xref: /freebsd/contrib/googletest/googlemock/src/gmock-matchers.cc (revision 35c0a8c449fd2b7f75029ebed5e10852240f0865)
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 // Google Mock - a framework for writing C++ mock classes.
31 //
32 // This file implements Matcher<const string&>, Matcher<string>, and
33 // utilities for defining matchers.
34 
35 #include "gmock/gmock-matchers.h"
36 
37 #include <string.h>
38 
39 #include <iostream>
40 #include <sstream>
41 #include <string>
42 #include <vector>
43 
44 namespace testing {
45 namespace internal {
46 
47 // Returns the description for a matcher defined using the MATCHER*()
48 // macro where the user-supplied description string is "", if
49 // 'negation' is false; otherwise returns the description of the
50 // negation of the matcher.  'param_values' contains a list of strings
51 // that are the print-out of the matcher's parameters.
52 GTEST_API_ std::string FormatMatcherDescription(
53     bool negation, const char* matcher_name,
54     const std::vector<const char*>& param_names, const Strings& param_values) {
55   std::string result = ConvertIdentifierNameToWords(matcher_name);
56   if (!param_values.empty()) {
57     result += " " + JoinAsKeyValueTuple(param_names, param_values);
58   }
59   return negation ? "not (" + result + ")" : result;
60 }
61 
62 // FindMaxBipartiteMatching and its helper class.
63 //
64 // Uses the well-known Ford-Fulkerson max flow method to find a maximum
65 // bipartite matching. Flow is considered to be from left to right.
66 // There is an implicit source node that is connected to all of the left
67 // nodes, and an implicit sink node that is connected to all of the
68 // right nodes. All edges have unit capacity.
69 //
70 // Neither the flow graph nor the residual flow graph are represented
71 // explicitly. Instead, they are implied by the information in 'graph' and
72 // a vector<int> called 'left_' whose elements are initialized to the
73 // value kUnused. This represents the initial state of the algorithm,
74 // where the flow graph is empty, and the residual flow graph has the
75 // following edges:
76 //   - An edge from source to each left_ node
77 //   - An edge from each right_ node to sink
78 //   - An edge from each left_ node to each right_ node, if the
79 //     corresponding edge exists in 'graph'.
80 //
81 // When the TryAugment() method adds a flow, it sets left_[l] = r for some
82 // nodes l and r. This induces the following changes:
83 //   - The edges (source, l), (l, r), and (r, sink) are added to the
84 //     flow graph.
85 //   - The same three edges are removed from the residual flow graph.
86 //   - The reverse edges (l, source), (r, l), and (sink, r) are added
87 //     to the residual flow graph, which is a directional graph
88 //     representing unused flow capacity.
89 //
90 // When the method augments a flow (moving left_[l] from some r1 to some
91 // other r2), this can be thought of as "undoing" the above steps with
92 // respect to r1 and "redoing" them with respect to r2.
93 //
94 // It bears repeating that the flow graph and residual flow graph are
95 // never represented explicitly, but can be derived by looking at the
96 // information in 'graph' and in left_.
97 //
98 // As an optimization, there is a second vector<int> called right_ which
99 // does not provide any new information. Instead, it enables more
100 // efficient queries about edges entering or leaving the right-side nodes
101 // of the flow or residual flow graphs. The following invariants are
102 // maintained:
103 //
104 // left[l] == kUnused or right[left[l]] == l
105 // right[r] == kUnused or left[right[r]] == r
106 //
107 // . [ source ]                                        .
108 // .   |||                                             .
109 // .   |||                                             .
110 // .   ||\--> left[0]=1  ---\    right[0]=-1 ----\     .
111 // .   ||                   |                    |     .
112 // .   |\---> left[1]=-1    \--> right[1]=0  ---\|     .
113 // .   |                                        ||     .
114 // .   \----> left[2]=2  ------> right[2]=2  --\||     .
115 // .                                           |||     .
116 // .         elements           matchers       vvv     .
117 // .                                         [ sink ]  .
118 //
119 // See Also:
120 //   [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method".
121 //       "Introduction to Algorithms (Second ed.)", pp. 651-664.
