1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/PassManager.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/IRPrinter/IRPrintingPasses.h" 38 #include "llvm/LTO/LTOBackend.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/TargetRegistry.h" 41 #include "llvm/Object/OffloadBinary.h" 42 #include "llvm/Passes/PassBuilder.h" 43 #include "llvm/Passes/PassPlugin.h" 44 #include "llvm/Passes/StandardInstrumentations.h" 45 #include "llvm/Support/BuryPointer.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/MemoryBuffer.h" 48 #include "llvm/Support/PrettyStackTrace.h" 49 #include "llvm/Support/TimeProfiler.h" 50 #include "llvm/Support/Timer.h" 51 #include "llvm/Support/ToolOutputFile.h" 52 #include "llvm/Support/VirtualFileSystem.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include "llvm/Target/TargetOptions.h" 56 #include "llvm/TargetParser/SubtargetFeature.h" 57 #include "llvm/TargetParser/Triple.h" 58 #include "llvm/Transforms/IPO/EmbedBitcodePass.h" 59 #include "llvm/Transforms/IPO/LowerTypeTests.h" 60 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 61 #include "llvm/Transforms/InstCombine/InstCombine.h" 62 #include "llvm/Transforms/Instrumentation.h" 63 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 64 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 65 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 66 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 67 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 68 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 69 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 70 #include "llvm/Transforms/Instrumentation/KCFI.h" 71 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 72 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 73 #include "llvm/Transforms/Instrumentation/SanitizerBinaryMetadata.h" 74 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 75 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 76 #include "llvm/Transforms/ObjCARC.h" 77 #include "llvm/Transforms/Scalar/EarlyCSE.h" 78 #include "llvm/Transforms/Scalar/GVN.h" 79 #include "llvm/Transforms/Scalar/JumpThreading.h" 80 #include "llvm/Transforms/Utils/Debugify.h" 81 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 82 #include "llvm/Transforms/Utils/ModuleUtils.h" 83 #include <memory> 84 #include <optional> 85 using namespace clang; 86 using namespace llvm; 87 88 #define HANDLE_EXTENSION(Ext) \ 89 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 90 #include "llvm/Support/Extension.def" 91 92 namespace llvm { 93 extern cl::opt<bool> DebugInfoCorrelate; 94 95 // Experiment to move sanitizers earlier. 96 static cl::opt<bool> ClSanitizeOnOptimizerEarlyEP( 97 "sanitizer-early-opt-ep", cl::Optional, 98 cl::desc("Insert sanitizers on OptimizerEarlyEP."), cl::init(false)); 99 } 100 101 namespace { 102 103 // Default filename used for profile generation. 104 std::string getDefaultProfileGenName() { 105 return DebugInfoCorrelate ? "default_%p.proflite" : "default_%m.profraw"; 106 } 107 108 class EmitAssemblyHelper { 109 DiagnosticsEngine &Diags; 110 const HeaderSearchOptions &HSOpts; 111 const CodeGenOptions &CodeGenOpts; 112 const clang::TargetOptions &TargetOpts; 113 const LangOptions &LangOpts; 114 Module *TheModule; 115 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS; 116 117 Timer CodeGenerationTime; 118 119 std::unique_ptr<raw_pwrite_stream> OS; 120 121 Triple TargetTriple; 122 123 TargetIRAnalysis getTargetIRAnalysis() const { 124 if (TM) 125 return TM->getTargetIRAnalysis(); 126 127 return TargetIRAnalysis(); 128 } 129 130 /// Generates the TargetMachine. 131 /// Leaves TM unchanged if it is unable to create the target machine. 132 /// Some of our clang tests specify triples which are not built 133 /// into clang. This is okay because these tests check the generated 134 /// IR, and they require DataLayout which depends on the triple. 135 /// In this case, we allow this method to fail and not report an error. 136 /// When MustCreateTM is used, we print an error if we are unable to load 137 /// the requested target. 138 void CreateTargetMachine(bool MustCreateTM); 139 140 /// Add passes necessary to emit assembly or LLVM IR. 141 /// 142 /// \return True on success. 143 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 144 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 145 146 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 147 std::error_code EC; 148 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 149 llvm::sys::fs::OF_None); 150 if (EC) { 151 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 152 F.reset(); 153 } 154 return F; 155 } 156 157 void 158 RunOptimizationPipeline(BackendAction Action, 159 std::unique_ptr<raw_pwrite_stream> &OS, 160 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS); 161 void RunCodegenPipeline(BackendAction Action, 162 std::unique_ptr<raw_pwrite_stream> &OS, 163 std::unique_ptr<llvm::ToolOutputFile> &DwoOS); 164 165 /// Check whether we should emit a module summary for regular LTO. 166 /// The module summary should be emitted by default for regular LTO 167 /// except for ld64 targets. 168 /// 169 /// \return True if the module summary should be emitted. 170 bool shouldEmitRegularLTOSummary() const { 171 return CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses && 172 TargetTriple.getVendor() != llvm::Triple::Apple; 173 } 174 175 public: 176 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 177 const HeaderSearchOptions &HeaderSearchOpts, 178 const CodeGenOptions &CGOpts, 179 const clang::TargetOptions &TOpts, 180 const LangOptions &LOpts, Module *M, 181 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS) 182 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 183 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), VFS(std::move(VFS)), 184 CodeGenerationTime("codegen", "Code Generation Time"), 185 TargetTriple(TheModule->getTargetTriple()) {} 186 187 ~EmitAssemblyHelper() { 188 if (CodeGenOpts.DisableFree) 189 BuryPointer(std::move(TM)); 190 } 191 192 std::unique_ptr<TargetMachine> TM; 193 194 // Emit output using the new pass manager for the optimization pipeline. 