xref: /freebsd/contrib/googletest/googlemock/src/gmock-matchers.cc (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 
31 // Google Mock - a framework for writing C++ mock classes.
32 //
33 // This file implements Matcher<const string&>, Matcher<string>, and
34 // utilities for defining matchers.
35 
36 #include "gmock/gmock-matchers.h"
37 #include "gmock/gmock-generated-matchers.h"
38 
39 #include <string.h>
40 #include <iostream>
41 #include <sstream>
42 #include <string>
43 
44 namespace testing {
45 
46 // Constructs a matcher that matches a const std::string& whose value is
47 // equal to s.
48 Matcher<const std::string&>::Matcher(const std::string& s) { *this = Eq(s); }
49 
50 #if GTEST_HAS_GLOBAL_STRING
51 // Constructs a matcher that matches a const std::string& whose value is
52 // equal to s.
53 Matcher<const std::string&>::Matcher(const ::string& s) {
54   *this = Eq(static_cast<std::string>(s));
55 }
56 #endif  // GTEST_HAS_GLOBAL_STRING
57 
58 // Constructs a matcher that matches a const std::string& whose value is
59 // equal to s.
60 Matcher<const std::string&>::Matcher(const char* s) {
61   *this = Eq(std::string(s));
62 }
63 
64 // Constructs a matcher that matches a std::string whose value is equal to
65 // s.
66 Matcher<std::string>::Matcher(const std::string& s) { *this = Eq(s); }
67 
68 #if GTEST_HAS_GLOBAL_STRING
69 // Constructs a matcher that matches a std::string whose value is equal to
70 // s.
71 Matcher<std::string>::Matcher(const ::string& s) {
72   *this = Eq(static_cast<std::string>(s));
73 }
74 #endif  // GTEST_HAS_GLOBAL_STRING
75 
76 // Constructs a matcher that matches a std::string whose value is equal to
77 // s.
78 Matcher<std::string>::Matcher(const char* s) { *this = Eq(std::string(s)); }
79 
80 #if GTEST_HAS_GLOBAL_STRING
81 // Constructs a matcher that matches a const ::string& whose value is
82 // equal to s.
83 Matcher<const ::string&>::Matcher(const std::string& s) {
84   *this = Eq(static_cast<::string>(s));
85 }
86 
87 // Constructs a matcher that matches a const ::string& whose value is
88 // equal to s.
89 Matcher<const ::string&>::Matcher(const ::string& s) { *this = Eq(s); }
90 
91 // Constructs a matcher that matches a const ::string& whose value is
92 // equal to s.
93 Matcher<const ::string&>::Matcher(const char* s) { *this = Eq(::string(s)); }
94 
95 // Constructs a matcher that matches a ::string whose value is equal to s.
96 Matcher<::string>::Matcher(const std::string& s) {
97   *this = Eq(static_cast<::string>(s));
98 }
99 
100 // Constructs a matcher that matches a ::string whose value is equal to s.
101 Matcher<::string>::Matcher(const ::string& s) { *this = Eq(s); }
102 
103 // Constructs a matcher that matches a string whose value is equal to s.
104 Matcher<::string>::Matcher(const char* s) { *this = Eq(::string(s)); }
105 #endif  // GTEST_HAS_GLOBAL_STRING
106 
107 #if GTEST_HAS_ABSL
108 // Constructs a matcher that matches a const absl::string_view& whose value is
109 // equal to s.
110 Matcher<const absl::string_view&>::Matcher(const std::string& s) {
111   *this = Eq(s);
112 }
113 
114 #if GTEST_HAS_GLOBAL_STRING
115 // Constructs a matcher that matches a const absl::string_view& whose value is
116 // equal to s.
117 Matcher<const absl::string_view&>::Matcher(const ::string& s) { *this = Eq(s); }
118 #endif  // GTEST_HAS_GLOBAL_STRING
119 
120 // Constructs a matcher that matches a const absl::string_view& whose value is
121 // equal to s.
122 Matcher<const absl::string_view&>::Matcher(const char* s) {
123   *this = Eq(std::string(s));
124 }
125 
126 // Constructs a matcher that matches a const absl::string_view& whose value is
127 // equal to s.
