1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30 // Google Mock - a framework for writing C++ mock classes.
31 //
32 // This file implements Matcher<const string&>, Matcher<string>, and
33 // utilities for defining matchers.
34
35 #include "gmock/gmock-matchers.h"
36
37 #include <string.h>
38
39 #include <iostream>
40 #include <sstream>
41 #include <string>
42 #include <vector>
43
44 namespace testing {
45 namespace internal {
46
47 // Returns the description for a matcher defined using the MATCHER*()
48 // macro where the user-supplied description string is "", if
49 // 'negation' is false; otherwise returns the description of the
50 // negation of the matcher. 'param_values' contains a list of strings
51 // that are the print-out of the matcher's parameters.
FormatMatcherDescription(bool negation,const char * matcher_name,const std::vector<const char * > & param_names,const Strings & param_values)52 GTEST_API_ std::string FormatMatcherDescription(
53 bool negation, const char* matcher_name,
54 const std::vector<const char*>& param_names, const Strings& param_values) {
55 std::string result = ConvertIdentifierNameToWords(matcher_name);
56 if (!param_values.empty()) {
57 result += " " + JoinAsKeyValueTuple(param_names, param_values);
58 }
59 return negation ? "not (" + result + ")" : result;
60 }
61
62 // FindMaxBipartiteMatching and its helper class.
63 //
64 // Uses the well-known Ford-Fulkerson max flow method to find a maximum
65 // bipartite matching. Flow is considered to be from left to right.
66 // There is an implicit source node that is connected to all of the left
67 // nodes, and an implicit sink node that is connected to all of the
68 // right nodes. All edges have unit capacity.
69 //
70 // Neither the flow graph nor the residual flow graph are represented
71 // explicitly. Instead, they are implied by the information in 'graph' and
72 // a vector<int> called 'left_' whose elements are initialized to the
73 // value kUnused. This represents the initial state of the algorithm,
74 // where the flow graph is empty, and the residual flow graph has the
75 // following edges:
76 // - An edge from source to each left_ node
77 // - An edge from each right_ node to sink
78 // - An edge from each left_ node to each right_ node, if the
79 // corresponding edge exists in 'graph'.
80 //
81 // When the TryAugment() method adds a flow, it sets left_[l] = r for some
82 // nodes l and r. This induces the following changes:
83 // - The edges (source, l), (l, r), and (r, sink) are added to the
84 // flow graph.
85 // - The same three edges are removed from the residual flow graph.
86 // - The reverse edges (l, source), (r, l), and (sink, r) are added
87 // to the residual flow graph, which is a directional graph
88 // representing unused flow capacity.
89 //
90 // When the method augments a flow (moving left_[l] from some r1 to some
91 // other r2), this can be thought of as "undoing" the above steps with
92 // respect to r1 and "redoing" them with respect to r2.
93 //
94 // It bears repeating that the flow graph and residual flow graph are
95 // never represented explicitly, but can be derived by looking at the
96 // information in 'graph' and in left_.
97 //
98 // As an optimization, there is a second vector<int> called right_ which
99 // does not provide any new information. Instead, it enables more
100 // efficient queries about edges entering or leaving the right-side nodes
101 // of the flow or residual flow graphs. The following invariants are
102 // maintained:
103 //
104 // left[l] == kUnused or right[left[l]] == l
105 // right[r] == kUnused or left[right[r]] == r
106 //
107 // . [ source ] .
108 // . ||| .
109 // . ||| .
110 // . ||\--> left[0]=1 ---\ right[0]=-1 ----\ .
111 // . || | | .
112 // . |\---> left[1]=-1 \--> right[1]=0 ---\| .
113 // . | || .
114 // . \----> left[2]=2 ------> right[2]=2 --\|| .
115 // . ||| .
116 // . elements matchers vvv .
117 // . [ sink ] .
118 //
119 // See Also:
120 // [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method".
121 // "Introduction to Algorithms (Second ed.)", pp. 651-664.
122 // [2] "Ford-Fulkerson algorithm", Wikipedia,
123 // 'https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm'
124 class MaxBipartiteMatchState {
125 public:
MaxBipartiteMatchState(const MatchMatrix & graph)126 explicit MaxBipartiteMatchState(const MatchMatrix& graph)
127 : graph_(&graph),
128 left_(graph_->LhsSize(), kUnused),
129 right_(graph_->RhsSize(), kUnused) {}
130
131 // Returns the edges of a maximal match, each in the form {left, right}.