195 void EmitAssembly(BackendAction Action, 196 std::unique_ptr<raw_pwrite_stream> OS); 197 }; 198 } 199 200 static SanitizerCoverageOptions 201 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 202 SanitizerCoverageOptions Opts; 203 Opts.CoverageType = 204 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 205 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 206 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 207 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 208 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 209 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 210 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 211 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 212 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 213 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 214 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 215 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 216 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 217 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 218 Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads; 219 Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores; 220 Opts.CollectControlFlow = CGOpts.SanitizeCoverageControlFlow; 221 return Opts; 222 } 223 224 static SanitizerBinaryMetadataOptions 225 getSanitizerBinaryMetadataOptions(const CodeGenOptions &CGOpts) { 226 SanitizerBinaryMetadataOptions Opts; 227 Opts.Covered = CGOpts.SanitizeBinaryMetadataCovered; 228 Opts.Atomics = CGOpts.SanitizeBinaryMetadataAtomics; 229 Opts.UAR = CGOpts.SanitizeBinaryMetadataUAR; 230 return Opts; 231 } 232 233 // Check if ASan should use GC-friendly instrumentation for globals. 234 // First of all, there is no point if -fdata-sections is off (expect for MachO, 235 // where this is not a factor). Also, on ELF this feature requires an assembler 236 // extension that only works with -integrated-as at the moment. 237 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 238 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 239 return false; 240 switch (T.getObjectFormat()) { 241 case Triple::MachO: 242 case Triple::COFF: 243 return true; 244 case Triple::ELF: 245 return !CGOpts.DisableIntegratedAS; 246 case Triple::GOFF: 247 llvm::report_fatal_error("ASan not implemented for GOFF"); 248 case Triple::XCOFF: 249 llvm::report_fatal_error("ASan not implemented for XCOFF."); 250 case Triple::Wasm: 251 case Triple::DXContainer: 252 case Triple::SPIRV: 253 case Triple::UnknownObjectFormat: 254 break; 255 } 256 return false; 257 } 258 259 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 260 const CodeGenOptions &CodeGenOpts) { 261 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 262 263 switch (CodeGenOpts.getVecLib()) { 264 case CodeGenOptions::Accelerate: 265 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate, 266 TargetTriple); 267 break; 268 case CodeGenOptions::LIBMVEC: 269 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::LIBMVEC_X86, 270 TargetTriple); 271 break; 272 case CodeGenOptions::MASSV: 273 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV, 274 TargetTriple); 275 break; 276 case CodeGenOptions::SVML: 277 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML, 278 TargetTriple); 279 break; 280 case CodeGenOptions::SLEEF: 281 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SLEEFGNUABI, 282 TargetTriple); 283 break; 284 case CodeGenOptions::Darwin_libsystem_m: 285 TLII->addVectorizableFunctionsFromVecLib( 286 TargetLibraryInfoImpl::DarwinLibSystemM, TargetTriple); 287 break; 288 case CodeGenOptions::ArmPL: 289 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::ArmPL, 290 TargetTriple); 291 break; 292 default: 293 break; 294 } 295 return TLII; 296 } 297 298 static std::optional<llvm::CodeModel::Model> 299 getCodeModel(const CodeGenOptions &CodeGenOpts) { 300 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 301 .Case("tiny", llvm::CodeModel::Tiny) 302 .Case("small", llvm::CodeModel::Small) 303 .Case("kernel", llvm::CodeModel::Kernel) 304 .Case("medium", llvm::CodeModel::Medium) 305 .Case("large", llvm::CodeModel::Large) 306 .Case("default", ~1u) 307 .Default(~0u); 308 assert(CodeModel != ~0u && "invalid code model!"); 309 if (CodeModel == ~1u) 310 return std::nullopt; 311 return static_cast<llvm::CodeModel::Model>(CodeModel); 312 } 313 314 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 315 if (Action == Backend_EmitObj) 316 return CGFT_ObjectFile; 317 else if (Action == Backend_EmitMCNull) 318 return CGFT_Null; 319 else { 320 assert(Action == Backend_EmitAssembly && "Invalid action!"); 321 return CGFT_AssemblyFile; 322 } 323 } 324 325 static bool actionRequiresCodeGen(BackendAction Action) { 326 return Action != Backend_EmitNothing && Action != Backend_EmitBC && 327 Action != Backend_EmitLL; 328 } 329 330 static bool initTargetOptions(DiagnosticsEngine &Diags, 331 llvm::TargetOptions &Options, 332 const CodeGenOptions &CodeGenOpts, 333 const clang::TargetOptions &TargetOpts, 334 const LangOptions &LangOpts, 335 const HeaderSearchOptions &HSOpts) { 336 switch (LangOpts.getThreadModel()) { 337 case LangOptions::ThreadModelKind::POSIX: 338 Options.ThreadModel = llvm::ThreadModel::POSIX; 339 break; 340 case LangOptions::ThreadModelKind::Single: 341 Options.ThreadModel = llvm::ThreadModel::Single; 342 break; 343 } 344 345 // Set float ABI type. 346 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 347 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 348 "Invalid Floating Point ABI!"); 349 Options.FloatABIType = 350 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 351 .Case("soft", llvm::FloatABI::Soft) 352 .Case("softfp", llvm::FloatABI::Soft) 353 .Case("hard", llvm::FloatABI::Hard) 354 .Default(llvm::FloatABI::Default); 355 356 // Set FP fusion mode. 357 switch (LangOpts.getDefaultFPContractMode()) { 358 case LangOptions::FPM_Off: 359 // Preserve any contraction performed by the front-end. (Strict performs 360 // splitting of the muladd intrinsic in the backend.) 361 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 362 break; 363 case LangOptions::FPM_On: 364 case LangOptions::FPM_FastHonorPragmas: 365 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 366 break; 367 case LangOptions::FPM_Fast: 368 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 369 break; 370 } 371 372 Options.BinutilsVersion = 373 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 374 Options.UseInitArray = CodeGenOpts.UseInitArray; 375 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 376 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 377 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 378 379 // Set EABI version. 