128 Matcher<const absl::string_view&>::Matcher(absl::string_view s) {
129   *this = Eq(std::string(s));
130 }
131 
132 // Constructs a matcher that matches a absl::string_view whose value is equal to
133 // s.
134 Matcher<absl::string_view>::Matcher(const std::string& s) { *this = Eq(s); }
135 
136 #if GTEST_HAS_GLOBAL_STRING
137 // Constructs a matcher that matches a absl::string_view whose value is equal to
138 // s.
139 Matcher<absl::string_view>::Matcher(const ::string& s) { *this = Eq(s); }
140 #endif  // GTEST_HAS_GLOBAL_STRING
141 
142 // Constructs a matcher that matches a absl::string_view whose value is equal to
143 // s.
144 Matcher<absl::string_view>::Matcher(const char* s) {
145   *this = Eq(std::string(s));
146 }
147 
148 // Constructs a matcher that matches a absl::string_view whose value is equal to
149 // s.
150 Matcher<absl::string_view>::Matcher(absl::string_view s) {
151   *this = Eq(std::string(s));
152 }
153 #endif  // GTEST_HAS_ABSL
154 
155 namespace internal {
156 
157 // Returns the description for a matcher defined using the MATCHER*()
158 // macro where the user-supplied description string is "", if
159 // 'negation' is false; otherwise returns the description of the
160 // negation of the matcher.  'param_values' contains a list of strings
161 // that are the print-out of the matcher's parameters.
162 GTEST_API_ std::string FormatMatcherDescription(bool negation,
163                                                 const char* matcher_name,
164                                                 const Strings& param_values) {
165   std::string result = ConvertIdentifierNameToWords(matcher_name);
166   if (param_values.size() >= 1) result += " " + JoinAsTuple(param_values);
167   return negation ? "not (" + result + ")" : result;
168 }
169 
170 // FindMaxBipartiteMatching and its helper class.
171 //
172 // Uses the well-known Ford-Fulkerson max flow method to find a maximum
173 // bipartite matching. Flow is considered to be from left to right.
174 // There is an implicit source node that is connected to all of the left
175 // nodes, and an implicit sink node that is connected to all of the
176 // right nodes. All edges have unit capacity.
177 //
178 // Neither the flow graph nor the residual flow graph are represented
179 // explicitly. Instead, they are implied by the information in 'graph' and
180 // a vector<int> called 'left_' whose elements are initialized to the
181 // value kUnused. This represents the initial state of the algorithm,
182 // where the flow graph is empty, and the residual flow graph has the
183 // following edges:
184 //   - An edge from source to each left_ node
185 //   - An edge from each right_ node to sink
186 //   - An edge from each left_ node to each right_ node, if the
187 //     corresponding edge exists in 'graph'.
188 //
189 // When the TryAugment() method adds a flow, it sets left_[l] = r for some
190 // nodes l and r. This induces the following changes:
191 //   - The edges (source, l), (l, r), and (r, sink) are added to the
192 //     flow graph.
193 //   - The same three edges are removed from the residual flow graph.
194 //   - The reverse edges (l, source), (r, l), and (sink, r) are added
195 //     to the residual flow graph, which is a directional graph
196 //     representing unused flow capacity.
197 //
198 // When the method augments a flow (moving left_[l] from some r1 to some
199 // other r2), this can be thought of as "undoing" the above steps with
200 // respect to r1 and "redoing" them with respect to r2.
201 //
202 // It bears repeating that the flow graph and residual flow graph are
203 // never represented explicitly, but can be derived by looking at the
204 // information in 'graph' and in left_.
205 //
206 // As an optimization, there is a second vector<int> called right_ which
207 // does not provide any new information. Instead, it enables more
208 // efficient queries about edges entering or leaving the right-side nodes
209 // of the flow or residual flow graphs. The following invariants are
210 // maintained:
211 //
212 // left[l] == kUnused or right[left[l]] == l
213 // right[r] == kUnused or left[right[r]] == r
214 //
215 // . [ source ]                                        .
216 // .   |||                                             .
217 // .   |||                                             .
218 // .   ||\--> left[0]=1  ---\    right[0]=-1 ----\     .
219 // .   ||                   |                    |     .
220 // .   |\---> left[1]=-1    \--> right[1]=0  ---\|     .
221 // .   |                                        ||     .
