1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/PassManager.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/IRPrinter/IRPrintingPasses.h" 38 #include "llvm/LTO/LTOBackend.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/TargetRegistry.h" 41 #include "llvm/Object/OffloadBinary.h" 42 #include "llvm/Passes/PassBuilder.h" 43 #include "llvm/Passes/PassPlugin.h" 44 #include "llvm/Passes/StandardInstrumentations.h" 45 #include "llvm/Support/BuryPointer.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/MemoryBuffer.h" 48 #include "llvm/Support/PrettyStackTrace.h" 49 #include "llvm/Support/TimeProfiler.h" 50 #include "llvm/Support/Timer.h" 51 #include "llvm/Support/ToolOutputFile.h" 52 #include "llvm/Support/VirtualFileSystem.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include "llvm/Target/TargetOptions.h" 56 #include "llvm/TargetParser/SubtargetFeature.h" 57 #include "llvm/TargetParser/Triple.h" 58 #include "llvm/Transforms/IPO/LowerTypeTests.h" 59 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 60 #include "llvm/Transforms/InstCombine/InstCombine.h" 61 #include "llvm/Transforms/Instrumentation.h" 62 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 63 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 64 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 65 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 66 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 67 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 69 #include "llvm/Transforms/Instrumentation/KCFI.h" 70 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 71 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 72 #include "llvm/Transforms/Instrumentation/SanitizerBinaryMetadata.h" 73 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 74 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 75 #include "llvm/Transforms/ObjCARC.h" 76 #include "llvm/Transforms/Scalar/EarlyCSE.h" 77 #include "llvm/Transforms/Scalar/GVN.h" 78 #include "llvm/Transforms/Scalar/JumpThreading.h" 79 #include "llvm/Transforms/Utils/Debugify.h" 80 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 81 #include "llvm/Transforms/Utils/ModuleUtils.h" 82 #include <memory> 83 #include <optional> 84 using namespace clang; 85 using namespace llvm; 86 87 #define HANDLE_EXTENSION(Ext) \ 88 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 89 #include "llvm/Support/Extension.def" 90 91 namespace llvm { 92 extern cl::opt<bool> DebugInfoCorrelate; 93 94 // Experiment to move sanitizers earlier. 95 static cl::opt<bool> ClSanitizeOnOptimizerEarlyEP( 96 "sanitizer-early-opt-ep", cl::Optional, 97 cl::desc("Insert sanitizers on OptimizerEarlyEP."), cl::init(false)); 98 } 99 100 namespace { 101 102 // Default filename used for profile generation. 103 std::string getDefaultProfileGenName() { 104 return DebugInfoCorrelate ? "default_%p.proflite" : "default_%m.profraw"; 105 } 106 107 class EmitAssemblyHelper { 108 DiagnosticsEngine &Diags; 109 const HeaderSearchOptions &HSOpts; 110 const CodeGenOptions &CodeGenOpts; 111 const clang::TargetOptions &TargetOpts; 112 const LangOptions &LangOpts; 113 Module *TheModule; 114 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS; 115 116 Timer CodeGenerationTime; 117 118 std::unique_ptr<raw_pwrite_stream> OS; 119 120 Triple TargetTriple; 121 122 TargetIRAnalysis getTargetIRAnalysis() const { 123 if (TM) 124 return TM->getTargetIRAnalysis(); 125 126 return TargetIRAnalysis(); 127 } 128 129 /// Generates the TargetMachine. 130 /// Leaves TM unchanged if it is unable to create the target machine. 131 /// Some of our clang tests specify triples which are not built 132 /// into clang. This is okay because these tests check the generated 133 /// IR, and they require DataLayout which depends on the triple. 134 /// In this case, we allow this method to fail and not report an error. 135 /// When MustCreateTM is used, we print an error if we are unable to load 136 /// the requested target. 137 void CreateTargetMachine(bool MustCreateTM); 138 139 /// Add passes necessary to emit assembly or LLVM IR. 140 /// 141 /// \return True on success. 142 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 143 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 144 145 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 146 std::error_code EC; 147 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 148 llvm::sys::fs::OF_None); 149 if (EC) { 150 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 151 F.reset(); 152 } 153 return F; 154 } 155 156 void 157 RunOptimizationPipeline(BackendAction Action, 158 std::unique_ptr<raw_pwrite_stream> &OS, 159 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS); 160 void RunCodegenPipeline(BackendAction Action, 161 std::unique_ptr<raw_pwrite_stream> &OS, 162 std::unique_ptr<llvm::ToolOutputFile> &DwoOS); 163 164 /// Check whether we should emit a module summary for regular LTO. 165 /// The module summary should be emitted by default for regular LTO 166 /// except for ld64 targets. 167 /// 168 /// \return True if the module summary should be emitted. 169 bool shouldEmitRegularLTOSummary() const { 170 return CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses && 171 TargetTriple.getVendor() != llvm::Triple::Apple; 172 } 173 174 public: 175 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 176 const HeaderSearchOptions &HeaderSearchOpts, 177 const CodeGenOptions &CGOpts, 178 const clang::TargetOptions &TOpts, 179 const LangOptions &LOpts, Module *M, 180 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS) 181 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 182 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), VFS(std::move(VFS)), 183 CodeGenerationTime("codegen", "Code Generation Time"), 184 TargetTriple(TheModule->getTargetTriple()) {} 185 186 ~EmitAssemblyHelper() { 187 if (CodeGenOpts.DisableFree) 188 BuryPointer(std::move(TM)); 189 } 190 191 std::unique_ptr<TargetMachine> TM; 192 193 // Emit output using the new pass manager for the optimization pipeline. 