122 //   [2] "Ford-Fulkerson algorithm", Wikipedia,
123 //       'https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm'
124 class MaxBipartiteMatchState {
125  public:
126   explicit MaxBipartiteMatchState(const MatchMatrix& graph)
127       : graph_(&graph),
128         left_(graph_->LhsSize(), kUnused),
129         right_(graph_->RhsSize(), kUnused) {}
130 
131   // Returns the edges of a maximal match, each in the form {left, right}.
132   ElementMatcherPairs Compute() {
133     // 'seen' is used for path finding { 0: unseen, 1: seen }.
134     ::std::vector<char> seen;
135     // Searches the residual flow graph for a path from each left node to
136     // the sink in the residual flow graph, and if one is found, add flow
137     // to the graph. It's okay to search through the left nodes once. The
138     // edge from the implicit source node to each previously-visited left
139     // node will have flow if that left node has any path to the sink
140     // whatsoever. Subsequent augmentations can only add flow to the
141     // network, and cannot take away that previous flow unit from the source.
142     // Since the source-to-left edge can only carry one flow unit (or,
143     // each element can be matched to only one matcher), there is no need
144     // to visit the left nodes more than once looking for augmented paths.
145     // The flow is known to be possible or impossible by looking at the
146     // node once.
147     for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
148       // Reset the path-marking vector and try to find a path from
149       // source to sink starting at the left_[ilhs] node.
150       GTEST_CHECK_(left_[ilhs] == kUnused)
151           << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs];
152       // 'seen' initialized to 'graph_->RhsSize()' copies of 0.
153       seen.assign(graph_->RhsSize(), 0);
154       TryAugment(ilhs, &seen);
155     }
156     ElementMatcherPairs result;
157     for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) {
158       size_t irhs = left_[ilhs];
159       if (irhs == kUnused) continue;
160       result.push_back(ElementMatcherPair(ilhs, irhs));
161     }
162     return result;
163   }
164 
165  private:
166   static const size_t kUnused = static_cast<size_t>(-1);
167 
168   // Perform a depth-first search from left node ilhs to the sink.  If a
169   // path is found, flow is added to the network by linking the left and
170   // right vector elements corresponding each segment of the path.
171   // Returns true if a path to sink was found, which means that a unit of
172   // flow was added to the network. The 'seen' vector elements correspond
173   // to right nodes and are marked to eliminate cycles from the search.
174   //
175   // Left nodes will only be explored at most once because they
176   // are accessible from at most one right node in the residual flow
177   // graph.
178   //
179   // Note that left_[ilhs] is the only element of left_ that TryAugment will
180   // potentially transition from kUnused to another value. Any other
181   // left_ element holding kUnused before TryAugment will be holding it
182   // when TryAugment returns.
183   //
184   bool TryAugment(size_t ilhs, ::std::vector<char>* seen) {
185     for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
186       if ((*seen)[irhs]) continue;
187       if (!graph_->HasEdge(ilhs, irhs)) continue;
188       // There's an available edge from ilhs to irhs.
189       (*seen)[irhs] = 1;
190       // Next a search is performed to determine whether
191       // this edge is a dead end or leads to the sink.
192       //
193       // right_[irhs] == kUnused means that there is residual flow from
194       // right node irhs to the sink, so we can use that to finish this
195       // flow path and return success.
196       //
197       // Otherwise there is residual flow to some ilhs. We push flow
198       // along that path and call ourselves recursively to see if this
199       // ultimately leads to sink.
200       if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) {
201         // Add flow from left_[ilhs] to right_[irhs].
202         left_[ilhs] = irhs;
203         right_[irhs] = ilhs;
204         return true;
205       }
206     }
207     return false;
208   }
209 
210   const MatchMatrix* graph_;  // not owned
211   // Each element of the left_ vector represents a left hand side node
212   // (i.e. an element) and each element of right_ is a right hand side
213   // node (i.e. a matcher). The values in the left_ vector indicate
214   // outflow from that node to a node on the right_ side. The values
215   // in the right_ indicate inflow, and specify which left_ node is
216   // feeding that right_ node, if any. For example, left_[3] == 1 means
217   // there's a flow from element #3 to matcher #1. Such a flow would also
218   // be redundantly represented in the right_ vector as right_[1] == 3.
219   // Elements of left_ and right_ are either kUnused or mutually
220   // referent. Mutually referent means that left_[right_[i]] = i and
221   // right_[left_[i]] = i.
