run the always inliner which is more efficient. At 548 // higher optimization levels we run the normal inliner. 549 if (CodeGenOpts.OptimizationLevel <= 1) { 550 bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 && 551 !CodeGenOpts.DisableLifetimeMarkers); 552 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 553 } else { 554 // We do not want to inline hot callsites for SamplePGO module-summary build 555 // because profile annotation will happen again in ThinLTO backend, and we 556 // want the IR of the hot path to match the profile. 557 PMBuilder.Inliner = createFunctionInliningPass( 558 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 559 (!CodeGenOpts.SampleProfileFile.empty() && 560 CodeGenOpts.PrepareForThinLTO)); 561 } 562 563 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 564 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 565 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 566 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 567 568 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 569 // Loop interleaving in the loop vectorizer has historically been set to be 570 // enabled when loop unrolling is enabled. 571 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 572 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 573 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 574 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 575 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 576 577 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 578 579 if (TM) 580 TM->adjustPassManager(PMBuilder); 581 582 if (CodeGenOpts.DebugInfoForProfiling || 583 !CodeGenOpts.SampleProfileFile.empty()) 584 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 585 addAddDiscriminatorsPass); 586 587 // In ObjC ARC mode, add the main ARC optimization passes. 588 if (LangOpts.ObjCAutoRefCount) { 589 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 590 addObjCARCExpandPass); 591 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 592 addObjCARCAPElimPass); 593 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 594 addObjCARCOptPass); 595 } 596 597 if (LangOpts.Coroutines) 598 addCoroutinePassesToExtensionPoints(PMBuilder); 599 600 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 601 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 602 addBoundsCheckingPass); 603 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 604 addBoundsCheckingPass); 605 } 606 607 if (CodeGenOpts.SanitizeCoverageType || 608 CodeGenOpts.SanitizeCoverageIndirectCalls || 609 CodeGenOpts.SanitizeCoverageTraceCmp) { 610 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 611 addSanitizerCoveragePass); 612 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 613 addSanitizerCoveragePass); 614 } 615 616 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 617 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 618 addAddressSanitizerPasses); 619 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 620 addAddressSanitizerPasses); 621 } 622 623 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 624 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 625 addKernelAddressSanitizerPasses); 626 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 627 addKernelAddressSanitizerPasses); 628 } 629 630 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 631 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 632 addHWAddressSanitizerPasses); 633 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 634 addHWAddressSanitizerPasses); 635 } 636 637 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 638 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 639 addKernelHWAddressSanitizerPasses); 640 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 641 addKernelHWAddressSanitizerPasses); 642 } 643 644 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 645 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 646 addMemorySanitizerPass); 647 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 648 addMemorySanitizerPass); 649 } 650 651 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 652 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 653 addKernelMemorySanitizerPass); 654 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 655 addKernelMemorySanitizerPass); 656 } 657 658 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 659 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 660 addThreadSanitizerPass); 661 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 662 addThreadSanitizerPass); 663 } 664 665 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 666 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 667 addDataFlowSanitizerPass); 668 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 669 addDataFlowSanitizerPass); 670 } 671 672 // Set up the per-function pass manager. 673 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 674 if (CodeGenOpts.VerifyModule) 675 FPM.add(createVerifierPass()); 676 677 // Set up the per-module pass manager. 