194 void EmitAssembly(BackendAction Action, 195 std::unique_ptr<raw_pwrite_stream> OS); 196 }; 197 } 198 199 static SanitizerCoverageOptions 200 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 201 SanitizerCoverageOptions Opts; 202 Opts.CoverageType = 203 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 204 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 205 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 206 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 207 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 208 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 209 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 210 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 211 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 212 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 213 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 214 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 215 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 216 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 217 Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads; 218 Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores; 219 Opts.CollectControlFlow = CGOpts.SanitizeCoverageControlFlow; 220 return Opts; 221 } 222 223 static SanitizerBinaryMetadataOptions 224 getSanitizerBinaryMetadataOptions(const CodeGenOptions &CGOpts) { 225 SanitizerBinaryMetadataOptions Opts; 226 Opts.Covered = CGOpts.SanitizeBinaryMetadataCovered; 227 Opts.Atomics = CGOpts.SanitizeBinaryMetadataAtomics; 228 Opts.UAR = CGOpts.SanitizeBinaryMetadataUAR; 229 return Opts; 230 } 231 232 // Check if ASan should use GC-friendly instrumentation for globals. 233 // First of all, there is no point if -fdata-sections is off (expect for MachO, 234 // where this is not a factor). Also, on ELF this feature requires an assembler 235 // extension that only works with -integrated-as at the moment. 236 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 237 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 238 return false; 239 switch (T.getObjectFormat()) { 240 case Triple::MachO: 241 case Triple::COFF: 242 return true; 243 case Triple::ELF: 244 return !CGOpts.DisableIntegratedAS; 245 case Triple::GOFF: 246 llvm::report_fatal_error("ASan not implemented for GOFF"); 247 case Triple::XCOFF: 248 llvm::report_fatal_error("ASan not implemented for XCOFF."); 249 case Triple::Wasm: 250 case Triple::DXContainer: 251 case Triple::SPIRV: 252 case Triple::UnknownObjectFormat: 253 break; 254 } 255 return false; 256 } 257 258 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 259 const CodeGenOptions &CodeGenOpts) { 260 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 261 262 switch (CodeGenOpts.getVecLib()) { 263 case CodeGenOptions::Accelerate: 264 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate, 265 TargetTriple); 266 break; 267 case CodeGenOptions::LIBMVEC: 268 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::LIBMVEC_X86, 269 TargetTriple); 270 break; 271 case CodeGenOptions::MASSV: 272 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV, 273 TargetTriple); 274 break; 275 case CodeGenOptions::SVML: 276 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML, 277 TargetTriple); 278 break; 279 case CodeGenOptions::SLEEF: 280 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SLEEFGNUABI, 281 TargetTriple); 282 break; 283 case CodeGenOptions::Darwin_libsystem_m: 284 TLII->addVectorizableFunctionsFromVecLib( 285 TargetLibraryInfoImpl::DarwinLibSystemM, TargetTriple); 286 break; 287 case CodeGenOptions::ArmPL: 288 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::ArmPL, 289 TargetTriple); 290 break; 291 default: 292 break; 293 } 294 return TLII; 295 } 296 297 static std::optional<llvm::CodeModel::Model> 298 getCodeModel(const CodeGenOptions &CodeGenOpts) { 299 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 300 .Case("tiny", llvm::CodeModel::Tiny) 301 .Case("small", llvm::CodeModel::Small) 302 .Case("kernel", llvm::CodeModel::Kernel) 303 .Case("medium", llvm::CodeModel::Medium) 304 .Case("large", llvm::CodeModel::Large) 305 .Case("default", ~1u) 306 .Default(~0u); 307 assert(CodeModel != ~0u && "invalid code model!"); 308 if (CodeModel == ~1u) 309 return std::nullopt; 310 return static_cast<llvm::CodeModel::Model>(CodeModel); 311 } 312 313 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 314 if (Action == Backend_EmitObj) 315 return CGFT_ObjectFile; 316 else if (Action == Backend_EmitMCNull) 317 return CGFT_Null; 318 else { 319 assert(Action == Backend_EmitAssembly && "Invalid action!"); 320 return CGFT_AssemblyFile; 321 } 322 } 323 324 static bool actionRequiresCodeGen(BackendAction Action) { 325 return Action != Backend_EmitNothing && Action != Backend_EmitBC && 326 Action != Backend_EmitLL; 327 } 328 329 static bool initTargetOptions(DiagnosticsEngine &Diags, 330 llvm::TargetOptions &Options, 331 const CodeGenOptions &CodeGenOpts, 332 const clang::TargetOptions &TargetOpts, 333 const LangOptions &LangOpts, 334 const HeaderSearchOptions &HSOpts) { 335 switch (LangOpts.getThreadModel()) { 336 case LangOptions::ThreadModelKind::POSIX: 337 Options.ThreadModel = llvm::ThreadModel::POSIX; 338 break; 339 case LangOptions::ThreadModelKind::Single: 340 Options.ThreadModel = llvm::ThreadModel::Single; 341 break; 342 } 343 344 // Set float ABI type. 345 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 346 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 347 "Invalid Floating Point ABI!"); 348 Options.FloatABIType = 349 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 350 .Case("soft", llvm::FloatABI::Soft) 351 .Case("softfp", llvm::FloatABI::Soft) 352 .Case("hard", llvm::FloatABI::Hard) 353 .Default(llvm::FloatABI::Default); 354 355 // Set FP fusion mode. 356 switch (LangOpts.getDefaultFPContractMode()) { 357 case LangOptions::FPM_Off: 358 // Preserve any contraction performed by the front-end. (Strict performs 359 // splitting of the muladd intrinsic in the backend.) 360 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 361 break; 362 case LangOptions::FPM_On: 363 case LangOptions::FPM_FastHonorPragmas: 364 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 365 break; 366 case LangOptions::FPM_Fast: 367 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 368 break; 369 } 370 371 Options.BinutilsVersion = 372 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 373 Options.UseInitArray = CodeGenOpts.UseInitArray; 374 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 375 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 376 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 377 378 // Set EABI version. 