1 /*
2 * Double-precision acos(x) function.
3 *
4 * Copyright (c) 2023-2024, Arm Limited.
5 * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6 */
7
8 #include "math_config.h"
9 #include "poly_scalar_f64.h"
10 #include "test_sig.h"
11 #include "test_defs.h"
12
13 #define AbsMask 0x7fffffffffffffff
14 #define Half 0x3fe0000000000000
15 #define One 0x3ff0000000000000
16 #define PiOver2 0x1.921fb54442d18p+0
17 #define Pi 0x1.921fb54442d18p+1
18 #define Small 0x3c90000000000000 /* 2^-53. */
19 #define Small16 0x3c90
20 #define QNaN 0x7ff8
21
22 /* Fast implementation of double-precision acos(x) based on polynomial
23 approximation of double-precision asin(x).
24
25 For x < Small, approximate acos(x) by pi/2 - x. Small = 2^-53 for correct
26 rounding.
27
28 For |x| in [Small, 0.5], use the trigonometric identity
29
30 acos(x) = pi/2 - asin(x)
31
32 and use an order 11 polynomial P such that the final approximation of asin
33 is an odd polynomial: asin(x) ~ x + x^3 * P(x^2).
34
35 The largest observed error in this region is 1.18 ulps,
36 acos(0x1.fbab0a7c460f6p-2) got 0x1.0d54d1985c068p+0
37 want 0x1.0d54d1985c069p+0.
38
39 For |x| in [0.5, 1.0], use the following development of acos(x) near x = 1
40
41 acos(x) ~ pi/2 - 2 * sqrt(z) (1 + z * P(z))
42
43 where z = (1-x)/2, z is near 0 when x approaches 1, and P contributes to the
44 approximation of asin near 0.
45
46 The largest observed error in this region is 1.52 ulps,
47 acos(0x1.23d362722f591p-1) got 0x1.edbbedf8a7d6ep-1
48 want 0x1.edbbedf8a7d6cp-1.
49
50 For x in [-1.0, -0.5], use this other identity to deduce the negative inputs
51 from their absolute value: acos(x) = pi - acos(-x). */
52 double
acos(double x)53 acos (double x)
54 {
55 uint64_t ix = asuint64 (x);
56 uint64_t ia = ix & AbsMask;
57 uint64_t ia16 = ia >> 48;
58 double ax = asdouble (ia);
59 uint64_t sign = ix & ~AbsMask;
60
61 /* Special values and invalid range. */
62 if (unlikely (ia16 == QNaN))
63 return x;
64 if (ia > One)
65 return __math_invalid (x);
66 if (ia16 < Small16)
67 return PiOver2 - x;
68
69 /* Evaluate polynomial Q(|x|) = z + z * z2 * P(z2) with
70 z2 = x ^ 2 and z = |x| , if |x| < 0.5
71 z2 = (1 - |x|) / 2 and z = sqrt(z2), if |x| >= 0.5. */
72 double z2 = ax < 0.5 ? x * x : fma (-0.5, ax, 0.5);
73 double z = ax < 0.5 ? ax : sqrt (z2);
74
75 /* Use a single polynomial approximation P for both intervals. */
76 double z4 = z2 * z2;
77 double z8 = z4 * z4;
78 double z16 = z8 * z8;
79 double p = estrin_11_f64 (z2, z4, z8, z16, __asin_poly);
80
81 /* Finalize polynomial: z + z * z2 * P(z2). */
82 p = fma (z * z2, p, z);
83
84 /* acos(|x|) = pi/2 - sign(x) * Q(|x|), for |x| < 0.5
85 = pi - 2 Q(|x|), for -1.0 < x <= -0.5
86 = 2 Q(|x|) , for -0.5 < x < 0.0. */
87 if (ax < 0.5)
88 return PiOver2 - asdouble (asuint64 (p) | sign);
89
90 return (x <= -0.5) ? fma (-2.0, p, Pi) : 2.0 * p;
91 }
92
93 TEST_SIG (S, D, 1, acos, -1.0, 1.0)
94 TEST_ULP (acos, 1.02)
95 TEST_INTERVAL (acos, 0, Small, 5000)
96 TEST_INTERVAL (acos, Small, 0.5, 50000)
97 TEST_INTERVAL (acos, 0.5, 1.0, 50000)
98 TEST_INTERVAL (acos, 1.0, 0x1p11, 50000)
99 TEST_INTERVAL (acos, 0x1p11, inf, 20000)
100 TEST_INTERVAL (acos, -0, -inf, 20000)
101