678 if (!CodeGenOpts.RewriteMapFiles.empty()) 679 addSymbolRewriterPass(CodeGenOpts, &MPM); 680 681 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 682 MPM.add(createGCOVProfilerPass(*Options)); 683 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 684 MPM.add(createStripSymbolsPass(true)); 685 } 686 687 if (Optional<InstrProfOptions> Options = 688 getInstrProfOptions(CodeGenOpts, LangOpts)) 689 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 690 691 bool hasIRInstr = false; 692 if (CodeGenOpts.hasProfileIRInstr()) { 693 PMBuilder.EnablePGOInstrGen = true; 694 hasIRInstr = true; 695 } 696 if (CodeGenOpts.hasProfileCSIRInstr()) { 697 assert(!CodeGenOpts.hasProfileCSIRUse() && 698 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 699 "same time"); 700 assert(!hasIRInstr && 701 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 702 "same time"); 703 PMBuilder.EnablePGOCSInstrGen = true; 704 hasIRInstr = true; 705 } 706 if (hasIRInstr) { 707 if (!CodeGenOpts.InstrProfileOutput.empty()) 708 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 709 else 710 PMBuilder.PGOInstrGen = DefaultProfileGenName; 711 } 712 if (CodeGenOpts.hasProfileIRUse()) { 713 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 714 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 715 } 716 717 if (!CodeGenOpts.SampleProfileFile.empty()) 718 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 719 720 PMBuilder.populateFunctionPassManager(FPM); 721 PMBuilder.populateModulePassManager(MPM); 722 } 723 724 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 725 SmallVector<const char *, 16> BackendArgs; 726 BackendArgs.push_back("clang"); // Fake program name. 727 if (!CodeGenOpts.DebugPass.empty()) { 728 BackendArgs.push_back("-debug-pass"); 729 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 730 } 731 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 732 BackendArgs.push_back("-limit-float-precision"); 733 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 734 } 735 BackendArgs.push_back(nullptr); 736 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 737 BackendArgs.data()); 738 } 739 740 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 741 // Create the TargetMachine for generating code. 742 std::string Error; 743 std::string Triple = TheModule->getTargetTriple(); 744 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 745 if (!TheTarget) { 746 if (MustCreateTM) 747 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 748 return; 749 } 750 751 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 752 std::string FeaturesStr = 753 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 754 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 755 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 756 757 llvm::TargetOptions Options; 758 initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 759 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 760 Options, RM, CM, OptLevel)); 761 } 762 763 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 764 BackendAction Action, 765 raw_pwrite_stream &OS, 766 raw_pwrite_stream *DwoOS) { 767 // Add LibraryInfo. 768 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 769 std::unique_ptr<TargetLibraryInfoImpl> TLII( 770 createTLII(TargetTriple, CodeGenOpts)); 771 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 772 773 // Normal mode, emit a .s or .o file by running the code generator. Note, 774 // this also adds codegenerator level optimization passes. 775 TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action); 776 777 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 778 // "codegen" passes so that it isn't run multiple times when there is 779 // inlining happening. 780 if (CodeGenOpts.OptimizationLevel > 0) 781 CodeGenPasses.add(createObjCARCContractPass()); 782 783 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 784 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 785 Diags.Report(diag::err_fe_unable_to_interface_with_target); 786 return false; 787 } 788 789 return true; 790 } 791 792 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 793 std::unique_ptr<raw_pwrite_stream> OS) { 794 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 795 796 setCommandLineOpts(CodeGenOpts); 797 798 bool UsesCodeGen = (Action != Backend_EmitNothing && 799 Action != Backend_EmitBC && 800 Action != Backend_EmitLL); 801 CreateTargetMachine(UsesCodeGen); 802 803 if (UsesCodeGen && !TM) 804 return; 805 if (TM) 806 TheModule->setDataLayout(TM->createDataLayout()); 807 808 legacy::PassManager PerModulePasses; 809 PerModulePasses.add( 810 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 811 812 legacy::FunctionPassManager PerFunctionPasses(TheModule); 813 PerFunctionPasses.add( 814 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 815 816 