379 Options.EABIVersion = TargetOpts.EABIVersion; 380 381 if (LangOpts.hasSjLjExceptions()) 382 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 383 if (LangOpts.hasSEHExceptions()) 384 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 385 if (LangOpts.hasDWARFExceptions()) 386 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 387 if (LangOpts.hasWasmExceptions()) 388 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 389 390 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 391 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 392 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 393 Options.UnsafeFPMath = LangOpts.AllowFPReassoc && LangOpts.AllowRecip && 394 LangOpts.NoSignedZero && LangOpts.ApproxFunc && 395 (LangOpts.getDefaultFPContractMode() == 396 LangOptions::FPModeKind::FPM_Fast || 397 LangOpts.getDefaultFPContractMode() == 398 LangOptions::FPModeKind::FPM_FastHonorPragmas); 399 Options.ApproxFuncFPMath = LangOpts.ApproxFunc; 400 401 Options.BBSections = 402 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 403 .Case("all", llvm::BasicBlockSection::All) 404 .Case("labels", llvm::BasicBlockSection::Labels) 405 .StartsWith("list=", llvm::BasicBlockSection::List) 406 .Case("none", llvm::BasicBlockSection::None) 407 .Default(llvm::BasicBlockSection::None); 408 409 if (Options.BBSections == llvm::BasicBlockSection::List) { 410 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 411 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 412 if (!MBOrErr) { 413 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 414 << MBOrErr.getError().message(); 415 return false; 416 } 417 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 418 } 419 420 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 421 Options.FunctionSections = CodeGenOpts.FunctionSections; 422 Options.DataSections = CodeGenOpts.DataSections; 423 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 424 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 425 Options.UniqueBasicBlockSectionNames = 426 CodeGenOpts.UniqueBasicBlockSectionNames; 427 Options.TLSSize = CodeGenOpts.TLSSize; 428 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 429 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 430 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 431 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 432 Options.EmitAddrsig = CodeGenOpts.Addrsig; 433 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 434 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 435 Options.EnableAIXExtendedAltivecABI = LangOpts.EnableAIXExtendedAltivecABI; 436 Options.XRayFunctionIndex = CodeGenOpts.XRayFunctionIndex; 437 Options.LoopAlignment = CodeGenOpts.LoopAlignment; 438 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 439 Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug; 440 Options.Hotpatch = CodeGenOpts.HotPatch; 441 Options.JMCInstrument = CodeGenOpts.JMCInstrument; 442 Options.XCOFFReadOnlyPointers = CodeGenOpts.XCOFFReadOnlyPointers; 443 444 switch (CodeGenOpts.getSwiftAsyncFramePointer()) { 445 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto: 446 Options.SwiftAsyncFramePointer = 447 SwiftAsyncFramePointerMode::DeploymentBased; 448 break; 449 450 case CodeGenOptions::SwiftAsyncFramePointerKind::Always: 451 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always; 452 break; 453 454 case CodeGenOptions::SwiftAsyncFramePointerKind::Never: 455 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never; 456 break; 457 } 458 459 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 460 Options.MCOptions.EmitDwarfUnwind = CodeGenOpts.getEmitDwarfUnwind(); 461 Options.MCOptions.EmitCompactUnwindNonCanonical = 462 CodeGenOpts.EmitCompactUnwindNonCanonical; 463 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 464 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 465 Options.MCOptions.MCUseDwarfDirectory = 466 CodeGenOpts.NoDwarfDirectoryAsm 467 ? llvm::MCTargetOptions::DisableDwarfDirectory 468 : llvm::MCTargetOptions::EnableDwarfDirectory; 469 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 470 Options.MCOptions.MCIncrementalLinkerCompatible = 471 CodeGenOpts.IncrementalLinkerCompatible; 472 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 473 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 474 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 475 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 476 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 477 Options.MCOptions.ABIName = TargetOpts.ABI; 478 for (const auto &Entry : HSOpts.UserEntries) 479 if (!Entry.IsFramework && 480 (Entry.Group == frontend::IncludeDirGroup::Quoted || 481 Entry.Group == frontend::IncludeDirGroup::Angled || 482 Entry.Group == frontend::IncludeDirGroup::System)) 483 Options.MCOptions.IASSearchPaths.push_back( 484 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 485 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 486 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 487 Options.MCOptions.AsSecureLogFile = CodeGenOpts.AsSecureLogFile; 488 Options.MisExpect = CodeGenOpts.MisExpect; 489 490 return true; 491 } 492 493 static std::optional<GCOVOptions> 494 getGCOVOptions(const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts) { 495 if (CodeGenOpts.CoverageNotesFile.empty() && 496 CodeGenOpts.CoverageDataFile.empty()) 497 return std::nullopt; 498 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 499 // LLVM's -default-gcov-version flag is set to something invalid. 