380 Options.EABIVersion = TargetOpts.EABIVersion; 381 382 if (LangOpts.hasSjLjExceptions()) 383 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 384 if (LangOpts.hasSEHExceptions()) 385 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 386 if (LangOpts.hasDWARFExceptions()) 387 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 388 if (LangOpts.hasWasmExceptions()) 389 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 390 391 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 392 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 393 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 394 Options.UnsafeFPMath = LangOpts.AllowFPReassoc && LangOpts.AllowRecip && 395 LangOpts.NoSignedZero && LangOpts.ApproxFunc && 396 (LangOpts.getDefaultFPContractMode() == 397 LangOptions::FPModeKind::FPM_Fast || 398 LangOpts.getDefaultFPContractMode() == 399 LangOptions::FPModeKind::FPM_FastHonorPragmas); 400 Options.ApproxFuncFPMath = LangOpts.ApproxFunc; 401 402 Options.BBSections = 403 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 404 .Case("all", llvm::BasicBlockSection::All) 405 .Case("labels", llvm::BasicBlockSection::Labels) 406 .StartsWith("list=", llvm::BasicBlockSection::List) 407 .Case("none", llvm::BasicBlockSection::None) 408 .Default(llvm::BasicBlockSection::None); 409 410 if (Options.BBSections == llvm::BasicBlockSection::List) { 411 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 412 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 413 if (!MBOrErr) { 414 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 415 << MBOrErr.getError().message(); 416 return false; 417 } 418 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 419 } 420 421 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 422 Options.FunctionSections = CodeGenOpts.FunctionSections; 423 Options.DataSections = CodeGenOpts.DataSections; 424 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 425 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 426 Options.UniqueBasicBlockSectionNames = 427 CodeGenOpts.UniqueBasicBlockSectionNames; 428 Options.TLSSize = CodeGenOpts.TLSSize; 429 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 430 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 431 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 432 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 433 Options.EmitAddrsig = CodeGenOpts.Addrsig; 434 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 435 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 436 Options.EnableAIXExtendedAltivecABI = LangOpts.EnableAIXExtendedAltivecABI; 437 Options.XRayFunctionIndex = CodeGenOpts.XRayFunctionIndex; 438 Options.LoopAlignment = CodeGenOpts.LoopAlignment; 439 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 440 Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug; 441 Options.Hotpatch = CodeGenOpts.HotPatch; 442 Options.JMCInstrument = CodeGenOpts.JMCInstrument; 443 Options.XCOFFReadOnlyPointers = CodeGenOpts.XCOFFReadOnlyPointers; 444 445 switch (CodeGenOpts.getSwiftAsyncFramePointer()) { 446 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto: 447 Options.SwiftAsyncFramePointer = 448 SwiftAsyncFramePointerMode::DeploymentBased; 449 break; 450 451 case CodeGenOptions::SwiftAsyncFramePointerKind::Always: 452 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always; 453 break; 454 455 case CodeGenOptions::SwiftAsyncFramePointerKind::Never: 456 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never; 457 break; 458 } 459 460 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 461 Options.MCOptions.EmitDwarfUnwind = CodeGenOpts.getEmitDwarfUnwind(); 462 Options.MCOptions.EmitCompactUnwindNonCanonical = 463 CodeGenOpts.EmitCompactUnwindNonCanonical; 464 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 465 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 466 Options.MCOptions.MCUseDwarfDirectory = 467 CodeGenOpts.NoDwarfDirectoryAsm 468 ? llvm::MCTargetOptions::DisableDwarfDirectory 469 : llvm::MCTargetOptions::EnableDwarfDirectory; 470 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 471 Options.MCOptions.MCIncrementalLinkerCompatible = 472 CodeGenOpts.IncrementalLinkerCompatible; 473 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 474 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 475 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 476 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 477 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 478 Options.MCOptions.ABIName = TargetOpts.ABI; 479 for (const auto &Entry : HSOpts.UserEntries) 480 if (!Entry.IsFramework && 481 (Entry.Group == frontend::IncludeDirGroup::Quoted || 482 Entry.Group == frontend::IncludeDirGroup::Angled || 483 Entry.Group == frontend::IncludeDirGroup::System)) 484 Options.MCOptions.IASSearchPaths.push_back( 485 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 486 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 487 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 488 Options.MCOptions.AsSecureLogFile = CodeGenOpts.AsSecureLogFile; 489 Options.MisExpect = CodeGenOpts.MisExpect; 490 491 return true; 492 } 493 494 static std::optional<GCOVOptions> 495 getGCOVOptions(const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts) { 496 if (CodeGenOpts.CoverageNotesFile.empty() && 497 CodeGenOpts.CoverageDataFile.empty()) 498 return std::nullopt; 499 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 500 // LLVM's -default-gcov-version flag is set to something invalid. 501 GCOVOptions Options; 502 Options.EmitNotes = !CodeGenOpts.CoverageNotesFile.empty(); 503 Options.EmitData = !CodeGenOpts.CoverageDataFile.empty(); 504 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 505 Options.NoRedZone = CodeGenOpts.DisableRedZone; 506 Options.Filter = CodeGenOpts.ProfileFilterFiles; 507 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 508 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 509 return Options; 510 } 511 512 static std::optional<InstrProfOptions> 513 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 514 const LangOptions &LangOpts) { 515 if (!CodeGenOpts.hasProfileClangInstr()) 516 return std::nullopt; 517 InstrProfOptions Options; 518 Options.NoRedZone = CodeGenOpts.DisableRedZone; 519 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 520 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 521 return Options; 522 } 523 524 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 525 SmallVector<const char *, 16> BackendArgs; 526 BackendArgs.push_back("clang"); // Fake program name. 527 if (!CodeGenOpts.DebugPass.empty()) { 528 BackendArgs.push_back("-debug-pass"); 529 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 530 } 531 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 532 BackendArgs.push_back("-limit-float-precision"); 533 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 534 } 535 // Check for the default "clang" invocation that won't set any cl::opt values. 