xref: /freebsd/contrib/arm-optimized-routines/math/aarch64/experimental/log1p_2u.c (revision f3087bef11543b42e0d69b708f367097a4118d24)
1 /*
2  * Double-precision log(1+x) function.
3  *
4  * Copyright (c) 2022-2024, Arm Limited.
5  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6  */
7 
8 #include "poly_scalar_f64.h"
9 #include "math_config.h"
10 #include "test_sig.h"
11 #include "test_defs.h"
12 
13 #define Ln2Hi 0x1.62e42fefa3800p-1
14 #define Ln2Lo 0x1.ef35793c76730p-45
15 #define HfRt2Top 0x3fe6a09e /* top32(asuint64(sqrt(2)/2)).  */
16 #define OneMHfRt2Top                                                          \
17   0x00095f62 /* top32(asuint64(1)) - top32(asuint64(sqrt(2)/2)).  */
18 #define OneTop12 0x3ff
19 #define BottomMask 0xffffffff
20 #define OneMHfRt2 0x3fd2bec333018866
21 #define Rt2MOne 0x3fda827999fcef32
22 #define AbsMask 0x7fffffffffffffff
23 #define ExpM63 0x3c00
24 
25 static inline double
eval_poly(double f)26 eval_poly (double f)
27 {
28   double f2 = f * f;
29   double f4 = f2 * f2;
30   double f8 = f4 * f4;
31   return estrin_18_f64 (f, f2, f4, f8, f8 * f8, __log1p_data.coeffs);
32 }
33 
34 /* log1p approximation using polynomial on reduced interval. Largest
35    observed errors are near the lower boundary of the region where k
36    is 0.
37    Maximum measured error: 1.75ULP.
38    log1p(-0x1.2e1aea97b3e5cp-2) got -0x1.65fb8659a2f9p-2
39 			       want -0x1.65fb8659a2f92p-2.  */
40 double
log1p(double x)41 log1p (double x)
42 {
43   uint64_t ix = asuint64 (x);
44   uint64_t ia = ix & AbsMask;
45   uint32_t ia16 = ia >> 48;
46 
47   /* Handle special cases first.  */
48   if (unlikely (ia16 >= 0x7ff0 || ix >= 0xbff0000000000000
49 		|| ix == 0x8000000000000000))
50     {
51       if (ix == 0x8000000000000000 || ix == 0x7ff0000000000000)
52 	{
53 	  /* x ==  -0 => log1p(x) =  -0.
54 	     x == Inf => log1p(x) = Inf.  */
55 	  return x;
56 	}
57       if (ix == 0xbff0000000000000)
58 	{
59 	  /* x == -1 => log1p(x) = -Inf.  */
60 	  return __math_divzero (-1);
61 	  ;
62 	}
63       if (ia16 >= 0x7ff0)
64 	{
65 	  /* x == +/-NaN => log1p(x) = NaN.  */
66 	  return __math_invalid (asdouble (ia));
67 	}
68       /* x  <      -1 => log1p(x) =  NaN.
69 	 x ==    -Inf => log1p(x) =  NaN.  */
70       return __math_invalid (x);
71     }
72 
73   /* With x + 1 = t * 2^k (where t = f + 1 and k is chosen such that f
74 			   is in [sqrt(2)/2, sqrt(2)]):
75      log1p(x) = k*log(2) + log1p(f).
76 
77      f may not be representable exactly, so we need a correction term:
78      let m = round(1 + x), c = (1 + x) - m.
79      c << m: at very small x, log1p(x) ~ x, hence:
80      log(1+x) - log(m) ~ c/m.
81 
82      We therefore calculate log1p(x) by k*log2 + log1p(f) + c/m.  */
83 
84   uint64_t sign = ix & ~AbsMask;
85   if (ia <= OneMHfRt2 || (!sign && ia <= Rt2MOne))
86     {
87       if (unlikely (ia16 <= ExpM63))
88 	{
89 	  /* If exponent of x <= -63 then shortcut the polynomial and avoid
90 	     underflow by just returning x, which is exactly rounded in this
91 	     region.  */
92 	  return x;
93 	}
94       /* If x is in [sqrt(2)/2 - 1, sqrt(2) - 1] then we can shortcut all the
95 	 logic below, as k = 0 and f = x and therefore representable exactly.
96 	 All we need is to return the polynomial.  */
97       return fma (x, eval_poly (x) * x, x);
98     }
99 
100   /* Obtain correctly scaled k by manipulation in the exponent.  */
101   double m = x + 1;
102   uint64_t mi = asuint64 (m);
103   uint32_t u = (mi >> 32) + OneMHfRt2Top;
104   int32_t k = (int32_t) (u >> 20) - OneTop12;
105 
106   /* Correction term c/m.  */
107   double cm = (x - (m - 1)) / m;
108 
109   /* Reduce x to f in [sqrt(2)/2, sqrt(2)].  */
110   uint32_t utop = (u & 0x000fffff) + HfRt2Top;
111   uint64_t u_red = ((uint64_t) utop << 32) | (mi & BottomMask);
112   double f = asdouble (u_red) - 1;
113 
114   /* Approximate log1p(x) on the reduced input using a polynomial. Because
115      log1p(0)=0 we choose an approximation of the form:
116 	x + C0*x^2 + C1*x^3 + C2x^4 + ...
117      Hence approximation has the form f + f^2 * P(f)
118 	where P(x) = C0 + C1*x + C2x^2 + ...  */
119   double p = fma (f, eval_poly (f) * f, f);
120 
121   double kd = k;
122   double y = fma (Ln2Lo, kd, cm);
123   return y + fma (Ln2Hi, kd, p);
124 }
125 
126 TEST_SIG (S, D, 1, log1p, -0.9, 10.0)
127 TEST_ULP (log1p, 1.26)
128 TEST_SYM_INTERVAL (log1p, 0.0, 0x1p-23, 50000)
129 TEST_SYM_INTERVAL (log1p, 0x1p-23, 0.001, 50000)
130 TEST_SYM_INTERVAL (log1p, 0.001, 1.0, 50000)
131 TEST_SYM_INTERVAL (log1p, 1.0, inf, 5000)
132