500 GCOVOptions Options; 501 Options.EmitNotes = !CodeGenOpts.CoverageNotesFile.empty(); 502 Options.EmitData = !CodeGenOpts.CoverageDataFile.empty(); 503 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 504 Options.NoRedZone = CodeGenOpts.DisableRedZone; 505 Options.Filter = CodeGenOpts.ProfileFilterFiles; 506 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 507 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 508 return Options; 509 } 510 511 static std::optional<InstrProfOptions> 512 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 513 const LangOptions &LangOpts) { 514 if (!CodeGenOpts.hasProfileClangInstr()) 515 return std::nullopt; 516 InstrProfOptions Options; 517 Options.NoRedZone = CodeGenOpts.DisableRedZone; 518 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 519 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 520 return Options; 521 } 522 523 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 524 SmallVector<const char *, 16> BackendArgs; 525 BackendArgs.push_back("clang"); // Fake program name. 526 if (!CodeGenOpts.DebugPass.empty()) { 527 BackendArgs.push_back("-debug-pass"); 528 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 529 } 530 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 531 BackendArgs.push_back("-limit-float-precision"); 532 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 533 } 534 // Check for the default "clang" invocation that won't set any cl::opt values. 535 // Skip trying to parse the command line invocation to avoid the issues 536 // described below. 537 if (BackendArgs.size() == 1) 538 return; 539 BackendArgs.push_back(nullptr); 540 // FIXME: The command line parser below is not thread-safe and shares a global 541 // state, so this call might crash or overwrite the options of another Clang 542 // instance in the same process. 543 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 544 BackendArgs.data()); 545 } 546 547 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 548 // Create the TargetMachine for generating code. 549 std::string Error; 550 std::string Triple = TheModule->getTargetTriple(); 551 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 552 if (!TheTarget) { 553 if (MustCreateTM) 554 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 555 return; 556 } 557 558 std::optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 559 std::string FeaturesStr = 560 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 561 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 562 std::optional<CodeGenOpt::Level> OptLevelOrNone = 563 CodeGenOpt::getLevel(CodeGenOpts.OptimizationLevel); 564 assert(OptLevelOrNone && "Invalid optimization level!"); 565 CodeGenOpt::Level OptLevel = *OptLevelOrNone; 566 567 llvm::TargetOptions Options; 568 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 569 HSOpts)) 570 return; 571 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 572 Options, RM, CM, OptLevel)); 573 } 574 575 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 576 BackendAction Action, 577 raw_pwrite_stream &OS, 578 raw_pwrite_stream *DwoOS) { 579 // Add LibraryInfo. 580 std::unique_ptr<TargetLibraryInfoImpl> TLII( 581 createTLII(TargetTriple, CodeGenOpts)); 582 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 583 584 // Normal mode, emit a .s or .o file by running the code generator. Note, 585 // this also adds codegenerator level optimization passes. 586 CodeGenFileType CGFT = getCodeGenFileType(Action); 587 588 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 589 // "codegen" passes so that it isn't run multiple times when there is 590 // inlining happening. 591 if (CodeGenOpts.OptimizationLevel > 0) 592 CodeGenPasses.add(createObjCARCContractPass()); 593 594 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 595 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 596 Diags.Report(diag::err_fe_unable_to_interface_with_target); 597 return false; 598 } 599 600 return true; 601 } 602 603 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 604 switch (Opts.OptimizationLevel) { 605 default: 606 llvm_unreachable("Invalid optimization level!"); 607 608 case 0: 609 return OptimizationLevel::O0; 610 611 case 1: 612 return OptimizationLevel::O1; 613 614 case 2: 615 switch (Opts.OptimizeSize) { 616 default: 617 llvm_unreachable("Invalid optimization level for size!"); 618 619 case 0: 620 return OptimizationLevel::O2; 621 622 case 1: 623 return OptimizationLevel::Os; 624 625 case 2: 626 return OptimizationLevel::Oz; 627 } 628 629 case 3: 630 return OptimizationLevel::O3; 631 } 632 } 633 634 static void addKCFIPass(const Triple &TargetTriple, const LangOptions &LangOpts, 635 PassBuilder &PB) { 636 // If the back-end supports KCFI operand bundle lowering, skip KCFIPass. 637 if (TargetTriple.getArch() == llvm::Triple::x86_64 || 638 TargetTriple.isAArch64(64) || TargetTriple.isRISCV()) 639 return; 640 641 // Ensure we lower KCFI operand bundles with -O0. 642 PB.registerOptimizerLastEPCallback( 643 [&](ModulePassManager &MPM, OptimizationLevel Level) { 644 if (Level == OptimizationLevel::O0 && 645 LangOpts.Sanitize.has(SanitizerKind::KCFI)) 646 MPM.addPass(createModuleToFunctionPassAdaptor(KCFIPass())); 647 }); 648 649 // When optimizations are requested, run KCIFPass after InstCombine to 650 // avoid unnecessary checks. 651 PB.registerPeepholeEPCallback( 652 [&](FunctionPassManager &FPM, OptimizationLevel Level) { 653 if (Level != OptimizationLevel::O0 && 654 LangOpts.Sanitize.has(SanitizerKind::KCFI)) 655 FPM.addPass(KCFIPass()); 656 }); 657 } 658 659 static void addSanitizers(const Triple &TargetTriple, 660 const CodeGenOptions &CodeGenOpts, 661 const LangOptions &LangOpts, PassBuilder &PB) { 662 auto SanitizersCallback = [&](ModulePassManager &MPM, 663 OptimizationLevel Level) { 664 if (CodeGenOpts.hasSanitizeCoverage()) { 665 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 666 MPM.addPass(SanitizerCoveragePass( 667 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 668 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 669 } 670 671 if (CodeGenOpts.hasSanitizeBinaryMetadata()) { 672 MPM.addPass(SanitizerBinaryMetadataPass( 673 getSanitizerBinaryMetadataOptions(CodeGenOpts), 674 CodeGenOpts.SanitizeMetadataIgnorelistFiles)); 675 } 676 677 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 678 if (LangOpts.Sanitize.has(Mask)) { 679 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 680 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 681 682 MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel, 683 CodeGenOpts.SanitizeMemoryParamRetval); 684 MPM.addPass(MemorySanitizerPass(options)); 685 if (Level != OptimizationLevel::O0) { 686 // MemorySanitizer inserts complex instrumentation that mostly follows 687 // the logic of the original code, but operates on "shadow" values. It 688 // can benefit from re-running some general purpose optimization 689 // passes. 