536 // Skip trying to parse the command line invocation to avoid the issues 537 // described below. 538 if (BackendArgs.size() == 1) 539 return; 540 BackendArgs.push_back(nullptr); 541 // FIXME: The command line parser below is not thread-safe and shares a global 542 // state, so this call might crash or overwrite the options of another Clang 543 // instance in the same process. 544 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 545 BackendArgs.data()); 546 } 547 548 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 549 // Create the TargetMachine for generating code. 550 std::string Error; 551 std::string Triple = TheModule->getTargetTriple(); 552 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 553 if (!TheTarget) { 554 if (MustCreateTM) 555 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 556 return; 557 } 558 559 std::optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 560 std::string FeaturesStr = 561 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 562 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 563 std::optional<CodeGenOpt::Level> OptLevelOrNone = 564 CodeGenOpt::getLevel(CodeGenOpts.OptimizationLevel); 565 assert(OptLevelOrNone && "Invalid optimization level!"); 566 CodeGenOpt::Level OptLevel = *OptLevelOrNone; 567 568 llvm::TargetOptions Options; 569 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, 570 HSOpts)) 571 return; 572 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 573 Options, RM, CM, OptLevel)); 574 } 575 576 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 577 BackendAction Action, 578 raw_pwrite_stream &OS, 579 raw_pwrite_stream *DwoOS) { 580 // Add LibraryInfo. 581 std::unique_ptr<TargetLibraryInfoImpl> TLII( 582 createTLII(TargetTriple, CodeGenOpts)); 583 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 584 585 // Normal mode, emit a .s or .o file by running the code generator. Note, 586 // this also adds codegenerator level optimization passes. 587 CodeGenFileType CGFT = getCodeGenFileType(Action); 588 589 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 590 // "codegen" passes so that it isn't run multiple times when there is 591 // inlining happening. 592 if (CodeGenOpts.OptimizationLevel > 0) 593 CodeGenPasses.add(createObjCARCContractPass()); 594 595 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 596 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 597 Diags.Report(diag::err_fe_unable_to_interface_with_target); 598 return false; 599 } 600 601 return true; 602 } 603 604 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 605 switch (Opts.OptimizationLevel) { 606 default: 607 llvm_unreachable("Invalid optimization level!"); 608 609 case 0: 610 return OptimizationLevel::O0; 611 612 case 1: 613 return OptimizationLevel::O1; 614 615 case 2: 616 switch (Opts.OptimizeSize) { 617 default: 618 llvm_unreachable("Invalid optimization level for size!"); 619 620 case 0: 621 return OptimizationLevel::O2; 622 623 case 1: 624 return OptimizationLevel::Os; 625 626 case 2: 627 return OptimizationLevel::Oz; 628 } 629 630 case 3: 631 return OptimizationLevel::O3; 632 } 633 } 634 635 static void addKCFIPass(const Triple &TargetTriple, const LangOptions &LangOpts, 636 PassBuilder &PB) { 637 // If the back-end supports KCFI operand bundle lowering, skip KCFIPass. 638 if (TargetTriple.getArch() == llvm::Triple::x86_64 || 639 TargetTriple.isAArch64(64) || TargetTriple.isRISCV()) 640 return; 641 642 // Ensure we lower KCFI operand bundles with -O0. 643 PB.registerOptimizerLastEPCallback( 644 [&](ModulePassManager &MPM, OptimizationLevel Level) { 645 if (Level == OptimizationLevel::O0 && 646 LangOpts.Sanitize.has(SanitizerKind::KCFI)) 647 MPM.addPass(createModuleToFunctionPassAdaptor(KCFIPass())); 648 }); 649 650 // When optimizations are requested, run KCIFPass after InstCombine to 651 // avoid unnecessary checks. 652 PB.registerPeepholeEPCallback( 653 [&](FunctionPassManager &FPM, OptimizationLevel Level) { 654 if (Level != OptimizationLevel::O0 && 655 LangOpts.Sanitize.has(SanitizerKind::KCFI)) 656 FPM.addPass(KCFIPass()); 657 }); 658 } 659 660 static void addSanitizers(const Triple &TargetTriple, 661 const CodeGenOptions &CodeGenOpts, 662 const LangOptions &LangOpts, PassBuilder &PB) { 663 auto SanitizersCallback = [&](ModulePassManager &MPM, 664 OptimizationLevel Level) { 665 if (CodeGenOpts.hasSanitizeCoverage()) { 666 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 667 MPM.addPass(SanitizerCoveragePass( 668 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 669 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 670 } 671 672 if (CodeGenOpts.hasSanitizeBinaryMetadata()) { 673 MPM.addPass(SanitizerBinaryMetadataPass( 674 getSanitizerBinaryMetadataOptions(CodeGenOpts), 675 CodeGenOpts.SanitizeMetadataIgnorelistFiles)); 676 } 677 678 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 679 if (LangOpts.Sanitize.has(Mask)) { 680 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 681 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 682 683 MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel, 684 CodeGenOpts.SanitizeMemoryParamRetval); 685 MPM.addPass(MemorySanitizerPass(options)); 686 if (Level != OptimizationLevel::O0) { 687 // MemorySanitizer inserts complex instrumentation that mostly follows 688 // the logic of the original code, but operates on "shadow" values. It 689 // can benefit from re-running some general purpose optimization 690 // passes. 