1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "devlink/devlink.h"
17 #include "devlink/port.h"
18 #include "ice_sf_eth.h"
19 #include "ice_hwmon.h"
20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
21 * ice tracepoint functions. This must be done exactly once across the
22 * ice driver.
23 */
24 #define CREATE_TRACE_POINTS
25 #include "ice_trace.h"
26 #include "ice_eswitch.h"
27 #include "ice_tc_lib.h"
28 #include "ice_vsi_vlan_ops.h"
29 #include <net/xdp_sock_drv.h>
30
31 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
32 static const char ice_driver_string[] = DRV_SUMMARY;
33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
34
35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
36 #define ICE_DDP_PKG_PATH "intel/ice/ddp/"
37 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
38
39 MODULE_DESCRIPTION(DRV_SUMMARY);
40 MODULE_IMPORT_NS("LIBIE");
41 MODULE_LICENSE("GPL v2");
42 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
43
44 static int debug = -1;
45 module_param(debug, int, 0644);
46 #ifndef CONFIG_DYNAMIC_DEBUG
47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
48 #else
49 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
50 #endif /* !CONFIG_DYNAMIC_DEBUG */
51
52 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
53 EXPORT_SYMBOL(ice_xdp_locking_key);
54
55 /**
56 * ice_hw_to_dev - Get device pointer from the hardware structure
57 * @hw: pointer to the device HW structure
58 *
59 * Used to access the device pointer from compilation units which can't easily
60 * include the definition of struct ice_pf without leading to circular header
61 * dependencies.
62 */
ice_hw_to_dev(struct ice_hw * hw)63 struct device *ice_hw_to_dev(struct ice_hw *hw)
64 {
65 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
66
67 return &pf->pdev->dev;
68 }
69
70 static struct workqueue_struct *ice_wq;
71 struct workqueue_struct *ice_lag_wq;
72 static const struct net_device_ops ice_netdev_safe_mode_ops;
73 static const struct net_device_ops ice_netdev_ops;
74
75 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
76
77 static void ice_vsi_release_all(struct ice_pf *pf);
78
79 static int ice_rebuild_channels(struct ice_pf *pf);
80 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
81
82 static int
83 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
84 void *cb_priv, enum tc_setup_type type, void *type_data,
85 void *data,
86 void (*cleanup)(struct flow_block_cb *block_cb));
87
netif_is_ice(const struct net_device * dev)88 bool netif_is_ice(const struct net_device *dev)
89 {
90 return dev && (dev->netdev_ops == &ice_netdev_ops ||
91 dev->netdev_ops == &ice_netdev_safe_mode_ops);
92 }
93
94 /**
95 * ice_get_tx_pending - returns number of Tx descriptors not processed
96 * @ring: the ring of descriptors
97 */
ice_get_tx_pending(struct ice_tx_ring * ring)98 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
99 {
100 u16 head, tail;
101
102 head = ring->next_to_clean;
103 tail = ring->next_to_use;
104
105 if (head != tail)
106 return (head < tail) ?
107 tail - head : (tail + ring->count - head);
108 return 0;
109 }
110
111 /**
112 * ice_check_for_hang_subtask - check for and recover hung queues
113 * @pf: pointer to PF struct
114 */
ice_check_for_hang_subtask(struct ice_pf * pf)115 static void ice_check_for_hang_subtask(struct ice_pf *pf)
116 {
117 struct ice_vsi *vsi = NULL;
118 struct ice_hw *hw;
119 unsigned int i;
120 int packets;
121 u32 v;
122
123 ice_for_each_vsi(pf, v)
124 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
125 vsi = pf->vsi[v];
126 break;
127 }
128
129 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
130 return;
131
132 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
133 return;
134
135 hw = &vsi->back->hw;
136
137 ice_for_each_txq(vsi, i) {
138 struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
139 struct ice_ring_stats *ring_stats;
140
141 if (!tx_ring)
142 continue;
143 if (ice_ring_ch_enabled(tx_ring))
144 continue;
145
146 ring_stats = tx_ring->ring_stats;
147 if (!ring_stats)
148 continue;
149
150 if (tx_ring->desc) {
151 /* If packet counter has not changed the queue is
152 * likely stalled, so force an interrupt for this
153 * queue.
154 *
155 * prev_pkt would be negative if there was no
156 * pending work.
157 */
158 packets = ring_stats->stats.pkts & INT_MAX;
159 if (ring_stats->tx_stats.prev_pkt == packets) {
160 /* Trigger sw interrupt to revive the queue */
161 ice_trigger_sw_intr(hw, tx_ring->q_vector);
162 continue;
163 }
164
165 /* Memory barrier between read of packet count and call
166 * to ice_get_tx_pending()
167 */
168 smp_rmb();
169 ring_stats->tx_stats.prev_pkt =
170 ice_get_tx_pending(tx_ring) ? packets : -1;
171 }
172 }
173 }
174
175 /**
176 * ice_init_mac_fltr - Set initial MAC filters
177 * @pf: board private structure
178 *
179 * Set initial set of MAC filters for PF VSI; configure filters for permanent
180 * address and broadcast address. If an error is encountered, netdevice will be
181 * unregistered.
182 */
ice_init_mac_fltr(struct ice_pf * pf)183 static int ice_init_mac_fltr(struct ice_pf *pf)
184 {
185 struct ice_vsi *vsi;
186 u8 *perm_addr;
187
188 vsi = ice_get_main_vsi(pf);
189 if (!vsi)
190 return -EINVAL;
191
192 perm_addr = vsi->port_info->mac.perm_addr;
193 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
194 }
195
196 /**
197 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
198 * @netdev: the net device on which the sync is happening
199 * @addr: MAC address to sync
200 *
201 * This is a callback function which is called by the in kernel device sync
202 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
203 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
204 * MAC filters from the hardware.
205 */
ice_add_mac_to_sync_list(struct net_device * netdev,const u8 * addr)206 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
207 {
208 struct ice_netdev_priv *np = netdev_priv(netdev);
209 struct ice_vsi *vsi = np->vsi;
210
211 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
212 ICE_FWD_TO_VSI))
213 return -EINVAL;
214
215 return 0;
216 }
217
218 /**
219 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
220 * @netdev: the net device on which the unsync is happening
221 * @addr: MAC address to unsync
222 *
223 * This is a callback function which is called by the in kernel device unsync
224 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
225 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
226 * delete the MAC filters from the hardware.
227 */
ice_add_mac_to_unsync_list(struct net_device * netdev,const u8 * addr)228 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
229 {
230 struct ice_netdev_priv *np = netdev_priv(netdev);
231 struct ice_vsi *vsi = np->vsi;
232
233 /* Under some circumstances, we might receive a request to delete our
234 * own device address from our uc list. Because we store the device
235 * address in the VSI's MAC filter list, we need to ignore such
236 * requests and not delete our device address from this list.
237 */
238 if (ether_addr_equal(addr, netdev->dev_addr))
239 return 0;
240
241 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
242 ICE_FWD_TO_VSI))
243 return -EINVAL;
244
245 return 0;
246 }
247
248 /**
249 * ice_vsi_fltr_changed - check if filter state changed
250 * @vsi: VSI to be checked
251 *
252 * returns true if filter state has changed, false otherwise.
253 */
ice_vsi_fltr_changed(struct ice_vsi * vsi)254 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
255 {
256 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
257 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
258 }
259
260 /**
261 * ice_set_promisc - Enable promiscuous mode for a given PF
262 * @vsi: the VSI being configured
263 * @promisc_m: mask of promiscuous config bits
264 *
265 */
ice_set_promisc(struct ice_vsi * vsi,u8 promisc_m)266 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
267 {
268 int status;
269
270 if (vsi->type != ICE_VSI_PF)
271 return 0;
272
273 if (ice_vsi_has_non_zero_vlans(vsi)) {
274 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
275 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
276 promisc_m);
277 } else {
278 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
279 promisc_m, 0);
280 }
281 if (status && status != -EEXIST)
282 return status;
283
284 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
285 vsi->vsi_num, promisc_m);
286 return 0;
287 }
288
289 /**
290 * ice_clear_promisc - Disable promiscuous mode for a given PF
291 * @vsi: the VSI being configured
292 * @promisc_m: mask of promiscuous config bits
293 *
294 */
ice_clear_promisc(struct ice_vsi * vsi,u8 promisc_m)295 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
296 {
297 int status;
298
299 if (vsi->type != ICE_VSI_PF)
300 return 0;
301
302 if (ice_vsi_has_non_zero_vlans(vsi)) {
303 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
304 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
305 promisc_m);
306 } else {
307 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
308 promisc_m, 0);
309 }
310
311 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
312 vsi->vsi_num, promisc_m);
313 return status;
314 }
315
316 /**
317 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
318 * @vsi: ptr to the VSI
319 *
320 * Push any outstanding VSI filter changes through the AdminQ.
321 */
ice_vsi_sync_fltr(struct ice_vsi * vsi)322 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
323 {
324 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
325 struct device *dev = ice_pf_to_dev(vsi->back);
326 struct net_device *netdev = vsi->netdev;
327 bool promisc_forced_on = false;
328 struct ice_pf *pf = vsi->back;
329 struct ice_hw *hw = &pf->hw;
330 u32 changed_flags = 0;
331 int err;
332
333 if (!vsi->netdev)
334 return -EINVAL;
335
336 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
337 usleep_range(1000, 2000);
338
339 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
340 vsi->current_netdev_flags = vsi->netdev->flags;
341
342 INIT_LIST_HEAD(&vsi->tmp_sync_list);
343 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
344
345 if (ice_vsi_fltr_changed(vsi)) {
346 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
347 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
348
349 /* grab the netdev's addr_list_lock */
350 netif_addr_lock_bh(netdev);
351 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
352 ice_add_mac_to_unsync_list);
353 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
354 ice_add_mac_to_unsync_list);
355 /* our temp lists are populated. release lock */
356 netif_addr_unlock_bh(netdev);
357 }
358
359 /* Remove MAC addresses in the unsync list */
360 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
361 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
362 if (err) {
363 netdev_err(netdev, "Failed to delete MAC filters\n");
364 /* if we failed because of alloc failures, just bail */
365 if (err == -ENOMEM)
366 goto out;
367 }
368
369 /* Add MAC addresses in the sync list */
370 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
371 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
372 /* If filter is added successfully or already exists, do not go into
373 * 'if' condition and report it as error. Instead continue processing
374 * rest of the function.
375 */
376 if (err && err != -EEXIST) {
377 netdev_err(netdev, "Failed to add MAC filters\n");
378 /* If there is no more space for new umac filters, VSI
379 * should go into promiscuous mode. There should be some
380 * space reserved for promiscuous filters.
381 */
382 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
383 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
384 vsi->state)) {
385 promisc_forced_on = true;
386 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
387 vsi->vsi_num);
388 } else {
389 goto out;
390 }
391 }
392 err = 0;
393 /* check for changes in promiscuous modes */
394 if (changed_flags & IFF_ALLMULTI) {
395 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
396 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
397 if (err) {
398 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
399 goto out_promisc;
400 }
401 } else {
402 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
403 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
404 if (err) {
405 vsi->current_netdev_flags |= IFF_ALLMULTI;
406 goto out_promisc;
407 }
408 }
409 }
410
411 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
412 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
413 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
414 if (vsi->current_netdev_flags & IFF_PROMISC) {
415 /* Apply Rx filter rule to get traffic from wire */
416 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
417 err = ice_set_dflt_vsi(vsi);
418 if (err && err != -EEXIST) {
419 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
420 err, vsi->vsi_num);
421 vsi->current_netdev_flags &=
422 ~IFF_PROMISC;
423 goto out_promisc;
424 }
425 err = 0;
426 vlan_ops->dis_rx_filtering(vsi);
427
428 /* promiscuous mode implies allmulticast so
429 * that VSIs that are in promiscuous mode are
430 * subscribed to multicast packets coming to
431 * the port
432 */
433 err = ice_set_promisc(vsi,
434 ICE_MCAST_PROMISC_BITS);
435 if (err)
436 goto out_promisc;
437 }
438 } else {
439 /* Clear Rx filter to remove traffic from wire */
440 if (ice_is_vsi_dflt_vsi(vsi)) {
441 err = ice_clear_dflt_vsi(vsi);
442 if (err) {
443 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
444 err, vsi->vsi_num);
445 vsi->current_netdev_flags |=
446 IFF_PROMISC;
447 goto out_promisc;
448 }
449 if (vsi->netdev->features &
450 NETIF_F_HW_VLAN_CTAG_FILTER)
451 vlan_ops->ena_rx_filtering(vsi);
452 }
453
454 /* disable allmulti here, but only if allmulti is not
455 * still enabled for the netdev
456 */
457 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
458 err = ice_clear_promisc(vsi,
459 ICE_MCAST_PROMISC_BITS);
460 if (err) {
461 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
462 err, vsi->vsi_num);
463 }
464 }
465 }
466 }
467 goto exit;
468
469 out_promisc:
470 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
471 goto exit;
472 out:
473 /* if something went wrong then set the changed flag so we try again */
474 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
475 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
476 exit:
477 clear_bit(ICE_CFG_BUSY, vsi->state);
478 return err;
479 }
480
481 /**
482 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
483 * @pf: board private structure
484 */
ice_sync_fltr_subtask(struct ice_pf * pf)485 static void ice_sync_fltr_subtask(struct ice_pf *pf)
486 {
487 int v;
488
489 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
490 return;
491
492 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
493
494 ice_for_each_vsi(pf, v)
495 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
496 ice_vsi_sync_fltr(pf->vsi[v])) {
497 /* come back and try again later */
498 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
499 break;
500 }
501 }
502
503 /**
504 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
505 * @pf: the PF
506 * @locked: is the rtnl_lock already held
507 */
ice_pf_dis_all_vsi(struct ice_pf * pf,bool locked)508 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
509 {
510 int node;
511 int v;
512
513 ice_for_each_vsi(pf, v)
514 if (pf->vsi[v])
515 ice_dis_vsi(pf->vsi[v], locked);
516
517 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
518 pf->pf_agg_node[node].num_vsis = 0;
519
520 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
521 pf->vf_agg_node[node].num_vsis = 0;
522 }
523
524 /**
525 * ice_prepare_for_reset - prep for reset
526 * @pf: board private structure
527 * @reset_type: reset type requested
528 *
529 * Inform or close all dependent features in prep for reset.
