1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "BackendConsumer.h" 11 #include "LinkInModulesPass.h" 12 #include "clang/Basic/CodeGenOptions.h" 13 #include "clang/Basic/Diagnostic.h" 14 #include "clang/Basic/LangOptions.h" 15 #include "clang/Basic/TargetOptions.h" 16 #include "clang/Frontend/FrontendDiagnostic.h" 17 #include "clang/Frontend/Utils.h" 18 #include "clang/Lex/HeaderSearchOptions.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringSwitch.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/Bitcode/BitcodeReader.h" 27 #include "llvm/Bitcode/BitcodeWriter.h" 28 #include "llvm/Bitcode/BitcodeWriterPass.h" 29 #include "llvm/CodeGen/RegAllocRegistry.h" 30 #include "llvm/CodeGen/SchedulerRegistry.h" 31 #include "llvm/CodeGen/TargetSubtargetInfo.h" 32 #include "llvm/Frontend/Driver/CodeGenOptions.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DebugInfo.h" 35 #include "llvm/IR/LegacyPassManager.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/IR/ModuleSummaryIndex.h" 38 #include "llvm/IR/PassManager.h" 39 #include "llvm/IR/Verifier.h" 40 #include "llvm/IRPrinter/IRPrintingPasses.h" 41 #include "llvm/LTO/LTOBackend.h" 42 #include "llvm/MC/MCAsmInfo.h" 43 #include "llvm/MC/TargetRegistry.h" 44 #include "llvm/Object/OffloadBinary.h" 45 #include "llvm/Passes/PassBuilder.h" 46 #include "llvm/Passes/PassPlugin.h" 47 #include "llvm/Passes/StandardInstrumentations.h" 48 #include "llvm/ProfileData/InstrProfCorrelator.h" 49 #include "llvm/Support/BuryPointer.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/MemoryBuffer.h" 52 #include "llvm/Support/PrettyStackTrace.h" 53 #include "llvm/Support/TimeProfiler.h" 54 #include "llvm/Support/Timer.h" 55 #include "llvm/Support/ToolOutputFile.h" 56 #include "llvm/Support/VirtualFileSystem.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/TargetParser/SubtargetFeature.h" 61 #include "llvm/TargetParser/Triple.h" 62 #include "llvm/Transforms/HipStdPar/HipStdPar.h" 63 #include "llvm/Transforms/IPO/EmbedBitcodePass.h" 64 #include "llvm/Transforms/IPO/LowerTypeTests.h" 65 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 66 #include "llvm/Transforms/InstCombine/InstCombine.h" 67 #include "llvm/Transforms/Instrumentation.h" 68 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 69 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 70 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 71 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 72 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 73 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 74 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 75 #include "llvm/Transforms/Instrumentation/KCFI.h" 76 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 77 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 78 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" 79 #include "llvm/Transforms/Instrumentation/SanitizerBinaryMetadata.h" 80 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 81 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 82 #include "llvm/Transforms/ObjCARC.h" 83 #include "llvm/Transforms/Scalar/EarlyCSE.h" 84 #include "llvm/Transforms/Scalar/GVN.h" 85 #include "llvm/Transforms/Scalar/JumpThreading.h" 86 #include "llvm/Transforms/Utils/Debugify.h" 87 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 88 #include "llvm/Transforms/Utils/ModuleUtils.h" 89 #include <memory> 90 #include <optional> 91 using namespace clang; 92 using namespace llvm; 93 94 #define HANDLE_EXTENSION(Ext) \ 95 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 96 #include "llvm/Support/Extension.def" 97 98 namespace llvm { 99 extern cl::opt<bool> PrintPipelinePasses; 100 101 // Experiment to move sanitizers earlier. 102 static cl::opt<bool> ClSanitizeOnOptimizerEarlyEP( 103 "sanitizer-early-opt-ep", cl::Optional, 104 cl::desc("Insert sanitizers on OptimizerEarlyEP."), cl::init(false)); 105 106 extern cl::opt<InstrProfCorrelator::ProfCorrelatorKind> ProfileCorrelate; 107 108 // Re-link builtin bitcodes after optimization 109 cl::opt<bool> ClRelinkBuiltinBitcodePostop( 110 "relink-builtin-bitcode-postop", cl::Optional, 111 cl::desc("Re-link builtin bitcodes after optimization."), cl::init(false)); 112 } // namespace llvm 113 114 namespace { 115 116 // Default filename used for profile generation. 117 std::string getDefaultProfileGenName() { 118 return DebugInfoCorrelate || ProfileCorrelate != InstrProfCorrelator::NONE 119 ? "default_%m.proflite" 120 : "default_%m.profraw"; 121 } 122 123 class EmitAssemblyHelper { 124 DiagnosticsEngine &Diags; 125 const HeaderSearchOptions &HSOpts; 126 const CodeGenOptions &CodeGenOpts; 127 const clang::TargetOptions &TargetOpts; 128 const LangOptions &LangOpts; 129 llvm::Module *TheModule; 130 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS; 131 132 Timer CodeGenerationTime; 133 134 std::unique_ptr<raw_pwrite_stream> OS; 135 136 Triple TargetTriple; 137 138 TargetIRAnalysis getTargetIRAnalysis() const { 139 if (TM) 140 return TM->getTargetIRAnalysis(); 141 142 return TargetIRAnalysis(); 143 } 144 145 /// Generates the TargetMachine. 146 /// Leaves TM unchanged if it is unable to create the target machine. 147 /// Some of our clang tests specify triples which are not built 148 /// into clang. This is okay because these tests check the generated 149 /// IR, and they require DataLayout which depends on the triple. 150 /// In this case, we allow this method to fail and not report an error. 151 /// When MustCreateTM is used, we print an error if we are unable to load 152 /// the requested target. 153 void CreateTargetMachine(bool MustCreateTM); 154 155 /// Add passes necessary to emit assembly or LLVM IR. 156 /// 157 /// \return True on success. 158 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 159 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 160 161 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 162 std::error_code EC; 163 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 164 llvm::sys::fs::OF_None); 165 if (EC) { 166 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 167 F.reset(); 168 } 169 return F; 170 } 171 172 void RunOptimizationPipeline( 173 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 174 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS, BackendConsumer *BC); 175 void RunCodegenPipeline(BackendAction Action, 176 std::unique_ptr<raw_pwrite_stream> &OS, 177 std::unique_ptr<llvm::ToolOutputFile> &DwoOS); 178 179 /// Check whether we should emit a module summary for regular LTO. 180 /// The module summary should be emitted by default for regular LTO 181 /// except for ld64 targets. 182 /// 183 /// \return True if the module summary should be emitted. 