222   ::std::vector<size_t> left_;
223   ::std::vector<size_t> right_;
224 };
225 
226 const size_t MaxBipartiteMatchState::kUnused;
227 
228 GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) {
229   return MaxBipartiteMatchState(g).Compute();
230 }
231 
232 static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs,
233                                      ::std::ostream* stream) {
234   typedef ElementMatcherPairs::const_iterator Iter;
235   ::std::ostream& os = *stream;
236   os << "{";
237   const char* sep = "";
238   for (Iter it = pairs.begin(); it != pairs.end(); ++it) {
239     os << sep << "\n  (" << "element #" << it->first << ", " << "matcher #"
240        << it->second << ")";
241     sep = ",";
242   }
243   os << "\n}";
244 }
245 
246 bool MatchMatrix::NextGraph() {
247   for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
248     for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
249       char& b = matched_[SpaceIndex(ilhs, irhs)];
250       if (!b) {
251         b = 1;
252         return true;
253       }
254       b = 0;
255     }
256   }
257   return false;
258 }
259 
260 void MatchMatrix::Randomize() {
261   for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
262     for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
263       char& b = matched_[SpaceIndex(ilhs, irhs)];
264       b = static_cast<char>(rand() & 1);  // NOLINT
265     }
266   }
267 }
268 
269 std::string MatchMatrix::DebugString() const {
270   ::std::stringstream ss;
271   const char* sep = "";
272   for (size_t i = 0; i < LhsSize(); ++i) {
273     ss << sep;
274     for (size_t j = 0; j < RhsSize(); ++j) {
275       ss << HasEdge(i, j);
276     }
277     sep = ";";
278   }
279   return ss.str();
280 }
281 
282 void UnorderedElementsAreMatcherImplBase::DescribeToImpl(
283     ::std::ostream* os) const {
284   switch (match_flags()) {
285     case UnorderedMatcherRequire::ExactMatch:
286       if (matcher_describers_.empty()) {
287         *os << "is empty";
288         return;
289       }
290       if (matcher_describers_.size() == 1) {
291         *os << "has " << Elements(1) << " and that element ";
292         matcher_describers_[0]->DescribeTo(os);
293         return;
294       }
295       *os << "has " << Elements(matcher_describers_.size())
296           << " and there exists some permutation of elements such that:\n";
297       break;
298     case UnorderedMatcherRequire::Superset:
299       *os << "a surjection from elements to requirements exists such that:\n";
300       break;
301     case UnorderedMatcherRequire::Subset:
302       *os << "an injection from elements to requirements exists such that:\n";
303       break;
304   }
305 
306   const char* sep = "";
307   for (size_t i = 0; i != matcher_describers_.size(); ++i) {
308     *os << sep;
309     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
310       *os << " - element #" << i << " ";
311     } else {
312       *os << " - an element ";
313     }
314     matcher_describers_[i]->DescribeTo(os);
315     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
316       sep = ", and\n";
317     } else {
318       sep = "\n";
319     }
320   }
321 }
322 
323 void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(
324     ::std::ostream* os) const {
325   switch (match_flags()) {
326     case UnorderedMatcherRequire::ExactMatch:
327       if (matcher_describers_.empty()) {
328         *os << "isn't empty";
329         return;
330       }
331       if (matcher_describers_.size() == 1) {
332         *os << "doesn't have " << Elements(1) << ", or has " << Elements(1)
333             << " that ";
334         matcher_describers_[0]->DescribeNegationTo(os);
335         return;
336       }
337       *os << "doesn't have " << Elements(matcher_describers_.size())
338           << ", or there exists no permutation of elements such that:\n";
339       break;
340     case UnorderedMatcherRequire::Superset:
341       *os << "no surjection from elements to requirements exists such that:\n";
342       break;
343     case UnorderedMatcherRequire::Subset:
344       *os << "no injection from elements to requirements exists such that:\n";
345       break;
346   }
347   const char* sep = "";
348   for (size_t i = 0; i != matcher_describers_.size(); ++i) {
349     *os << sep;
350     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
351       *os << " - element #" << i << " ";
352     } else {
353       *os << " - an element ";
354     }
355     matcher_describers_[i]->DescribeTo(os);
356     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
357       sep = ", and\n";
358     } else {
359       sep = "\n";
360     }
361   }
362 }
363 
364 // Checks that all matchers match at least one element, and that all
365 // elements match at least one matcher. This enables faster matching
366 // and better error reporting.