530 */
531 static void
ice_prepare_for_reset(struct ice_pf * pf,enum ice_reset_req reset_type)532 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
533 {
534 struct ice_hw *hw = &pf->hw;
535 struct ice_vsi *vsi;
536 struct ice_vf *vf;
537 unsigned int bkt;
538
539 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
540
541 /* already prepared for reset */
542 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
543 return;
544
545 synchronize_irq(pf->oicr_irq.virq);
546
547 ice_unplug_aux_dev(pf);
548
549 /* Notify VFs of impending reset */
550 if (ice_check_sq_alive(hw, &hw->mailboxq))
551 ice_vc_notify_reset(pf);
552
553 /* Disable VFs until reset is completed */
554 mutex_lock(&pf->vfs.table_lock);
555 ice_for_each_vf(pf, bkt, vf)
556 ice_set_vf_state_dis(vf);
557 mutex_unlock(&pf->vfs.table_lock);
558
559 if (ice_is_eswitch_mode_switchdev(pf)) {
560 rtnl_lock();
561 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge);
562 rtnl_unlock();
563 }
564
565 /* release ADQ specific HW and SW resources */
566 vsi = ice_get_main_vsi(pf);
567 if (!vsi)
568 goto skip;
569
570 /* to be on safe side, reset orig_rss_size so that normal flow
571 * of deciding rss_size can take precedence
572 */
573 vsi->orig_rss_size = 0;
574
575 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
576 if (reset_type == ICE_RESET_PFR) {
577 vsi->old_ena_tc = vsi->all_enatc;
578 vsi->old_numtc = vsi->all_numtc;
579 } else {
580 ice_remove_q_channels(vsi, true);
581
582 /* for other reset type, do not support channel rebuild
583 * hence reset needed info
584 */
585 vsi->old_ena_tc = 0;
586 vsi->all_enatc = 0;
587 vsi->old_numtc = 0;
588 vsi->all_numtc = 0;
589 vsi->req_txq = 0;
590 vsi->req_rxq = 0;
591 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
592 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
593 }
594 }
595
596 if (vsi->netdev)
597 netif_device_detach(vsi->netdev);
598 skip:
599
600 /* clear SW filtering DB */
601 ice_clear_hw_tbls(hw);
602 /* disable the VSIs and their queues that are not already DOWN */
603 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state);
604 ice_pf_dis_all_vsi(pf, false);
605
606 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
607 ice_ptp_prepare_for_reset(pf, reset_type);
608
609 if (ice_is_feature_supported(pf, ICE_F_GNSS))
610 ice_gnss_exit(pf);
611
612 if (hw->port_info)
613 ice_sched_clear_port(hw->port_info);
614
615 ice_shutdown_all_ctrlq(hw, false);
616
617 set_bit(ICE_PREPARED_FOR_RESET, pf->state);
618 }
619
620 /**
621 * ice_do_reset - Initiate one of many types of resets
622 * @pf: board private structure
623 * @reset_type: reset type requested before this function was called.
624 */
ice_do_reset(struct ice_pf * pf,enum ice_reset_req reset_type)625 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
626 {
627 struct device *dev = ice_pf_to_dev(pf);
628 struct ice_hw *hw = &pf->hw;
629
630 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
631
632 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
633 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
634 reset_type = ICE_RESET_CORER;
635 }
636
637 ice_prepare_for_reset(pf, reset_type);
638
639 /* trigger the reset */
640 if (ice_reset(hw, reset_type)) {
641 dev_err(dev, "reset %d failed\n", reset_type);
642 set_bit(ICE_RESET_FAILED, pf->state);
643 clear_bit(ICE_RESET_OICR_RECV, pf->state);
644 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
645 clear_bit(ICE_PFR_REQ, pf->state);
646 clear_bit(ICE_CORER_REQ, pf->state);
647 clear_bit(ICE_GLOBR_REQ, pf->state);
648 wake_up(&pf->reset_wait_queue);
649 return;
650 }
651
652 /* PFR is a bit of a special case because it doesn't result in an OICR
653 * interrupt. So for PFR, rebuild after the reset and clear the reset-
654 * associated state bits.
655 */
656 if (reset_type == ICE_RESET_PFR) {
657 pf->pfr_count++;
658 ice_rebuild(pf, reset_type);
659 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
660 clear_bit(ICE_PFR_REQ, pf->state);
661 wake_up(&pf->reset_wait_queue);
662 ice_reset_all_vfs(pf);
663 }
664 }
665
666 /**
667 * ice_reset_subtask - Set up for resetting the device and driver
668 * @pf: board private structure
669 */
ice_reset_subtask(struct ice_pf * pf)670 static void ice_reset_subtask(struct ice_pf *pf)
671 {
672 enum ice_reset_req reset_type = ICE_RESET_INVAL;
673
674 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
675 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
676 * of reset is pending and sets bits in pf->state indicating the reset
677 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
678 * prepare for pending reset if not already (for PF software-initiated
679 * global resets the software should already be prepared for it as
680 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
681 * by firmware or software on other PFs, that bit is not set so prepare
682 * for the reset now), poll for reset done, rebuild and return.
683 */
684 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
685 /* Perform the largest reset requested */
686 if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
687 reset_type = ICE_RESET_CORER;
688 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
689 reset_type = ICE_RESET_GLOBR;
690 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
691 reset_type = ICE_RESET_EMPR;
692 /* return if no valid reset type requested */
693 if (reset_type == ICE_RESET_INVAL)
694 return;
695 ice_prepare_for_reset(pf, reset_type);
696
697 /* make sure we are ready to rebuild */
698 if (ice_check_reset(&pf->hw)) {
699 set_bit(ICE_RESET_FAILED, pf->state);
700 } else {
701 /* done with reset. start rebuild */
702 pf->hw.reset_ongoing = false;
703 ice_rebuild(pf, reset_type);
704 /* clear bit to resume normal operations, but
705 * ICE_NEEDS_RESTART bit is set in case rebuild failed
706 */
707 clear_bit(ICE_RESET_OICR_RECV, pf->state);
708 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
709 clear_bit(ICE_PFR_REQ, pf->state);
710 clear_bit(ICE_CORER_REQ, pf->state);
711 clear_bit(ICE_GLOBR_REQ, pf->state);
712 wake_up(&pf->reset_wait_queue);
713 ice_reset_all_vfs(pf);
714 }
715
716 return;
717 }
718
719 /* No pending resets to finish processing. Check for new resets */
720 if (test_bit(ICE_PFR_REQ, pf->state)) {
721 reset_type = ICE_RESET_PFR;
722 if (pf->lag && pf->lag->bonded) {
723 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
724 reset_type = ICE_RESET_CORER;
725 }
726 }
727 if (test_bit(ICE_CORER_REQ, pf->state))
728 reset_type = ICE_RESET_CORER;
729 if (test_bit(ICE_GLOBR_REQ, pf->state))
730 reset_type = ICE_RESET_GLOBR;
731 /* If no valid reset type requested just return */
732 if (reset_type == ICE_RESET_INVAL)
733 return;
734
735 /* reset if not already down or busy */
736 if (!test_bit(ICE_DOWN, pf->state) &&
737 !test_bit(ICE_CFG_BUSY, pf->state)) {
738 ice_do_reset(pf, reset_type);
739 }
740 }
741
742 /**
743 * ice_print_topo_conflict - print topology conflict message
744 * @vsi: the VSI whose topology status is being checked
745 */
ice_print_topo_conflict(struct ice_vsi * vsi)746 static void ice_print_topo_conflict(struct ice_vsi *vsi)
747 {
748 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
749 case ICE_AQ_LINK_TOPO_CONFLICT:
750 case ICE_AQ_LINK_MEDIA_CONFLICT:
751 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
752 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
753 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
754 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
755 break;
756 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
757 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
758 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
759 else
760 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
761 break;
762 default:
763 break;
764 }
765 }
766
767 /**
768 * ice_print_link_msg - print link up or down message
769 * @vsi: the VSI whose link status is being queried
770 * @isup: boolean for if the link is now up or down
771 */
ice_print_link_msg(struct ice_vsi * vsi,bool isup)772 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
773 {
774 struct ice_aqc_get_phy_caps_data *caps;
775 const char *an_advertised;
776 const char *fec_req;
777 const char *speed;
778 const char *fec;
779 const char *fc;
780 const char *an;
781 int status;
782
783 if (!vsi)
784 return;
785
786 if (vsi->current_isup == isup)
787 return;
788
789 vsi->current_isup = isup;
790
791 if (!isup) {
792 netdev_info(vsi->netdev, "NIC Link is Down\n");
793 return;
794 }
795
796 switch (vsi->port_info->phy.link_info.link_speed) {
797 case ICE_AQ_LINK_SPEED_200GB:
798 speed = "200 G";
799 break;
800 case ICE_AQ_LINK_SPEED_100GB:
801 speed = "100 G";
802 break;
803 case ICE_AQ_LINK_SPEED_50GB:
804 speed = "50 G";
805 break;
806 case ICE_AQ_LINK_SPEED_40GB:
807 speed = "40 G";
808 break;
809 case ICE_AQ_LINK_SPEED_25GB:
810 speed = "25 G";
811 break;
812 case ICE_AQ_LINK_SPEED_20GB:
813 speed = "20 G";
814 break;
815 case ICE_AQ_LINK_SPEED_10GB:
816 speed = "10 G";
817 break;
818 case ICE_AQ_LINK_SPEED_5GB:
819 speed = "5 G";
820 break;
821 case ICE_AQ_LINK_SPEED_2500MB:
822 speed = "2.5 G";
823 break;
824 case ICE_AQ_LINK_SPEED_1000MB:
825 speed = "1 G";
826 break;
827 case ICE_AQ_LINK_SPEED_100MB:
828 speed = "100 M";
829 break;
830 default:
831 speed = "Unknown ";
832 break;
833 }
834
835 switch (vsi->port_info->fc.current_mode) {
836 case ICE_FC_FULL:
837 fc = "Rx/Tx";
838 break;
839 case ICE_FC_TX_PAUSE:
840 fc = "Tx";
841 break;
842 case ICE_FC_RX_PAUSE:
843 fc = "Rx";
844 break;
845 case ICE_FC_NONE:
846 fc = "None";
847 break;
848 default:
849 fc = "Unknown";
850 break;
851 }
852
853 /* Get FEC mode based on negotiated link info */
854 switch (vsi->port_info->phy.link_info.fec_info) {
855 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
856 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
857 fec = "RS-FEC";
858 break;
859 case ICE_AQ_LINK_25G_KR_FEC_EN:
860 fec = "FC-FEC/BASE-R";
861 break;
862 default:
863 fec = "NONE";
864 break;
865 }
866
867 /* check if autoneg completed, might be false due to not supported */
868 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
869 an = "True";
870 else
871 an = "False";
872
873 /* Get FEC mode requested based on PHY caps last SW configuration */
874 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
875 if (!caps) {
876 fec_req = "Unknown";
877 an_advertised = "Unknown";
878 goto done;
879 }
880
881 status = ice_aq_get_phy_caps(vsi->port_info, false,
882 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
883 if (status)
884 netdev_info(vsi->netdev, "Get phy capability failed.\n");
885
886 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
887
888 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
889 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
890 fec_req = "RS-FEC";
891 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
892 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
893 fec_req = "FC-FEC/BASE-R";
894 else
895 fec_req = "NONE";
896
897 kfree(caps);
898
899 done:
900 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
901 speed, fec_req, fec, an_advertised, an, fc);
902 ice_print_topo_conflict(vsi);
903 }
904
905 /**
906 * ice_vsi_link_event - update the VSI's netdev
907 * @vsi: the VSI on which the link event occurred
908 * @link_up: whether or not the VSI needs to be set up or down
909 */
ice_vsi_link_event(struct ice_vsi * vsi,bool link_up)910 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
911 {
912 if (!vsi)
913 return;
914
915 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
916 return;
917
918 if (vsi->type == ICE_VSI_PF) {
919 if (link_up == netif_carrier_ok(vsi->netdev))
920 return;
921
922 if (link_up) {
923 netif_carrier_on(vsi->netdev);
924 netif_tx_wake_all_queues(vsi->netdev);
925 } else {
926 netif_carrier_off(vsi->netdev);
927 netif_tx_stop_all_queues(vsi->netdev);
928 }
929 }
930 }
931
932 /**
933 * ice_set_dflt_mib - send a default config MIB to the FW
934 * @pf: private PF struct
935 *
936 * This function sends a default configuration MIB to the FW.
937 *
938 * If this function errors out at any point, the driver is still able to
939 * function. The main impact is that LFC may not operate as expected.
940 * Therefore an error state in this function should be treated with a DBG
941 * message and continue on with driver rebuild/reenable.