CreatePasses(PerModulePasses, PerFunctionPasses); 817 818 legacy::PassManager CodeGenPasses; 819 CodeGenPasses.add( 820 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 821 822 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 823 824 switch (Action) { 825 case Backend_EmitNothing: 826 break; 827 828 case Backend_EmitBC: 829 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 830 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 831 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 832 if (!ThinLinkOS) 833 return; 834 } 835 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 836 CodeGenOpts.EnableSplitLTOUnit); 837 PerModulePasses.add(createWriteThinLTOBitcodePass( 838 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 839 } else { 840 // Emit a module summary by default for Regular LTO except for ld64 841 // targets 842 bool EmitLTOSummary = 843 (CodeGenOpts.PrepareForLTO && 844 !CodeGenOpts.DisableLLVMPasses && 845 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 846 llvm::Triple::Apple); 847 if (EmitLTOSummary) { 848 if (!TheModule->getModuleFlag("ThinLTO")) 849 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 850 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 851 CodeGenOpts.EnableSplitLTOUnit); 852 } 853 854 PerModulePasses.add(createBitcodeWriterPass( 855 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 856 } 857 break; 858 859 case Backend_EmitLL: 860 PerModulePasses.add( 861 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 862 break; 863 864 default: 865 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 866 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 867 if (!DwoOS) 868 return; 869 } 870 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 871 DwoOS ? &DwoOS->os() : nullptr)) 872 return; 873 } 874 875 // Before executing passes, print the final values of the LLVM options. 876 cl::PrintOptionValues(); 877 878 // Run passes. For now we do all passes at once, but eventually we 879 // would like to have the option of streaming code generation. 880 881 { 882 PrettyStackTraceString CrashInfo("Per-function optimization"); 883 884 PerFunctionPasses.doInitialization(); 885 for (Function &F : *TheModule) 886 if (!F.isDeclaration()) 887 PerFunctionPasses.run(F); 888 PerFunctionPasses.doFinalization(); 889 } 890 891 { 892 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 893 PerModulePasses.run(*TheModule); 894 } 895 896 { 897 PrettyStackTraceString CrashInfo("Code generation"); 898 CodeGenPasses.run(*TheModule); 899 } 900 901 if (ThinLinkOS) 902 ThinLinkOS->keep(); 903 if (DwoOS) 904 DwoOS->keep(); 905 } 906 907 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 908 switch (Opts.OptimizationLevel) { 909 default: 910 llvm_unreachable("Invalid optimization level!"); 911 912 case 1: 913 return PassBuilder::O1; 914 915 case 2: 916 switch (Opts.OptimizeSize) { 917 default: 918 llvm_unreachable("Invalid optimization level for size!"); 919 920 case 0: 921 return PassBuilder::O2; 922 923 case 1: 924 return PassBuilder::Os; 925 926 case 2: 927 return PassBuilder::Oz; 928 } 929 930 case 3: 931 return PassBuilder::O3; 932 } 933 } 934 935 static void addSanitizersAtO0(ModulePassManager &MPM, 936 const Triple &TargetTriple, 937 const LangOptions &LangOpts, 938 const CodeGenOptions &CodeGenOpts) { 939 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 940 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 941 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 942 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 943 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 944 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 945 MPM.addPass( 946 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 947 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 948 }; 949 950 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 951 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 952 } 953 954 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 955 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 956 } 957 958 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 959 MPM.addPass(createModuleToFunctionPassAdaptor(MemorySanitizerPass({}))); 960 } 961 962 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 963 MPM.addPass(createModuleToFunctionPassAdaptor( 964 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 965 } 966 967 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 968 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 969 } 970 } 971 972 /// A clean version of `EmitAssembly` that uses the new pass manager. 973 /// 974 /// Not all features are currently supported in this system, but where 975 /// necessary it falls back to the legacy pass manager to at least provide 976 /// basic functionality. 977 /// 978 /// This API is planned to have its functionality finished and then to replace 979 /// `EmitAssembly` at some point in the future when the default switches. 