691 MPM.addPass(RequireAnalysisPass<GlobalsAA, Module>()); 692 FunctionPassManager FPM; 693 FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */)); 694 FPM.addPass(InstCombinePass()); 695 FPM.addPass(JumpThreadingPass()); 696 FPM.addPass(GVNPass()); 697 FPM.addPass(InstCombinePass()); 698 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 699 } 700 } 701 }; 702 MSanPass(SanitizerKind::Memory, false); 703 MSanPass(SanitizerKind::KernelMemory, true); 704 705 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 706 MPM.addPass(ModuleThreadSanitizerPass()); 707 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 708 } 709 710 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 711 if (LangOpts.Sanitize.has(Mask)) { 712 bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 713 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 714 llvm::AsanDtorKind DestructorKind = 715 CodeGenOpts.getSanitizeAddressDtor(); 716 AddressSanitizerOptions Opts; 717 Opts.CompileKernel = CompileKernel; 718 Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask); 719 Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 720 Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn(); 721 MPM.addPass(AddressSanitizerPass(Opts, UseGlobalGC, UseOdrIndicator, 722 DestructorKind)); 723 } 724 }; 725 ASanPass(SanitizerKind::Address, false); 726 ASanPass(SanitizerKind::KernelAddress, true); 727 728 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 729 if (LangOpts.Sanitize.has(Mask)) { 730 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 731 MPM.addPass(HWAddressSanitizerPass( 732 {CompileKernel, Recover, 733 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0})); 734 } 735 }; 736 HWASanPass(SanitizerKind::HWAddress, false); 737 HWASanPass(SanitizerKind::KernelHWAddress, true); 738 739 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 740 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 741 } 742 }; 743 if (ClSanitizeOnOptimizerEarlyEP) { 744 PB.registerOptimizerEarlyEPCallback( 745 [SanitizersCallback](ModulePassManager &MPM, OptimizationLevel Level) { 746 ModulePassManager NewMPM; 747 SanitizersCallback(NewMPM, Level); 748 if (!NewMPM.isEmpty()) { 749 // Sanitizers can abandon<GlobalsAA>. 750 NewMPM.addPass(RequireAnalysisPass<GlobalsAA, Module>()); 751 MPM.addPass(std::move(NewMPM)); 752 } 753 }); 754 } else { 755 // LastEP does not need GlobalsAA. 756 PB.registerOptimizerLastEPCallback(SanitizersCallback); 757 } 758 } 759 760 void EmitAssemblyHelper::RunOptimizationPipeline( 761 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 762 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS) { 763 std::optional<PGOOptions> PGOOpt; 764 765 if (CodeGenOpts.hasProfileIRInstr()) 766 // -fprofile-generate. 767 PGOOpt = PGOOptions( 768 CodeGenOpts.InstrProfileOutput.empty() ? getDefaultProfileGenName() 769 : CodeGenOpts.InstrProfileOutput, 770 "", "", CodeGenOpts.MemoryProfileUsePath, nullptr, PGOOptions::IRInstr, 771 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 772 else if (CodeGenOpts.hasProfileIRUse()) { 773 // -fprofile-use. 774 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 775 : PGOOptions::NoCSAction; 776 PGOOpt = PGOOptions( 777 CodeGenOpts.ProfileInstrumentUsePath, "", 778 CodeGenOpts.ProfileRemappingFile, CodeGenOpts.MemoryProfileUsePath, VFS, 779 PGOOptions::IRUse, CSAction, CodeGenOpts.DebugInfoForProfiling); 780 } else if (!CodeGenOpts.SampleProfileFile.empty()) 781 // -fprofile-sample-use 782 PGOOpt = PGOOptions( 783 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 784 CodeGenOpts.MemoryProfileUsePath, VFS, PGOOptions::SampleUse, 785 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling, 786 CodeGenOpts.PseudoProbeForProfiling); 787 else if (!CodeGenOpts.MemoryProfileUsePath.empty()) 788 // -fmemory-profile-use (without any of the above options) 789 PGOOpt = PGOOptions("", "", "", CodeGenOpts.MemoryProfileUsePath, VFS, 790 PGOOptions::NoAction, PGOOptions::NoCSAction, 791 CodeGenOpts.DebugInfoForProfiling); 792 else if (CodeGenOpts.PseudoProbeForProfiling) 793 // -fpseudo-probe-for-profiling 794 PGOOpt = PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr, 795 PGOOptions::NoAction, PGOOptions::NoCSAction, 796 CodeGenOpts.DebugInfoForProfiling, true); 797 else if (CodeGenOpts.DebugInfoForProfiling) 798 // -fdebug-info-for-profiling 799 PGOOpt = PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr, 800 PGOOptions::NoAction, PGOOptions::NoCSAction, true); 801 802 // Check to see if we want to generate a CS profile. 803 if (CodeGenOpts.hasProfileCSIRInstr()) { 804 assert(!CodeGenOpts.hasProfileCSIRUse() && 805 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 806 "the same time"); 807 if (PGOOpt) { 808 assert(PGOOpt->Action != PGOOptions::IRInstr && 809 PGOOpt->Action != PGOOptions::SampleUse && 810 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 811 " pass"); 812 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 813 ? getDefaultProfileGenName() 814 : CodeGenOpts.InstrProfileOutput; 815 PGOOpt->CSAction = PGOOptions::CSIRInstr; 816 } else 817 PGOOpt = 818 PGOOptions("", 819 CodeGenOpts.InstrProfileOutput.empty() 820 ? getDefaultProfileGenName() 821 : CodeGenOpts.InstrProfileOutput, 822 "", /*MemoryProfile=*/"", nullptr, PGOOptions::NoAction, 823 PGOOptions::CSIRInstr, CodeGenOpts.DebugInfoForProfiling); 824 } 825 if (TM) 826 TM->setPGOOption(PGOOpt); 827 828 PipelineTuningOptions PTO; 829 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 830 // For historical reasons, loop interleaving is set to mirror setting for loop 831 // unrolling. 832 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 833 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 834 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 835 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 836 // Only enable CGProfilePass when using integrated assembler, since 837 // non-integrated assemblers don't recognize .cgprofile section. 838 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 839 PTO.UnifiedLTO = CodeGenOpts.UnifiedLTO; 840 841 LoopAnalysisManager LAM; 842 FunctionAnalysisManager FAM; 843 CGSCCAnalysisManager CGAM; 844 ModuleAnalysisManager MAM; 845 846 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure"; 847 PassInstrumentationCallbacks PIC; 848 PrintPassOptions PrintPassOpts; 849 PrintPassOpts.Indent = DebugPassStructure; 850 PrintPassOpts.SkipAnalyses = DebugPassStructure; 851 StandardInstrumentations SI( 852 TheModule->getContext(), 853 (CodeGenOpts.DebugPassManager || DebugPassStructure), 854 CodeGenOpts.VerifyEach, PrintPassOpts); 855 SI.registerCallbacks(PIC, &MAM); 856 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 857 858 // Handle the assignment tracking feature options. 