942 */
ice_set_dflt_mib(struct ice_pf * pf)943 static void ice_set_dflt_mib(struct ice_pf *pf)
944 {
945 struct device *dev = ice_pf_to_dev(pf);
946 u8 mib_type, *buf, *lldpmib = NULL;
947 u16 len, typelen, offset = 0;
948 struct ice_lldp_org_tlv *tlv;
949 struct ice_hw *hw = &pf->hw;
950 u32 ouisubtype;
951
952 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
953 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
954 if (!lldpmib) {
955 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
956 __func__);
957 return;
958 }
959
960 /* Add ETS CFG TLV */
961 tlv = (struct ice_lldp_org_tlv *)lldpmib;
962 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
963 ICE_IEEE_ETS_TLV_LEN);
964 tlv->typelen = htons(typelen);
965 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
966 ICE_IEEE_SUBTYPE_ETS_CFG);
967 tlv->ouisubtype = htonl(ouisubtype);
968
969 buf = tlv->tlvinfo;
970 buf[0] = 0;
971
972 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
973 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
974 * Octets 13 - 20 are TSA values - leave as zeros
975 */
976 buf[5] = 0x64;
977 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
978 offset += len + 2;
979 tlv = (struct ice_lldp_org_tlv *)
980 ((char *)tlv + sizeof(tlv->typelen) + len);
981
982 /* Add ETS REC TLV */
983 buf = tlv->tlvinfo;
984 tlv->typelen = htons(typelen);
985
986 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
987 ICE_IEEE_SUBTYPE_ETS_REC);
988 tlv->ouisubtype = htonl(ouisubtype);
989
990 /* First octet of buf is reserved
991 * Octets 1 - 4 map UP to TC - all UPs map to zero
992 * Octets 5 - 12 are BW values - set TC 0 to 100%.
993 * Octets 13 - 20 are TSA value - leave as zeros
994 */
995 buf[5] = 0x64;
996 offset += len + 2;
997 tlv = (struct ice_lldp_org_tlv *)
998 ((char *)tlv + sizeof(tlv->typelen) + len);
999
1000 /* Add PFC CFG TLV */
1001 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1002 ICE_IEEE_PFC_TLV_LEN);
1003 tlv->typelen = htons(typelen);
1004
1005 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1006 ICE_IEEE_SUBTYPE_PFC_CFG);
1007 tlv->ouisubtype = htonl(ouisubtype);
1008
1009 /* Octet 1 left as all zeros - PFC disabled */
1010 buf[0] = 0x08;
1011 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
1012 offset += len + 2;
1013
1014 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1015 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1016
1017 kfree(lldpmib);
1018 }
1019
1020 /**
1021 * ice_check_phy_fw_load - check if PHY FW load failed
1022 * @pf: pointer to PF struct
1023 * @link_cfg_err: bitmap from the link info structure
1024 *
1025 * check if external PHY FW load failed and print an error message if it did
1026 */
ice_check_phy_fw_load(struct ice_pf * pf,u8 link_cfg_err)1027 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1028 {
1029 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1030 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1031 return;
1032 }
1033
1034 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1035 return;
1036
1037 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1038 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1039 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1040 }
1041 }
1042
1043 /**
1044 * ice_check_module_power
1045 * @pf: pointer to PF struct
1046 * @link_cfg_err: bitmap from the link info structure
1047 *
1048 * check module power level returned by a previous call to aq_get_link_info
1049 * and print error messages if module power level is not supported
1050 */
ice_check_module_power(struct ice_pf * pf,u8 link_cfg_err)1051 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1052 {
1053 /* if module power level is supported, clear the flag */
1054 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1055 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1056 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1057 return;
1058 }
1059
1060 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1061 * above block didn't clear this bit, there's nothing to do
1062 */
1063 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1064 return;
1065
1066 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1067 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1068 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1069 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1070 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1071 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1072 }
1073 }
1074
1075 /**
1076 * ice_check_link_cfg_err - check if link configuration failed
1077 * @pf: pointer to the PF struct
1078 * @link_cfg_err: bitmap from the link info structure
1079 *
1080 * print if any link configuration failure happens due to the value in the
1081 * link_cfg_err parameter in the link info structure
1082 */
ice_check_link_cfg_err(struct ice_pf * pf,u8 link_cfg_err)1083 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1084 {
1085 ice_check_module_power(pf, link_cfg_err);
1086 ice_check_phy_fw_load(pf, link_cfg_err);
1087 }
1088
1089 /**
1090 * ice_link_event - process the link event
1091 * @pf: PF that the link event is associated with
1092 * @pi: port_info for the port that the link event is associated with
1093 * @link_up: true if the physical link is up and false if it is down
1094 * @link_speed: current link speed received from the link event
1095 *
1096 * Returns 0 on success and negative on failure
1097 */
1098 static int
ice_link_event(struct ice_pf * pf,struct ice_port_info * pi,bool link_up,u16 link_speed)1099 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1100 u16 link_speed)
1101 {
1102 struct device *dev = ice_pf_to_dev(pf);
1103 struct ice_phy_info *phy_info;
1104 struct ice_vsi *vsi;
1105 u16 old_link_speed;
1106 bool old_link;
1107 int status;
1108
1109 phy_info = &pi->phy;
1110 phy_info->link_info_old = phy_info->link_info;
1111
1112 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1113 old_link_speed = phy_info->link_info_old.link_speed;
1114
1115 /* update the link info structures and re-enable link events,
1116 * don't bail on failure due to other book keeping needed
1117 */
1118 status = ice_update_link_info(pi);
1119 if (status)
1120 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1121 pi->lport, status,
1122 ice_aq_str(pi->hw->adminq.sq_last_status));
1123
1124 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1125
1126 /* Check if the link state is up after updating link info, and treat
1127 * this event as an UP event since the link is actually UP now.
1128 */
1129 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1130 link_up = true;
1131
1132 vsi = ice_get_main_vsi(pf);
1133 if (!vsi || !vsi->port_info)
1134 return -EINVAL;
1135
1136 /* turn off PHY if media was removed */
1137 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1138 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1139 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1140 ice_set_link(vsi, false);
1141 }
1142
1143 /* if the old link up/down and speed is the same as the new */
1144 if (link_up == old_link && link_speed == old_link_speed)
1145 return 0;
1146
1147 ice_ptp_link_change(pf, link_up);
1148
1149 if (ice_is_dcb_active(pf)) {
1150 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1151 ice_dcb_rebuild(pf);
1152 } else {
1153 if (link_up)
1154 ice_set_dflt_mib(pf);
1155 }
1156 ice_vsi_link_event(vsi, link_up);
1157 ice_print_link_msg(vsi, link_up);
1158
1159 ice_vc_notify_link_state(pf);
1160
1161 return 0;
1162 }
1163
1164 /**
1165 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1166 * @pf: board private structure
1167 */
ice_watchdog_subtask(struct ice_pf * pf)1168 static void ice_watchdog_subtask(struct ice_pf *pf)
1169 {
1170 int i;
1171
1172 /* if interface is down do nothing */
1173 if (test_bit(ICE_DOWN, pf->state) ||
1174 test_bit(ICE_CFG_BUSY, pf->state))
1175 return;
1176
1177 /* make sure we don't do these things too often */
1178 if (time_before(jiffies,
1179 pf->serv_tmr_prev + pf->serv_tmr_period))
1180 return;
1181
1182 pf->serv_tmr_prev = jiffies;
1183
1184 /* Update the stats for active netdevs so the network stack
1185 * can look at updated numbers whenever it cares to
1186 */
1187 ice_update_pf_stats(pf);
1188 ice_for_each_vsi(pf, i)
1189 if (pf->vsi[i] && pf->vsi[i]->netdev)
1190 ice_update_vsi_stats(pf->vsi[i]);
1191 }
1192
1193 /**
1194 * ice_init_link_events - enable/initialize link events
1195 * @pi: pointer to the port_info instance
1196 *
1197 * Returns -EIO on failure, 0 on success
1198 */
ice_init_link_events(struct ice_port_info * pi)1199 static int ice_init_link_events(struct ice_port_info *pi)
1200 {
1201 u16 mask;
1202
1203 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1204 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1205 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1206
1207 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1208 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1209 pi->lport);
1210 return -EIO;
1211 }
1212
1213 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1214 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1215 pi->lport);
1216 return -EIO;
1217 }
1218
1219 return 0;
1220 }
1221
1222 /**
1223 * ice_handle_link_event - handle link event via ARQ
1224 * @pf: PF that the link event is associated with
1225 * @event: event structure containing link status info
1226 */
1227 static int
ice_handle_link_event(struct ice_pf * pf,struct ice_rq_event_info * event)1228 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1229 {
1230 struct ice_aqc_get_link_status_data *link_data;
1231 struct ice_port_info *port_info;
1232 int status;
1233
1234 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1235 port_info = pf->hw.port_info;
1236 if (!port_info)
1237 return -EINVAL;
1238
1239 status = ice_link_event(pf, port_info,
1240 !!(link_data->link_info & ICE_AQ_LINK_UP),
1241 le16_to_cpu(link_data->link_speed));
1242 if (status)
1243 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1244 status);
1245
1246 return status;
1247 }
1248
1249 /**
1250 * ice_get_fwlog_data - copy the FW log data from ARQ event
1251 * @pf: PF that the FW log event is associated with
1252 * @event: event structure containing FW log data
1253 */
1254 static void
ice_get_fwlog_data(struct ice_pf * pf,struct ice_rq_event_info * event)1255 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event)
1256 {
1257 struct ice_fwlog_data *fwlog;
1258 struct ice_hw *hw = &pf->hw;
1259
1260 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail];
1261
1262 memset(fwlog->data, 0, PAGE_SIZE);
1263 fwlog->data_size = le16_to_cpu(event->desc.datalen);
1264
1265 memcpy(fwlog->data, event->msg_buf, fwlog->data_size);
1266 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size);
1267
1268 if (ice_fwlog_ring_full(&hw->fwlog_ring)) {
1269 /* the rings are full so bump the head to create room */
1270 ice_fwlog_ring_increment(&hw->fwlog_ring.head,
1271 hw->fwlog_ring.size);
1272 }
1273 }
1274
1275 /**
1276 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1277 * @pf: pointer to the PF private structure
1278 * @task: intermediate helper storage and identifier for waiting
1279 * @opcode: the opcode to wait for
1280 *
1281 * Prepares to wait for a specific AdminQ completion event on the ARQ for
1282 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1283 *
1284 * Calls are separated to allow caller registering for event before sending
1285 * the command, which mitigates a race between registering and FW responding.
1286 *
1287 * To obtain only the descriptor contents, pass an task->event with null
1288 * msg_buf. If the complete data buffer is desired, allocate the
1289 * task->event.msg_buf with enough space ahead of time.
1290 */
ice_aq_prep_for_event(struct ice_pf * pf,struct ice_aq_task * task,u16 opcode)1291 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1292 u16 opcode)
1293 {
1294 INIT_HLIST_NODE(&task->entry);
1295 task->opcode = opcode;
1296 task->state = ICE_AQ_TASK_WAITING;
1297
1298 spin_lock_bh(&pf->aq_wait_lock);
1299 hlist_add_head(&task->entry, &pf->aq_wait_list);
1300 spin_unlock_bh(&pf->aq_wait_lock);
1301 }
1302
1303 /**
1304 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1305 * @pf: pointer to the PF private structure
1306 * @task: ptr prepared by ice_aq_prep_for_event()
1307 * @timeout: how long to wait, in jiffies
1308 *
1309 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1310 * current thread will be put to sleep until the specified event occurs or
1311 * until the given timeout is reached.
1312 *
1313 * Returns: zero on success, or a negative error code on failure.
1314 */
ice_aq_wait_for_event(struct ice_pf * pf,struct ice_aq_task * task,unsigned long timeout)1315 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1316 unsigned long timeout)
1317 {
1318 enum ice_aq_task_state *state = &task->state;
1319 struct device *dev = ice_pf_to_dev(pf);
1320 unsigned long start = jiffies;
1321 long ret;
1322 int err;
1323
1324 ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1325 *state != ICE_AQ_TASK_WAITING,
1326 timeout);
1327 switch (*state) {
1328 case ICE_AQ_TASK_NOT_PREPARED:
1329 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1330 err = -EINVAL;
1331 break;
1332 case ICE_AQ_TASK_WAITING:
1333 err = ret < 0 ? ret : -ETIMEDOUT;
1334 break;
1335 case ICE_AQ_TASK_CANCELED:
1336 err = ret < 0 ? ret : -ECANCELED;
1337 break;
1338 case ICE_AQ_TASK_COMPLETE:
1339 err = ret < 0 ? ret : 0;
1340 break;
1341 default:
1342 WARN(1, "Unexpected AdminQ wait task state %u", *state);
1343 err = -EINVAL;
1344 break;
1345 }
1346
1347 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1348 jiffies_to_msecs(jiffies - start),
1349 jiffies_to_msecs(timeout),
1350 task->opcode);
1351
1352 spin_lock_bh(&pf->aq_wait_lock);
1353 hlist_del(&task->entry);
1354 spin_unlock_bh(&pf->aq_wait_lock);
1355
1356 return err;
1357 }
1358
1359 /**
1360 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1361 * @pf: pointer to the PF private structure
1362 * @opcode: the opcode of the event
1363 * @event: the event to check
1364 *
1365 * Loops over the current list of pending threads waiting for an AdminQ event.
1366 * For each matching task, copy the contents of the event into the task
1367 * structure and wake up the thread.