Compute()132 ElementMatcherPairs Compute() {
133 // 'seen' is used for path finding { 0: unseen, 1: seen }.
134 ::std::vector<char> seen;
135 // Searches the residual flow graph for a path from each left node to
136 // the sink in the residual flow graph, and if one is found, add flow
137 // to the graph. It's okay to search through the left nodes once. The
138 // edge from the implicit source node to each previously-visited left
139 // node will have flow if that left node has any path to the sink
140 // whatsoever. Subsequent augmentations can only add flow to the
141 // network, and cannot take away that previous flow unit from the source.
142 // Since the source-to-left edge can only carry one flow unit (or,
143 // each element can be matched to only one matcher), there is no need
144 // to visit the left nodes more than once looking for augmented paths.
145 // The flow is known to be possible or impossible by looking at the
146 // node once.
147 for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
148 // Reset the path-marking vector and try to find a path from
149 // source to sink starting at the left_[ilhs] node.
150 GTEST_CHECK_(left_[ilhs] == kUnused)
151 << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs];
152 // 'seen' initialized to 'graph_->RhsSize()' copies of 0.
153 seen.assign(graph_->RhsSize(), 0);
154 TryAugment(ilhs, &seen);
155 }
156 ElementMatcherPairs result;
157 for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) {
158 size_t irhs = left_[ilhs];
159 if (irhs == kUnused) continue;
160 result.push_back(ElementMatcherPair(ilhs, irhs));
161 }
162 return result;
163 }
164
165 private:
166 static const size_t kUnused = static_cast<size_t>(-1);
167
168 // Perform a depth-first search from left node ilhs to the sink. If a
169 // path is found, flow is added to the network by linking the left and
170 // right vector elements corresponding each segment of the path.
171 // Returns true if a path to sink was found, which means that a unit of
172 // flow was added to the network. The 'seen' vector elements correspond
173 // to right nodes and are marked to eliminate cycles from the search.
174 //
175 // Left nodes will only be explored at most once because they
176 // are accessible from at most one right node in the residual flow
177 // graph.
178 //
179 // Note that left_[ilhs] is the only element of left_ that TryAugment will
180 // potentially transition from kUnused to another value. Any other
181 // left_ element holding kUnused before TryAugment will be holding it
182 // when TryAugment returns.
183 //
TryAugment(size_t ilhs,::std::vector<char> * seen)184 bool TryAugment(size_t ilhs, ::std::vector<char>* seen) {
185 for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
186 if ((*seen)[irhs]) continue;
187 if (!graph_->HasEdge(ilhs, irhs)) continue;
188 // There's an available edge from ilhs to irhs.
189 (*seen)[irhs] = 1;
190 // Next a search is performed to determine whether
191 // this edge is a dead end or leads to the sink.
192 //
193 // right_[irhs] == kUnused means that there is residual flow from
194 // right node irhs to the sink, so we can use that to finish this
195 // flow path and return success.
196 //
197 // Otherwise there is residual flow to some ilhs. We push flow
198 // along that path and call ourselves recursively to see if this
199 // ultimately leads to sink.
200 if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) {
201 // Add flow from left_[ilhs] to right_[irhs].
202 left_[ilhs] = irhs;
203 right_[irhs] = ilhs;
204 return true;
205 }
206 }
207 return false;
208 }
209
210 const MatchMatrix* graph_; // not owned
211 // Each element of the left_ vector represents a left hand side node
212 // (i.e. an element) and each element of right_ is a right hand side
213 // node (i.e. a matcher). The values in the left_ vector indicate
214 // outflow from that node to a node on the right_ side. The values
215 // in the right_ indicate inflow, and specify which left_ node is
216 // feeding that right_ node, if any. For example, left_[3] == 1 means
217 // there's a flow from element #3 to matcher #1. Such a flow would also
218 // be redundantly represented in the right_ vector as right_[1] == 3.
219 // Elements of left_ and right_ are either kUnused or mutually
220 // referent. Mutually referent means that left_[right_[i]] = i and
221 // right_[left_[i]] = i.
