1 /*
2 * Single-precision acos(x) function.
3 *
4 * Copyright (c) 2023-2024, Arm Limited.
5 * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6 */
7
8 #include "poly_scalar_f32.h"
9 #include "math_config.h"
10 #include "test_sig.h"
11 #include "test_defs.h"
12
13 #define AbsMask 0x7fffffff
14 #define Half 0x3f000000
15 #define One 0x3f800000
16 #define PiOver2f 0x1.921fb6p+0f
17 #define Pif 0x1.921fb6p+1f
18 #define Small 0x32800000 /* 2^-26. */
19 #define Small12 0x328
20 #define QNaN 0x7fc
21
22 /* Fast implementation of single-precision acos(x) based on polynomial
23 approximation of single-precision asin(x).
24
25 For x < Small, approximate acos(x) by pi/2 - x. Small = 2^-26 for correct
26 rounding.
27
28 For |x| in [Small, 0.5], use the trigonometric identity
29
30 acos(x) = pi/2 - asin(x)
31
32 and use an order 4 polynomial P such that the final approximation of asin is
33 an odd polynomial: asin(x) ~ x + x^3 * P(x^2).
34
35 The largest observed error in this region is 1.16 ulps,
36 acosf(0x1.ffbeccp-2) got 0x1.0c27f8p+0 want 0x1.0c27f6p+0.
37
38 For |x| in [0.5, 1.0], use the following development of acos(x) near x = 1
39
40 acos(x) ~ pi/2 - 2 * sqrt(z) (1 + z * P(z))
41
42 where z = (1-x)/2, z is near 0 when x approaches 1, and P contributes to the
43 approximation of asin near 0.
44
45 The largest observed error in this region is 1.32 ulps,
46 acosf(0x1.15ba56p-1) got 0x1.feb33p-1 want 0x1.feb32ep-1.
47
48 For x in [-1.0, -0.5], use this other identity to deduce the negative inputs
49 from their absolute value.
50
51 acos(x) = pi - acos(-x)
52
53 The largest observed error in this region is 1.28 ulps,
54 acosf(-0x1.002072p-1) got 0x1.0c1e84p+1 want 0x1.0c1e82p+1. */
55 float
acosf(float x)56 acosf (float x)
57 {
58 uint32_t ix = asuint (x);
59 uint32_t ia = ix & AbsMask;
60 uint32_t ia12 = ia >> 20;
61 float ax = asfloat (ia);
62 uint32_t sign = ix & ~AbsMask;
63
64 /* Special values and invalid range. */
65 if (unlikely (ia12 == QNaN))
66 return x;
67 if (ia > One)
68 return __math_invalidf (x);
69 if (ia12 < Small12)
70 return PiOver2f - x;
71
72 /* Evaluate polynomial Q(|x|) = z + z * z2 * P(z2) with
73 z2 = x ^ 2 and z = |x| , if |x| < 0.5
74 z2 = (1 - |x|) / 2 and z = sqrt(z2), if |x| >= 0.5. */
75 float z2 = ax < 0.5 ? x * x : fmaf (-0.5f, ax, 0.5f);
76 float z = ax < 0.5 ? ax : sqrtf (z2);
77
78 /* Use a single polynomial approximation P for both intervals. */
79 float p = horner_4_f32 (z2, __asinf_poly);
80 /* Finalize polynomial: z + z * z2 * P(z2). */
81 p = fmaf (z * z2, p, z);
82
83 /* acos(|x|) = pi/2 - sign(x) * Q(|x|), for |x| < 0.5
84 = pi - 2 Q(|x|), for -1.0 < x <= -0.5
85 = 2 Q(|x|) , for -0.5 < x < 0.0. */
86 if (ax < 0.5)
87 return PiOver2f - asfloat (asuint (p) | sign);
88
89 return (x <= -0.5) ? fmaf (-2.0f, p, Pif) : 2.0f * p;
90 }
91
92 TEST_SIG (S, F, 1, acos, -1.0, 1.0)
93 TEST_ULP (acosf, 0.82)
94 TEST_INTERVAL (acosf, 0, Small, 5000)
95 TEST_INTERVAL (acosf, Small, 0.5, 50000)
96 TEST_INTERVAL (acosf, 0.5, 1.0, 50000)
97 TEST_INTERVAL (acosf, 1.0, 0x1p11, 50000)
98 TEST_INTERVAL (acosf, 0x1p11, inf, 20000)
99 TEST_INTERVAL (acosf, -0, -inf, 20000)
100