184 bool shouldEmitRegularLTOSummary() const { 185 return CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses && 186 TargetTriple.getVendor() != llvm::Triple::Apple; 187 } 188 189 public: 190 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 191 const HeaderSearchOptions &HeaderSearchOpts, 192 const CodeGenOptions &CGOpts, 193 const clang::TargetOptions &TOpts, 194 const LangOptions &LOpts, llvm::Module *M, 195 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS) 196 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 197 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), VFS(std::move(VFS)), 198 CodeGenerationTime("codegen", "Code Generation Time"), 199 TargetTriple(TheModule->getTargetTriple()) {} 200 201 ~EmitAssemblyHelper() { 202 if (CodeGenOpts.DisableFree) 203 BuryPointer(std::move(TM)); 204 } 205 206 std::unique_ptr<TargetMachine> TM; 207 208 // Emit output using the new pass manager for the optimization pipeline. 209 void EmitAssembly(BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS, 210 BackendConsumer *BC); 211 }; 212 } // namespace 213 214 static SanitizerCoverageOptions 215 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 216 SanitizerCoverageOptions Opts; 217 Opts.CoverageType = 218 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 219 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 220 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 221 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 222 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 223 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 224 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 225 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 226 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 227 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 228 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 229 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 230 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 231 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 232 Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads; 233 Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores; 234 Opts.CollectControlFlow = CGOpts.SanitizeCoverageControlFlow; 235 return Opts; 236 } 237 238 static SanitizerBinaryMetadataOptions 239 getSanitizerBinaryMetadataOptions(const CodeGenOptions &CGOpts) { 240 SanitizerBinaryMetadataOptions Opts; 241 Opts.Covered = CGOpts.SanitizeBinaryMetadataCovered; 242 Opts.Atomics = CGOpts.SanitizeBinaryMetadataAtomics; 243 Opts.UAR = CGOpts.SanitizeBinaryMetadataUAR; 244 return Opts; 245 } 246 247 // Check if ASan should use GC-friendly instrumentation for globals. 248 // First of all, there is no point if -fdata-sections is off (expect for MachO, 249 // where this is not a factor). Also, on ELF this feature requires an assembler 250 // extension that only works with -integrated-as at the moment. 251 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 252 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 253 return false; 254 switch (T.getObjectFormat()) { 255 case Triple::MachO: 256 case Triple::COFF: 257 return true; 258 case Triple::ELF: 259 return !CGOpts.DisableIntegratedAS; 260 case Triple::GOFF: 261 llvm::report_fatal_error("ASan not implemented for GOFF"); 262 case Triple::XCOFF: 263 llvm::report_fatal_error("ASan not implemented for XCOFF."); 264 case Triple::Wasm: 265 case Triple::DXContainer: 266 case Triple::SPIRV: 267 case Triple::UnknownObjectFormat: 268 break; 269 } 270 return false; 271 } 272 273 static std::optional<llvm::CodeModel::Model> 274 getCodeModel(const CodeGenOptions &CodeGenOpts) { 275 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 276 .Case("tiny", llvm::CodeModel::Tiny) 277 .Case("small", llvm::CodeModel::Small) 278 .Case("kernel", llvm::CodeModel::Kernel) 279 .Case("medium", llvm::CodeModel::Medium) 280 .Case("large", llvm::CodeModel::Large) 281 .Case("default", ~1u) 282 .Default(~0u); 283 assert(CodeModel != ~0u && "invalid code model!"); 284 if (CodeModel == ~1u) 285 return std::nullopt; 286 return static_cast<llvm::CodeModel::Model>(CodeModel); 287 } 288 289 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 290 if (Action == Backend_EmitObj) 291 return CodeGenFileType::ObjectFile; 292 else if (Action == Backend_EmitMCNull) 293 return CodeGenFileType::Null; 294 else { 295 assert(Action == Backend_EmitAssembly && "Invalid action!"); 296 return CodeGenFileType::AssemblyFile; 297 } 298 } 299 300 static bool actionRequiresCodeGen(BackendAction Action) { 301 return Action != Backend_EmitNothing && Action != Backend_EmitBC && 302 Action != Backend_EmitLL; 303 } 304 305 static bool initTargetOptions(DiagnosticsEngine &Diags, 306 llvm::TargetOptions &Options, 307 const CodeGenOptions &CodeGenOpts, 308 const clang::TargetOptions &TargetOpts, 309 const LangOptions &LangOpts, 310 const HeaderSearchOptions &HSOpts) { 311 switch (LangOpts.getThreadModel()) { 312 case LangOptions::ThreadModelKind::POSIX: 313 Options.ThreadModel = llvm::ThreadModel::POSIX; 314 break; 315 case LangOptions::ThreadModelKind::Single: 316 Options.ThreadModel = llvm::ThreadModel::Single; 317 break; 318 } 319 320 // Set float ABI type. 321 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 322 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 323 "Invalid Floating Point ABI!"); 324 Options.FloatABIType = 325 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 326 .Case("soft", llvm::FloatABI::Soft) 327 .Case("softfp", llvm::FloatABI::Soft) 328 .Case("hard", llvm::FloatABI::Hard) 329 .Default(llvm::FloatABI::Default); 330 331 // Set FP fusion mode. 332 switch (LangOpts.getDefaultFPContractMode()) { 333 case LangOptions::FPM_Off: 334 // Preserve any contraction performed by the front-end. (Strict performs 335 // splitting of the muladd intrinsic in the backend.) 336 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 337 break; 338 case LangOptions::FPM_On: 339 case LangOptions::FPM_FastHonorPragmas: 340 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 341 break; 342 case LangOptions::FPM_Fast: 343 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 344 break; 345 } 346 347 Options.BinutilsVersion = 348 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 349 Options.UseInitArray = CodeGenOpts.UseInitArray; 350 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 351 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 352 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 353 354 // Set EABI version. 