859 switch (CodeGenOpts.getAssignmentTrackingMode()) { 860 case CodeGenOptions::AssignmentTrackingOpts::Forced: 861 PB.registerPipelineStartEPCallback( 862 [&](ModulePassManager &MPM, OptimizationLevel Level) { 863 MPM.addPass(AssignmentTrackingPass()); 864 }); 865 break; 866 case CodeGenOptions::AssignmentTrackingOpts::Enabled: 867 // Disable assignment tracking in LTO builds for now as the performance 868 // cost is too high. Disable for LLDB tuning due to llvm.org/PR43126. 869 if (!CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.PrepareForLTO && 870 CodeGenOpts.getDebuggerTuning() != llvm::DebuggerKind::LLDB) { 871 PB.registerPipelineStartEPCallback( 872 [&](ModulePassManager &MPM, OptimizationLevel Level) { 873 // Only use assignment tracking if optimisations are enabled. 874 if (Level != OptimizationLevel::O0) 875 MPM.addPass(AssignmentTrackingPass()); 876 }); 877 } 878 break; 879 case CodeGenOptions::AssignmentTrackingOpts::Disabled: 880 break; 881 } 882 883 // Enable verify-debuginfo-preserve-each for new PM. 884 DebugifyEachInstrumentation Debugify; 885 DebugInfoPerPass DebugInfoBeforePass; 886 if (CodeGenOpts.EnableDIPreservationVerify) { 887 Debugify.setDebugifyMode(DebugifyMode::OriginalDebugInfo); 888 Debugify.setDebugInfoBeforePass(DebugInfoBeforePass); 889 890 if (!CodeGenOpts.DIBugsReportFilePath.empty()) 891 Debugify.setOrigDIVerifyBugsReportFilePath( 892 CodeGenOpts.DIBugsReportFilePath); 893 Debugify.registerCallbacks(PIC, MAM); 894 } 895 // Attempt to load pass plugins and register their callbacks with PB. 896 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 897 auto PassPlugin = PassPlugin::Load(PluginFN); 898 if (PassPlugin) { 899 PassPlugin->registerPassBuilderCallbacks(PB); 900 } else { 901 Diags.Report(diag::err_fe_unable_to_load_plugin) 902 << PluginFN << toString(PassPlugin.takeError()); 903 } 904 } 905 #define HANDLE_EXTENSION(Ext) \ 906 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 907 #include "llvm/Support/Extension.def" 908 909 // Register the target library analysis directly and give it a customized 910 // preset TLI. 911 std::unique_ptr<TargetLibraryInfoImpl> TLII( 912 createTLII(TargetTriple, CodeGenOpts)); 913 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 914 915 // Register all the basic analyses with the managers. 916 PB.registerModuleAnalyses(MAM); 917 PB.registerCGSCCAnalyses(CGAM); 918 PB.registerFunctionAnalyses(FAM); 919 PB.registerLoopAnalyses(LAM); 920 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 921 922 ModulePassManager MPM; 923 924 if (!CodeGenOpts.DisableLLVMPasses) { 925 // Map our optimization levels into one of the distinct levels used to 926 // configure the pipeline. 927 OptimizationLevel Level = mapToLevel(CodeGenOpts); 928 929 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 930 bool IsLTO = CodeGenOpts.PrepareForLTO; 931 932 if (LangOpts.ObjCAutoRefCount) { 933 PB.registerPipelineStartEPCallback( 934 [](ModulePassManager &MPM, OptimizationLevel Level) { 935 if (Level != OptimizationLevel::O0) 936 MPM.addPass( 937 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 938 }); 939 PB.registerPipelineEarlySimplificationEPCallback( 940 [](ModulePassManager &MPM, OptimizationLevel Level) { 941 if (Level != OptimizationLevel::O0) 942 MPM.addPass(ObjCARCAPElimPass()); 943 }); 944 PB.registerScalarOptimizerLateEPCallback( 945 [](FunctionPassManager &FPM, OptimizationLevel Level) { 946 if (Level != OptimizationLevel::O0) 947 FPM.addPass(ObjCARCOptPass()); 948 }); 949 } 950 951 // If we reached here with a non-empty index file name, then the index 952 // file was empty and we are not performing ThinLTO backend compilation 953 // (used in testing in a distributed build environment). 954 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 955 // If so drop any the type test assume sequences inserted for whole program 956 // vtables so that codegen doesn't complain. 957 if (IsThinLTOPostLink) 958 PB.registerPipelineStartEPCallback( 959 [](ModulePassManager &MPM, OptimizationLevel Level) { 960 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 961 /*ImportSummary=*/nullptr, 962 /*DropTypeTests=*/true)); 963 }); 964 965 if (CodeGenOpts.InstrumentFunctions || 966 CodeGenOpts.InstrumentFunctionEntryBare || 967 CodeGenOpts.InstrumentFunctionsAfterInlining || 968 CodeGenOpts.InstrumentForProfiling) { 969 PB.registerPipelineStartEPCallback( 970 [](ModulePassManager &MPM, OptimizationLevel Level) { 971 MPM.addPass(createModuleToFunctionPassAdaptor( 972 EntryExitInstrumenterPass(/*PostInlining=*/false))); 973 }); 974 PB.registerOptimizerLastEPCallback( 975 [](ModulePassManager &MPM, OptimizationLevel Level) { 976 MPM.addPass(createModuleToFunctionPassAdaptor( 977 EntryExitInstrumenterPass(/*PostInlining=*/true))); 978 }); 979 } 980 981 // Register callbacks to schedule sanitizer passes at the appropriate part 982 // of the pipeline. 983 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 984 PB.registerScalarOptimizerLateEPCallback( 985 [](FunctionPassManager &FPM, OptimizationLevel Level) { 986 FPM.addPass(BoundsCheckingPass()); 987 }); 988 989 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 990 // done on PreLink stage. 991 if (!IsThinLTOPostLink) { 992 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 993 addKCFIPass(TargetTriple, LangOpts, PB); 994 } 995 996 if (std::optional<GCOVOptions> Options = 997 getGCOVOptions(CodeGenOpts, LangOpts)) 998 PB.registerPipelineStartEPCallback( 999 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1000 MPM.addPass(GCOVProfilerPass(*Options)); 1001 }); 1002 if (std::optional<InstrProfOptions> Options = 1003 getInstrProfOptions(CodeGenOpts, LangOpts)) 1004 PB.registerPipelineStartEPCallback( 1005 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1006 MPM.addPass(InstrProfiling(*Options, false)); 1007 }); 1008 1009 // TODO: Consider passing the MemoryProfileOutput to the pass builder via 1010 // the PGOOptions, and set this up there. 1011 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1012 PB.registerOptimizerLastEPCallback( 1013 [](ModulePassManager &MPM, OptimizationLevel Level) { 1014 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1015 MPM.addPass(ModuleMemProfilerPass()); 1016 }); 1017 } 1018 1019 bool IsThinOrUnifiedLTO = IsThinLTO || (IsLTO && CodeGenOpts.UnifiedLTO); 1020 if (CodeGenOpts.FatLTO) { 1021 MPM = PB.buildFatLTODefaultPipeline(Level, IsThinOrUnifiedLTO, 1022 IsThinOrUnifiedLTO || 1023 shouldEmitRegularLTOSummary()); 1024 } else if (IsThinOrUnifiedLTO) { 1025 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level); 1026 } else if (IsLTO) { 1027 MPM = PB.buildLTOPreLinkDefaultPipeline(Level); 1028 } else { 1029 MPM = PB.buildPerModuleDefaultPipeline(Level); 1030 } 1031 } 1032 1033 // Add a verifier pass if requested. We don't have to do this if the action 1034 // requires code generation because there will already be a verifier pass in 1035 // the code-generation pipeline. 