980 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 981 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 982 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 983 setCommandLineOpts(CodeGenOpts); 984 985 bool RequiresCodeGen = (Action != Backend_EmitNothing && 986 Action != Backend_EmitBC && 987 Action != Backend_EmitLL); 988 CreateTargetMachine(RequiresCodeGen); 989 990 if (RequiresCodeGen && !TM) 991 return; 992 if (TM) 993 TheModule->setDataLayout(TM->createDataLayout()); 994 995 Optional<PGOOptions> PGOOpt; 996 997 if (CodeGenOpts.hasProfileIRInstr()) 998 // -fprofile-generate. 999 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1000 ? DefaultProfileGenName 1001 : CodeGenOpts.InstrProfileOutput, 1002 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1003 CodeGenOpts.DebugInfoForProfiling); 1004 else if (CodeGenOpts.hasProfileIRUse()) { 1005 // -fprofile-use. 1006 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1007 : PGOOptions::NoCSAction; 1008 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1009 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1010 CSAction, CodeGenOpts.DebugInfoForProfiling); 1011 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1012 // -fprofile-sample-use 1013 PGOOpt = 1014 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1015 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1016 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1017 else if (CodeGenOpts.DebugInfoForProfiling) 1018 // -fdebug-info-for-profiling 1019 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1020 PGOOptions::NoCSAction, true); 1021 1022 // Check to see if we want to generate a CS profile. 1023 if (CodeGenOpts.hasProfileCSIRInstr()) { 1024 assert(!CodeGenOpts.hasProfileCSIRUse() && 1025 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1026 "the same time"); 1027 if (PGOOpt.hasValue()) { 1028 assert(PGOOpt->Action != PGOOptions::IRInstr && 1029 PGOOpt->Action != PGOOptions::SampleUse && 1030 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1031 " pass"); 1032 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1033 ? DefaultProfileGenName 1034 : CodeGenOpts.InstrProfileOutput; 1035 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1036 } else 1037 PGOOpt = PGOOptions("", 1038 CodeGenOpts.InstrProfileOutput.empty() 1039 ? DefaultProfileGenName 1040 : CodeGenOpts.InstrProfileOutput, 1041 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1042 CodeGenOpts.DebugInfoForProfiling); 1043 } 1044 1045 PipelineTuningOptions PTO; 1046 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1047 // For historical reasons, loop interleaving is set to mirror setting for loop 1048 // unrolling. 1049 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1050 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1051 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1052 1053 PassBuilder PB(TM.get(), PTO, PGOOpt); 1054 1055 // Attempt to load pass plugins and register their callbacks with PB. 1056 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1057 auto PassPlugin = PassPlugin::Load(PluginFN); 1058 if (PassPlugin) { 1059 PassPlugin->registerPassBuilderCallbacks(PB); 1060 } else { 1061 Diags.Report(diag::err_fe_unable_to_load_plugin) 1062 << PluginFN << toString(PassPlugin.takeError()); 1063 } 1064 } 1065 1066 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1067 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1068 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1069 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1070 1071 // Register the AA manager first so that our version is the one used. 1072 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1073 1074 // Register the target library analysis directly and give it a customized 1075 // preset TLI. 1076 Triple TargetTriple(TheModule->getTargetTriple()); 1077 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1078 createTLII(TargetTriple, CodeGenOpts)); 1079 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1080 MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1081 1082 // Register all the basic analyses with the managers. 1083 PB.registerModuleAnalyses(MAM); 1084 PB.registerCGSCCAnalyses(CGAM); 1085 PB.registerFunctionAnalyses(FAM); 1086 PB.registerLoopAnalyses(LAM); 1087 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1088 1089 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1090 1091 if (!CodeGenOpts.DisableLLVMPasses) { 1092 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1093 bool IsLTO = CodeGenOpts.PrepareForLTO; 1094 1095 if (CodeGenOpts.OptimizationLevel == 0) { 1096 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1097 MPM.addPass(GCOVProfilerPass(*Options)); 1098 if (Optional<InstrProfOptions> Options = 1099 getInstrProfOptions(CodeGenOpts, LangOpts)) 1100 MPM.addPass(InstrProfiling(*Options, false)); 1101 1102 // Build a minimal pipeline based on the semantics required by Clang, 1103 // which is just that always inlining occurs. Further, disable generating 1104 // lifetime intrinsics to avoid enabling further optimizations during 1105 // code generation. 