355 Options.EABIVersion = TargetOpts.EABIVersion; 356 357 if (LangOpts.hasSjLjExceptions()) 358 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 359 if (LangOpts.hasSEHExceptions()) 360 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 361 if (LangOpts.hasDWARFExceptions()) 362 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 363 if (LangOpts.hasWasmExceptions()) 364 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 365 366 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 367 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 368 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 369 Options.UnsafeFPMath = LangOpts.AllowFPReassoc && LangOpts.AllowRecip && 370 LangOpts.NoSignedZero && LangOpts.ApproxFunc && 371 (LangOpts.getDefaultFPContractMode() == 372 LangOptions::FPModeKind::FPM_Fast || 373 LangOpts.getDefaultFPContractMode() == 374 LangOptions::FPModeKind::FPM_FastHonorPragmas); 375 Options.ApproxFuncFPMath = LangOpts.ApproxFunc; 376 377 Options.BBSections = 378 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 379 .Case("all", llvm::BasicBlockSection::All) 380 .Case("labels", llvm::BasicBlockSection::Labels) 381 .StartsWith("list=", llvm::BasicBlockSection::List) 382 .Case("none", llvm::BasicBlockSection::None) 383 .Default(llvm::BasicBlockSection::None); 384 385 if (Options.BBSections == llvm::BasicBlockSection::List) { 386 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 387 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 388 if (!MBOrErr) { 389 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 390 << MBOrErr.getError().message(); 391 return false; 392 } 393 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 394 } 395 396 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 397 Options.FunctionSections = CodeGenOpts.FunctionSections; 398 Options.DataSections = CodeGenOpts.DataSections; 399 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 400 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 401 Options.UniqueBasicBlockSectionNames = 402 CodeGenOpts.UniqueBasicBlockSectionNames; 403 Options.TLSSize = CodeGenOpts.TLSSize; 404 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 405 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 406 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 407 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 408 Options.EmitAddrsig = CodeGenOpts.Addrsig; 409 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 410 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 411 Options.EnableAIXExtendedAltivecABI = LangOpts.EnableAIXExtendedAltivecABI; 412 Options.XRayFunctionIndex = CodeGenOpts.XRayFunctionIndex; 413 Options.LoopAlignment = CodeGenOpts.LoopAlignment; 414 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 415 Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug; 416 Options.Hotpatch = CodeGenOpts.HotPatch; 417 Options.JMCInstrument = CodeGenOpts.JMCInstrument; 418 Options.XCOFFReadOnlyPointers = CodeGenOpts.XCOFFReadOnlyPointers; 419 420 switch (CodeGenOpts.getSwiftAsyncFramePointer()) { 421 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto: 422 Options.SwiftAsyncFramePointer = 423 SwiftAsyncFramePointerMode::DeploymentBased; 424 break; 425 426 case CodeGenOptions::SwiftAsyncFramePointerKind::Always: 427 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always; 428 break; 429 430 case CodeGenOptions::SwiftAsyncFramePointerKind::Never: 431 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never; 432 break; 433 } 434 435 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 436 Options.MCOptions.EmitDwarfUnwind = CodeGenOpts.getEmitDwarfUnwind(); 437 Options.MCOptions.EmitCompactUnwindNonCanonical = 438 CodeGenOpts.EmitCompactUnwindNonCanonical; 439 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 440 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 441 Options.MCOptions.MCUseDwarfDirectory = 442 CodeGenOpts.NoDwarfDirectoryAsm 443 ? llvm::MCTargetOptions::DisableDwarfDirectory 444 : llvm::MCTargetOptions::EnableDwarfDirectory; 445 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 446 Options.MCOptions.MCIncrementalLinkerCompatible = 447 CodeGenOpts.IncrementalLinkerCompatible; 448 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 449 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 450 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 451 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 452 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 453 Options.MCOptions.ABIName = TargetOpts.ABI; 454 for (const auto &Entry : HSOpts.UserEntries) 455 if (!Entry.IsFramework && 456 (Entry.Group == frontend::IncludeDirGroup::Quoted || 457 Entry.Group == frontend::IncludeDirGroup::Angled || 458 Entry.Group == frontend::IncludeDirGroup::System)) 459 Options.MCOptions.IASSearchPaths.push_back( 460 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 461 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 462 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 463 Options.MCOptions.AsSecureLogFile = CodeGenOpts.AsSecureLogFile; 464 Options.MCOptions.PPCUseFullRegisterNames = 465 CodeGenOpts.PPCUseFullRegisterNames; 466 Options.MisExpect = CodeGenOpts.MisExpect; 467 468 return true; 469 } 470 471 static std::optional<GCOVOptions> 472 getGCOVOptions(const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts) { 473 if (CodeGenOpts.CoverageNotesFile.empty() && 474 CodeGenOpts.CoverageDataFile.empty()) 475 return std::nullopt; 476 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 477 // LLVM's -default-gcov-version flag is set to something invalid. 478 GCOVOptions Options; 479 Options.EmitNotes = !CodeGenOpts.CoverageNotesFile.empty(); 480 Options.EmitData = !CodeGenOpts.CoverageDataFile.empty(); 481 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 482 Options.NoRedZone = CodeGenOpts.DisableRedZone; 483 Options.Filter = CodeGenOpts.ProfileFilterFiles; 484 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 485 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 486 return Options; 487 } 488 489 static std::optional<InstrProfOptions> 490 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 491 const LangOptions &LangOpts) { 492 if (!CodeGenOpts.hasProfileClangInstr()) 493 return std::nullopt; 494 InstrProfOptions Options; 495 Options.NoRedZone = CodeGenOpts.DisableRedZone; 496 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 497 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 498 return Options; 499 } 500 501 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 502 SmallVector<const char *, 16> BackendArgs; 503 BackendArgs.push_back("clang"); // Fake program name. 504 if (!CodeGenOpts.DebugPass.empty()) { 505 BackendArgs.push_back("-debug-pass"); 506 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 507 } 508 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 509 BackendArgs.push_back("-limit-float-precision"); 510 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 511 } 512 // Check for the default "clang" invocation that won't set any cl::opt values. 