222 // .   \----> left[2]=2  ------> right[2]=2  --\||     .
223 // .                                           |||     .
224 // .         elements           matchers       vvv     .
225 // .                                         [ sink ]  .
226 //
227 // See Also:
228 //   [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method".
229 //       "Introduction to Algorithms (Second ed.)", pp. 651-664.
230 //   [2] "Ford-Fulkerson algorithm", Wikipedia,
231 //       'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm'
232 class MaxBipartiteMatchState {
233  public:
234   explicit MaxBipartiteMatchState(const MatchMatrix& graph)
235       : graph_(&graph),
236         left_(graph_->LhsSize(), kUnused),
237         right_(graph_->RhsSize(), kUnused) {}
238 
239   // Returns the edges of a maximal match, each in the form {left, right}.
240   ElementMatcherPairs Compute() {
241     // 'seen' is used for path finding { 0: unseen, 1: seen }.
242     ::std::vector<char> seen;
243     // Searches the residual flow graph for a path from each left node to
244     // the sink in the residual flow graph, and if one is found, add flow
245     // to the graph. It's okay to search through the left nodes once. The
246     // edge from the implicit source node to each previously-visited left
247     // node will have flow if that left node has any path to the sink
248     // whatsoever. Subsequent augmentations can only add flow to the
249     // network, and cannot take away that previous flow unit from the source.
250     // Since the source-to-left edge can only carry one flow unit (or,
251     // each element can be matched to only one matcher), there is no need
252     // to visit the left nodes more than once looking for augmented paths.
253     // The flow is known to be possible or impossible by looking at the
254     // node once.
255     for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
256       // Reset the path-marking vector and try to find a path from
257       // source to sink starting at the left_[ilhs] node.
258       GTEST_CHECK_(left_[ilhs] == kUnused)
259           << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs];
260       // 'seen' initialized to 'graph_->RhsSize()' copies of 0.
261       seen.assign(graph_->RhsSize(), 0);
262       TryAugment(ilhs, &seen);
263     }
264     ElementMatcherPairs result;
265     for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) {
266       size_t irhs = left_[ilhs];
267       if (irhs == kUnused) continue;
268       result.push_back(ElementMatcherPair(ilhs, irhs));
269     }
270     return result;
271   }
272 
273  private:
274   static const size_t kUnused = static_cast<size_t>(-1);
275 
276   // Perform a depth-first search from left node ilhs to the sink.  If a
277   // path is found, flow is added to the network by linking the left and
278   // right vector elements corresponding each segment of the path.
279   // Returns true if a path to sink was found, which means that a unit of
280   // flow was added to the network. The 'seen' vector elements correspond
281   // to right nodes and are marked to eliminate cycles from the search.
282   //
283   // Left nodes will only be explored at most once because they
284   // are accessible from at most one right node in the residual flow
285   // graph.
286   //
287   // Note that left_[ilhs] is the only element of left_ that TryAugment will
288   // potentially transition from kUnused to another value. Any other
289   // left_ element holding kUnused before TryAugment will be holding it
290   // when TryAugment returns.
291   //
292   bool TryAugment(size_t ilhs, ::std::vector<char>* seen) {
293     for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
294       if ((*seen)[irhs]) continue;
295       if (!graph_->HasEdge(ilhs, irhs)) continue;
296       // There's an available edge from ilhs to irhs.
297       (*seen)[irhs] = 1;
298       // Next a search is performed to determine whether
299       // this edge is a dead end or leads to the sink.
300       //
301       // right_[irhs] == kUnused means that there is residual flow from
302       // right node irhs to the sink, so we can use that to finish this
303       // flow path and return success.
304       //
305       // Otherwise there is residual flow to some ilhs. We push flow
306       // along that path and call ourselves recursively to see if this
307       // ultimately leads to sink.
308       if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) {
309         // Add flow from left_[ilhs] to right_[irhs].
310         left_[ilhs] = irhs;
311         right_[irhs] = ilhs;
312         return true;
313       }
314     }
315     return false;
316   }
317 
318   const MatchMatrix* graph_;  // not owned
319   // Each element of the left_ vector represents a left hand side node
320   // (i.e. an element) and each element of right_ is a right hand side
321   // node (i.e. a matcher). The values in the left_ vector indicate
322   // outflow from that node to a node on the right_ side. The values
323   // in the right_ indicate inflow, and specify which left_ node is
324   // feeding that right_ node, if any. For example, left_[3] == 1 means
325   // there's a flow from element #3 to matcher #1. Such a flow would also
326   // be redundantly represented in the right_ vector as right_[1] == 3.