1106 MPM.addPass(AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/false)); 1107 1108 // At -O0 we directly run necessary sanitizer passes. 1109 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1110 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1111 1112 // Lastly, add semantically necessary passes for LTO. 1113 if (IsLTO || IsThinLTO) { 1114 MPM.addPass(CanonicalizeAliasesPass()); 1115 MPM.addPass(NameAnonGlobalPass()); 1116 } 1117 } else { 1118 // Map our optimization levels into one of the distinct levels used to 1119 // configure the pipeline. 1120 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1121 1122 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1123 MPM.addPass(createModuleToFunctionPassAdaptor( 1124 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1125 }); 1126 1127 // Register callbacks to schedule sanitizer passes at the appropriate part of 1128 // the pipeline. 1129 // FIXME: either handle asan/the remaining sanitizers or error out 1130 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1131 PB.registerScalarOptimizerLateEPCallback( 1132 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1133 FPM.addPass(BoundsCheckingPass()); 1134 }); 1135 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 1136 PB.registerOptimizerLastEPCallback( 1137 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1138 FPM.addPass(MemorySanitizerPass({})); 1139 }); 1140 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) 1141 PB.registerOptimizerLastEPCallback( 1142 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1143 FPM.addPass(ThreadSanitizerPass()); 1144 }); 1145 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1146 PB.registerPipelineStartEPCallback([&](ModulePassManager &MPM) { 1147 MPM.addPass( 1148 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1149 }); 1150 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1151 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1152 PB.registerOptimizerLastEPCallback( 1153 [Recover, UseAfterScope](FunctionPassManager &FPM, 1154 PassBuilder::OptimizationLevel Level) { 1155 FPM.addPass(AddressSanitizerPass( 1156 /*CompileKernel=*/false, Recover, UseAfterScope)); 1157 }); 1158 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1159 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1160 PB.registerPipelineStartEPCallback( 1161 [Recover, ModuleUseAfterScope, 1162 UseOdrIndicator](ModulePassManager &MPM) { 1163 MPM.addPass(ModuleAddressSanitizerPass( 1164 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1165 UseOdrIndicator)); 1166 }); 1167 } 1168 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1169 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1170 MPM.addPass(GCOVProfilerPass(*Options)); 1171 }); 1172 if (Optional<InstrProfOptions> Options = 1173 getInstrProfOptions(CodeGenOpts, LangOpts)) 1174 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1175 MPM.addPass(InstrProfiling(*Options, false)); 1176 }); 1177 1178 if (IsThinLTO) { 1179 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1180 Level, CodeGenOpts.DebugPassManager); 1181 MPM.addPass(CanonicalizeAliasesPass()); 1182 MPM.addPass(NameAnonGlobalPass()); 1183 } else if (IsLTO) { 1184 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1185 CodeGenOpts.DebugPassManager); 1186 MPM.addPass(CanonicalizeAliasesPass()); 1187 MPM.addPass(NameAnonGlobalPass()); 1188 } else { 1189 MPM = PB.buildPerModuleDefaultPipeline(Level, 1190 CodeGenOpts.DebugPassManager); 1191 } 1192 } 1193 1194 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1195 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1196 MPM.addPass(HWAddressSanitizerPass( 1197 /*CompileKernel=*/false, Recover)); 1198 } 1199 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1200 MPM.addPass(HWAddressSanitizerPass( 1201 /*CompileKernel=*/true, /*Recover=*/true)); 1202 } 1203 1204 if (CodeGenOpts.OptimizationLevel == 0) 1205 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1206 } 1207 1208 // FIXME: We still use the legacy pass manager to do code generation. We 1209 // create that pass manager here and use it as needed below. 1210 legacy::PassManager CodeGenPasses; 1211 bool NeedCodeGen = false; 1212 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1213 1214 // Append any output we need to the pass manager. 