690 MPM.addPass(RequireAnalysisPass<GlobalsAA, Module>()); 691 FunctionPassManager FPM; 692 FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */)); 693 FPM.addPass(InstCombinePass()); 694 FPM.addPass(JumpThreadingPass()); 695 FPM.addPass(GVNPass()); 696 FPM.addPass(InstCombinePass()); 697 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 698 } 699 } 700 }; 701 MSanPass(SanitizerKind::Memory, false); 702 MSanPass(SanitizerKind::KernelMemory, true); 703 704 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 705 MPM.addPass(ModuleThreadSanitizerPass()); 706 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 707 } 708 709 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 710 if (LangOpts.Sanitize.has(Mask)) { 711 bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 712 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 713 llvm::AsanDtorKind DestructorKind = 714 CodeGenOpts.getSanitizeAddressDtor(); 715 AddressSanitizerOptions Opts; 716 Opts.CompileKernel = CompileKernel; 717 Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask); 718 Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 719 Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn(); 720 MPM.addPass(AddressSanitizerPass(Opts, UseGlobalGC, UseOdrIndicator, 721 DestructorKind)); 722 } 723 }; 724 ASanPass(SanitizerKind::Address, false); 725 ASanPass(SanitizerKind::KernelAddress, true); 726 727 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 728 if (LangOpts.Sanitize.has(Mask)) { 729 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 730 MPM.addPass(HWAddressSanitizerPass( 731 {CompileKernel, Recover, 732 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0})); 733 } 734 }; 735 HWASanPass(SanitizerKind::HWAddress, false); 736 HWASanPass(SanitizerKind::KernelHWAddress, true); 737 738 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 739 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 740 } 741 }; 742 if (ClSanitizeOnOptimizerEarlyEP) { 743 PB.registerOptimizerEarlyEPCallback( 744 [SanitizersCallback](ModulePassManager &MPM, OptimizationLevel Level) { 745 ModulePassManager NewMPM; 746 SanitizersCallback(NewMPM, Level); 747 if (!NewMPM.isEmpty()) { 748 // Sanitizers can abandon<GlobalsAA>. 749 NewMPM.addPass(RequireAnalysisPass<GlobalsAA, Module>()); 750 MPM.addPass(std::move(NewMPM)); 751 } 752 }); 753 } else { 754 // LastEP does not need GlobalsAA. 755 PB.registerOptimizerLastEPCallback(SanitizersCallback); 756 } 757 } 758 759 void EmitAssemblyHelper::RunOptimizationPipeline( 760 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 761 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS) { 762 std::optional<PGOOptions> PGOOpt; 763 764 if (CodeGenOpts.hasProfileIRInstr()) 765 // -fprofile-generate. 766 PGOOpt = PGOOptions( 767 CodeGenOpts.InstrProfileOutput.empty() ? getDefaultProfileGenName() 768 : CodeGenOpts.InstrProfileOutput, 769 "", "", CodeGenOpts.MemoryProfileUsePath, nullptr, PGOOptions::IRInstr, 770 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 771 else if (CodeGenOpts.hasProfileIRUse()) { 772 // -fprofile-use. 773 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 774 : PGOOptions::NoCSAction; 775 PGOOpt = PGOOptions( 776 CodeGenOpts.ProfileInstrumentUsePath, "", 777 CodeGenOpts.ProfileRemappingFile, CodeGenOpts.MemoryProfileUsePath, VFS, 778 PGOOptions::IRUse, CSAction, CodeGenOpts.DebugInfoForProfiling); 779 } else if (!CodeGenOpts.SampleProfileFile.empty()) 780 // -fprofile-sample-use 781 PGOOpt = PGOOptions( 782 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 783 CodeGenOpts.MemoryProfileUsePath, VFS, PGOOptions::SampleUse, 784 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling, 785 CodeGenOpts.PseudoProbeForProfiling); 786 else if (!CodeGenOpts.MemoryProfileUsePath.empty()) 787 // -fmemory-profile-use (without any of the above options) 788 PGOOpt = PGOOptions("", "", "", CodeGenOpts.MemoryProfileUsePath, VFS, 789 PGOOptions::NoAction, PGOOptions::NoCSAction, 790 CodeGenOpts.DebugInfoForProfiling); 791 else if (CodeGenOpts.PseudoProbeForProfiling) 792 // -fpseudo-probe-for-profiling 793 PGOOpt = PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr, 794 PGOOptions::NoAction, PGOOptions::NoCSAction, 795 CodeGenOpts.DebugInfoForProfiling, true); 796 else if (CodeGenOpts.DebugInfoForProfiling) 797 // -fdebug-info-for-profiling 798 PGOOpt = PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr, 799 PGOOptions::NoAction, PGOOptions::NoCSAction, true); 800 801 // Check to see if we want to generate a CS profile. 802 if (CodeGenOpts.hasProfileCSIRInstr()) { 803 assert(!CodeGenOpts.hasProfileCSIRUse() && 804 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 805 "the same time"); 806 if (PGOOpt) { 807 assert(PGOOpt->Action != PGOOptions::IRInstr && 808 PGOOpt->Action != PGOOptions::SampleUse && 809 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 810 " pass"); 811 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 812 ? getDefaultProfileGenName() 813 : CodeGenOpts.InstrProfileOutput; 814 PGOOpt->CSAction = PGOOptions::CSIRInstr; 815 } else 816 PGOOpt = 817 PGOOptions("", 818 CodeGenOpts.InstrProfileOutput.empty() 819 ? getDefaultProfileGenName() 820 : CodeGenOpts.InstrProfileOutput, 821 "", /*MemoryProfile=*/"", nullptr, PGOOptions::NoAction, 822 PGOOptions::CSIRInstr, CodeGenOpts.DebugInfoForProfiling); 823 } 824 if (TM) 825 TM->setPGOOption(PGOOpt); 826 827 PipelineTuningOptions PTO; 828 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 829 // For historical reasons, loop interleaving is set to mirror setting for loop 830 // unrolling. 831 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 832 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 833 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 834 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 835 // Only enable CGProfilePass when using integrated assembler, since 836 // non-integrated assemblers don't recognize .cgprofile section. 837 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 838 PTO.UnifiedLTO = CodeGenOpts.UnifiedLTO; 839 840 LoopAnalysisManager LAM; 841 FunctionAnalysisManager FAM; 842 CGSCCAnalysisManager CGAM; 843 ModuleAnalysisManager MAM; 844 845 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure"; 846 PassInstrumentationCallbacks PIC; 847 PrintPassOptions PrintPassOpts; 848 PrintPassOpts.Indent = DebugPassStructure; 849 PrintPassOpts.SkipAnalyses = DebugPassStructure; 850 StandardInstrumentations SI( 851 TheModule->getContext(), 852 (CodeGenOpts.DebugPassManager || DebugPassStructure), 853 CodeGenOpts.VerifyEach, PrintPassOpts); 854 SI.registerCallbacks(PIC, &MAM); 855 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 856 857 // Handle the assignment tracking feature options. 