513 // Skip trying to parse the command line invocation to avoid the issues 514 // described below. 515 if (BackendArgs.size() == 1) 516 return; 517 BackendArgs.push_back(nullptr); 518 // FIXME: The command line parser below is not thread-safe and shares a global 519 // state, so this call might crash or overwrite the options of another Clang 520 // instance in the same process. 521 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 522 BackendArgs.data()); 523 } 524 525 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 526 // Create the TargetMachine for generating code. 527 std::string Error; 528 std::string Triple = TheModule->getTargetTriple(); 529 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 530 if (!TheTarget) { 531 if (MustCreateTM) 532 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 533 return; 534 } 535 536 std::optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 537 std::string FeaturesStr = 538 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 539 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 540 std::optional<CodeGenOptLevel> OptLevelOrNone = 541 CodeGenOpt::getLevel(CodeGenOpts.OptimizationLevel); 542 assert(OptLevelOrNone && "Invalid optimization level!"); 543 CodeGenOptLevel OptLevel = *OptLevelOrNone; 544 545 llvm::TargetOptions Options; 546 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 547 HSOpts)) 548 return; 549 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 550 Options, RM, CM, OptLevel)); 551 TM->setLargeDataThreshold(CodeGenOpts.LargeDataThreshold); 552 } 553 554 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 555 BackendAction Action, 556 raw_pwrite_stream &OS, 557 raw_pwrite_stream *DwoOS) { 558 // Add LibraryInfo. 559 std::unique_ptr<TargetLibraryInfoImpl> TLII( 560 llvm::driver::createTLII(TargetTriple, CodeGenOpts.getVecLib())); 561 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 562 563 // Normal mode, emit a .s or .o file by running the code generator. Note, 564 // this also adds codegenerator level optimization passes. 565 CodeGenFileType CGFT = getCodeGenFileType(Action); 566 567 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 568 // "codegen" passes so that it isn't run multiple times when there is 569 // inlining happening. 570 if (CodeGenOpts.OptimizationLevel > 0) 571 CodeGenPasses.add(createObjCARCContractPass()); 572 573 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 574 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 575 Diags.Report(diag::err_fe_unable_to_interface_with_target); 576 return false; 577 } 578 579 return true; 580 } 581 582 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 583 switch (Opts.OptimizationLevel) { 584 default: 585 llvm_unreachable("Invalid optimization level!"); 586 587 case 0: 588 return OptimizationLevel::O0; 589 590 case 1: 591 return OptimizationLevel::O1; 592 593 case 2: 594 switch (Opts.OptimizeSize) { 595 default: 596 llvm_unreachable("Invalid optimization level for size!"); 597 598 case 0: 599 return OptimizationLevel::O2; 600 601 case 1: 602 return OptimizationLevel::Os; 603 604 case 2: 605 return OptimizationLevel::Oz; 606 } 607 608 case 3: 609 return OptimizationLevel::O3; 610 } 611 } 612 613 static void addKCFIPass(const Triple &TargetTriple, const LangOptions &LangOpts, 614 PassBuilder &PB) { 615 // If the back-end supports KCFI operand bundle lowering, skip KCFIPass. 616 if (TargetTriple.getArch() == llvm::Triple::x86_64 || 617 TargetTriple.isAArch64(64) || TargetTriple.isRISCV()) 618 return; 619 620 // Ensure we lower KCFI operand bundles with -O0. 621 PB.registerOptimizerLastEPCallback( 622 [&](ModulePassManager &MPM, OptimizationLevel Level) { 623 if (Level == OptimizationLevel::O0 && 624 LangOpts.Sanitize.has(SanitizerKind::KCFI)) 625 MPM.addPass(createModuleToFunctionPassAdaptor(KCFIPass())); 626 }); 627 628 // When optimizations are requested, run KCIFPass after InstCombine to 629 // avoid unnecessary checks. 630 PB.registerPeepholeEPCallback( 631 [&](FunctionPassManager &FPM, OptimizationLevel Level) { 632 if (Level != OptimizationLevel::O0 && 633 LangOpts.Sanitize.has(SanitizerKind::KCFI)) 634 FPM.addPass(KCFIPass()); 635 }); 636 } 637 638 static void addSanitizers(const Triple &TargetTriple, 639 const CodeGenOptions &CodeGenOpts, 640 const LangOptions &LangOpts, PassBuilder &PB) { 641 auto SanitizersCallback = [&](ModulePassManager &MPM, 642 OptimizationLevel Level) { 643 if (CodeGenOpts.hasSanitizeCoverage()) { 644 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 645 MPM.addPass(SanitizerCoveragePass( 646 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 647 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 648 } 649 650 if (CodeGenOpts.hasSanitizeBinaryMetadata()) { 651 MPM.addPass(SanitizerBinaryMetadataPass( 652 getSanitizerBinaryMetadataOptions(CodeGenOpts), 653 CodeGenOpts.SanitizeMetadataIgnorelistFiles)); 654 } 655 656 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 657 if (LangOpts.Sanitize.has(Mask)) { 658 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 659 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 660 661 MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel, 662 CodeGenOpts.SanitizeMemoryParamRetval); 663 MPM.addPass(MemorySanitizerPass(options)); 664 if (Level != OptimizationLevel::O0) { 665 // MemorySanitizer inserts complex instrumentation that mostly follows 666 // the logic of the original code, but operates on "shadow" values. It 667 // can benefit from re-running some general purpose optimization 668 // passes. 669 MPM.addPass(RequireAnalysisPass<GlobalsAA, llvm::Module>()); 670 FunctionPassManager FPM; 671 FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */)); 672 FPM.addPass(InstCombinePass()); 673 FPM.addPass(JumpThreadingPass()); 674 FPM.addPass(GVNPass()); 675 FPM.addPass(InstCombinePass()); 676 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 677 } 678 } 679 }; 680 MSanPass(SanitizerKind::Memory, false); 681 MSanPass(SanitizerKind::KernelMemory, true); 682 683 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 684 MPM.addPass(ModuleThreadSanitizerPass()); 685 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 686 } 687 688 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 689 if (LangOpts.Sanitize.has(Mask)) { 690 bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 691 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 692 llvm::AsanDtorKind DestructorKind = 693 CodeGenOpts.getSanitizeAddressDtor(); 694 AddressSanitizerOptions Opts; 695 Opts.CompileKernel = CompileKernel; 696 Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask); 697 Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 698 Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn(); 699 MPM.addPass(AddressSanitizerPass(Opts, UseGlobalGC, UseOdrIndicator, 700 DestructorKind)); 701 } 702 }; 703 ASanPass(SanitizerKind::Address, false); 704 ASanPass(SanitizerKind::KernelAddress, true); 705 706 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 707 if (LangOpts.Sanitize.has(Mask)) { 708 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 709 MPM.addPass(HWAddressSanitizerPass( 710 {CompileKernel, Recover, 711 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0})); 712 } 713 }; 714 HWASanPass(SanitizerKind::HWAddress, false); 715 HWASanPass(SanitizerKind::KernelHWAddress, true); 716 717 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 718 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 719 } 720 }; 721 if (ClSanitizeOnOptimizerEarlyEP) { 722 PB.registerOptimizerEarlyEPCallback( 723 [SanitizersCallback](ModulePassManager &MPM, OptimizationLevel Level) { 724 ModulePassManager NewMPM; 725 SanitizersCallback(NewMPM, Level); 726 if (!NewMPM.isEmpty()) { 727 // Sanitizers can abandon<GlobalsAA>. 728 NewMPM.addPass(RequireAnalysisPass<GlobalsAA, llvm::Module>()); 729 MPM.addPass(std::move(NewMPM)); 730 } 731 }); 732 } else { 733 // LastEP does not need GlobalsAA. 734 PB.registerOptimizerLastEPCallback(SanitizersCallback); 735 } 736 } 737 738 void EmitAssemblyHelper::RunOptimizationPipeline( 739 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 740 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS, BackendConsumer *BC) { 741 std::optional<PGOOptions> PGOOpt; 742 743 if (CodeGenOpts.hasProfileIRInstr()) 744 // -fprofile-generate. 745 PGOOpt = PGOOptions( 746 CodeGenOpts.InstrProfileOutput.empty() ? getDefaultProfileGenName() 747 : CodeGenOpts.InstrProfileOutput, 748 "", "", CodeGenOpts.MemoryProfileUsePath, nullptr, PGOOptions::IRInstr, 749 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling, 750 /*PseudoProbeForProfiling=*/false, CodeGenOpts.AtomicProfileUpdate); 751 else if (CodeGenOpts.hasProfileIRUse()) { 752 // -fprofile-use. 753 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 754 : PGOOptions::NoCSAction; 755 PGOOpt = PGOOptions( 756 CodeGenOpts.ProfileInstrumentUsePath, "", 757 CodeGenOpts.ProfileRemappingFile, CodeGenOpts.MemoryProfileUsePath, VFS, 758 PGOOptions::IRUse, CSAction, CodeGenOpts.DebugInfoForProfiling); 759 } else if (!CodeGenOpts.SampleProfileFile.empty()) 760 // -fprofile-sample-use 761 PGOOpt = PGOOptions( 762 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 763 CodeGenOpts.MemoryProfileUsePath, VFS, PGOOptions::SampleUse, 764 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling, 765 CodeGenOpts.PseudoProbeForProfiling); 766 else if (!CodeGenOpts.MemoryProfileUsePath.empty()) 767 // -fmemory-profile-use (without any of the above options) 768 PGOOpt = PGOOptions("", "", "", CodeGenOpts.MemoryProfileUsePath, VFS, 769 PGOOptions::NoAction, PGOOptions::NoCSAction, 770 CodeGenOpts.DebugInfoForProfiling); 771 else if (CodeGenOpts.PseudoProbeForProfiling) 772 // -fpseudo-probe-for-profiling 773 PGOOpt = PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr, 774 PGOOptions::NoAction, PGOOptions::NoCSAction, 775 CodeGenOpts.DebugInfoForProfiling, true); 776 else if (CodeGenOpts.DebugInfoForProfiling) 777 // -fdebug-info-for-profiling 778 PGOOpt = PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr, 779 PGOOptions::NoAction, PGOOptions::NoCSAction, true); 780 781 // Check to see if we want to generate a CS profile. 782 if (CodeGenOpts.hasProfileCSIRInstr()) { 783 assert(!CodeGenOpts.hasProfileCSIRUse() && 784 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 785 "the same time"); 786 if (PGOOpt) { 787 assert(PGOOpt->Action != PGOOptions::IRInstr && 788 PGOOpt->Action != PGOOptions::SampleUse && 789 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 790 " pass"); 791 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 792 ? getDefaultProfileGenName() 793 : CodeGenOpts.InstrProfileOutput; 794 PGOOpt->CSAction = PGOOptions::CSIRInstr; 795 } else 796 PGOOpt = 797 PGOOptions("", 798 CodeGenOpts.InstrProfileOutput.empty() 799 ? getDefaultProfileGenName() 800 : CodeGenOpts.InstrProfileOutput, 801 "", /*MemoryProfile=*/"", nullptr, PGOOptions::NoAction, 802 PGOOptions::CSIRInstr, CodeGenOpts.DebugInfoForProfiling); 803 } 804 if (TM) 805 TM->setPGOOption(PGOOpt); 806 807 PipelineTuningOptions PTO; 808 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 809 // For historical reasons, loop interleaving is set to mirror setting for loop 810 // unrolling. 811 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 812 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 813 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 814 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 815 // Only enable CGProfilePass when using integrated assembler, since 816 // non-integrated assemblers don't recognize .cgprofile section. 817 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 818 PTO.UnifiedLTO = CodeGenOpts.UnifiedLTO; 819 820 LoopAnalysisManager LAM; 821 FunctionAnalysisManager FAM; 822 CGSCCAnalysisManager CGAM; 823 ModuleAnalysisManager MAM; 824 825 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure"; 826 PassInstrumentationCallbacks PIC; 827 PrintPassOptions PrintPassOpts; 828 PrintPassOpts.Indent = DebugPassStructure; 829 PrintPassOpts.SkipAnalyses = DebugPassStructure; 830 StandardInstrumentations SI( 831 TheModule->getContext(), 832 (CodeGenOpts.DebugPassManager || DebugPassStructure), 833 CodeGenOpts.VerifyEach, PrintPassOpts); 834 SI.registerCallbacks(PIC, &MAM); 835 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 836 837 // Handle the assignment tracking feature options. 838 switch (CodeGenOpts.getAssignmentTrackingMode()) { 839 case CodeGenOptions::AssignmentTrackingOpts::Forced: 840 PB.registerPipelineStartEPCallback( 841 [&](ModulePassManager &MPM, OptimizationLevel Level) { 842 MPM.addPass(AssignmentTrackingPass()); 843 }); 844 break; 845 case CodeGenOptions::AssignmentTrackingOpts::Enabled: 846 // Disable assignment tracking in LTO builds for now as the performance 847 // cost is too high. Disable for LLDB tuning due to llvm.org/PR43126. 848 if (!CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.PrepareForLTO && 849 CodeGenOpts.getDebuggerTuning() != llvm::DebuggerKind::LLDB) { 850 PB.registerPipelineStartEPCallback( 851 [&](ModulePassManager &MPM, OptimizationLevel Level) { 852 // Only use assignment tracking if optimisations are enabled. 