1036 if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule) 1037 MPM.addPass(VerifierPass()); 1038 1039 if (Action == Backend_EmitBC || Action == Backend_EmitLL) { 1040 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1041 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1042 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1043 CodeGenOpts.EnableSplitLTOUnit); 1044 if (Action == Backend_EmitBC) { 1045 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1046 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1047 if (!ThinLinkOS) 1048 return; 1049 } 1050 if (CodeGenOpts.UnifiedLTO) 1051 TheModule->addModuleFlag(Module::Error, "UnifiedLTO", uint32_t(1)); 1052 MPM.addPass(ThinLTOBitcodeWriterPass( 1053 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 1054 } else { 1055 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists, 1056 /*EmitLTOSummary=*/true)); 1057 } 1058 1059 } else { 1060 // Emit a module summary by default for Regular LTO except for ld64 1061 // targets 1062 bool EmitLTOSummary = shouldEmitRegularLTOSummary(); 1063 if (EmitLTOSummary) { 1064 if (!TheModule->getModuleFlag("ThinLTO") && !CodeGenOpts.UnifiedLTO) 1065 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1066 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1067 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1068 uint32_t(1)); 1069 if (CodeGenOpts.UnifiedLTO) 1070 TheModule->addModuleFlag(Module::Error, "UnifiedLTO", uint32_t(1)); 1071 } 1072 if (Action == Backend_EmitBC) 1073 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 1074 EmitLTOSummary)); 1075 else 1076 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists, 1077 EmitLTOSummary)); 1078 } 1079 } 1080 if (CodeGenOpts.FatLTO) { 1081 // Set module flags, like EnableSplitLTOUnit and UnifiedLTO, since FatLTO 1082 // uses a different action than Backend_EmitBC or Backend_EmitLL. 1083 bool IsThinOrUnifiedLTO = 1084 CodeGenOpts.PrepareForThinLTO || 1085 (CodeGenOpts.PrepareForLTO && CodeGenOpts.UnifiedLTO); 1086 if (!TheModule->getModuleFlag("ThinLTO")) 1087 TheModule->addModuleFlag(Module::Error, "ThinLTO", 1088 uint32_t(IsThinOrUnifiedLTO)); 1089 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1090 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1091 uint32_t(CodeGenOpts.EnableSplitLTOUnit)); 1092 if (CodeGenOpts.UnifiedLTO && !TheModule->getModuleFlag("UnifiedLTO")) 1093 TheModule->addModuleFlag(Module::Error, "UnifiedLTO", uint32_t(1)); 1094 } 1095 1096 // Now that we have all of the passes ready, run them. 1097 { 1098 PrettyStackTraceString CrashInfo("Optimizer"); 1099 llvm::TimeTraceScope TimeScope("Optimizer"); 1100 MPM.run(*TheModule, MAM); 1101 } 1102 } 1103 1104 void EmitAssemblyHelper::RunCodegenPipeline( 1105 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1106 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) { 1107 // We still use the legacy PM to run the codegen pipeline since the new PM 1108 // does not work with the codegen pipeline. 1109 // FIXME: make the new PM work with the codegen pipeline. 1110 legacy::PassManager CodeGenPasses; 1111 1112 // Append any output we need to the pass manager. 1113 switch (Action) { 1114 case Backend_EmitAssembly: 1115 case Backend_EmitMCNull: 1116 case Backend_EmitObj: 1117 CodeGenPasses.add( 1118 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1119 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1120 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1121 if (!DwoOS) 1122 return; 1123 } 1124 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1125 DwoOS ? &DwoOS->os() : nullptr)) 1126 // FIXME: Should we handle this error differently? 1127 return; 1128 break; 1129 default: 1130 return; 1131 } 1132 1133 { 1134 PrettyStackTraceString CrashInfo("Code generation"); 1135 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1136 CodeGenPasses.run(*TheModule); 1137 } 1138 } 1139 1140 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 1141 std::unique_ptr<raw_pwrite_stream> OS) { 1142 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1143 setCommandLineOpts(CodeGenOpts); 1144 1145 bool RequiresCodeGen = actionRequiresCodeGen(Action); 1146 CreateTargetMachine(RequiresCodeGen); 1147 1148 if (RequiresCodeGen && !TM) 1149 return; 1150 if (TM) 1151 TheModule->setDataLayout(TM->createDataLayout()); 1152 1153 // Before executing passes, print the final values of the LLVM options. 1154 cl::PrintOptionValues(); 1155 1156 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1157 RunOptimizationPipeline(Action, OS, ThinLinkOS); 1158 RunCodegenPipeline(Action, OS, DwoOS); 1159 1160 if (ThinLinkOS) 1161 ThinLinkOS->keep(); 1162 if (DwoOS) 1163 DwoOS->keep(); 1164 } 1165 1166 static void runThinLTOBackend( 1167 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1168 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1169 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1170 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1171 std::string ProfileRemapping, BackendAction Action) { 1172 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1173 ModuleToDefinedGVSummaries; 1174 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1175 1176 setCommandLineOpts(CGOpts); 1177 1178 // We can simply import the values mentioned in the combined index, since 1179 // we should only invoke this using the individual indexes written out 1180 // via a WriteIndexesThinBackend. 1181 FunctionImporter::ImportMapTy ImportList; 1182 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1183 return; 1184 1185 auto AddStream = [&](size_t Task, const Twine &ModuleName) { 1186 return std::make_unique<CachedFileStream>(std::move(OS), 1187 CGOpts.ObjectFilenameForDebug); 1188 }; 1189 lto::Config Conf; 1190 if (CGOpts.SaveTempsFilePrefix != "") { 1191 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1192 /* UseInputModulePath */ false)) { 1193 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1194 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1195 << '\n'; 1196 }); 1197 } 1198 } 1199 Conf.CPU = TOpts.CPU; 1200 Conf.CodeModel = getCodeModel(CGOpts); 1201 Conf.MAttrs = TOpts.Features; 1202 Conf.RelocModel = CGOpts.RelocationModel; 1203 std::optional<CodeGenOpt::Level> OptLevelOrNone = 1204 CodeGenOpt::getLevel(CGOpts.OptimizationLevel); 1205 assert(OptLevelOrNone && "Invalid optimization level!"); 1206 Conf.CGOptLevel = *OptLevelOrNone; 1207 Conf.OptLevel = CGOpts.OptimizationLevel; 1208 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1209 Conf.SampleProfile = std::move(SampleProfile); 1210 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1211 // For historical reasons, loop interleaving is set to mirror setting for loop 1212 // unrolling. 