858 switch (CodeGenOpts.getAssignmentTrackingMode()) { 859 case CodeGenOptions::AssignmentTrackingOpts::Forced: 860 PB.registerPipelineStartEPCallback( 861 [&](ModulePassManager &MPM, OptimizationLevel Level) { 862 MPM.addPass(AssignmentTrackingPass()); 863 }); 864 break; 865 case CodeGenOptions::AssignmentTrackingOpts::Enabled: 866 // Disable assignment tracking in LTO builds for now as the performance 867 // cost is too high. Disable for LLDB tuning due to llvm.org/PR43126. 868 if (!CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.PrepareForLTO && 869 CodeGenOpts.getDebuggerTuning() != llvm::DebuggerKind::LLDB) { 870 PB.registerPipelineStartEPCallback( 871 [&](ModulePassManager &MPM, OptimizationLevel Level) { 872 // Only use assignment tracking if optimisations are enabled. 873 if (Level != OptimizationLevel::O0) 874 MPM.addPass(AssignmentTrackingPass()); 875 }); 876 } 877 break; 878 case CodeGenOptions::AssignmentTrackingOpts::Disabled: 879 break; 880 } 881 882 // Enable verify-debuginfo-preserve-each for new PM. 883 DebugifyEachInstrumentation Debugify; 884 DebugInfoPerPass DebugInfoBeforePass; 885 if (CodeGenOpts.EnableDIPreservationVerify) { 886 Debugify.setDebugifyMode(DebugifyMode::OriginalDebugInfo); 887 Debugify.setDebugInfoBeforePass(DebugInfoBeforePass); 888 889 if (!CodeGenOpts.DIBugsReportFilePath.empty()) 890 Debugify.setOrigDIVerifyBugsReportFilePath( 891 CodeGenOpts.DIBugsReportFilePath); 892 Debugify.registerCallbacks(PIC, MAM); 893 } 894 // Attempt to load pass plugins and register their callbacks with PB. 895 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 896 auto PassPlugin = PassPlugin::Load(PluginFN); 897 if (PassPlugin) { 898 PassPlugin->registerPassBuilderCallbacks(PB); 899 } else { 900 Diags.Report(diag::err_fe_unable_to_load_plugin) 901 << PluginFN << toString(PassPlugin.takeError()); 902 } 903 } 904 #define HANDLE_EXTENSION(Ext) \ 905 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 906 #include "llvm/Support/Extension.def" 907 908 // Register the target library analysis directly and give it a customized 909 // preset TLI. 910 std::unique_ptr<TargetLibraryInfoImpl> TLII( 911 createTLII(TargetTriple, CodeGenOpts)); 912 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 913 914 // Register all the basic analyses with the managers. 915 PB.registerModuleAnalyses(MAM); 916 PB.registerCGSCCAnalyses(CGAM); 917 PB.registerFunctionAnalyses(FAM); 918 PB.registerLoopAnalyses(LAM); 919 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 920 921 ModulePassManager MPM; 922 923 if (!CodeGenOpts.DisableLLVMPasses) { 924 // Map our optimization levels into one of the distinct levels used to 925 // configure the pipeline. 926 OptimizationLevel Level = mapToLevel(CodeGenOpts); 927 928 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 929 bool IsLTO = CodeGenOpts.PrepareForLTO; 930 931 if (LangOpts.ObjCAutoRefCount) { 932 PB.registerPipelineStartEPCallback( 933 [](ModulePassManager &MPM, OptimizationLevel Level) { 934 if (Level != OptimizationLevel::O0) 935 MPM.addPass( 936 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 937 }); 938 PB.registerPipelineEarlySimplificationEPCallback( 939 [](ModulePassManager &MPM, OptimizationLevel Level) { 940 if (Level != OptimizationLevel::O0) 941 MPM.addPass(ObjCARCAPElimPass()); 942 }); 943 PB.registerScalarOptimizerLateEPCallback( 944 [](FunctionPassManager &FPM, OptimizationLevel Level) { 945 if (Level != OptimizationLevel::O0) 946 FPM.addPass(ObjCARCOptPass()); 947 }); 948 } 949 950 // If we reached here with a non-empty index file name, then the index 951 // file was empty and we are not performing ThinLTO backend compilation 952 // (used in testing in a distributed build environment). 953 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 954 // If so drop any the type test assume sequences inserted for whole program 955 // vtables so that codegen doesn't complain. 956 if (IsThinLTOPostLink) 957 PB.registerPipelineStartEPCallback( 958 [](ModulePassManager &MPM, OptimizationLevel Level) { 959 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 960 /*ImportSummary=*/nullptr, 961 /*DropTypeTests=*/true)); 962 }); 963 964 if (CodeGenOpts.InstrumentFunctions || 965 CodeGenOpts.InstrumentFunctionEntryBare || 966 CodeGenOpts.InstrumentFunctionsAfterInlining || 967 CodeGenOpts.InstrumentForProfiling) { 968 PB.registerPipelineStartEPCallback( 969 [](ModulePassManager &MPM, OptimizationLevel Level) { 970 MPM.addPass(createModuleToFunctionPassAdaptor( 971 EntryExitInstrumenterPass(/*PostInlining=*/false))); 972 }); 973 PB.registerOptimizerLastEPCallback( 974 [](ModulePassManager &MPM, OptimizationLevel Level) { 975 MPM.addPass(createModuleToFunctionPassAdaptor( 976 EntryExitInstrumenterPass(/*PostInlining=*/true))); 977 }); 978 } 979 980 // Register callbacks to schedule sanitizer passes at the appropriate part 981 // of the pipeline. 982 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 983 PB.registerScalarOptimizerLateEPCallback( 984 [](FunctionPassManager &FPM, OptimizationLevel Level) { 985 FPM.addPass(BoundsCheckingPass()); 986 }); 987 988 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 989 // done on PreLink stage. 990 if (!IsThinLTOPostLink) { 991 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 992 addKCFIPass(TargetTriple, LangOpts, PB); 993 } 994 995 if (std::optional<GCOVOptions> Options = 996 getGCOVOptions(CodeGenOpts, LangOpts)) 997 PB.registerPipelineStartEPCallback( 998 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 999 MPM.addPass(GCOVProfilerPass(*Options)); 1000 }); 1001 if (std::optional<InstrProfOptions> Options = 1002 getInstrProfOptions(CodeGenOpts, LangOpts)) 1003 PB.registerPipelineStartEPCallback( 1004 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1005 MPM.addPass(InstrProfiling(*Options, false)); 1006 }); 1007 1008 // TODO: Consider passing the MemoryProfileOutput to the pass builder via 1009 // the PGOOptions, and set this up there. 