1368 *
1369 * If multiple threads wait for the same opcode, they will all be woken up.
1370 *
1371 * Note that event->msg_buf will only be duplicated if the event has a buffer
1372 * with enough space already allocated. Otherwise, only the descriptor and
1373 * message length will be copied.
1374 *
1375 * Returns: true if an event was found, false otherwise
1376 */
ice_aq_check_events(struct ice_pf * pf,u16 opcode,struct ice_rq_event_info * event)1377 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1378 struct ice_rq_event_info *event)
1379 {
1380 struct ice_rq_event_info *task_ev;
1381 struct ice_aq_task *task;
1382 bool found = false;
1383
1384 spin_lock_bh(&pf->aq_wait_lock);
1385 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1386 if (task->state != ICE_AQ_TASK_WAITING)
1387 continue;
1388 if (task->opcode != opcode)
1389 continue;
1390
1391 task_ev = &task->event;
1392 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1393 task_ev->msg_len = event->msg_len;
1394
1395 /* Only copy the data buffer if a destination was set */
1396 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1397 memcpy(task_ev->msg_buf, event->msg_buf,
1398 event->buf_len);
1399 task_ev->buf_len = event->buf_len;
1400 }
1401
1402 task->state = ICE_AQ_TASK_COMPLETE;
1403 found = true;
1404 }
1405 spin_unlock_bh(&pf->aq_wait_lock);
1406
1407 if (found)
1408 wake_up(&pf->aq_wait_queue);
1409 }
1410
1411 /**
1412 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1413 * @pf: the PF private structure
1414 *
1415 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1416 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1417 */
ice_aq_cancel_waiting_tasks(struct ice_pf * pf)1418 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1419 {
1420 struct ice_aq_task *task;
1421
1422 spin_lock_bh(&pf->aq_wait_lock);
1423 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1424 task->state = ICE_AQ_TASK_CANCELED;
1425 spin_unlock_bh(&pf->aq_wait_lock);
1426
1427 wake_up(&pf->aq_wait_queue);
1428 }
1429
1430 #define ICE_MBX_OVERFLOW_WATERMARK 64
1431
1432 /**
1433 * __ice_clean_ctrlq - helper function to clean controlq rings
1434 * @pf: ptr to struct ice_pf
1435 * @q_type: specific Control queue type
1436 */
__ice_clean_ctrlq(struct ice_pf * pf,enum ice_ctl_q q_type)1437 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1438 {
1439 struct device *dev = ice_pf_to_dev(pf);
1440 struct ice_rq_event_info event;
1441 struct ice_hw *hw = &pf->hw;
1442 struct ice_ctl_q_info *cq;
1443 u16 pending, i = 0;
1444 const char *qtype;
1445 u32 oldval, val;
1446
1447 /* Do not clean control queue if/when PF reset fails */
1448 if (test_bit(ICE_RESET_FAILED, pf->state))
1449 return 0;
1450
1451 switch (q_type) {
1452 case ICE_CTL_Q_ADMIN:
1453 cq = &hw->adminq;
1454 qtype = "Admin";
1455 break;
1456 case ICE_CTL_Q_SB:
1457 cq = &hw->sbq;
1458 qtype = "Sideband";
1459 break;
1460 case ICE_CTL_Q_MAILBOX:
1461 cq = &hw->mailboxq;
1462 qtype = "Mailbox";
1463 /* we are going to try to detect a malicious VF, so set the
1464 * state to begin detection
1465 */
1466 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1467 break;
1468 default:
1469 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1470 return 0;
1471 }
1472
1473 /* check for error indications - PF_xx_AxQLEN register layout for
1474 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1475 */
1476 val = rd32(hw, cq->rq.len);
1477 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1478 PF_FW_ARQLEN_ARQCRIT_M)) {
1479 oldval = val;
1480 if (val & PF_FW_ARQLEN_ARQVFE_M)
1481 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1482 qtype);
1483 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1484 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1485 qtype);
1486 }
1487 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1488 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1489 qtype);
1490 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1491 PF_FW_ARQLEN_ARQCRIT_M);
1492 if (oldval != val)
1493 wr32(hw, cq->rq.len, val);
1494 }
1495
1496 val = rd32(hw, cq->sq.len);
1497 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1498 PF_FW_ATQLEN_ATQCRIT_M)) {
1499 oldval = val;
1500 if (val & PF_FW_ATQLEN_ATQVFE_M)
1501 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1502 qtype);
1503 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1504 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1505 qtype);
1506 }
1507 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1508 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1509 qtype);
1510 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1511 PF_FW_ATQLEN_ATQCRIT_M);
1512 if (oldval != val)
1513 wr32(hw, cq->sq.len, val);
1514 }
1515
1516 event.buf_len = cq->rq_buf_size;
1517 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1518 if (!event.msg_buf)
1519 return 0;
1520
1521 do {
1522 struct ice_mbx_data data = {};
1523 u16 opcode;
1524 int ret;
1525
1526 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1527 if (ret == -EALREADY)
1528 break;
1529 if (ret) {
1530 dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1531 ret);
1532 break;
1533 }
1534
1535 opcode = le16_to_cpu(event.desc.opcode);
1536
1537 /* Notify any thread that might be waiting for this event */
1538 ice_aq_check_events(pf, opcode, &event);
1539
1540 switch (opcode) {
1541 case ice_aqc_opc_get_link_status:
1542 if (ice_handle_link_event(pf, &event))
1543 dev_err(dev, "Could not handle link event\n");
1544 break;
1545 case ice_aqc_opc_event_lan_overflow:
1546 ice_vf_lan_overflow_event(pf, &event);
1547 break;
1548 case ice_mbx_opc_send_msg_to_pf:
1549 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) {
1550 ice_vc_process_vf_msg(pf, &event, NULL);
1551 ice_mbx_vf_dec_trig_e830(hw, &event);
1552 } else {
1553 u16 val = hw->mailboxq.num_rq_entries;
1554
1555 data.max_num_msgs_mbx = val;
1556 val = ICE_MBX_OVERFLOW_WATERMARK;
1557 data.async_watermark_val = val;
1558 data.num_msg_proc = i;
1559 data.num_pending_arq = pending;
1560
1561 ice_vc_process_vf_msg(pf, &event, &data);
1562 }
1563 break;
1564 case ice_aqc_opc_fw_logs_event:
1565 ice_get_fwlog_data(pf, &event);
1566 break;
1567 case ice_aqc_opc_lldp_set_mib_change:
1568 ice_dcb_process_lldp_set_mib_change(pf, &event);
1569 break;
1570 case ice_aqc_opc_get_health_status:
1571 ice_process_health_status_event(pf, &event);
1572 break;
1573 default:
1574 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1575 qtype, opcode);
1576 break;
1577 }
1578 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1579
1580 kfree(event.msg_buf);
1581
1582 return pending && (i == ICE_DFLT_IRQ_WORK);
1583 }
1584
1585 /**
1586 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1587 * @hw: pointer to hardware info
1588 * @cq: control queue information
1589 *
1590 * returns true if there are pending messages in a queue, false if there aren't
1591 */
ice_ctrlq_pending(struct ice_hw * hw,struct ice_ctl_q_info * cq)1592 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1593 {
1594 u16 ntu;
1595
1596 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1597 return cq->rq.next_to_clean != ntu;
1598 }
1599
1600 /**
1601 * ice_clean_adminq_subtask - clean the AdminQ rings
1602 * @pf: board private structure
1603 */
ice_clean_adminq_subtask(struct ice_pf * pf)1604 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1605 {
1606 struct ice_hw *hw = &pf->hw;
1607
1608 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1609 return;
1610
1611 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1612 return;
1613
1614 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1615
1616 /* There might be a situation where new messages arrive to a control
1617 * queue between processing the last message and clearing the
1618 * EVENT_PENDING bit. So before exiting, check queue head again (using
1619 * ice_ctrlq_pending) and process new messages if any.
1620 */
1621 if (ice_ctrlq_pending(hw, &hw->adminq))
1622 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1623
1624 ice_flush(hw);
1625 }
1626
1627 /**
1628 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1629 * @pf: board private structure
1630 */
ice_clean_mailboxq_subtask(struct ice_pf * pf)1631 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1632 {
1633 struct ice_hw *hw = &pf->hw;
1634
1635 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1636 return;
1637
1638 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1639 return;
1640
1641 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1642
1643 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1644 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1645
1646 ice_flush(hw);
1647 }
1648
1649 /**
1650 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1651 * @pf: board private structure
1652 */
ice_clean_sbq_subtask(struct ice_pf * pf)1653 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1654 {
1655 struct ice_hw *hw = &pf->hw;
1656
1657 /* if mac_type is not generic, sideband is not supported
1658 * and there's nothing to do here
1659 */
1660 if (!ice_is_generic_mac(hw)) {
1661 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1662 return;
1663 }
1664
1665 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1666 return;
1667
1668 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1669 return;
1670
1671 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1672
1673 if (ice_ctrlq_pending(hw, &hw->sbq))
1674 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1675
1676 ice_flush(hw);
1677 }
1678
1679 /**
1680 * ice_service_task_schedule - schedule the service task to wake up
1681 * @pf: board private structure
1682 *
1683 * If not already scheduled, this puts the task into the work queue.
1684 */
ice_service_task_schedule(struct ice_pf * pf)1685 void ice_service_task_schedule(struct ice_pf *pf)
1686 {
1687 if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1688 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1689 !test_bit(ICE_NEEDS_RESTART, pf->state))
1690 queue_work(ice_wq, &pf->serv_task);
1691 }
1692
1693 /**
1694 * ice_service_task_complete - finish up the service task
1695 * @pf: board private structure
1696 */
ice_service_task_complete(struct ice_pf * pf)1697 static void ice_service_task_complete(struct ice_pf *pf)
1698 {
1699 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1700
1701 /* force memory (pf->state) to sync before next service task */
1702 smp_mb__before_atomic();
1703 clear_bit(ICE_SERVICE_SCHED, pf->state);
1704 }
1705
1706 /**
1707 * ice_service_task_stop - stop service task and cancel works
1708 * @pf: board private structure
1709 *
1710 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1711 * 1 otherwise.
1712 */
ice_service_task_stop(struct ice_pf * pf)1713 static int ice_service_task_stop(struct ice_pf *pf)
1714 {
1715 int ret;
1716
1717 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1718
1719 if (pf->serv_tmr.function)
1720 del_timer_sync(&pf->serv_tmr);
1721 if (pf->serv_task.func)
1722 cancel_work_sync(&pf->serv_task);
1723
1724 clear_bit(ICE_SERVICE_SCHED, pf->state);
1725 return ret;
1726 }
1727
1728 /**
1729 * ice_service_task_restart - restart service task and schedule works
1730 * @pf: board private structure
1731 *
1732 * This function is needed for suspend and resume works (e.g WoL scenario)
1733 */
ice_service_task_restart(struct ice_pf * pf)1734 static void ice_service_task_restart(struct ice_pf *pf)
1735 {
1736 clear_bit(ICE_SERVICE_DIS, pf->state);
1737 ice_service_task_schedule(pf);
1738 }
1739
1740 /**
1741 * ice_service_timer - timer callback to schedule service task
1742 * @t: pointer to timer_list
1743 */
ice_service_timer(struct timer_list * t)1744 static void ice_service_timer(struct timer_list *t)
1745 {
1746 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1747
1748 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1749 ice_service_task_schedule(pf);
1750 }
1751
1752 /**
1753 * ice_mdd_maybe_reset_vf - reset VF after MDD event
1754 * @pf: pointer to the PF structure
1755 * @vf: pointer to the VF structure
1756 * @reset_vf_tx: whether Tx MDD has occurred
1757 * @reset_vf_rx: whether Rx MDD has occurred
1758 *
1759 * Since the queue can get stuck on VF MDD events, the PF can be configured to
1760 * automatically reset the VF by enabling the private ethtool flag
1761 * mdd-auto-reset-vf.
1762 */
ice_mdd_maybe_reset_vf(struct ice_pf * pf,struct ice_vf * vf,bool reset_vf_tx,bool reset_vf_rx)1763 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf,
1764 bool reset_vf_tx, bool reset_vf_rx)
1765 {
1766 struct device *dev = ice_pf_to_dev(pf);
1767
1768 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags))
1769 return;
1770
1771 /* VF MDD event counters will be cleared by reset, so print the event
1772 * prior to reset.
1773 */
1774 if (reset_vf_tx)
1775 ice_print_vf_tx_mdd_event(vf);
1776
1777 if (reset_vf_rx)
1778 ice_print_vf_rx_mdd_event(vf);
1779
1780 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n",
1781 pf->hw.pf_id, vf->vf_id);
1782 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1783 }
1784
1785 /**
1786 * ice_handle_mdd_event - handle malicious driver detect event
1787 * @pf: pointer to the PF structure
1788 *
1789 * Called from service task. OICR interrupt handler indicates MDD event.
1790 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1791 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1792 * disable the queue, the PF can be configured to reset the VF using ethtool
1793 * private flag mdd-auto-reset-vf.
1794 */
ice_handle_mdd_event(struct ice_pf * pf)1795 static void ice_handle_mdd_event(struct ice_pf *pf)
1796 {
1797 struct device *dev = ice_pf_to_dev(pf);
1798 struct ice_hw *hw = &pf->hw;
1799 struct ice_vf *vf;
1800 unsigned int bkt;
1801 u32 reg;
1802
1803 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1804 /* Since the VF MDD event logging is rate limited, check if
1805 * there are pending MDD events.