1215 switch (Action) { 1216 case Backend_EmitNothing: 1217 break; 1218 1219 case Backend_EmitBC: 1220 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1221 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1222 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1223 if (!ThinLinkOS) 1224 return; 1225 } 1226 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1227 CodeGenOpts.EnableSplitLTOUnit); 1228 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1229 : nullptr)); 1230 } else { 1231 // Emit a module summary by default for Regular LTO except for ld64 1232 // targets 1233 bool EmitLTOSummary = 1234 (CodeGenOpts.PrepareForLTO && 1235 !CodeGenOpts.DisableLLVMPasses && 1236 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1237 llvm::Triple::Apple); 1238 if (EmitLTOSummary) { 1239 if (!TheModule->getModuleFlag("ThinLTO")) 1240 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1241 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1242 CodeGenOpts.EnableSplitLTOUnit); 1243 } 1244 MPM.addPass( 1245 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1246 } 1247 break; 1248 1249 case Backend_EmitLL: 1250 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1251 break; 1252 1253 case Backend_EmitAssembly: 1254 case Backend_EmitMCNull: 1255 case Backend_EmitObj: 1256 NeedCodeGen = true; 1257 CodeGenPasses.add( 1258 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1259 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1260 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1261 if (!DwoOS) 1262 return; 1263 } 1264 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1265 DwoOS ? &DwoOS->os() : nullptr)) 1266 // FIXME: Should we handle this error differently? 1267 return; 1268 break; 1269 } 1270 1271 // Before executing passes, print the final values of the LLVM options. 1272 cl::PrintOptionValues(); 1273 1274 // Now that we have all of the passes ready, run them. 1275 { 1276 PrettyStackTraceString CrashInfo("Optimizer"); 1277 MPM.run(*TheModule, MAM); 1278 } 1279 1280 // Now if needed, run the legacy PM for codegen. 1281 if (NeedCodeGen) { 1282 PrettyStackTraceString CrashInfo("Code generation"); 1283 CodeGenPasses.run(*TheModule); 1284 } 1285 1286 if (ThinLinkOS) 1287 ThinLinkOS->keep(); 1288 if (DwoOS) 1289 DwoOS->keep(); 1290 } 1291 1292 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1293 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1294 if (!BMsOrErr) 1295 return BMsOrErr.takeError(); 1296 1297 // The bitcode file may contain multiple modules, we want the one that is 1298 // marked as being the ThinLTO module. 1299 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1300 return *Bm; 1301 1302 return make_error<StringError>("Could not find module summary", 1303 inconvertibleErrorCode()); 1304 } 1305 1306 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1307 for (BitcodeModule &BM : BMs) { 1308 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1309 if (LTOInfo && LTOInfo->IsThinLTO) 1310 return &BM; 1311 } 1312 return nullptr; 1313 } 1314 1315 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, 1316 const HeaderSearchOptions &HeaderOpts, 1317 const CodeGenOptions &CGOpts, 1318 const clang::TargetOptions &TOpts, 1319 const LangOptions &LOpts, 1320 std::unique_ptr<raw_pwrite_stream> OS, 1321 std::string SampleProfile, 1322 std::string ProfileRemapping, 1323 BackendAction Action) { 1324 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1325 ModuleToDefinedGVSummaries; 1326 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1327 1328 setCommandLineOpts(CGOpts); 1329 1330 // We can simply import the values mentioned in the combined index, since 1331 // we should only invoke this using the individual indexes written out 1332 // via a WriteIndexesThinBackend. 1333 FunctionImporter::ImportMapTy ImportList; 1334 for (auto &GlobalList : *CombinedIndex) { 1335 // Ignore entries for undefined references. 1336 if (GlobalList.second.SummaryList.empty()) 1337 continue; 1338 1339 auto GUID = GlobalList.first; 1340 for (auto &Summary : GlobalList.second.SummaryList) { 1341 // Skip the summaries for the importing module. These are included to 1342 // e.g. record required linkage changes. 1343 if (Summary->modulePath() == M->getModuleIdentifier()) 1344 continue; 1345 // Add an entry to provoke importing by thinBackend. 1346 ImportList[Summary->modulePath()].insert(GUID); 1347 } 1348 } 1349 1350 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1351 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1352 1353 for (auto &I : ImportList) { 1354 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1355 llvm::MemoryBuffer::getFile(I.first()); 1356 if (!MBOrErr) { 1357 errs() << "Error loading imported file '" << I.first() 1358 << "': " << MBOrErr.getError().message() << "\n"; 1359 return; 1360 } 1361 1362 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1363 if (!BMOrErr) { 1364 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1365 errs() << "Error loading imported file '" << I.first() 1366 << "': " << EIB.message() << '\n'; 1367 }); 1368 return; 1369 } 1370 ModuleMap.insert({I.first(), *BMOrErr}); 1371 1372 OwnedImports.push_back(std::move(*MBOrErr)); 1373 } 1374 auto AddStream = [&](size_t Task) { 1375 return llvm::make_unique<lto::NativeObjectStream>(std::move(OS)); 1376 }; 1377 lto::Config Conf; 1378 if (CGOpts.SaveTempsFilePrefix != "") { 1379 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1380 /* UseInputModulePath */ false)) { 1381 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1382 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1383 << '\n'; 1384 }); 1385 } 1386 } 1387 Conf.CPU = TOpts.CPU; 1388 Conf.CodeModel = getCodeModel(CGOpts); 1389 Conf.MAttrs = TOpts.Features; 1390 Conf.RelocModel = CGOpts.RelocationModel; 1391 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1392 Conf.OptLevel = CGOpts.OptimizationLevel; 1393 initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1394 Conf.SampleProfile = std::move(SampleProfile); 1395 1396 // Context sensitive profile. 