222 ::std::vector<size_t> left_;
223 ::std::vector<size_t> right_;
224 };
225
226 const size_t MaxBipartiteMatchState::kUnused;
227
FindMaxBipartiteMatching(const MatchMatrix & g)228 GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) {
229 return MaxBipartiteMatchState(g).Compute();
230 }
231
LogElementMatcherPairVec(const ElementMatcherPairs & pairs,::std::ostream * stream)232 static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs,
233 ::std::ostream* stream) {
234 typedef ElementMatcherPairs::const_iterator Iter;
235 ::std::ostream& os = *stream;
236 os << "{";
237 const char* sep = "";
238 for (Iter it = pairs.begin(); it != pairs.end(); ++it) {
239 os << sep << "\n (" << "element #" << it->first << ", " << "matcher #"
240 << it->second << ")";
241 sep = ",";
242 }
243 os << "\n}";
244 }
245
NextGraph()246 bool MatchMatrix::NextGraph() {
247 for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
248 for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
249 char& b = matched_[SpaceIndex(ilhs, irhs)];
250 if (!b) {
251 b = 1;
252 return true;
253 }
254 b = 0;
255 }
256 }
257 return false;
258 }
259
Randomize()260 void MatchMatrix::Randomize() {
261 for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
262 for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
263 char& b = matched_[SpaceIndex(ilhs, irhs)];
264 b = static_cast<char>(rand() & 1); // NOLINT
265 }
266 }
267 }
268
DebugString() const269 std::string MatchMatrix::DebugString() const {
270 ::std::stringstream ss;
271 const char* sep = "";
272 for (size_t i = 0; i < LhsSize(); ++i) {
273 ss << sep;
274 for (size_t j = 0; j < RhsSize(); ++j) {
275 ss << HasEdge(i, j);
276 }
277 sep = ";";
278 }
279 return ss.str();
280 }
281
DescribeToImpl(::std::ostream * os) const282 void UnorderedElementsAreMatcherImplBase::DescribeToImpl(
283 ::std::ostream* os) const {
284 switch (match_flags()) {
285 case UnorderedMatcherRequire::ExactMatch:
286 if (matcher_describers_.empty()) {
287 *os << "is empty";
288 return;
289 }
290 if (matcher_describers_.size() == 1) {
291 *os << "has " << Elements(1) << " and that element ";
292 matcher_describers_[0]->DescribeTo(os);
293 return;
294 }
295 *os << "has " << Elements(matcher_describers_.size())
296 << " and there exists some permutation of elements such that:\n";
297 break;
298 case UnorderedMatcherRequire::Superset:
299 *os << "a surjection from elements to requirements exists such that:\n";
300 break;
301 case UnorderedMatcherRequire::Subset:
302 *os << "an injection from elements to requirements exists such that:\n";
303 break;
304 }
305
306 const char* sep = "";
307 for (size_t i = 0; i != matcher_describers_.size(); ++i) {
308 *os << sep;
309 if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
310 *os << " - element #" << i << " ";
311 } else {
312 *os << " - an element ";
313 }
314 matcher_describers_[i]->DescribeTo(os);
315 if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
316 sep = ", and\n";
317 } else {
318 sep = "\n";
319 }
320 }
321 }
322
DescribeNegationToImpl(::std::ostream * os) const323 void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(
324 ::std::ostream* os) const {
325 switch (match_flags()) {
326 case UnorderedMatcherRequire::ExactMatch:
327 if (matcher_describers_.empty()) {
328 *os << "isn't empty";
329 return;
330 }
331 if (matcher_describers_.size() == 1) {
332 *os << "doesn't have " << Elements(1) << ", or has " << Elements(1)
333 << " that ";
334 matcher_describers_[0]->DescribeNegationTo(os);
335 return;
336 }
337 *os << "doesn't have " << Elements(matcher_describers_.size())
338 << ", or there exists no permutation of elements such that:\n";
339 break;
340 case UnorderedMatcherRequire::Superset:
341 *os << "no surjection from elements to requirements exists such that:\n";
342 break;
343 case UnorderedMatcherRequire::Subset:
344 *os << "no injection from elements to requirements exists such that:\n";
345 break;
346 }
347 const char* sep = "";
348 for (size_t i = 0; i != matcher_describers_.size(); ++i) {
349 *os << sep;
350 if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
351 *os << " - element #" << i << " ";
352 } else {
353 *os << " - an element ";
354 }
355 matcher_describers_[i]->DescribeTo(os);
356 if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
357 sep = ", and\n";
358 } else {
359 sep = "\n";
360 }
361 }
362 }
363
364 // Checks that all matchers match at least one element, and that all
365 // elements match at least one matcher. This enables faster matching
366 // and better error reporting.