1806 */
1807 ice_print_vfs_mdd_events(pf);
1808 return;
1809 }
1810
1811 /* find what triggered an MDD event */
1812 reg = rd32(hw, GL_MDET_TX_PQM);
1813 if (reg & GL_MDET_TX_PQM_VALID_M) {
1814 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg);
1815 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg);
1816 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg);
1817 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg);
1818
1819 if (netif_msg_tx_err(pf))
1820 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1821 event, queue, pf_num, vf_num);
1822 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_PQM, pf_num, vf_num,
1823 event, queue);
1824 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1825 }
1826
1827 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
1828 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1829 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg);
1830 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg);
1831 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg);
1832 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg);
1833
1834 if (netif_msg_tx_err(pf))
1835 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1836 event, queue, pf_num, vf_num);
1837 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_TCLAN, pf_num, vf_num,
1838 event, queue);
1839 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
1840 }
1841
1842 reg = rd32(hw, GL_MDET_RX);
1843 if (reg & GL_MDET_RX_VALID_M) {
1844 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg);
1845 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg);
1846 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg);
1847 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg);
1848
1849 if (netif_msg_rx_err(pf))
1850 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1851 event, queue, pf_num, vf_num);
1852 ice_report_mdd_event(pf, ICE_MDD_SRC_RX, pf_num, vf_num, event,
1853 queue);
1854 wr32(hw, GL_MDET_RX, 0xffffffff);
1855 }
1856
1857 /* check to see if this PF caused an MDD event */
1858 reg = rd32(hw, PF_MDET_TX_PQM);
1859 if (reg & PF_MDET_TX_PQM_VALID_M) {
1860 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1861 if (netif_msg_tx_err(pf))
1862 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1863 }
1864
1865 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
1866 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1867 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
1868 if (netif_msg_tx_err(pf))
1869 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1870 }
1871
1872 reg = rd32(hw, PF_MDET_RX);
1873 if (reg & PF_MDET_RX_VALID_M) {
1874 wr32(hw, PF_MDET_RX, 0xFFFF);
1875 if (netif_msg_rx_err(pf))
1876 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1877 }
1878
1879 /* Check to see if one of the VFs caused an MDD event, and then
1880 * increment counters and set print pending
1881 */
1882 mutex_lock(&pf->vfs.table_lock);
1883 ice_for_each_vf(pf, bkt, vf) {
1884 bool reset_vf_tx = false, reset_vf_rx = false;
1885
1886 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1887 if (reg & VP_MDET_TX_PQM_VALID_M) {
1888 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1889 vf->mdd_tx_events.count++;
1890 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1891 if (netif_msg_tx_err(pf))
1892 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1893 vf->vf_id);
1894
1895 reset_vf_tx = true;
1896 }
1897
1898 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1899 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1900 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1901 vf->mdd_tx_events.count++;
1902 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1903 if (netif_msg_tx_err(pf))
1904 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1905 vf->vf_id);
1906
1907 reset_vf_tx = true;
1908 }
1909
1910 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1911 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1912 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1913 vf->mdd_tx_events.count++;
1914 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1915 if (netif_msg_tx_err(pf))
1916 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1917 vf->vf_id);
1918
1919 reset_vf_tx = true;
1920 }
1921
1922 reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1923 if (reg & VP_MDET_RX_VALID_M) {
1924 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1925 vf->mdd_rx_events.count++;
1926 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1927 if (netif_msg_rx_err(pf))
1928 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1929 vf->vf_id);
1930
1931 reset_vf_rx = true;
1932 }
1933
1934 if (reset_vf_tx || reset_vf_rx)
1935 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx,
1936 reset_vf_rx);
1937 }
1938 mutex_unlock(&pf->vfs.table_lock);
1939
1940 ice_print_vfs_mdd_events(pf);
1941 }
1942
1943 /**
1944 * ice_force_phys_link_state - Force the physical link state
1945 * @vsi: VSI to force the physical link state to up/down
1946 * @link_up: true/false indicates to set the physical link to up/down
1947 *
1948 * Force the physical link state by getting the current PHY capabilities from
1949 * hardware and setting the PHY config based on the determined capabilities. If
1950 * link changes a link event will be triggered because both the Enable Automatic
1951 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1952 *
1953 * Returns 0 on success, negative on failure
1954 */
ice_force_phys_link_state(struct ice_vsi * vsi,bool link_up)1955 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1956 {
1957 struct ice_aqc_get_phy_caps_data *pcaps;
1958 struct ice_aqc_set_phy_cfg_data *cfg;
1959 struct ice_port_info *pi;
1960 struct device *dev;
1961 int retcode;
1962
1963 if (!vsi || !vsi->port_info || !vsi->back)
1964 return -EINVAL;
1965 if (vsi->type != ICE_VSI_PF)
1966 return 0;
1967
1968 dev = ice_pf_to_dev(vsi->back);
1969
1970 pi = vsi->port_info;
1971
1972 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1973 if (!pcaps)
1974 return -ENOMEM;
1975
1976 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1977 NULL);
1978 if (retcode) {
1979 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1980 vsi->vsi_num, retcode);
1981 retcode = -EIO;
1982 goto out;
1983 }
1984
1985 /* No change in link */
1986 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1987 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1988 goto out;
1989
1990 /* Use the current user PHY configuration. The current user PHY
1991 * configuration is initialized during probe from PHY capabilities
1992 * software mode, and updated on set PHY configuration.
1993 */
1994 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1995 if (!cfg) {
1996 retcode = -ENOMEM;
1997 goto out;
1998 }
1999
2000 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2001 if (link_up)
2002 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
2003 else
2004 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
2005
2006 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
2007 if (retcode) {
2008 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2009 vsi->vsi_num, retcode);
2010 retcode = -EIO;
2011 }
2012
2013 kfree(cfg);
2014 out:
2015 kfree(pcaps);
2016 return retcode;
2017 }
2018
2019 /**
2020 * ice_init_nvm_phy_type - Initialize the NVM PHY type
2021 * @pi: port info structure
2022 *
2023 * Initialize nvm_phy_type_[low|high] for link lenient mode support
2024 */
ice_init_nvm_phy_type(struct ice_port_info * pi)2025 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
2026 {
2027 struct ice_aqc_get_phy_caps_data *pcaps;
2028 struct ice_pf *pf = pi->hw->back;
2029 int err;
2030
2031 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2032 if (!pcaps)
2033 return -ENOMEM;
2034
2035 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
2036 pcaps, NULL);
2037
2038 if (err) {
2039 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2040 goto out;
2041 }
2042
2043 pf->nvm_phy_type_hi = pcaps->phy_type_high;
2044 pf->nvm_phy_type_lo = pcaps->phy_type_low;
2045
2046 out:
2047 kfree(pcaps);
2048 return err;
2049 }
2050
2051 /**
2052 * ice_init_link_dflt_override - Initialize link default override
2053 * @pi: port info structure
2054 *
2055 * Initialize link default override and PHY total port shutdown during probe
2056 */
ice_init_link_dflt_override(struct ice_port_info * pi)2057 static void ice_init_link_dflt_override(struct ice_port_info *pi)
2058 {
2059 struct ice_link_default_override_tlv *ldo;
2060 struct ice_pf *pf = pi->hw->back;
2061
2062 ldo = &pf->link_dflt_override;
2063 if (ice_get_link_default_override(ldo, pi))
2064 return;
2065
2066 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2067 return;
2068
2069 /* Enable Total Port Shutdown (override/replace link-down-on-close
2070 * ethtool private flag) for ports with Port Disable bit set.
2071 */
2072 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2073 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2074 }
2075
2076 /**
2077 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2078 * @pi: port info structure
2079 *
2080 * If default override is enabled, initialize the user PHY cfg speed and FEC
2081 * settings using the default override mask from the NVM.
2082 *
2083 * The PHY should only be configured with the default override settings the
2084 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2085 * is used to indicate that the user PHY cfg default override is initialized
2086 * and the PHY has not been configured with the default override settings. The
2087 * state is set here, and cleared in ice_configure_phy the first time the PHY is
2088 * configured.
2089 *
2090 * This function should be called only if the FW doesn't support default
2091 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2092 */
ice_init_phy_cfg_dflt_override(struct ice_port_info * pi)2093 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2094 {
2095 struct ice_link_default_override_tlv *ldo;
2096 struct ice_aqc_set_phy_cfg_data *cfg;
2097 struct ice_phy_info *phy = &pi->phy;
2098 struct ice_pf *pf = pi->hw->back;
2099
2100 ldo = &pf->link_dflt_override;
2101
2102 /* If link default override is enabled, use to mask NVM PHY capabilities
2103 * for speed and FEC default configuration.
2104 */
2105 cfg = &phy->curr_user_phy_cfg;
2106
2107 if (ldo->phy_type_low || ldo->phy_type_high) {
2108 cfg->phy_type_low = pf->nvm_phy_type_lo &
2109 cpu_to_le64(ldo->phy_type_low);
2110 cfg->phy_type_high = pf->nvm_phy_type_hi &
2111 cpu_to_le64(ldo->phy_type_high);
2112 }
2113 cfg->link_fec_opt = ldo->fec_options;
2114 phy->curr_user_fec_req = ICE_FEC_AUTO;
2115
2116 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2117 }
2118
2119 /**
2120 * ice_init_phy_user_cfg - Initialize the PHY user configuration
2121 * @pi: port info structure
2122 *
2123 * Initialize the current user PHY configuration, speed, FEC, and FC requested
2124 * mode to default. The PHY defaults are from get PHY capabilities topology
2125 * with media so call when media is first available. An error is returned if
2126 * called when media is not available. The PHY initialization completed state is
2127 * set here.
2128 *
2129 * These configurations are used when setting PHY
2130 * configuration. The user PHY configuration is updated on set PHY
2131 * configuration. Returns 0 on success, negative on failure
2132 */
ice_init_phy_user_cfg(struct ice_port_info * pi)2133 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2134 {
2135 struct ice_aqc_get_phy_caps_data *pcaps;
2136 struct ice_phy_info *phy = &pi->phy;
2137 struct ice_pf *pf = pi->hw->back;
2138 int err;
2139
2140 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2141 return -EIO;
2142
2143 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2144 if (!pcaps)
2145 return -ENOMEM;
2146
2147 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2148 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2149 pcaps, NULL);
2150 else
2151 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2152 pcaps, NULL);
2153 if (err) {
2154 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2155 goto err_out;
2156 }
2157
2158 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2159
2160 /* check if lenient mode is supported and enabled */
2161 if (ice_fw_supports_link_override(pi->hw) &&
2162 !(pcaps->module_compliance_enforcement &
2163 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2164 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2165
2166 /* if the FW supports default PHY configuration mode, then the driver
2167 * does not have to apply link override settings. If not,
2168 * initialize user PHY configuration with link override values
2169 */
2170 if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2171 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2172 ice_init_phy_cfg_dflt_override(pi);
2173 goto out;
2174 }
2175 }
2176
2177 /* if link default override is not enabled, set user flow control and
2178 * FEC settings based on what get_phy_caps returned
2179 */
2180 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2181 pcaps->link_fec_options);
2182 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2183
2184 out:
2185 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2186 set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2187 err_out:
2188 kfree(pcaps);
2189 return err;
2190 }
2191
2192 /**
2193 * ice_configure_phy - configure PHY
2194 * @vsi: VSI of PHY
2195 *
2196 * Set the PHY configuration. If the current PHY configuration is the same as
2197 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2198 * configure the based get PHY capabilities for topology with media.
2199 */
ice_configure_phy(struct ice_vsi * vsi)2200 static int ice_configure_phy(struct ice_vsi *vsi)
2201 {
2202 struct device *dev = ice_pf_to_dev(vsi->back);
2203 struct ice_port_info *pi = vsi->port_info;
2204 struct ice_aqc_get_phy_caps_data *pcaps;
2205 struct ice_aqc_set_phy_cfg_data *cfg;
2206 struct ice_phy_info *phy = &pi->phy;
2207 struct ice_pf *pf = vsi->back;
2208 int err;
2209
2210 /* Ensure we have media as we cannot configure a medialess port */
2211 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2212 return -ENOMEDIUM;
2213
2214 ice_print_topo_conflict(vsi);
2215
2216 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2217 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2218 return -EPERM;
2219
2220 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2221 return ice_force_phys_link_state(vsi, true);
2222
2223 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2224 if (!pcaps)
2225 return -ENOMEM;
2226
2227 /* Get current PHY config */
2228 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2229 NULL);
2230 if (err) {
2231 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2232 vsi->vsi_num, err);
2233 goto done;
2234 }
2235
2236 /* If PHY enable link is configured and configuration has not changed,
2237 * there's nothing to do
2238 */
2239 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2240 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2241 goto done;
2242
2243 /* Use PHY topology as baseline for configuration */
2244 memset(pcaps, 0, sizeof(*pcaps));
2245 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2246 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2247 pcaps, NULL);
2248 else
2249 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2250 pcaps, NULL);
2251 if (err) {
2252 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2253 vsi->vsi_num, err);
2254 goto done;
2255 }
2256
2257 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2258 if (!cfg) {
2259 err = -ENOMEM;
2260 goto done;
2261 }
2262
2263 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2264
2265 /* Speed - If default override pending, use curr_user_phy_cfg set in
2266 * ice_init_phy_user_cfg_ldo.