853 if (Level != OptimizationLevel::O0) 854 MPM.addPass(AssignmentTrackingPass()); 855 }); 856 } 857 break; 858 case CodeGenOptions::AssignmentTrackingOpts::Disabled: 859 break; 860 } 861 862 // Enable verify-debuginfo-preserve-each for new PM. 863 DebugifyEachInstrumentation Debugify; 864 DebugInfoPerPass DebugInfoBeforePass; 865 if (CodeGenOpts.EnableDIPreservationVerify) { 866 Debugify.setDebugifyMode(DebugifyMode::OriginalDebugInfo); 867 Debugify.setDebugInfoBeforePass(DebugInfoBeforePass); 868 869 if (!CodeGenOpts.DIBugsReportFilePath.empty()) 870 Debugify.setOrigDIVerifyBugsReportFilePath( 871 CodeGenOpts.DIBugsReportFilePath); 872 Debugify.registerCallbacks(PIC, MAM); 873 } 874 // Attempt to load pass plugins and register their callbacks with PB. 875 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 876 auto PassPlugin = PassPlugin::Load(PluginFN); 877 if (PassPlugin) { 878 PassPlugin->registerPassBuilderCallbacks(PB); 879 } else { 880 Diags.Report(diag::err_fe_unable_to_load_plugin) 881 << PluginFN << toString(PassPlugin.takeError()); 882 } 883 } 884 for (const auto &PassCallback : CodeGenOpts.PassBuilderCallbacks) 885 PassCallback(PB); 886 #define HANDLE_EXTENSION(Ext) \ 887 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 888 #include "llvm/Support/Extension.def" 889 890 // Register the target library analysis directly and give it a customized 891 // preset TLI. 892 std::unique_ptr<TargetLibraryInfoImpl> TLII( 893 llvm::driver::createTLII(TargetTriple, CodeGenOpts.getVecLib())); 894 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 895 896 // Register all the basic analyses with the managers. 897 PB.registerModuleAnalyses(MAM); 898 PB.registerCGSCCAnalyses(CGAM); 899 PB.registerFunctionAnalyses(FAM); 900 PB.registerLoopAnalyses(LAM); 901 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 902 903 ModulePassManager MPM; 904 // Add a verifier pass, before any other passes, to catch CodeGen issues. 905 if (CodeGenOpts.VerifyModule) 906 MPM.addPass(VerifierPass()); 907 908 if (!CodeGenOpts.DisableLLVMPasses) { 909 // Map our optimization levels into one of the distinct levels used to 910 // configure the pipeline. 911 OptimizationLevel Level = mapToLevel(CodeGenOpts); 912 913 const bool PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 914 const bool PrepareForLTO = CodeGenOpts.PrepareForLTO; 915 916 if (LangOpts.ObjCAutoRefCount) { 917 PB.registerPipelineStartEPCallback( 918 [](ModulePassManager &MPM, OptimizationLevel Level) { 919 if (Level != OptimizationLevel::O0) 920 MPM.addPass( 921 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 922 }); 923 PB.registerPipelineEarlySimplificationEPCallback( 924 [](ModulePassManager &MPM, OptimizationLevel Level) { 925 if (Level != OptimizationLevel::O0) 926 MPM.addPass(ObjCARCAPElimPass()); 927 }); 928 PB.registerScalarOptimizerLateEPCallback( 929 [](FunctionPassManager &FPM, OptimizationLevel Level) { 930 if (Level != OptimizationLevel::O0) 931 FPM.addPass(ObjCARCOptPass()); 932 }); 933 } 934 935 // If we reached here with a non-empty index file name, then the index 936 // file was empty and we are not performing ThinLTO backend compilation 937 // (used in testing in a distributed build environment). 938 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 939 // If so drop any the type test assume sequences inserted for whole program 940 // vtables so that codegen doesn't complain. 941 if (IsThinLTOPostLink) 942 PB.registerPipelineStartEPCallback( 943 [](ModulePassManager &MPM, OptimizationLevel Level) { 944 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 945 /*ImportSummary=*/nullptr, 946 /*DropTypeTests=*/true)); 947 }); 948 949 if (CodeGenOpts.InstrumentFunctions || 950 CodeGenOpts.InstrumentFunctionEntryBare || 951 CodeGenOpts.InstrumentFunctionsAfterInlining || 952 CodeGenOpts.InstrumentForProfiling) { 953 PB.registerPipelineStartEPCallback( 954 [](ModulePassManager &MPM, OptimizationLevel Level) { 955 MPM.addPass(createModuleToFunctionPassAdaptor( 956 EntryExitInstrumenterPass(/*PostInlining=*/false))); 957 }); 958 PB.registerOptimizerLastEPCallback( 959 [](ModulePassManager &MPM, OptimizationLevel Level) { 960 MPM.addPass(createModuleToFunctionPassAdaptor( 961 EntryExitInstrumenterPass(/*PostInlining=*/true))); 962 }); 963 } 964 965 // Register callbacks to schedule sanitizer passes at the appropriate part 966 // of the pipeline. 967 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 968 PB.registerScalarOptimizerLateEPCallback( 969 [](FunctionPassManager &FPM, OptimizationLevel Level) { 970 FPM.addPass(BoundsCheckingPass()); 971 }); 972 973 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 974 // done on PreLink stage. 975 if (!IsThinLTOPostLink) { 976 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 977 addKCFIPass(TargetTriple, LangOpts, PB); 978 } 979 980 if (std::optional<GCOVOptions> Options = 981 getGCOVOptions(CodeGenOpts, LangOpts)) 982 PB.registerPipelineStartEPCallback( 983 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 984 MPM.addPass(GCOVProfilerPass(*Options)); 985 }); 986 if (std::optional<InstrProfOptions> Options = 987 getInstrProfOptions(CodeGenOpts, LangOpts)) 988 PB.registerPipelineStartEPCallback( 989 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 990 MPM.addPass(InstrProfilingLoweringPass(*Options, false)); 991 }); 992 993 // TODO: Consider passing the MemoryProfileOutput to the pass builder via 994 // the PGOOptions, and set this up there. 995 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 996 PB.registerOptimizerLastEPCallback( 997 [](ModulePassManager &MPM, OptimizationLevel Level) { 998 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 999 MPM.addPass(ModuleMemProfilerPass()); 1000 }); 1001 } 1002 1003 if (CodeGenOpts.FatLTO) { 1004 assert(CodeGenOpts.UnifiedLTO && "FatLTO requires UnifiedLTO"); 1005 MPM.addPass(PB.buildFatLTODefaultPipeline(Level)); 1006 } else if (PrepareForThinLTO) { 1007 MPM.addPass(PB.buildThinLTOPreLinkDefaultPipeline(Level)); 1008 } else if (PrepareForLTO) { 1009 MPM.addPass(PB.buildLTOPreLinkDefaultPipeline(Level)); 1010 } else { 1011 MPM.addPass(PB.buildPerModuleDefaultPipeline(Level)); 1012 } 1013 } 1014 1015 // Re-link against any bitcodes supplied via the -mlink-builtin-bitcode option 1016 // Some optimizations may generate new function calls that would not have 1017 // been linked pre-optimization (i.e. fused sincos calls generated by 1018 // AMDGPULibCalls::fold_sincos.) 1019 if (ClRelinkBuiltinBitcodePostop) 1020 MPM.addPass(LinkInModulesPass(BC, false)); 1021 1022 // Add a verifier pass if requested. We don't have to do this if the action 1023 // requires code generation because there will already be a verifier pass in 1024 // the code-generation pipeline. 