1010 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1011 PB.registerOptimizerLastEPCallback( 1012 [](ModulePassManager &MPM, OptimizationLevel Level) { 1013 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1014 MPM.addPass(ModuleMemProfilerPass()); 1015 }); 1016 } 1017 1018 if (IsThinLTO || (IsLTO && CodeGenOpts.UnifiedLTO)) { 1019 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 1020 } else if (IsLTO) { 1021 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 1022 } else { 1023 MPM = PB.buildPerModuleDefaultPipeline(Level); 1024 } 1025 } 1026 1027 // Add a verifier pass if requested. We don't have to do this if the action 1028 // requires code generation because there will already be a verifier pass in 1029 // the code-generation pipeline. 1030 if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule) 1031 MPM.addPass(VerifierPass()); 1032 1033 if (Action == Backend_EmitBC || Action == Backend_EmitLL) { 1034 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1035 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1036 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1037 CodeGenOpts.EnableSplitLTOUnit); 1038 if (Action == Backend_EmitBC) { 1039 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1040 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1041 if (!ThinLinkOS) 1042 return; 1043 } 1044 if (CodeGenOpts.UnifiedLTO) 1045 TheModule->addModuleFlag(Module::Error, "UnifiedLTO", uint32_t(1)); 1046 MPM.addPass(ThinLTOBitcodeWriterPass( 1047 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 1048 } else { 1049 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists, 1050 /*EmitLTOSummary=*/true)); 1051 } 1052 1053 } else { 1054 // Emit a module summary by default for Regular LTO except for ld64 1055 // targets 1056 bool EmitLTOSummary = shouldEmitRegularLTOSummary(); 1057 if (EmitLTOSummary) { 1058 if (!TheModule->getModuleFlag("ThinLTO") && !CodeGenOpts.UnifiedLTO) 1059 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1060 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1061 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1062 uint32_t(1)); 1063 if (CodeGenOpts.UnifiedLTO) 1064 TheModule->addModuleFlag(Module::Error, "UnifiedLTO", uint32_t(1)); 1065 } 1066 if (Action == Backend_EmitBC) 1067 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 1068 EmitLTOSummary)); 1069 else 1070 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists, 1071 EmitLTOSummary)); 1072 } 1073 } 1074 1075 // Now that we have all of the passes ready, run them. 1076 { 1077 PrettyStackTraceString CrashInfo("Optimizer"); 1078 llvm::TimeTraceScope TimeScope("Optimizer"); 1079 MPM.run(*TheModule, MAM); 1080 } 1081 } 1082 1083 void EmitAssemblyHelper::RunCodegenPipeline( 1084 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1085 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) { 1086 // We still use the legacy PM to run the codegen pipeline since the new PM 1087 // does not work with the codegen pipeline. 1088 // FIXME: make the new PM work with the codegen pipeline. 1089 legacy::PassManager CodeGenPasses; 1090 1091 // Append any output we need to the pass manager. 1092 switch (Action) { 1093 case Backend_EmitAssembly: 1094 case Backend_EmitMCNull: 1095 case Backend_EmitObj: 1096 CodeGenPasses.add( 1097 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1098 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1099 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1100 if (!DwoOS) 1101 return; 1102 } 1103 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1104 DwoOS ? &DwoOS->os() : nullptr)) 1105 // FIXME: Should we handle this error differently? 1106 return; 1107 break; 1108 default: 1109 return; 1110 } 1111 1112 { 1113 PrettyStackTraceString CrashInfo("Code generation"); 1114 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1115 CodeGenPasses.run(*TheModule); 1116 } 1117 } 1118 1119 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 1120 std::unique_ptr<raw_pwrite_stream> OS) { 1121 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1122 setCommandLineOpts(CodeGenOpts); 1123 1124 bool RequiresCodeGen = actionRequiresCodeGen(Action); 1125 CreateTargetMachine(RequiresCodeGen); 1126 1127 if (RequiresCodeGen && !TM) 1128 return; 1129 if (TM) 1130 TheModule->setDataLayout(TM->createDataLayout()); 1131 1132 // Before executing passes, print the final values of the LLVM options. 1133 cl::PrintOptionValues(); 1134 1135 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1136 RunOptimizationPipeline(Action, OS, ThinLinkOS); 1137 RunCodegenPipeline(Action, OS, DwoOS); 1138 1139 if (ThinLinkOS) 1140 ThinLinkOS->keep(); 1141 if (DwoOS) 1142 DwoOS->keep(); 1143 } 1144 1145 static void runThinLTOBackend( 1146 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1147 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1148 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1149 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1150 std::string ProfileRemapping, BackendAction Action) { 1151 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1152 ModuleToDefinedGVSummaries; 1153 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1154 1155 setCommandLineOpts(CGOpts); 1156 1157 // We can simply import the values mentioned in the combined index, since 1158 // we should only invoke this using the individual indexes written out 1159 // via a WriteIndexesThinBackend. 1160 FunctionImporter::ImportMapTy ImportList; 1161 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1162 return; 1163 1164 auto AddStream = [&](size_t Task, const Twine &ModuleName) { 1165 return std::make_unique<CachedFileStream>(std::move(OS), 1166 CGOpts.ObjectFilenameForDebug); 1167 }; 1168 lto::Config Conf; 1169 if (CGOpts.SaveTempsFilePrefix != "") { 1170 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1171 /* UseInputModulePath */ false)) { 1172 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1173 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1174 << '\n'; 1175 }); 1176 } 1177 } 1178 Conf.CPU = TOpts.CPU; 1179 Conf.CodeModel = getCodeModel(CGOpts); 1180 Conf.MAttrs = TOpts.Features; 1181 Conf.RelocModel = CGOpts.RelocationModel; 1182 std::optional<CodeGenOpt::Level> OptLevelOrNone = 1183 CodeGenOpt::getLevel(CGOpts.OptimizationLevel); 1184 assert(OptLevelOrNone && "Invalid optimization level!"); 1185 Conf.CGOptLevel = *OptLevelOrNone; 1186 Conf.OptLevel = CGOpts.OptimizationLevel; 1187 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1188 Conf.SampleProfile = std::move(SampleProfile); 1189 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1190 // For historical reasons, loop interleaving is set to mirror setting for loop 1191 // unrolling. 