2267 */
2268 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2269 vsi->back->state)) {
2270 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2271 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2272 } else {
2273 u64 phy_low = 0, phy_high = 0;
2274
2275 ice_update_phy_type(&phy_low, &phy_high,
2276 pi->phy.curr_user_speed_req);
2277 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2278 cfg->phy_type_high = pcaps->phy_type_high &
2279 cpu_to_le64(phy_high);
2280 }
2281
2282 /* Can't provide what was requested; use PHY capabilities */
2283 if (!cfg->phy_type_low && !cfg->phy_type_high) {
2284 cfg->phy_type_low = pcaps->phy_type_low;
2285 cfg->phy_type_high = pcaps->phy_type_high;
2286 }
2287
2288 /* FEC */
2289 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2290
2291 /* Can't provide what was requested; use PHY capabilities */
2292 if (cfg->link_fec_opt !=
2293 (cfg->link_fec_opt & pcaps->link_fec_options)) {
2294 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2295 cfg->link_fec_opt = pcaps->link_fec_options;
2296 }
2297
2298 /* Flow Control - always supported; no need to check against
2299 * capabilities
2300 */
2301 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2302
2303 /* Enable link and link update */
2304 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2305
2306 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2307 if (err)
2308 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2309 vsi->vsi_num, err);
2310
2311 kfree(cfg);
2312 done:
2313 kfree(pcaps);
2314 return err;
2315 }
2316
2317 /**
2318 * ice_check_media_subtask - Check for media
2319 * @pf: pointer to PF struct
2320 *
2321 * If media is available, then initialize PHY user configuration if it is not
2322 * been, and configure the PHY if the interface is up.
2323 */
ice_check_media_subtask(struct ice_pf * pf)2324 static void ice_check_media_subtask(struct ice_pf *pf)
2325 {
2326 struct ice_port_info *pi;
2327 struct ice_vsi *vsi;
2328 int err;
2329
2330 /* No need to check for media if it's already present */
2331 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2332 return;
2333
2334 vsi = ice_get_main_vsi(pf);
2335 if (!vsi)
2336 return;
2337
2338 /* Refresh link info and check if media is present */
2339 pi = vsi->port_info;
2340 err = ice_update_link_info(pi);
2341 if (err)
2342 return;
2343
2344 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2345
2346 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2347 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2348 ice_init_phy_user_cfg(pi);
2349
2350 /* PHY settings are reset on media insertion, reconfigure
2351 * PHY to preserve settings.
2352 */
2353 if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2354 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2355 return;
2356
2357 err = ice_configure_phy(vsi);
2358 if (!err)
2359 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2360
2361 /* A Link Status Event will be generated; the event handler
2362 * will complete bringing the interface up
2363 */
2364 }
2365 }
2366
ice_service_task_recovery_mode(struct work_struct * work)2367 static void ice_service_task_recovery_mode(struct work_struct *work)
2368 {
2369 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2370
2371 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
2372 ice_clean_adminq_subtask(pf);
2373
2374 ice_service_task_complete(pf);
2375
2376 mod_timer(&pf->serv_tmr, jiffies + msecs_to_jiffies(100));
2377 }
2378
2379 /**
2380 * ice_service_task - manage and run subtasks
2381 * @work: pointer to work_struct contained by the PF struct
2382 */
ice_service_task(struct work_struct * work)2383 static void ice_service_task(struct work_struct *work)
2384 {
2385 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2386 unsigned long start_time = jiffies;
2387
2388 if (pf->health_reporters.tx_hang_buf.tx_ring) {
2389 ice_report_tx_hang(pf);
2390 pf->health_reporters.tx_hang_buf.tx_ring = NULL;
2391 }
2392
2393 ice_reset_subtask(pf);
2394
2395 /* bail if a reset/recovery cycle is pending or rebuild failed */
2396 if (ice_is_reset_in_progress(pf->state) ||
2397 test_bit(ICE_SUSPENDED, pf->state) ||
2398 test_bit(ICE_NEEDS_RESTART, pf->state)) {
2399 ice_service_task_complete(pf);
2400 return;
2401 }
2402
2403 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2404 struct iidc_event *event;
2405
2406 event = kzalloc(sizeof(*event), GFP_KERNEL);
2407 if (event) {
2408 set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2409 /* report the entire OICR value to AUX driver */
2410 swap(event->reg, pf->oicr_err_reg);
2411 ice_send_event_to_aux(pf, event);
2412 kfree(event);
2413 }
2414 }
2415
2416 /* unplug aux dev per request, if an unplug request came in
2417 * while processing a plug request, this will handle it
2418 */
2419 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2420 ice_unplug_aux_dev(pf);
2421
2422 /* Plug aux device per request */
2423 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2424 ice_plug_aux_dev(pf);
2425
2426 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2427 struct iidc_event *event;
2428
2429 event = kzalloc(sizeof(*event), GFP_KERNEL);
2430 if (event) {
2431 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2432 ice_send_event_to_aux(pf, event);
2433 kfree(event);
2434 }
2435 }
2436
2437 ice_clean_adminq_subtask(pf);
2438 ice_check_media_subtask(pf);
2439 ice_check_for_hang_subtask(pf);
2440 ice_sync_fltr_subtask(pf);
2441 ice_handle_mdd_event(pf);
2442 ice_watchdog_subtask(pf);
2443
2444 if (ice_is_safe_mode(pf)) {
2445 ice_service_task_complete(pf);
2446 return;
2447 }
2448
2449 ice_process_vflr_event(pf);
2450 ice_clean_mailboxq_subtask(pf);
2451 ice_clean_sbq_subtask(pf);
2452 ice_sync_arfs_fltrs(pf);
2453 ice_flush_fdir_ctx(pf);
2454
2455 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2456 ice_service_task_complete(pf);
2457
2458 /* If the tasks have taken longer than one service timer period
2459 * or there is more work to be done, reset the service timer to
2460 * schedule the service task now.
2461 */
2462 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2463 test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2464 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2465 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2466 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2467 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2468 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2469 mod_timer(&pf->serv_tmr, jiffies);
2470 }
2471
2472 /**
2473 * ice_set_ctrlq_len - helper function to set controlq length
2474 * @hw: pointer to the HW instance
2475 */
ice_set_ctrlq_len(struct ice_hw * hw)2476 static void ice_set_ctrlq_len(struct ice_hw *hw)
2477 {
2478 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2479 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2480 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2481 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2482 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2483 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2484 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2485 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2486 hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2487 hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2488 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2489 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2490 }
2491
2492 /**
2493 * ice_schedule_reset - schedule a reset
2494 * @pf: board private structure
2495 * @reset: reset being requested
2496 */
ice_schedule_reset(struct ice_pf * pf,enum ice_reset_req reset)2497 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2498 {
2499 struct device *dev = ice_pf_to_dev(pf);
2500
2501 /* bail out if earlier reset has failed */
2502 if (test_bit(ICE_RESET_FAILED, pf->state)) {
2503 dev_dbg(dev, "earlier reset has failed\n");
2504 return -EIO;
2505 }
2506 /* bail if reset/recovery already in progress */
2507 if (ice_is_reset_in_progress(pf->state)) {
2508 dev_dbg(dev, "Reset already in progress\n");
2509 return -EBUSY;
2510 }
2511
2512 switch (reset) {
2513 case ICE_RESET_PFR:
2514 set_bit(ICE_PFR_REQ, pf->state);
2515 break;
2516 case ICE_RESET_CORER:
2517 set_bit(ICE_CORER_REQ, pf->state);
2518 break;
2519 case ICE_RESET_GLOBR:
2520 set_bit(ICE_GLOBR_REQ, pf->state);
2521 break;
2522 default:
2523 return -EINVAL;
2524 }
2525
2526 ice_service_task_schedule(pf);
2527 return 0;
2528 }
2529
2530 /**
2531 * ice_irq_affinity_notify - Callback for affinity changes
2532 * @notify: context as to what irq was changed
2533 * @mask: the new affinity mask
2534 *
2535 * This is a callback function used by the irq_set_affinity_notifier function
2536 * so that we may register to receive changes to the irq affinity masks.
2537 */
2538 static void
ice_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)2539 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2540 const cpumask_t *mask)
2541 {
2542 struct ice_q_vector *q_vector =
2543 container_of(notify, struct ice_q_vector, affinity_notify);
2544
2545 cpumask_copy(&q_vector->affinity_mask, mask);
2546 }
2547
2548 /**
2549 * ice_irq_affinity_release - Callback for affinity notifier release
2550 * @ref: internal core kernel usage
2551 *
2552 * This is a callback function used by the irq_set_affinity_notifier function
2553 * to inform the current notification subscriber that they will no longer
2554 * receive notifications.
2555 */
ice_irq_affinity_release(struct kref __always_unused * ref)2556 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2557
2558 /**
2559 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2560 * @vsi: the VSI being configured
2561 */
ice_vsi_ena_irq(struct ice_vsi * vsi)2562 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2563 {
2564 struct ice_hw *hw = &vsi->back->hw;
2565 int i;
2566
2567 ice_for_each_q_vector(vsi, i)
2568 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2569
2570 ice_flush(hw);
2571 return 0;
2572 }
2573
2574 /**
2575 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2576 * @vsi: the VSI being configured
2577 * @basename: name for the vector
2578 */
ice_vsi_req_irq_msix(struct ice_vsi * vsi,char * basename)2579 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2580 {
2581 int q_vectors = vsi->num_q_vectors;
2582 struct ice_pf *pf = vsi->back;
2583 struct device *dev;
2584 int rx_int_idx = 0;
2585 int tx_int_idx = 0;
2586 int vector, err;
2587 int irq_num;
2588
2589 dev = ice_pf_to_dev(pf);
2590 for (vector = 0; vector < q_vectors; vector++) {
2591 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2592
2593 irq_num = q_vector->irq.virq;
2594
2595 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2596 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2597 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2598 tx_int_idx++;
2599 } else if (q_vector->rx.rx_ring) {
2600 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2601 "%s-%s-%d", basename, "rx", rx_int_idx++);
2602 } else if (q_vector->tx.tx_ring) {
2603 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2604 "%s-%s-%d", basename, "tx", tx_int_idx++);
2605 } else {
2606 /* skip this unused q_vector */
2607 continue;
2608 }
2609 if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2610 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2611 IRQF_SHARED, q_vector->name,
2612 q_vector);
2613 else
2614 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2615 0, q_vector->name, q_vector);
2616 if (err) {
2617 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2618 err);
2619 goto free_q_irqs;
2620 }
2621
2622 /* register for affinity change notifications */
2623 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2624 struct irq_affinity_notify *affinity_notify;
2625
2626 affinity_notify = &q_vector->affinity_notify;
2627 affinity_notify->notify = ice_irq_affinity_notify;
2628 affinity_notify->release = ice_irq_affinity_release;
2629 irq_set_affinity_notifier(irq_num, affinity_notify);
2630 }
2631
2632 /* assign the mask for this irq */
2633 irq_update_affinity_hint(irq_num, &q_vector->affinity_mask);
2634 }
2635
2636 err = ice_set_cpu_rx_rmap(vsi);
2637 if (err) {
2638 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2639 vsi->vsi_num, ERR_PTR(err));
2640 goto free_q_irqs;
2641 }
2642
2643 vsi->irqs_ready = true;
2644 return 0;
2645
2646 free_q_irqs:
2647 while (vector--) {
2648 irq_num = vsi->q_vectors[vector]->irq.virq;
2649 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2650 irq_set_affinity_notifier(irq_num, NULL);
2651 irq_update_affinity_hint(irq_num, NULL);
2652 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2653 }
2654 return err;
2655 }
2656
2657 /**
2658 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2659 * @vsi: VSI to setup Tx rings used by XDP
2660 *
2661 * Return 0 on success and negative value on error
2662 */
ice_xdp_alloc_setup_rings(struct ice_vsi * vsi)2663 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2664 {
2665 struct device *dev = ice_pf_to_dev(vsi->back);
2666 struct ice_tx_desc *tx_desc;
2667 int i, j;
2668
2669 ice_for_each_xdp_txq(vsi, i) {
2670 u16 xdp_q_idx = vsi->alloc_txq + i;
2671 struct ice_ring_stats *ring_stats;
2672 struct ice_tx_ring *xdp_ring;
2673
2674 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2675 if (!xdp_ring)
2676 goto free_xdp_rings;
2677
2678 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2679 if (!ring_stats) {
2680 ice_free_tx_ring(xdp_ring);
2681 goto free_xdp_rings;
2682 }
2683
2684 xdp_ring->ring_stats = ring_stats;
2685 xdp_ring->q_index = xdp_q_idx;
2686 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2687 xdp_ring->vsi = vsi;
2688 xdp_ring->netdev = NULL;
2689 xdp_ring->dev = dev;
2690 xdp_ring->count = vsi->num_tx_desc;
2691 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2692 if (ice_setup_tx_ring(xdp_ring))
2693 goto free_xdp_rings;
2694 ice_set_ring_xdp(xdp_ring);
2695 spin_lock_init(&xdp_ring->tx_lock);
2696 for (j = 0; j < xdp_ring->count; j++) {
2697 tx_desc = ICE_TX_DESC(xdp_ring, j);
2698 tx_desc->cmd_type_offset_bsz = 0;
2699 }
2700 }
2701
2702 return 0;
2703
2704 free_xdp_rings:
2705 for (; i >= 0; i--) {
2706 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2707 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2708 vsi->xdp_rings[i]->ring_stats = NULL;
2709 ice_free_tx_ring(vsi->xdp_rings[i]);
2710 }
2711 }
2712 return -ENOMEM;
2713 }
2714
2715 /**
2716 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2717 * @vsi: VSI to set the bpf prog on
2718 * @prog: the bpf prog pointer
2719 */
ice_vsi_assign_bpf_prog(struct ice_vsi * vsi,struct bpf_prog * prog)2720 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2721 {
2722 struct bpf_prog *old_prog;
2723 int i;
2724
2725 old_prog = xchg(&vsi->xdp_prog, prog);
2726 ice_for_each_rxq(vsi, i)
2727 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2728
2729 if (old_prog)
2730 bpf_prog_put(old_prog);
2731 }
2732
ice_xdp_ring_from_qid(struct ice_vsi * vsi,int qid)2733 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid)
2734 {
2735 struct ice_q_vector *q_vector;
2736 struct ice_tx_ring *ring;
2737
2738 if (static_key_enabled(&ice_xdp_locking_key))
2739 return vsi->xdp_rings[qid % vsi->num_xdp_txq];
2740
2741 q_vector = vsi->rx_rings[qid]->q_vector;
2742 ice_for_each_tx_ring(ring, q_vector->tx)
2743 if (ice_ring_is_xdp(ring))
2744 return ring;
2745
2746 return NULL;
2747 }
2748
2749 /**
2750 * ice_map_xdp_rings - Map XDP rings to interrupt vectors
2751 * @vsi: the VSI with XDP rings being configured
2752 *
2753 * Map XDP rings to interrupt vectors and perform the configuration steps
2754 * dependent on the mapping.
