1 // Copyright 2007, Google Inc. 2 // All rights reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // * Redistributions of source code must retain the above copyright 9 // notice, this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above 11 // copyright notice, this list of conditions and the following disclaimer 12 // in the documentation and/or other materials provided with the 13 // distribution. 14 // * Neither the name of Google Inc. nor the names of its 15 // contributors may be used to endorse or promote products derived from 16 // this software without specific prior written permission. 17 // 18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 30 // Google Mock - a framework for writing C++ mock classes. 31 // 32 // This file implements Matcher<const string&>, Matcher<string>, and 33 // utilities for defining matchers. 34 35 #include "gmock/gmock-matchers.h" 36 37 #include <string.h> 38 39 #include <iostream> 40 #include <sstream> 41 #include <string> 42 #include <vector> 43 44 namespace testing { 45 namespace internal { 46 47 // Returns the description for a matcher defined using the MATCHER*() 48 // macro where the user-supplied description string is "", if 49 // 'negation' is false; otherwise returns the description of the 50 // negation of the matcher. 'param_values' contains a list of strings 51 // that are the print-out of the matcher's parameters. 52 GTEST_API_ std::string FormatMatcherDescription( 53 bool negation, const char* matcher_name, 54 const std::vector<const char*>& param_names, const Strings& param_values) { 55 std::string result = ConvertIdentifierNameToWords(matcher_name); 56 if (!param_values.empty()) { 57 result += " " + JoinAsKeyValueTuple(param_names, param_values); 58 } 59 return negation ? "not (" + result + ")" : result; 60 } 61 62 // FindMaxBipartiteMatching and its helper class. 63 // 64 // Uses the well-known Ford-Fulkerson max flow method to find a maximum 65 // bipartite matching. Flow is considered to be from left to right. 66 // There is an implicit source node that is connected to all of the left 67 // nodes, and an implicit sink node that is connected to all of the 68 // right nodes. All edges have unit capacity. 69 // 70 // Neither the flow graph nor the residual flow graph are represented 71 // explicitly. Instead, they are implied by the information in 'graph' and 72 // a vector<int> called 'left_' whose elements are initialized to the 73 // value kUnused. This represents the initial state of the algorithm, 74 // where the flow graph is empty, and the residual flow graph has the 75 // following edges: 76 // - An edge from source to each left_ node 77 // - An edge from each right_ node to sink 78 // - An edge from each left_ node to each right_ node, if the 79 // corresponding edge exists in 'graph'. 80 // 81 // When the TryAugment() method adds a flow, it sets left_[l] = r for some 82 // nodes l and r. This induces the following changes: 83 // - The edges (source, l), (l, r), and (r, sink) are added to the 84 // flow graph. 85 // - The same three edges are removed from the residual flow graph. 86 // - The reverse edges (l, source), (r, l), and (sink, r) are added 87 // to the residual flow graph, which is a directional graph 88 // representing unused flow capacity. 89 // 90 // When the method augments a flow (moving left_[l] from some r1 to some 91 // other r2), this can be thought of as "undoing" the above steps with 92 // respect to r1 and "redoing" them with respect to r2. 93 // 94 // It bears repeating that the flow graph and residual flow graph are 95 // never represented explicitly, but can be derived by looking at the 96 // information in 'graph' and in left_. 97 // 98 // As an optimization, there is a second vector<int> called right_ which 99 // does not provide any new information. Instead, it enables more 100 // efficient queries about edges entering or leaving the right-side nodes 101 // of the flow or residual flow graphs. The following invariants are 102 // maintained: 103 // 104 // left[l] == kUnused or right[left[l]] == l 105 // right[r] == kUnused or left[right[r]] == r 106 // 107 // . [ source ] . 108 // . ||| . 109 // . ||| . 110 // . ||\--> left[0]=1 ---\ right[0]=-1 ----\ . 111 // . || | | . 112 // . |\---> left[1]=-1 \--> right[1]=0 ---\| . 113 // . | || . 114 // . \----> left[2]=2 ------> right[2]=2 --\|| . 115 // . ||| . 