1192 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1193 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1194 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1195 // Only enable CGProfilePass when using integrated assembler, since 1196 // non-integrated assemblers don't recognize .cgprofile section. 1197 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1198 1199 // Context sensitive profile. 1200 if (CGOpts.hasProfileCSIRInstr()) { 1201 Conf.RunCSIRInstr = true; 1202 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1203 } else if (CGOpts.hasProfileCSIRUse()) { 1204 Conf.RunCSIRInstr = false; 1205 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1206 } 1207 1208 Conf.ProfileRemapping = std::move(ProfileRemapping); 1209 Conf.DebugPassManager = CGOpts.DebugPassManager; 1210 Conf.VerifyEach = CGOpts.VerifyEach; 1211 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1212 Conf.RemarksFilename = CGOpts.OptRecordFile; 1213 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1214 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1215 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1216 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1217 switch (Action) { 1218 case Backend_EmitNothing: 1219 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1220 return false; 1221 }; 1222 break; 1223 case Backend_EmitLL: 1224 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1225 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1226 return false; 1227 }; 1228 break; 1229 case Backend_EmitBC: 1230 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1231 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1232 return false; 1233 }; 1234 break; 1235 default: 1236 Conf.CGFileType = getCodeGenFileType(Action); 1237 break; 1238 } 1239 if (Error E = 1240 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1241 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1242 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) { 1243 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1244 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1245 }); 1246 } 1247 } 1248 1249 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1250 const HeaderSearchOptions &HeaderOpts, 1251 const CodeGenOptions &CGOpts, 1252 const clang::TargetOptions &TOpts, 1253 const LangOptions &LOpts, StringRef TDesc, 1254 Module *M, BackendAction Action, 1255 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS, 1256 std::unique_ptr<raw_pwrite_stream> OS) { 1257 1258 llvm::TimeTraceScope TimeScope("Backend"); 1259 1260 std::unique_ptr<llvm::Module> EmptyModule; 1261 if (!CGOpts.ThinLTOIndexFile.empty()) { 1262 // If we are performing a ThinLTO importing compile, load the function index 1263 // into memory and pass it into runThinLTOBackend, which will run the 1264 // function importer and invoke LTO passes. 1265 std::unique_ptr<ModuleSummaryIndex> CombinedIndex; 1266 if (Error E = llvm::getModuleSummaryIndexForFile( 1267 CGOpts.ThinLTOIndexFile, 1268 /*IgnoreEmptyThinLTOIndexFile*/ true) 1269 .moveInto(CombinedIndex)) { 1270 logAllUnhandledErrors(std::move(E), errs(), 1271 "Error loading index file '" + 1272 CGOpts.ThinLTOIndexFile + "': "); 1273 return; 1274 } 1275 1276 // A null CombinedIndex means we should skip ThinLTO compilation 1277 // (LLVM will optionally ignore empty index files, returning null instead 1278 // of an error). 1279 if (CombinedIndex) { 1280 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1281 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1282 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1283 CGOpts.ProfileRemappingFile, Action); 1284 return; 1285 } 1286 // Distributed indexing detected that nothing from the module is needed 1287 // for the final linking. So we can skip the compilation. We sill need to 1288 // output an empty object file to make sure that a linker does not fail 1289 // trying to read it. Also for some features, like CFI, we must skip 1290 // the compilation as CombinedIndex does not contain all required 1291 // information. 1292 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1293 EmptyModule->setTargetTriple(M->getTargetTriple()); 1294 M = EmptyModule.get(); 1295 } 1296 } 1297 1298 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M, VFS); 1299 AsmHelper.EmitAssembly(Action, std::move(OS)); 1300 1301 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1302 // DataLayout. 1303 if (AsmHelper.TM) { 1304 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1305 if (DLDesc != TDesc) { 1306 unsigned DiagID = Diags.getCustomDiagID( 1307 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1308 "expected target description '%1'"); 1309 Diags.Report(DiagID) << DLDesc << TDesc; 1310 } 1311 } 1312 } 1313 1314 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1315 // __LLVM,__bitcode section. 1316 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1317 llvm::MemoryBufferRef Buf) { 1318 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1319 return; 1320 llvm::embedBitcodeInModule( 1321 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1322 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1323 CGOpts.CmdArgs); 1324 } 1325 1326 void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts, 1327 DiagnosticsEngine &Diags) { 1328 if (CGOpts.OffloadObjects.empty()) 1329 return; 1330 1331 for (StringRef OffloadObject : CGOpts.OffloadObjects) { 1332 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ObjectOrErr = 1333 llvm::MemoryBuffer::getFileOrSTDIN(OffloadObject); 1334 if (std::error_code EC = ObjectOrErr.getError()) { 1335 auto DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1336 "could not open '%0' for embedding"); 1337 Diags.Report(DiagID) << OffloadObject; 1338 return; 1339 } 1340 1341 llvm::embedBufferInModule(*M, **ObjectOrErr, ".llvm.offloading", 1342 Align(object::OffloadBinary::getAlignment())); 1343 } 1344 } 1345