2755 */
ice_map_xdp_rings(struct ice_vsi * vsi)2756 void ice_map_xdp_rings(struct ice_vsi *vsi)
2757 {
2758 int xdp_rings_rem = vsi->num_xdp_txq;
2759 int v_idx, q_idx;
2760
2761 /* follow the logic from ice_vsi_map_rings_to_vectors */
2762 ice_for_each_q_vector(vsi, v_idx) {
2763 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2764 int xdp_rings_per_v, q_id, q_base;
2765
2766 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2767 vsi->num_q_vectors - v_idx);
2768 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2769
2770 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2771 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2772
2773 xdp_ring->q_vector = q_vector;
2774 xdp_ring->next = q_vector->tx.tx_ring;
2775 q_vector->tx.tx_ring = xdp_ring;
2776 }
2777 xdp_rings_rem -= xdp_rings_per_v;
2778 }
2779
2780 ice_for_each_rxq(vsi, q_idx) {
2781 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi,
2782 q_idx);
2783 ice_tx_xsk_pool(vsi, q_idx);
2784 }
2785 }
2786
2787 /**
2788 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2789 * @vsi: VSI to bring up Tx rings used by XDP
2790 * @prog: bpf program that will be assigned to VSI
2791 * @cfg_type: create from scratch or restore the existing configuration
2792 *
2793 * Return 0 on success and negative value on error
2794 */
ice_prepare_xdp_rings(struct ice_vsi * vsi,struct bpf_prog * prog,enum ice_xdp_cfg cfg_type)2795 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog,
2796 enum ice_xdp_cfg cfg_type)
2797 {
2798 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2799 struct ice_pf *pf = vsi->back;
2800 struct ice_qs_cfg xdp_qs_cfg = {
2801 .qs_mutex = &pf->avail_q_mutex,
2802 .pf_map = pf->avail_txqs,
2803 .pf_map_size = pf->max_pf_txqs,
2804 .q_count = vsi->num_xdp_txq,
2805 .scatter_count = ICE_MAX_SCATTER_TXQS,
2806 .vsi_map = vsi->txq_map,
2807 .vsi_map_offset = vsi->alloc_txq,
2808 .mapping_mode = ICE_VSI_MAP_CONTIG
2809 };
2810 struct device *dev;
2811 int status, i;
2812
2813 dev = ice_pf_to_dev(pf);
2814 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2815 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2816 if (!vsi->xdp_rings)
2817 return -ENOMEM;
2818
2819 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2820 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2821 goto err_map_xdp;
2822
2823 if (static_key_enabled(&ice_xdp_locking_key))
2824 netdev_warn(vsi->netdev,
2825 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2826
2827 if (ice_xdp_alloc_setup_rings(vsi))
2828 goto clear_xdp_rings;
2829
2830 /* omit the scheduler update if in reset path; XDP queues will be
2831 * taken into account at the end of ice_vsi_rebuild, where
2832 * ice_cfg_vsi_lan is being called
2833 */
2834 if (cfg_type == ICE_XDP_CFG_PART)
2835 return 0;
2836
2837 ice_map_xdp_rings(vsi);
2838
2839 /* tell the Tx scheduler that right now we have
2840 * additional queues
2841 */
2842 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2843 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2844
2845 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2846 max_txqs);
2847 if (status) {
2848 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2849 status);
2850 goto clear_xdp_rings;
2851 }
2852
2853 /* assign the prog only when it's not already present on VSI;
2854 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2855 * VSI rebuild that happens under ethtool -L can expose us to
2856 * the bpf_prog refcount issues as we would be swapping same
2857 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2858 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2859 * this is not harmful as dev_xdp_install bumps the refcount
2860 * before calling the op exposed by the driver;
2861 */
2862 if (!ice_is_xdp_ena_vsi(vsi))
2863 ice_vsi_assign_bpf_prog(vsi, prog);
2864
2865 return 0;
2866 clear_xdp_rings:
2867 ice_for_each_xdp_txq(vsi, i)
2868 if (vsi->xdp_rings[i]) {
2869 kfree_rcu(vsi->xdp_rings[i], rcu);
2870 vsi->xdp_rings[i] = NULL;
2871 }
2872
2873 err_map_xdp:
2874 mutex_lock(&pf->avail_q_mutex);
2875 ice_for_each_xdp_txq(vsi, i) {
2876 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2877 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2878 }
2879 mutex_unlock(&pf->avail_q_mutex);
2880
2881 devm_kfree(dev, vsi->xdp_rings);
2882 return -ENOMEM;
2883 }
2884
2885 /**
2886 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2887 * @vsi: VSI to remove XDP rings
2888 * @cfg_type: disable XDP permanently or allow it to be restored later
2889 *
2890 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2891 * resources
2892 */
ice_destroy_xdp_rings(struct ice_vsi * vsi,enum ice_xdp_cfg cfg_type)2893 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type)
2894 {
2895 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2896 struct ice_pf *pf = vsi->back;
2897 int i, v_idx;
2898
2899 /* q_vectors are freed in reset path so there's no point in detaching
2900 * rings
2901 */
2902 if (cfg_type == ICE_XDP_CFG_PART)
2903 goto free_qmap;
2904
2905 ice_for_each_q_vector(vsi, v_idx) {
2906 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2907 struct ice_tx_ring *ring;
2908
2909 ice_for_each_tx_ring(ring, q_vector->tx)
2910 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2911 break;
2912
2913 /* restore the value of last node prior to XDP setup */
2914 q_vector->tx.tx_ring = ring;
2915 }
2916
2917 free_qmap:
2918 mutex_lock(&pf->avail_q_mutex);
2919 ice_for_each_xdp_txq(vsi, i) {
2920 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2921 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2922 }
2923 mutex_unlock(&pf->avail_q_mutex);
2924
2925 ice_for_each_xdp_txq(vsi, i)
2926 if (vsi->xdp_rings[i]) {
2927 if (vsi->xdp_rings[i]->desc) {
2928 synchronize_rcu();
2929 ice_free_tx_ring(vsi->xdp_rings[i]);
2930 }
2931 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2932 vsi->xdp_rings[i]->ring_stats = NULL;
2933 kfree_rcu(vsi->xdp_rings[i], rcu);
2934 vsi->xdp_rings[i] = NULL;
2935 }
2936
2937 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2938 vsi->xdp_rings = NULL;
2939
2940 if (static_key_enabled(&ice_xdp_locking_key))
2941 static_branch_dec(&ice_xdp_locking_key);
2942
2943 if (cfg_type == ICE_XDP_CFG_PART)
2944 return 0;
2945
2946 ice_vsi_assign_bpf_prog(vsi, NULL);
2947
2948 /* notify Tx scheduler that we destroyed XDP queues and bring
2949 * back the old number of child nodes
2950 */
2951 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2952 max_txqs[i] = vsi->num_txq;
2953
2954 /* change number of XDP Tx queues to 0 */
2955 vsi->num_xdp_txq = 0;
2956
2957 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2958 max_txqs);
2959 }
2960
2961 /**
2962 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2963 * @vsi: VSI to schedule napi on
2964 */
ice_vsi_rx_napi_schedule(struct ice_vsi * vsi)2965 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2966 {
2967 int i;
2968
2969 ice_for_each_rxq(vsi, i) {
2970 struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2971
2972 if (READ_ONCE(rx_ring->xsk_pool))
2973 napi_schedule(&rx_ring->q_vector->napi);
2974 }
2975 }
2976
2977 /**
2978 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2979 * @vsi: VSI to determine the count of XDP Tx qs
2980 *
2981 * returns 0 if Tx qs count is higher than at least half of CPU count,
2982 * -ENOMEM otherwise
2983 */
ice_vsi_determine_xdp_res(struct ice_vsi * vsi)2984 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2985 {
2986 u16 avail = ice_get_avail_txq_count(vsi->back);
2987 u16 cpus = num_possible_cpus();
2988
2989 if (avail < cpus / 2)
2990 return -ENOMEM;
2991
2992 if (vsi->type == ICE_VSI_SF)
2993 avail = vsi->alloc_txq;
2994
2995 vsi->num_xdp_txq = min_t(u16, avail, cpus);
2996
2997 if (vsi->num_xdp_txq < cpus)
2998 static_branch_inc(&ice_xdp_locking_key);
2999
3000 return 0;
3001 }
3002
3003 /**
3004 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
3005 * @vsi: Pointer to VSI structure
3006 */
ice_max_xdp_frame_size(struct ice_vsi * vsi)3007 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
3008 {
3009 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
3010 return ICE_RXBUF_1664;
3011 else
3012 return ICE_RXBUF_3072;
3013 }
3014
3015 /**
3016 * ice_xdp_setup_prog - Add or remove XDP eBPF program
3017 * @vsi: VSI to setup XDP for
3018 * @prog: XDP program
3019 * @extack: netlink extended ack
3020 */
3021 static int
ice_xdp_setup_prog(struct ice_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)3022 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
3023 struct netlink_ext_ack *extack)
3024 {
3025 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
3026 int ret = 0, xdp_ring_err = 0;
3027 bool if_running;
3028
3029 if (prog && !prog->aux->xdp_has_frags) {
3030 if (frame_size > ice_max_xdp_frame_size(vsi)) {
3031 NL_SET_ERR_MSG_MOD(extack,
3032 "MTU is too large for linear frames and XDP prog does not support frags");
3033 return -EOPNOTSUPP;
3034 }
3035 }
3036
3037 /* hot swap progs and avoid toggling link */
3038 if (ice_is_xdp_ena_vsi(vsi) == !!prog ||
3039 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) {
3040 ice_vsi_assign_bpf_prog(vsi, prog);
3041 return 0;
3042 }
3043
3044 if_running = netif_running(vsi->netdev) &&
3045 !test_and_set_bit(ICE_VSI_DOWN, vsi->state);
3046
3047 /* need to stop netdev while setting up the program for Rx rings */
3048 if (if_running) {
3049 ret = ice_down(vsi);
3050 if (ret) {
3051 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
3052 return ret;
3053 }
3054 }
3055
3056 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
3057 xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
3058 if (xdp_ring_err) {
3059 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
3060 } else {
3061 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog,
3062 ICE_XDP_CFG_FULL);
3063 if (xdp_ring_err)
3064 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
3065 }
3066 xdp_features_set_redirect_target(vsi->netdev, true);
3067 /* reallocate Rx queues that are used for zero-copy */
3068 xdp_ring_err = ice_realloc_zc_buf(vsi, true);
3069 if (xdp_ring_err)
3070 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
3071 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
3072 xdp_features_clear_redirect_target(vsi->netdev);
3073 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL);
3074 if (xdp_ring_err)
3075 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
3076 /* reallocate Rx queues that were used for zero-copy */
3077 xdp_ring_err = ice_realloc_zc_buf(vsi, false);
3078 if (xdp_ring_err)
3079 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
3080 }
3081
3082 if (if_running)
3083 ret = ice_up(vsi);
3084
3085 if (!ret && prog)
3086 ice_vsi_rx_napi_schedule(vsi);
3087
3088 return (ret || xdp_ring_err) ? -ENOMEM : 0;
3089 }
3090
3091 /**
3092 * ice_xdp_safe_mode - XDP handler for safe mode
3093 * @dev: netdevice
3094 * @xdp: XDP command
3095 */
ice_xdp_safe_mode(struct net_device __always_unused * dev,struct netdev_bpf * xdp)3096 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
3097 struct netdev_bpf *xdp)
3098 {
3099 NL_SET_ERR_MSG_MOD(xdp->extack,
3100 "Please provide working DDP firmware package in order to use XDP\n"
3101 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
3102 return -EOPNOTSUPP;
3103 }
3104
3105 /**
3106 * ice_xdp - implements XDP handler
3107 * @dev: netdevice
3108 * @xdp: XDP command
3109 */
ice_xdp(struct net_device * dev,struct netdev_bpf * xdp)3110 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3111 {
3112 struct ice_netdev_priv *np = netdev_priv(dev);
3113 struct ice_vsi *vsi = np->vsi;
3114 int ret;
3115
3116 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) {
3117 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI");
3118 return -EINVAL;
3119 }
3120
3121 mutex_lock(&vsi->xdp_state_lock);
3122
3123 switch (xdp->command) {
3124 case XDP_SETUP_PROG:
3125 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3126 break;
3127 case XDP_SETUP_XSK_POOL:
3128 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id);
3129 break;
3130 default:
3131 ret = -EINVAL;
3132 }
3133
3134 mutex_unlock(&vsi->xdp_state_lock);
3135 return ret;
3136 }
3137
3138 /**
3139 * ice_ena_misc_vector - enable the non-queue interrupts
3140 * @pf: board private structure
3141 */
ice_ena_misc_vector(struct ice_pf * pf)3142 static void ice_ena_misc_vector(struct ice_pf *pf)
3143 {
3144 struct ice_hw *hw = &pf->hw;
3145 u32 pf_intr_start_offset;
3146 u32 val;
3147
3148 /* Disable anti-spoof detection interrupt to prevent spurious event
3149 * interrupts during a function reset. Anti-spoof functionally is
3150 * still supported.