367 // Returns false, writing an explanation to 'listener', if and only
368 // if the success criteria are not met.
369 bool UnorderedElementsAreMatcherImplBase::VerifyMatchMatrix(
370     const ::std::vector<std::string>& element_printouts,
371     const MatchMatrix& matrix, MatchResultListener* listener) const {
372   if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) {
373     return true;
374   }
375 
376   const bool is_exact_match_with_size_discrepency =
377       match_flags() == UnorderedMatcherRequire::ExactMatch &&
378       matrix.LhsSize() != matrix.RhsSize();
379   if (is_exact_match_with_size_discrepency) {
380     // The element count doesn't match.  If the container is empty,
381     // there's no need to explain anything as Google Mock already
382     // prints the empty container. Otherwise we just need to show
383     // how many elements there actually are.
384     if (matrix.LhsSize() != 0 && listener->IsInterested()) {
385       *listener << "which has " << Elements(matrix.LhsSize()) << "\n";
386     }
387   }
388 
389   bool result = !is_exact_match_with_size_discrepency;
390   ::std::vector<char> element_matched(matrix.LhsSize(), 0);
391   ::std::vector<char> matcher_matched(matrix.RhsSize(), 0);
392 
393   for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) {
394     for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) {
395       char matched = matrix.HasEdge(ilhs, irhs);
396       element_matched[ilhs] |= matched;
397       matcher_matched[irhs] |= matched;
398     }
399   }
400 
401   if (match_flags() & UnorderedMatcherRequire::Superset) {
402     const char* sep =
403         "where the following matchers don't match any elements:\n";
404     for (size_t mi = 0; mi < matcher_matched.size(); ++mi) {
405       if (matcher_matched[mi]) continue;
406       result = false;
407       if (listener->IsInterested()) {
408         *listener << sep << "matcher #" << mi << ": ";
409         matcher_describers_[mi]->DescribeTo(listener->stream());
410         sep = ",\n";
411       }
412     }
413   }
414 
415   if (match_flags() & UnorderedMatcherRequire::Subset) {
416     const char* sep =
417         "where the following elements don't match any matchers:\n";
418     const char* outer_sep = "";
419     if (!result) {
420       outer_sep = "\nand ";
421     }
422     for (size_t ei = 0; ei < element_matched.size(); ++ei) {
423       if (element_matched[ei]) continue;
424       result = false;
425       if (listener->IsInterested()) {
426         *listener << outer_sep << sep << "element #" << ei << ": "
427                   << element_printouts[ei];
428         sep = ",\n";
429         outer_sep = "";
430       }
431     }
432   }
433   return result;
434 }
435 
436 bool UnorderedElementsAreMatcherImplBase::FindPairing(
437     const MatchMatrix& matrix, MatchResultListener* listener) const {
438   ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix);
439 
440   size_t max_flow = matches.size();
441   if ((match_flags() & UnorderedMatcherRequire::Superset) &&
442       max_flow < matrix.RhsSize()) {
443     if (listener->IsInterested()) {
444       *listener << "where no permutation of the elements can satisfy all "
445                    "matchers, and the closest match is "
446                 << max_flow << " of " << matrix.RhsSize()
447                 << " matchers with the pairings:\n";
448       LogElementMatcherPairVec(matches, listener->stream());
449     }
450     return false;
451   }
452   if ((match_flags() & UnorderedMatcherRequire::Subset) &&
453       max_flow < matrix.LhsSize()) {
454     if (listener->IsInterested()) {
455       *listener
456           << "where not all elements can be matched, and the closest match is "
457           << max_flow << " of " << matrix.RhsSize()
458           << " matchers with the pairings:\n";
459       LogElementMatcherPairVec(matches, listener->stream());
460     }
461     return false;
462   }
463 
464   if (matches.size() > 1) {
465     if (listener->IsInterested()) {
466       const char* sep = "where:\n";
467       for (size_t mi = 0; mi < matches.size(); ++mi) {
468         *listener << sep << " - element #" << matches[mi].first
469                   << " is matched by matcher #" << matches[mi].second;
470         sep = ",\n";
471       }
472     }
473   }
474   return true;
475 }
476 
477 }  // namespace internal
478 }  // namespace testing
479