1397 if (CGOpts.hasProfileCSIRInstr()) { 1398 Conf.RunCSIRInstr = true; 1399 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1400 } else if (CGOpts.hasProfileCSIRUse()) { 1401 Conf.RunCSIRInstr = false; 1402 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1403 } 1404 1405 Conf.ProfileRemapping = std::move(ProfileRemapping); 1406 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1407 Conf.DebugPassManager = CGOpts.DebugPassManager; 1408 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1409 Conf.RemarksFilename = CGOpts.OptRecordFile; 1410 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1411 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1412 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1413 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1414 switch (Action) { 1415 case Backend_EmitNothing: 1416 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1417 return false; 1418 }; 1419 break; 1420 case Backend_EmitLL: 1421 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1422 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1423 return false; 1424 }; 1425 break; 1426 case Backend_EmitBC: 1427 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1428 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1429 return false; 1430 }; 1431 break; 1432 default: 1433 Conf.CGFileType = getCodeGenFileType(Action); 1434 break; 1435 } 1436 if (Error E = thinBackend( 1437 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1438 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1439 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1440 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1441 }); 1442 } 1443 } 1444 1445 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1446 const HeaderSearchOptions &HeaderOpts, 1447 const CodeGenOptions &CGOpts, 1448 const clang::TargetOptions &TOpts, 1449 const LangOptions &LOpts, 1450 const llvm::DataLayout &TDesc, Module *M, 1451 BackendAction Action, 1452 std::unique_ptr<raw_pwrite_stream> OS) { 1453 1454 llvm::TimeTraceScope TimeScope("Backend", StringRef("")); 1455 1456 std::unique_ptr<llvm::Module> EmptyModule; 1457 if (!CGOpts.ThinLTOIndexFile.empty()) { 1458 // If we are performing a ThinLTO importing compile, load the function index 1459 // into memory and pass it into runThinLTOBackend, which will run the 1460 // function importer and invoke LTO passes. 1461 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1462 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1463 /*IgnoreEmptyThinLTOIndexFile*/true); 1464 if (!IndexOrErr) { 1465 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1466 "Error loading index file '" + 1467 CGOpts.ThinLTOIndexFile + "': "); 1468 return; 1469 } 1470 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1471 // A null CombinedIndex means we should skip ThinLTO compilation 1472 // (LLVM will optionally ignore empty index files, returning null instead 1473 // of an error). 1474 if (CombinedIndex) { 1475 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1476 runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts, 1477 LOpts, std::move(OS), CGOpts.SampleProfileFile, 1478 CGOpts.ProfileRemappingFile, Action); 1479 return; 1480 } 1481 // Distributed indexing detected that nothing from the module is needed 1482 // for the final linking. So we can skip the compilation. We sill need to 1483 // output an empty object file to make sure that a linker does not fail 1484 // trying to read it. Also for some features, like CFI, we must skip 1485 // the compilation as CombinedIndex does not contain all required 1486 // information. 1487 EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext()); 1488 EmptyModule->setTargetTriple(M->getTargetTriple()); 1489 M = EmptyModule.get(); 1490 } 1491 } 1492 1493 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1494 1495 if (CGOpts.ExperimentalNewPassManager) 1496 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1497 else 1498 AsmHelper.EmitAssembly(Action, std::move(OS)); 1499 1500 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1501 // DataLayout. 