116 // . elements matchers vvv . 117 // . [ sink ] . 118 // 119 // See Also: 120 // [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method". 121 // "Introduction to Algorithms (Second ed.)", pp. 651-664. 122 // [2] "Ford-Fulkerson algorithm", Wikipedia, 123 // 'https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm' 124 class MaxBipartiteMatchState { 125 public: 126 explicit MaxBipartiteMatchState(const MatchMatrix& graph) 127 : graph_(&graph), 128 left_(graph_->LhsSize(), kUnused), 129 right_(graph_->RhsSize(), kUnused) {} 130 131 // Returns the edges of a maximal match, each in the form {left, right}. 132 ElementMatcherPairs Compute() { 133 // 'seen' is used for path finding { 0: unseen, 1: seen }. 134 ::std::vector<char> seen; 135 // Searches the residual flow graph for a path from each left node to 136 // the sink in the residual flow graph, and if one is found, add flow 137 // to the graph. It's okay to search through the left nodes once. The 138 // edge from the implicit source node to each previously-visited left 139 // node will have flow if that left node has any path to the sink 140 // whatsoever. Subsequent augmentations can only add flow to the 141 // network, and cannot take away that previous flow unit from the source. 142 // Since the source-to-left edge can only carry one flow unit (or, 143 // each element can be matched to only one matcher), there is no need 144 // to visit the left nodes more than once looking for augmented paths. 145 // The flow is known to be possible or impossible by looking at the 146 // node once. 147 for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) { 148 // Reset the path-marking vector and try to find a path from 149 // source to sink starting at the left_[ilhs] node. 150 GTEST_CHECK_(left_[ilhs] == kUnused) 151 << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs]; 152 // 'seen' initialized to 'graph_->RhsSize()' copies of 0. 153 seen.assign(graph_->RhsSize(), 0); 154 TryAugment(ilhs, &seen); 155 } 156 ElementMatcherPairs result; 157 for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) { 158 size_t irhs = left_[ilhs]; 159 if (irhs == kUnused) continue; 160 result.push_back(ElementMatcherPair(ilhs, irhs)); 161 } 162 return result; 163 } 164 165 private: 166 static const size_t kUnused = static_cast<size_t>(-1); 167 168 // Perform a depth-first search from left node ilhs to the sink. If a 169 // path is found, flow is added to the network by linking the left and 170 // right vector elements corresponding each segment of the path. 171 // Returns true if a path to sink was found, which means that a unit of 172 // flow was added to the network. The 'seen' vector elements correspond 173 // to right nodes and are marked to eliminate cycles from the search. 174 // 175 // Left nodes will only be explored at most once because they 176 // are accessible from at most one right node in the residual flow 177 // graph. 178 // 179 // Note that left_[ilhs] is the only element of left_ that TryAugment will 180 // potentially transition from kUnused to another value. Any other 181 // left_ element holding kUnused before TryAugment will be holding it 182 // when TryAugment returns. 183 // 184 bool TryAugment(size_t ilhs, ::std::vector<char>* seen) { 185 for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) { 186 if ((*seen)[irhs]) continue; 187 if (!graph_->HasEdge(ilhs, irhs)) continue; 188 // There's an available edge from ilhs to irhs. 189 (*seen)[irhs] = 1; 190 // Next a search is performed to determine whether 191 // this edge is a dead end or leads to the sink. 192 // 193 // right_[irhs] == kUnused means that there is residual flow from 194 // right node irhs to the sink, so we can use that to finish this 195 // flow path and return success. 196 // 197 // Otherwise there is residual flow to some ilhs. We push flow 198 // along that path and call ourselves recursively to see if this 199 // ultimately leads to sink. 200 if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) { 201 // Add flow from left_[ilhs] to right_[irhs]. 