1213 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1214 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1215 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1216 // Only enable CGProfilePass when using integrated assembler, since 1217 // non-integrated assemblers don't recognize .cgprofile section. 1218 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1219 1220 // Context sensitive profile. 1221 if (CGOpts.hasProfileCSIRInstr()) { 1222 Conf.RunCSIRInstr = true; 1223 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1224 } else if (CGOpts.hasProfileCSIRUse()) { 1225 Conf.RunCSIRInstr = false; 1226 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1227 } 1228 1229 Conf.ProfileRemapping = std::move(ProfileRemapping); 1230 Conf.DebugPassManager = CGOpts.DebugPassManager; 1231 Conf.VerifyEach = CGOpts.VerifyEach; 1232 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1233 Conf.RemarksFilename = CGOpts.OptRecordFile; 1234 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1235 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1236 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1237 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1238 switch (Action) { 1239 case Backend_EmitNothing: 1240 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1241 return false; 1242 }; 1243 break; 1244 case Backend_EmitLL: 1245 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1246 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1247 return false; 1248 }; 1249 break; 1250 case Backend_EmitBC: 1251 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1252 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1253 return false; 1254 }; 1255 break; 1256 default: 1257 Conf.CGFileType = getCodeGenFileType(Action); 1258 break; 1259 } 1260 if (Error E = 1261 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1262 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1263 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) { 1264 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1265 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1266 }); 1267 } 1268 } 1269 1270 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1271 const HeaderSearchOptions &HeaderOpts, 1272 const CodeGenOptions &CGOpts, 1273 const clang::TargetOptions &TOpts, 1274 const LangOptions &LOpts, StringRef TDesc, 1275 Module *M, BackendAction Action, 1276 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS, 1277 std::unique_ptr<raw_pwrite_stream> OS) { 1278 1279 llvm::TimeTraceScope TimeScope("Backend"); 1280 1281 std::unique_ptr<llvm::Module> EmptyModule; 1282 if (!CGOpts.ThinLTOIndexFile.empty()) { 1283 // If we are performing a ThinLTO importing compile, load the function index 1284 // into memory and pass it into runThinLTOBackend, which will run the 1285 // function importer and invoke LTO passes. 1286 std::unique_ptr<ModuleSummaryIndex> CombinedIndex; 1287 if (Error E = llvm::getModuleSummaryIndexForFile( 1288 CGOpts.ThinLTOIndexFile, 1289 /*IgnoreEmptyThinLTOIndexFile*/ true) 1290 .moveInto(CombinedIndex)) { 1291 logAllUnhandledErrors(std::move(E), errs(), 1292 "Error loading index file '" + 1293 CGOpts.ThinLTOIndexFile + "': "); 1294 return; 1295 } 1296 1297 // A null CombinedIndex means we should skip ThinLTO compilation 1298 // (LLVM will optionally ignore empty index files, returning null instead 1299 // of an error). 1300 if (CombinedIndex) { 1301 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1302 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1303 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1304 CGOpts.ProfileRemappingFile, Action); 1305 return; 1306 } 1307 // Distributed indexing detected that nothing from the module is needed 1308 // for the final linking. So we can skip the compilation. We sill need to 1309 // output an empty object file to make sure that a linker does not fail 1310 // trying to read it. Also for some features, like CFI, we must skip 1311 // the compilation as CombinedIndex does not contain all required 1312 // information. 1313 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1314 EmptyModule->setTargetTriple(M->getTargetTriple()); 1315 M = EmptyModule.get(); 1316 } 1317 } 1318 1319 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M, VFS); 1320 AsmHelper.EmitAssembly(Action, std::move(OS)); 1321 1322 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1323 // DataLayout. 1324 if (AsmHelper.TM) { 1325 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1326 if (DLDesc != TDesc) { 1327 unsigned DiagID = Diags.getCustomDiagID( 1328 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1329 "expected target description '%1'"); 1330 Diags.Report(DiagID) << DLDesc << TDesc; 1331 } 1332 } 1333 } 1334 1335 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1336 // __LLVM,__bitcode section. 1337 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1338 llvm::MemoryBufferRef Buf) { 1339 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1340 return; 1341 llvm::embedBitcodeInModule( 1342 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1343 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1344 CGOpts.CmdArgs); 1345 } 1346 1347 void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts, 1348 DiagnosticsEngine &Diags) { 1349 if (CGOpts.OffloadObjects.empty()) 1350 return; 1351 1352 for (StringRef OffloadObject : CGOpts.OffloadObjects) { 1353 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ObjectOrErr = 1354 llvm::MemoryBuffer::getFileOrSTDIN(OffloadObject); 1355 if (std::error_code EC = ObjectOrErr.getError()) { 1356 auto DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1357 "could not open '%0' for embedding"); 1358 Diags.Report(DiagID) << OffloadObject; 1359 return; 1360 } 1361 1362 llvm::embedBufferInModule(*M, **ObjectOrErr, ".llvm.offloading", 1363 Align(object::OffloadBinary::getAlignment())); 1364 } 1365 } 1366