1025 // Since we already added a verifier pass above, this 1026 // might even not run the analysis, if previous passes caused no changes. 1027 if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule) 1028 MPM.addPass(VerifierPass()); 1029 1030 if (Action == Backend_EmitBC || Action == Backend_EmitLL) { 1031 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1032 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1033 TheModule->addModuleFlag(llvm::Module::Error, "EnableSplitLTOUnit", 1034 CodeGenOpts.EnableSplitLTOUnit); 1035 if (Action == Backend_EmitBC) { 1036 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1037 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1038 if (!ThinLinkOS) 1039 return; 1040 } 1041 if (CodeGenOpts.UnifiedLTO) 1042 TheModule->addModuleFlag(llvm::Module::Error, "UnifiedLTO", uint32_t(1)); 1043 MPM.addPass(ThinLTOBitcodeWriterPass( 1044 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 1045 } else { 1046 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists, 1047 /*EmitLTOSummary=*/true)); 1048 } 1049 } else { 1050 // Emit a module summary by default for Regular LTO except for ld64 1051 // targets 1052 bool EmitLTOSummary = shouldEmitRegularLTOSummary(); 1053 if (EmitLTOSummary) { 1054 if (!TheModule->getModuleFlag("ThinLTO") && !CodeGenOpts.UnifiedLTO) 1055 TheModule->addModuleFlag(llvm::Module::Error, "ThinLTO", uint32_t(0)); 1056 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1057 TheModule->addModuleFlag(llvm::Module::Error, "EnableSplitLTOUnit", 1058 uint32_t(1)); 1059 if (CodeGenOpts.UnifiedLTO) 1060 TheModule->addModuleFlag(llvm::Module::Error, "UnifiedLTO", uint32_t(1)); 1061 } 1062 if (Action == Backend_EmitBC) 1063 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 1064 EmitLTOSummary)); 1065 else 1066 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists, 1067 EmitLTOSummary)); 1068 } 1069 } 1070 if (CodeGenOpts.FatLTO) { 1071 // Set the EnableSplitLTOUnit and UnifiedLTO module flags, since FatLTO 1072 // uses a different action than Backend_EmitBC or Backend_EmitLL. 1073 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1074 TheModule->addModuleFlag(llvm::Module::Error, "EnableSplitLTOUnit", 1075 uint32_t(CodeGenOpts.EnableSplitLTOUnit)); 1076 // FatLTO always means UnifiedLTO 1077 if (!TheModule->getModuleFlag("UnifiedLTO")) 1078 TheModule->addModuleFlag(llvm::Module::Error, "UnifiedLTO", uint32_t(1)); 1079 } 1080 1081 // Print a textual, '-passes=' compatible, representation of pipeline if 1082 // requested. 1083 if (PrintPipelinePasses) { 1084 MPM.printPipeline(outs(), [&PIC](StringRef ClassName) { 1085 auto PassName = PIC.getPassNameForClassName(ClassName); 1086 return PassName.empty() ? ClassName : PassName; 1087 }); 1088 outs() << "\n"; 1089 return; 1090 } 1091 1092 if (LangOpts.HIPStdPar && !LangOpts.CUDAIsDevice && 1093 LangOpts.HIPStdParInterposeAlloc) 1094 MPM.addPass(HipStdParAllocationInterpositionPass()); 1095 1096 // Now that we have all of the passes ready, run them. 1097 { 1098 PrettyStackTraceString CrashInfo("Optimizer"); 1099 llvm::TimeTraceScope TimeScope("Optimizer"); 1100 MPM.run(*TheModule, MAM); 1101 } 1102 } 1103 1104 void EmitAssemblyHelper::RunCodegenPipeline( 1105 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1106 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) { 1107 // We still use the legacy PM to run the codegen pipeline since the new PM 1108 // does not work with the codegen pipeline. 1109 // FIXME: make the new PM work with the codegen pipeline. 1110 legacy::PassManager CodeGenPasses; 1111 1112 // Append any output we need to the pass manager. 1113 switch (Action) { 1114 case Backend_EmitAssembly: 1115 case Backend_EmitMCNull: 1116 case Backend_EmitObj: 1117 CodeGenPasses.add( 1118 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1119 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1120 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1121 if (!DwoOS) 1122 return; 1123 } 1124 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1125 DwoOS ? &DwoOS->os() : nullptr)) 1126 // FIXME: Should we handle this error differently? 1127 return; 1128 break; 1129 default: 1130 return; 1131 } 1132 1133 // If -print-pipeline-passes is requested, don't run the legacy pass manager. 1134 // FIXME: when codegen is switched to use the new pass manager, it should also 1135 // emit pass names here. 1136 if (PrintPipelinePasses) { 1137 return; 1138 } 1139 1140 { 1141 PrettyStackTraceString CrashInfo("Code generation"); 1142 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1143 CodeGenPasses.run(*TheModule); 1144 } 1145 } 1146 1147 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 1148 std::unique_ptr<raw_pwrite_stream> OS, 1149 BackendConsumer *BC) { 1150 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1151 setCommandLineOpts(CodeGenOpts); 1152 1153 bool RequiresCodeGen = actionRequiresCodeGen(Action); 1154 CreateTargetMachine(RequiresCodeGen); 1155 1156 if (RequiresCodeGen && !TM) 1157 return; 1158 if (TM) 1159 TheModule->setDataLayout(TM->createDataLayout()); 1160 1161 // Before executing passes, print the final values of the LLVM options. 1162 cl::PrintOptionValues(); 1163 1164 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1165 RunOptimizationPipeline(Action, OS, ThinLinkOS, BC); 1166 RunCodegenPipeline(Action, OS, DwoOS); 1167 1168 if (ThinLinkOS) 1169 ThinLinkOS->keep(); 1170 if (DwoOS) 1171 DwoOS->keep(); 1172 } 1173 1174 static void runThinLTOBackend( 1175 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, 1176 llvm::Module *M, const HeaderSearchOptions &HeaderOpts, 1177 const CodeGenOptions &CGOpts, const clang::TargetOptions &TOpts, 1178 const LangOptions &LOpts, std::unique_ptr<raw_pwrite_stream> OS, 1179 std::string SampleProfile, std::string ProfileRemapping, 1180 BackendAction Action) { 1181 DenseMap<StringRef, DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1182 ModuleToDefinedGVSummaries; 1183 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1184 1185 setCommandLineOpts(CGOpts); 1186 1187 // We can simply import the values mentioned in the combined index, since 1188 // we should only invoke this using the individual indexes written out 1189 // via a WriteIndexesThinBackend. 