202 left_[ilhs] = irhs; 203 right_[irhs] = ilhs; 204 return true; 205 } 206 } 207 return false; 208 } 209 210 const MatchMatrix* graph_; // not owned 211 // Each element of the left_ vector represents a left hand side node 212 // (i.e. an element) and each element of right_ is a right hand side 213 // node (i.e. a matcher). The values in the left_ vector indicate 214 // outflow from that node to a node on the right_ side. The values 215 // in the right_ indicate inflow, and specify which left_ node is 216 // feeding that right_ node, if any. For example, left_[3] == 1 means 217 // there's a flow from element #3 to matcher #1. Such a flow would also 218 // be redundantly represented in the right_ vector as right_[1] == 3. 219 // Elements of left_ and right_ are either kUnused or mutually 220 // referent. Mutually referent means that left_[right_[i]] = i and 221 // right_[left_[i]] = i. 222 ::std::vector<size_t> left_; 223 ::std::vector<size_t> right_; 224 }; 225 226 const size_t MaxBipartiteMatchState::kUnused; 227 228 GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) { 229 return MaxBipartiteMatchState(g).Compute(); 230 } 231 232 static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs, 233 ::std::ostream* stream) { 234 typedef ElementMatcherPairs::const_iterator Iter; 235 ::std::ostream& os = *stream; 236 os << "{"; 237 const char* sep = ""; 238 for (Iter it = pairs.begin(); it != pairs.end(); ++it) { 239 os << sep << "\n (" << "element #" << it->first << ", " << "matcher #" 240 << it->second << ")"; 241 sep = ","; 242 } 243 os << "\n}"; 244 } 245 246 bool MatchMatrix::NextGraph() { 247 for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) { 248 for (size_t irhs = 0; irhs < RhsSize(); ++irhs) { 249 char& b = matched_[SpaceIndex(ilhs, irhs)]; 250 if (!b) { 251 b = 1; 252 return true; 253 } 254 b = 0; 255 } 256 } 257 return false; 258 } 259 260 void MatchMatrix::Randomize() { 261 for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) { 262 for (size_t irhs = 0; irhs < RhsSize(); ++irhs) { 263 char& b = matched_[SpaceIndex(ilhs, irhs)]; 264 b = static_cast<char>(rand() & 1); // NOLINT 265 } 266 } 267 } 268 269 std::string MatchMatrix::DebugString() const { 270 ::std::stringstream ss; 271 const char* sep = ""; 272 for (size_t i = 0; i < LhsSize(); ++i) { 273 ss << sep; 274 for (size_t j = 0; j < RhsSize(); ++j) { 275 ss << HasEdge(i, j); 276 } 277 sep = ";"; 278 } 279 return ss.str(); 280 } 281 282 void UnorderedElementsAreMatcherImplBase::DescribeToImpl( 283 ::std::ostream* os) const { 284 switch (match_flags()) { 285 case UnorderedMatcherRequire::ExactMatch: 286 if (matcher_describers_.empty()) { 287 *os << "is empty"; 288 return; 289 } 290 if (matcher_describers_.size() == 1) { 291 *os << "has " << Elements(1) << " and that element "; 292 matcher_describers_[0]->DescribeTo(os); 293 return; 294 } 295 *os << "has " << Elements(matcher_describers_.size()) 296 << " and there exists some permutation of elements such that:\n"; 297 break; 298 case UnorderedMatcherRequire::Superset: 299 *os << "a surjection from elements to requirements exists such that:\n"; 300 break; 301 case UnorderedMatcherRequire::Subset: 302 *os << "an injection from elements to requirements exists such that:\n"; 303 break; 304 } 305 306 const char* sep = ""; 307 for (size_t i = 0; i != matcher_describers_.size(); ++i) { 308 *os << sep; 309 if (match_flags() == UnorderedMatcherRequire::ExactMatch) { 310 *os << " - element #" << i << " "; 311 } else { 312 *os << " - an element "; 313 } 314 matcher_describers_[i]->DescribeTo(os); 315 if (match_flags() == UnorderedMatcherRequire::ExactMatch) { 316 sep = ", and\n"; 317 } else { 318 sep = "\n"; 319 } 320 } 321 } 322 323 void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl( 324 ::std::ostream* os) const { 325 switch (match_flags()) { 326 case UnorderedMatcherRequire::ExactMatch: 327 if (matcher_describers_.empty()) { 328 *os << "isn't empty"; 329 return; 330 } 331 if (matcher_describers_.size() == 1) { 332 *os << "doesn't have " << Elements(1) << ", or has " << Elements(1) 333 << " that "; 334 matcher_describers_[0]->DescribeNegationTo(os); 335 return; 336 } 337 *os << "doesn't have " << Elements(matcher_describers_.size()) 338 << ", or there exists no permutation of elements such that:\n"; 339 break; 340 case UnorderedMatcherRequire::Superset: 341 *os << "no surjection from elements to requirements exists such that:\n"; 342 break; 343 case UnorderedMatcherRequire::Subset: 344 *os << "no injection from elements to requirements exists such that:\n"; 345 break; 346 } 347 const char* sep = ""; 348 for (size_t i = 0; i != matcher_describers_.size(); ++i) { 349 *os << sep; 350 if (match_flags() == UnorderedMatcherRequire::ExactMatch) { 351 *os << " - element #" << i << " "; 352 } else { 353 *os << " - an element "; 354 } 355 matcher_describers_[i]->DescribeTo(os); 356 if (match_flags() == UnorderedMatcherRequire::ExactMatch) { 357 sep = ", and\n"; 358 } else { 359 sep = "\n"; 360 } 361 } 362 } 363 364 // Checks that all matchers match at least one element, and that all 365 // elements match at least one matcher. This enables faster matching 366 // and better error reporting. 