1502 if (AsmHelper.TM) { 1503 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1504 if (DLDesc != TDesc.getStringRepresentation()) { 1505 unsigned DiagID = Diags.getCustomDiagID( 1506 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1507 "expected target description '%1'"); 1508 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1509 } 1510 } 1511 } 1512 1513 static const char* getSectionNameForBitcode(const Triple &T) { 1514 switch (T.getObjectFormat()) { 1515 case Triple::MachO: 1516 return "__LLVM,__bitcode"; 1517 case Triple::COFF: 1518 case Triple::ELF: 1519 case Triple::Wasm: 1520 case Triple::UnknownObjectFormat: 1521 return ".llvmbc"; 1522 case Triple::XCOFF: 1523 llvm_unreachable("XCOFF is not yet implemented"); 1524 break; 1525 } 1526 llvm_unreachable("Unimplemented ObjectFormatType"); 1527 } 1528 1529 static const char* getSectionNameForCommandline(const Triple &T) { 1530 switch (T.getObjectFormat()) { 1531 case Triple::MachO: 1532 return "__LLVM,__cmdline"; 1533 case Triple::COFF: 1534 case Triple::ELF: 1535 case Triple::Wasm: 1536 case Triple::UnknownObjectFormat: 1537 return ".llvmcmd"; 1538 case Triple::XCOFF: 1539 llvm_unreachable("XCOFF is not yet implemented"); 1540 break; 1541 } 1542 llvm_unreachable("Unimplemented ObjectFormatType"); 1543 } 1544 1545 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1546 // __LLVM,__bitcode section. 1547 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1548 llvm::MemoryBufferRef Buf) { 1549 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1550 return; 1551 1552 // Save llvm.compiler.used and remote it. 1553 SmallVector<Constant*, 2> UsedArray; 1554 SmallPtrSet<GlobalValue*, 4> UsedGlobals; 1555 Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0); 1556 GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true); 1557 for (auto *GV : UsedGlobals) { 1558 if (GV->getName() != "llvm.embedded.module" && 1559 GV->getName() != "llvm.cmdline") 1560 UsedArray.push_back( 1561 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1562 } 1563 if (Used) 1564 Used->eraseFromParent(); 1565 1566 // Embed the bitcode for the llvm module. 1567 std::string Data; 1568 ArrayRef<uint8_t> ModuleData; 1569 Triple T(M->getTargetTriple()); 1570 // Create a constant that contains the bitcode. 1571 // In case of embedding a marker, ignore the input Buf and use the empty 1572 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 1573 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) { 1574 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 1575 (const unsigned char *)Buf.getBufferEnd())) { 1576 // If the input is LLVM Assembly, bitcode is produced by serializing 1577 // the module. Use-lists order need to be perserved in this case. 1578 llvm::raw_string_ostream OS(Data); 1579 llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true); 1580 ModuleData = 1581 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 1582 } else 1583 // If the input is LLVM bitcode, write the input byte stream directly. 1584 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 1585 Buf.getBufferSize()); 1586 } 1587 llvm::Constant *ModuleConstant = 1588 llvm::ConstantDataArray::get(M->getContext(), ModuleData); 1589 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1590 *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 1591 ModuleConstant); 1592 GV->setSection(getSectionNameForBitcode(T)); 1593 UsedArray.push_back( 1594 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1595 if (llvm::GlobalVariable *Old = 1596 M->getGlobalVariable("llvm.embedded.module", true)) { 1597 assert(Old->hasOneUse() && 1598 "llvm.embedded.module can only be used once in llvm.compiler.used"); 1599 GV->takeName(Old); 1600 Old->eraseFromParent(); 1601 } else { 1602 GV->setName("llvm.embedded.module"); 1603 } 1604 1605 // Skip if only bitcode needs to be embedded. 1606 if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) { 1607 // Embed command-line options. 1608 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()), 1609 CGOpts.CmdArgs.size()); 1610 llvm::Constant *CmdConstant = 1611 llvm::ConstantDataArray::get(M->getContext(), CmdData); 1612 GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true, 1613 llvm::GlobalValue::PrivateLinkage, 1614 CmdConstant); 1615 GV->setSection(getSectionNameForCommandline(T)); 1616 UsedArray.push_back( 1617 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 1618 if (llvm::GlobalVariable *Old = 1619 M->getGlobalVariable("llvm.cmdline", true)) { 1620 assert(Old->hasOneUse() && 1621 "llvm.cmdline can only be used once in llvm.compiler.used"); 1622 GV->takeName(Old); 1623 Old->eraseFromParent(); 1624 } else { 1625 GV->setName("llvm.cmdline"); 1626 } 1627 } 1628 1629 if (UsedArray.empty()) 1630 return; 1631 1632 // Recreate llvm.compiler.used. 1633 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 1634 auto *NewUsed = new GlobalVariable( 1635 *M, ATy, false, llvm::GlobalValue::AppendingLinkage, 1636 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 1637 NewUsed->setSection("llvm.metadata"); 1638 } 1639