367 // Returns false, writing an explanation to 'listener', if and only
368 // if the success criteria are not met.
VerifyMatchMatrix(const::std::vector<std::string> & element_printouts,const MatchMatrix & matrix,MatchResultListener * listener) const369 bool UnorderedElementsAreMatcherImplBase::VerifyMatchMatrix(
370 const ::std::vector<std::string>& element_printouts,
371 const MatchMatrix& matrix, MatchResultListener* listener) const {
372 if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) {
373 return true;
374 }
375
376 const bool is_exact_match_with_size_discrepency =
377 match_flags() == UnorderedMatcherRequire::ExactMatch &&
378 matrix.LhsSize() != matrix.RhsSize();
379 if (is_exact_match_with_size_discrepency) {
380 // The element count doesn't match. If the container is empty,
381 // there's no need to explain anything as Google Mock already
382 // prints the empty container. Otherwise we just need to show
383 // how many elements there actually are.
384 if (matrix.LhsSize() != 0 && listener->IsInterested()) {
385 *listener << "which has " << Elements(matrix.LhsSize()) << "\n";
386 }
387 }
388
389 bool result = !is_exact_match_with_size_discrepency;
390 ::std::vector<char> element_matched(matrix.LhsSize(), 0);
391 ::std::vector<char> matcher_matched(matrix.RhsSize(), 0);
392
393 for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) {
394 for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) {
395 char matched = matrix.HasEdge(ilhs, irhs);
396 element_matched[ilhs] |= matched;
397 matcher_matched[irhs] |= matched;
398 }
399 }
400
401 if (match_flags() & UnorderedMatcherRequire::Superset) {
402 const char* sep =
403 "where the following matchers don't match any elements:\n";
404 for (size_t mi = 0; mi < matcher_matched.size(); ++mi) {
405 if (matcher_matched[mi]) continue;
406 result = false;
407 if (listener->IsInterested()) {
408 *listener << sep << "matcher #" << mi << ": ";
409 matcher_describers_[mi]->DescribeTo(listener->stream());
410 sep = ",\n";
411 }
412 }
413 }
414
415 if (match_flags() & UnorderedMatcherRequire::Subset) {
416 const char* sep =
417 "where the following elements don't match any matchers:\n";
418 const char* outer_sep = "";
419 if (!result) {
420 outer_sep = "\nand ";
421 }
422 for (size_t ei = 0; ei < element_matched.size(); ++ei) {
423 if (element_matched[ei]) continue;
424 result = false;
425 if (listener->IsInterested()) {
426 *listener << outer_sep << sep << "element #" << ei << ": "
427 << element_printouts[ei];
428 sep = ",\n";
429 outer_sep = "";
430 }
431 }
432 }
433 return result;
434 }
435
FindPairing(const MatchMatrix & matrix,MatchResultListener * listener) const436 bool UnorderedElementsAreMatcherImplBase::FindPairing(
437 const MatchMatrix& matrix, MatchResultListener* listener) const {
438 ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix);
439
440 size_t max_flow = matches.size();
441 if ((match_flags() & UnorderedMatcherRequire::Superset) &&
442 max_flow < matrix.RhsSize()) {
443 if (listener->IsInterested()) {
444 *listener << "where no permutation of the elements can satisfy all "
445 "matchers, and the closest match is "
446 << max_flow << " of " << matrix.RhsSize()
447 << " matchers with the pairings:\n";
448 LogElementMatcherPairVec(matches, listener->stream());
449 }
450 return false;
451 }
452 if ((match_flags() & UnorderedMatcherRequire::Subset) &&
453 max_flow < matrix.LhsSize()) {
454 if (listener->IsInterested()) {
455 *listener
456 << "where not all elements can be matched, and the closest match is "
457 << max_flow << " of " << matrix.RhsSize()
458 << " matchers with the pairings:\n";
459 LogElementMatcherPairVec(matches, listener->stream());
460 }
461 return false;
462 }
463
464 if (matches.size() > 1) {
465 if (listener->IsInterested()) {
466 const char* sep = "where:\n";
467 for (size_t mi = 0; mi < matches.size(); ++mi) {
468 *listener << sep << " - element #" << matches[mi].first
469 << " is matched by matcher #" << matches[mi].second;
470 sep = ",\n";
471 }
472 }
473 }
474 return true;
475 }
476
477 } // namespace internal
478 } // namespace testing
479