367 // Returns false, writing an explanation to 'listener', if and only 368 // if the success criteria are not met. 369 bool UnorderedElementsAreMatcherImplBase::VerifyMatchMatrix( 370 const ::std::vector<std::string>& element_printouts, 371 const MatchMatrix& matrix, MatchResultListener* listener) const { 372 if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) { 373 return true; 374 } 375 376 const bool is_exact_match_with_size_discrepency = 377 match_flags() == UnorderedMatcherRequire::ExactMatch && 378 matrix.LhsSize() != matrix.RhsSize(); 379 if (is_exact_match_with_size_discrepency) { 380 // The element count doesn't match. If the container is empty, 381 // there's no need to explain anything as Google Mock already 382 // prints the empty container. Otherwise we just need to show 383 // how many elements there actually are. 384 if (matrix.LhsSize() != 0 && listener->IsInterested()) { 385 *listener << "which has " << Elements(matrix.LhsSize()) << "\n"; 386 } 387 } 388 389 bool result = !is_exact_match_with_size_discrepency; 390 ::std::vector<char> element_matched(matrix.LhsSize(), 0); 391 ::std::vector<char> matcher_matched(matrix.RhsSize(), 0); 392 393 for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) { 394 for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) { 395 char matched = matrix.HasEdge(ilhs, irhs); 396 element_matched[ilhs] |= matched; 397 matcher_matched[irhs] |= matched; 398 } 399 } 400 401 if (match_flags() & UnorderedMatcherRequire::Superset) { 402 const char* sep = 403 "where the following matchers don't match any elements:\n"; 404 for (size_t mi = 0; mi < matcher_matched.size(); ++mi) { 405 if (matcher_matched[mi]) continue; 406 result = false; 407 if (listener->IsInterested()) { 408 *listener << sep << "matcher #" << mi << ": "; 409 matcher_describers_[mi]->DescribeTo(listener->stream()); 410 sep = ",\n"; 411 } 412 } 413 } 414 415 if (match_flags() & UnorderedMatcherRequire::Subset) { 416 const char* sep = 417 "where the following elements don't match any matchers:\n"; 418 const char* outer_sep = ""; 419 if (!result) { 420 outer_sep = "\nand "; 421 } 422 for (size_t ei = 0; ei < element_matched.size(); ++ei) { 423 if (element_matched[ei]) continue; 424 result = false; 425 if (listener->IsInterested()) { 426 *listener << outer_sep << sep << "element #" << ei << ": " 427 << element_printouts[ei]; 428 sep = ",\n"; 429 outer_sep = ""; 430 } 431 } 432 } 433 return result; 434 } 435 436 bool UnorderedElementsAreMatcherImplBase::FindPairing( 437 const MatchMatrix& matrix, MatchResultListener* listener) const { 438 ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix); 439 440 size_t max_flow = matches.size(); 441 if ((match_flags() & UnorderedMatcherRequire::Superset) && 442 max_flow < matrix.RhsSize()) { 443 if (listener->IsInterested()) { 444 *listener << "where no permutation of the elements can satisfy all " 445 "matchers, and the closest match is " 446 << max_flow << " of " << matrix.RhsSize() 447 << " matchers with the pairings:\n"; 448 LogElementMatcherPairVec(matches, listener->stream()); 449 } 450 return false; 451 } 452 if ((match_flags() & UnorderedMatcherRequire::Subset) && 453 max_flow < matrix.LhsSize()) { 454 if (listener->IsInterested()) { 455 *listener 456 << "where not all elements can be matched, and the closest match is " 457 << max_flow << " of " << matrix.RhsSize() 458 << " matchers with the pairings:\n"; 459 LogElementMatcherPairVec(matches, listener->stream()); 460 } 461 return false; 462 } 463 464 if (matches.size() > 1) { 465 if (listener->IsInterested()) { 466 const char* sep = "where:\n"; 467 for (size_t mi = 0; mi < matches.size(); ++mi) { 468 *listener << sep << " - element #" << matches[mi].first 469 << " is matched by matcher #" << matches[mi].second; 470 sep = ",\n"; 471 } 472 } 473 } 474 return true; 475 } 476 477 } // namespace internal 478 } // namespace testing 479