327   // Elements of left_ and right_ are either kUnused or mutually
328   // referent. Mutually referent means that left_[right_[i]] = i and
329   // right_[left_[i]] = i.
330   ::std::vector<size_t> left_;
331   ::std::vector<size_t> right_;
332 
333   GTEST_DISALLOW_ASSIGN_(MaxBipartiteMatchState);
334 };
335 
336 const size_t MaxBipartiteMatchState::kUnused;
337 
338 GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) {
339   return MaxBipartiteMatchState(g).Compute();
340 }
341 
342 static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs,
343                                      ::std::ostream* stream) {
344   typedef ElementMatcherPairs::const_iterator Iter;
345   ::std::ostream& os = *stream;
346   os << "{";
347   const char* sep = "";
348   for (Iter it = pairs.begin(); it != pairs.end(); ++it) {
349     os << sep << "\n  ("
350        << "element #" << it->first << ", "
351        << "matcher #" << it->second << ")";
352     sep = ",";
353   }
354   os << "\n}";
355 }
356 
357 bool MatchMatrix::NextGraph() {
358   for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
359     for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
360       char& b = matched_[SpaceIndex(ilhs, irhs)];
361       if (!b) {
362         b = 1;
363         return true;
364       }
365       b = 0;
366     }
367   }
368   return false;
369 }
370 
371 void MatchMatrix::Randomize() {
372   for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
373     for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
374       char& b = matched_[SpaceIndex(ilhs, irhs)];
375       b = static_cast<char>(rand() & 1);  // NOLINT
376     }
377   }
378 }
379 
380 std::string MatchMatrix::DebugString() const {
381   ::std::stringstream ss;
382   const char* sep = "";
383   for (size_t i = 0; i < LhsSize(); ++i) {
384     ss << sep;
385     for (size_t j = 0; j < RhsSize(); ++j) {
386       ss << HasEdge(i, j);
387     }
388     sep = ";";
389   }
390   return ss.str();
391 }
392 
393 void UnorderedElementsAreMatcherImplBase::DescribeToImpl(
394     ::std::ostream* os) const {
395   switch (match_flags()) {
396     case UnorderedMatcherRequire::ExactMatch:
397       if (matcher_describers_.empty()) {
398         *os << "is empty";
399         return;
400       }
401       if (matcher_describers_.size() == 1) {
402         *os << "has " << Elements(1) << " and that element ";
403         matcher_describers_[0]->DescribeTo(os);
404         return;
405       }
406       *os << "has " << Elements(matcher_describers_.size())
407           << " and there exists some permutation of elements such that:\n";
408       break;
409     case UnorderedMatcherRequire::Superset:
410       *os << "a surjection from elements to requirements exists such that:\n";
411       break;
412     case UnorderedMatcherRequire::Subset:
413       *os << "an injection from elements to requirements exists such that:\n";
414       break;
415   }
416 
417   const char* sep = "";
418   for (size_t i = 0; i != matcher_describers_.size(); ++i) {
419     *os << sep;
420     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
421       *os << " - element #" << i << " ";
422     } else {
423       *os << " - an element ";
424     }
425     matcher_describers_[i]->DescribeTo(os);
426     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
427       sep = ", and\n";
428     } else {
429       sep = "\n";
430     }
431   }
432 }
433 
434 void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(
435     ::std::ostream* os) const {
436   switch (match_flags()) {
437     case UnorderedMatcherRequire::ExactMatch:
438       if (matcher_describers_.empty()) {
439         *os << "isn't empty";
440         return;
441       }
442       if (matcher_describers_.size() == 1) {
443         *os << "doesn't have " << Elements(1) << ", or has " << Elements(1)
444             << " that ";
445         matcher_describers_[0]->DescribeNegationTo(os);
446         return;
447       }
448       *os << "doesn't have " << Elements(matcher_describers_.size())
449           << ", or there exists no permutation of elements such that:\n";
450       break;
451     case UnorderedMatcherRequire::Superset:
452       *os << "no surjection from elements to requirements exists such that:\n";
453       break;
454     case UnorderedMatcherRequire::Subset:
455       *os << "no injection from elements to requirements exists such that:\n";
456       break;
457   }
458   const char* sep = "";
459   for (size_t i = 0; i != matcher_describers_.size(); ++i) {
460     *os << sep;
461     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
462       *os << " - element #" << i << " ";
463     } else {
464       *os << " - an element ";
465     }
466     matcher_describers_[i]->DescribeTo(os);
467     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
468       sep = ", and\n";
469     } else {
470       sep = "\n";
471     }
472   }
473 }
474 
475 // Checks that all matchers match at least one element, and that all
476 // elements match at least one matcher. This enables faster matching
477 // and better error reporting.