1190 FunctionImporter::ImportMapTy ImportList; 1191 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1192 return; 1193 1194 auto AddStream = [&](size_t Task, const Twine &ModuleName) { 1195 return std::make_unique<CachedFileStream>(std::move(OS), 1196 CGOpts.ObjectFilenameForDebug); 1197 }; 1198 lto::Config Conf; 1199 if (CGOpts.SaveTempsFilePrefix != "") { 1200 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1201 /* UseInputModulePath */ false)) { 1202 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1203 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1204 << '\n'; 1205 }); 1206 } 1207 } 1208 Conf.CPU = TOpts.CPU; 1209 Conf.CodeModel = getCodeModel(CGOpts); 1210 Conf.MAttrs = TOpts.Features; 1211 Conf.RelocModel = CGOpts.RelocationModel; 1212 std::optional<CodeGenOptLevel> OptLevelOrNone = 1213 CodeGenOpt::getLevel(CGOpts.OptimizationLevel); 1214 assert(OptLevelOrNone && "Invalid optimization level!"); 1215 Conf.CGOptLevel = *OptLevelOrNone; 1216 Conf.OptLevel = CGOpts.OptimizationLevel; 1217 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1218 Conf.SampleProfile = std::move(SampleProfile); 1219 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1220 // For historical reasons, loop interleaving is set to mirror setting for loop 1221 // unrolling. 1222 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1223 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1224 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1225 // Only enable CGProfilePass when using integrated assembler, since 1226 // non-integrated assemblers don't recognize .cgprofile section. 1227 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1228 1229 // Context sensitive profile. 1230 if (CGOpts.hasProfileCSIRInstr()) { 1231 Conf.RunCSIRInstr = true; 1232 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1233 } else if (CGOpts.hasProfileCSIRUse()) { 1234 Conf.RunCSIRInstr = false; 1235 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1236 } 1237 1238 Conf.ProfileRemapping = std::move(ProfileRemapping); 1239 Conf.DebugPassManager = CGOpts.DebugPassManager; 1240 Conf.VerifyEach = CGOpts.VerifyEach; 1241 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1242 Conf.RemarksFilename = CGOpts.OptRecordFile; 1243 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1244 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1245 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1246 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1247 switch (Action) { 1248 case Backend_EmitNothing: 1249 Conf.PreCodeGenModuleHook = [](size_t Task, const llvm::Module &Mod) { 1250 return false; 1251 }; 1252 break; 1253 case Backend_EmitLL: 1254 Conf.PreCodeGenModuleHook = [&](size_t Task, const llvm::Module &Mod) { 1255 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1256 return false; 1257 }; 1258 break; 1259 case Backend_EmitBC: 1260 Conf.PreCodeGenModuleHook = [&](size_t Task, const llvm::Module &Mod) { 1261 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1262 return false; 1263 }; 1264 break; 1265 default: 1266 Conf.CGFileType = getCodeGenFileType(Action); 1267 break; 1268 } 1269 if (Error E = 1270 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1271 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1272 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) { 1273 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1274 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1275 }); 1276 } 1277 } 1278 1279 void clang::EmitBackendOutput( 1280 DiagnosticsEngine &Diags, const HeaderSearchOptions &HeaderOpts, 1281 const CodeGenOptions &CGOpts, const clang::TargetOptions &TOpts, 1282 const LangOptions &LOpts, StringRef TDesc, llvm::Module *M, 1283 BackendAction Action, IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS, 1284 std::unique_ptr<raw_pwrite_stream> OS, BackendConsumer *BC) { 1285 1286 llvm::TimeTraceScope TimeScope("Backend"); 1287 1288 std::unique_ptr<llvm::Module> EmptyModule; 1289 if (!CGOpts.ThinLTOIndexFile.empty()) { 1290 // If we are performing a ThinLTO importing compile, load the function index 1291 // into memory and pass it into runThinLTOBackend, which will run the 1292 // function importer and invoke LTO passes. 1293 std::unique_ptr<ModuleSummaryIndex> CombinedIndex; 1294 if (Error E = llvm::getModuleSummaryIndexForFile( 1295 CGOpts.ThinLTOIndexFile, 1296 /*IgnoreEmptyThinLTOIndexFile*/ true) 1297 .moveInto(CombinedIndex)) { 1298 logAllUnhandledErrors(std::move(E), errs(), 1299 "Error loading index file '" + 1300 CGOpts.ThinLTOIndexFile + "': "); 1301 return; 1302 } 1303 1304 // A null CombinedIndex means we should skip ThinLTO compilation 1305 // (LLVM will optionally ignore empty index files, returning null instead 1306 // of an error). 1307 if (CombinedIndex) { 1308 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1309 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1310 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1311 CGOpts.ProfileRemappingFile, Action); 1312 return; 1313 } 1314 // Distributed indexing detected that nothing from the module is needed 1315 // for the final linking. So we can skip the compilation. We sill need to 1316 // output an empty object file to make sure that a linker does not fail 1317 // trying to read it. Also for some features, like CFI, we must skip 1318 // the compilation as CombinedIndex does not contain all required 1319 // information. 1320 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1321 EmptyModule->setTargetTriple(M->getTargetTriple()); 1322 M = EmptyModule.get(); 1323 } 1324 } 1325 1326 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M, VFS); 1327 AsmHelper.EmitAssembly(Action, std::move(OS), BC); 1328 1329 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1330 // DataLayout. 1331 if (AsmHelper.TM) { 1332 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1333 if (DLDesc != TDesc) { 1334 unsigned DiagID = Diags.getCustomDiagID( 1335 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1336 "expected target description '%1'"); 1337 Diags.Report(DiagID) << DLDesc << TDesc; 1338 } 1339 } 1340 } 1341 1342 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1343 // __LLVM,__bitcode section. 1344 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1345 llvm::MemoryBufferRef Buf) { 1346 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1347 return; 1348 llvm::embedBitcodeInModule( 1349 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1350 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1351 CGOpts.CmdArgs); 1352 } 1353 1354 void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts, 1355 DiagnosticsEngine &Diags) { 1356 if (CGOpts.OffloadObjects.empty()) 1357 return; 1358 1359 for (StringRef OffloadObject : CGOpts.OffloadObjects) { 1360 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ObjectOrErr = 1361 llvm::MemoryBuffer::getFileOrSTDIN(OffloadObject); 1362 if (ObjectOrErr.getError()) { 1363 auto DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1364 "could not open '%0' for embedding"); 1365 Diags.Report(DiagID) << OffloadObject; 1366 return; 1367 } 1368 1369 llvm::embedBufferInModule(*M, **ObjectOrErr, ".llvm.offloading", 1370 Align(object::OffloadBinary::getAlignment())); 1371 } 1372 } 1373