478 // Returns false, writing an explanation to 'listener', if and only
479 // if the success criteria are not met.
480 bool UnorderedElementsAreMatcherImplBase::VerifyMatchMatrix(
481     const ::std::vector<std::string>& element_printouts,
482     const MatchMatrix& matrix, MatchResultListener* listener) const {
483   bool result = true;
484   ::std::vector<char> element_matched(matrix.LhsSize(), 0);
485   ::std::vector<char> matcher_matched(matrix.RhsSize(), 0);
486 
487   for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) {
488     for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) {
489       char matched = matrix.HasEdge(ilhs, irhs);
490       element_matched[ilhs] |= matched;
491       matcher_matched[irhs] |= matched;
492     }
493   }
494 
495   if (match_flags() & UnorderedMatcherRequire::Superset) {
496     const char* sep =
497         "where the following matchers don't match any elements:\n";
498     for (size_t mi = 0; mi < matcher_matched.size(); ++mi) {
499       if (matcher_matched[mi]) continue;
500       result = false;
501       if (listener->IsInterested()) {
502         *listener << sep << "matcher #" << mi << ": ";
503         matcher_describers_[mi]->DescribeTo(listener->stream());
504         sep = ",\n";
505       }
506     }
507   }
508 
509   if (match_flags() & UnorderedMatcherRequire::Subset) {
510     const char* sep =
511         "where the following elements don't match any matchers:\n";
512     const char* outer_sep = "";
513     if (!result) {
514       outer_sep = "\nand ";
515     }
516     for (size_t ei = 0; ei < element_matched.size(); ++ei) {
517       if (element_matched[ei]) continue;
518       result = false;
519       if (listener->IsInterested()) {
520         *listener << outer_sep << sep << "element #" << ei << ": "
521                   << element_printouts[ei];
522         sep = ",\n";
523         outer_sep = "";
524       }
525     }
526   }
527   return result;
528 }
529 
530 bool UnorderedElementsAreMatcherImplBase::FindPairing(
531     const MatchMatrix& matrix, MatchResultListener* listener) const {
532   ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix);
533 
534   size_t max_flow = matches.size();
535   if ((match_flags() & UnorderedMatcherRequire::Superset) &&
536       max_flow < matrix.RhsSize()) {
537     if (listener->IsInterested()) {
538       *listener << "where no permutation of the elements can satisfy all "
539                    "matchers, and the closest match is "
540                 << max_flow << " of " << matrix.RhsSize()
541                 << " matchers with the pairings:\n";
542       LogElementMatcherPairVec(matches, listener->stream());
543     }
544     return false;
545   }
546   if ((match_flags() & UnorderedMatcherRequire::Subset) &&
547       max_flow < matrix.LhsSize()) {
548     if (listener->IsInterested()) {
549       *listener
550           << "where not all elements can be matched, and the closest match is "
551           << max_flow << " of " << matrix.RhsSize()
552           << " matchers with the pairings:\n";
553       LogElementMatcherPairVec(matches, listener->stream());
554     }
555     return false;
556   }
557 
558   if (matches.size() > 1) {
559     if (listener->IsInterested()) {
560       const char* sep = "where:\n";
561       for (size_t mi = 0; mi < matches.size(); ++mi) {
562         *listener << sep << " - element #" << matches[mi].first
563                   << " is matched by matcher #" << matches[mi].second;
564         sep = ",\n";
565       }
566     }
567   }
568   return true;
569 }
570 
571 }  // namespace internal
572 }  // namespace testing
573