3151 */
3152 val = rd32(hw, GL_MDCK_TX_TDPU);
3153 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3154 wr32(hw, GL_MDCK_TX_TDPU, val);
3155
3156 /* clear things first */
3157 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
3158 rd32(hw, PFINT_OICR); /* read to clear */
3159
3160 val = (PFINT_OICR_ECC_ERR_M |
3161 PFINT_OICR_MAL_DETECT_M |
3162 PFINT_OICR_GRST_M |
3163 PFINT_OICR_PCI_EXCEPTION_M |
3164 PFINT_OICR_VFLR_M |
3165 PFINT_OICR_HMC_ERR_M |
3166 PFINT_OICR_PE_PUSH_M |
3167 PFINT_OICR_PE_CRITERR_M);
3168
3169 wr32(hw, PFINT_OICR_ENA, val);
3170
3171 /* SW_ITR_IDX = 0, but don't change INTENA */
3172 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3173 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3174
3175 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3176 return;
3177 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3178 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3179 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3180 }
3181
3182 /**
3183 * ice_ll_ts_intr - ll_ts interrupt handler
3184 * @irq: interrupt number
3185 * @data: pointer to a q_vector
3186 */
ice_ll_ts_intr(int __always_unused irq,void * data)3187 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data)
3188 {
3189 struct ice_pf *pf = data;
3190 u32 pf_intr_start_offset;
3191 struct ice_ptp_tx *tx;
3192 unsigned long flags;
3193 struct ice_hw *hw;
3194 u32 val;
3195 u8 idx;
3196
3197 hw = &pf->hw;
3198 tx = &pf->ptp.port.tx;
3199 spin_lock_irqsave(&tx->lock, flags);
3200 ice_ptp_complete_tx_single_tstamp(tx);
3201
3202 idx = find_next_bit_wrap(tx->in_use, tx->len,
3203 tx->last_ll_ts_idx_read + 1);
3204 if (idx != tx->len)
3205 ice_ptp_req_tx_single_tstamp(tx, idx);
3206 spin_unlock_irqrestore(&tx->lock, flags);
3207
3208 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
3209 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
3210 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3211 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3212 val);
3213
3214 return IRQ_HANDLED;
3215 }
3216
3217 /**
3218 * ice_misc_intr - misc interrupt handler
3219 * @irq: interrupt number
3220 * @data: pointer to a q_vector
3221 */
ice_misc_intr(int __always_unused irq,void * data)3222 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3223 {
3224 struct ice_pf *pf = (struct ice_pf *)data;
3225 irqreturn_t ret = IRQ_HANDLED;
3226 struct ice_hw *hw = &pf->hw;
3227 struct device *dev;
3228 u32 oicr, ena_mask;
3229
3230 dev = ice_pf_to_dev(pf);
3231 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3232 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3233 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3234
3235 oicr = rd32(hw, PFINT_OICR);
3236 ena_mask = rd32(hw, PFINT_OICR_ENA);
3237
3238 if (oicr & PFINT_OICR_SWINT_M) {
3239 ena_mask &= ~PFINT_OICR_SWINT_M;
3240 pf->sw_int_count++;
3241 }
3242
3243 if (oicr & PFINT_OICR_MAL_DETECT_M) {
3244 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3245 set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3246 }
3247 if (oicr & PFINT_OICR_VFLR_M) {
3248 /* disable any further VFLR event notifications */
3249 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3250 u32 reg = rd32(hw, PFINT_OICR_ENA);
3251
3252 reg &= ~PFINT_OICR_VFLR_M;
3253 wr32(hw, PFINT_OICR_ENA, reg);
3254 } else {
3255 ena_mask &= ~PFINT_OICR_VFLR_M;
3256 set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3257 }
3258 }
3259
3260 if (oicr & PFINT_OICR_GRST_M) {
3261 u32 reset;
3262
3263 /* we have a reset warning */
3264 ena_mask &= ~PFINT_OICR_GRST_M;
3265 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M,
3266 rd32(hw, GLGEN_RSTAT));
3267
3268 if (reset == ICE_RESET_CORER)
3269 pf->corer_count++;
3270 else if (reset == ICE_RESET_GLOBR)
3271 pf->globr_count++;
3272 else if (reset == ICE_RESET_EMPR)
3273 pf->empr_count++;
3274 else
3275 dev_dbg(dev, "Invalid reset type %d\n", reset);
3276
3277 /* If a reset cycle isn't already in progress, we set a bit in
3278 * pf->state so that the service task can start a reset/rebuild.
3279 */
3280 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3281 if (reset == ICE_RESET_CORER)
3282 set_bit(ICE_CORER_RECV, pf->state);
3283 else if (reset == ICE_RESET_GLOBR)
3284 set_bit(ICE_GLOBR_RECV, pf->state);
3285 else
3286 set_bit(ICE_EMPR_RECV, pf->state);
3287
3288 /* There are couple of different bits at play here.
3289 * hw->reset_ongoing indicates whether the hardware is
3290 * in reset. This is set to true when a reset interrupt
3291 * is received and set back to false after the driver
3292 * has determined that the hardware is out of reset.
3293 *
3294 * ICE_RESET_OICR_RECV in pf->state indicates
3295 * that a post reset rebuild is required before the
3296 * driver is operational again. This is set above.
3297 *
3298 * As this is the start of the reset/rebuild cycle, set
3299 * both to indicate that.
3300 */
3301 hw->reset_ongoing = true;
3302 }
3303 }
3304
3305 if (oicr & PFINT_OICR_TSYN_TX_M) {
3306 ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3307 if (ice_pf_state_is_nominal(pf) &&
3308 pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) {
3309 struct ice_ptp_tx *tx = &pf->ptp.port.tx;
3310 unsigned long flags;
3311 u8 idx;
3312
3313 spin_lock_irqsave(&tx->lock, flags);
3314 idx = find_next_bit_wrap(tx->in_use, tx->len,
3315 tx->last_ll_ts_idx_read + 1);
3316 if (idx != tx->len)
3317 ice_ptp_req_tx_single_tstamp(tx, idx);
3318 spin_unlock_irqrestore(&tx->lock, flags);
3319 } else if (ice_ptp_pf_handles_tx_interrupt(pf)) {
3320 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread);
3321 ret = IRQ_WAKE_THREAD;
3322 }
3323 }
3324
3325 if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3326 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3327 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3328
3329 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3330
3331 if (ice_pf_src_tmr_owned(pf)) {
3332 /* Save EVENTs from GLTSYN register */
3333 pf->ptp.ext_ts_irq |= gltsyn_stat &
3334 (GLTSYN_STAT_EVENT0_M |
3335 GLTSYN_STAT_EVENT1_M |
3336 GLTSYN_STAT_EVENT2_M);
3337
3338 ice_ptp_extts_event(pf);
3339 }
3340 }
3341
3342 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3343 if (oicr & ICE_AUX_CRIT_ERR) {
3344 pf->oicr_err_reg |= oicr;
3345 set_bit(ICE_AUX_ERR_PENDING, pf->state);
3346 ena_mask &= ~ICE_AUX_CRIT_ERR;
3347 }
3348
3349 /* Report any remaining unexpected interrupts */
3350 oicr &= ena_mask;
3351 if (oicr) {
3352 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3353 /* If a critical error is pending there is no choice but to
3354 * reset the device.
3355 */
3356 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3357 PFINT_OICR_ECC_ERR_M)) {
3358 set_bit(ICE_PFR_REQ, pf->state);
3359 }
3360 }
3361 ice_service_task_schedule(pf);
3362 if (ret == IRQ_HANDLED)
3363 ice_irq_dynamic_ena(hw, NULL, NULL);
3364
3365 return ret;
3366 }
3367
3368 /**
3369 * ice_misc_intr_thread_fn - misc interrupt thread function
3370 * @irq: interrupt number
3371 * @data: pointer to a q_vector
3372 */
ice_misc_intr_thread_fn(int __always_unused irq,void * data)3373 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3374 {
3375 struct ice_pf *pf = data;
3376 struct ice_hw *hw;
3377
3378 hw = &pf->hw;
3379
3380 if (ice_is_reset_in_progress(pf->state))
3381 goto skip_irq;
3382
3383 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3384 /* Process outstanding Tx timestamps. If there is more work,
3385 * re-arm the interrupt to trigger again.
3386 */
3387 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3388 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3389 ice_flush(hw);
3390 }
3391 }
3392
3393 skip_irq:
3394 ice_irq_dynamic_ena(hw, NULL, NULL);
3395
3396 return IRQ_HANDLED;
3397 }
3398
3399 /**
3400 * ice_dis_ctrlq_interrupts - disable control queue interrupts
3401 * @hw: pointer to HW structure
3402 */
ice_dis_ctrlq_interrupts(struct ice_hw * hw)3403 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3404 {
3405 /* disable Admin queue Interrupt causes */
3406 wr32(hw, PFINT_FW_CTL,
3407 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3408
3409 /* disable Mailbox queue Interrupt causes */
3410 wr32(hw, PFINT_MBX_CTL,
3411 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3412
3413 wr32(hw, PFINT_SB_CTL,
3414 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3415
3416 /* disable Control queue Interrupt causes */
3417 wr32(hw, PFINT_OICR_CTL,
3418 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3419
3420 ice_flush(hw);
3421 }
3422
3423 /**
3424 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup
3425 * @pf: board private structure
3426 */
ice_free_irq_msix_ll_ts(struct ice_pf * pf)3427 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf)
3428 {
3429 int irq_num = pf->ll_ts_irq.virq;
3430
3431 synchronize_irq(irq_num);
3432 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf);
3433
3434 ice_free_irq(pf, pf->ll_ts_irq);
3435 }
3436
3437 /**
3438 * ice_free_irq_msix_misc - Unroll misc vector setup
3439 * @pf: board private structure
3440 */
ice_free_irq_msix_misc(struct ice_pf * pf)3441 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3442 {
3443 int misc_irq_num = pf->oicr_irq.virq;
3444 struct ice_hw *hw = &pf->hw;
3445
3446 ice_dis_ctrlq_interrupts(hw);
3447
3448 /* disable OICR interrupt */
3449 wr32(hw, PFINT_OICR_ENA, 0);
3450 ice_flush(hw);
3451
3452 synchronize_irq(misc_irq_num);
3453 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3454
3455 ice_free_irq(pf, pf->oicr_irq);
3456 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3457 ice_free_irq_msix_ll_ts(pf);
3458 }
3459
3460 /**
3461 * ice_ena_ctrlq_interrupts - enable control queue interrupts
3462 * @hw: pointer to HW structure
3463 * @reg_idx: HW vector index to associate the control queue interrupts with
3464 */
ice_ena_ctrlq_interrupts(struct ice_hw * hw,u16 reg_idx)3465 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3466 {
3467 u32 val;
3468
3469 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3470 PFINT_OICR_CTL_CAUSE_ENA_M);
3471 wr32(hw, PFINT_OICR_CTL, val);
3472
3473 /* enable Admin queue Interrupt causes */
3474 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3475 PFINT_FW_CTL_CAUSE_ENA_M);
3476 wr32(hw, PFINT_FW_CTL, val);
3477
3478 /* enable Mailbox queue Interrupt causes */
3479 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3480 PFINT_MBX_CTL_CAUSE_ENA_M);
3481 wr32(hw, PFINT_MBX_CTL, val);
3482
3483 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) {
3484 /* enable Sideband queue Interrupt causes */
3485 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3486 PFINT_SB_CTL_CAUSE_ENA_M);
3487 wr32(hw, PFINT_SB_CTL, val);
3488 }
3489
3490 ice_flush(hw);
3491 }
3492
3493 /**
3494 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3495 * @pf: board private structure
3496 *
3497 * This sets up the handler for MSIX 0, which is used to manage the
3498 * non-queue interrupts, e.g. AdminQ and errors. This is not used
3499 * when in MSI or Legacy interrupt mode.
3500 */
ice_req_irq_msix_misc(struct ice_pf * pf)3501 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3502 {
3503 struct device *dev = ice_pf_to_dev(pf);
3504 struct ice_hw *hw = &pf->hw;
3505 u32 pf_intr_start_offset;
3506 struct msi_map irq;
3507 int err = 0;
3508
3509 if (!pf->int_name[0])
3510 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3511 dev_driver_string(dev), dev_name(dev));
3512
3513 if (!pf->int_name_ll_ts[0])
3514 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1,
3515 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev));
3516 /* Do not request IRQ but do enable OICR interrupt since settings are
3517 * lost during reset. Note that this function is called only during
3518 * rebuild path and not while reset is in progress.
3519 */
3520 if (ice_is_reset_in_progress(pf->state))
3521 goto skip_req_irq;
3522
3523 /* reserve one vector in irq_tracker for misc interrupts */
3524 irq = ice_alloc_irq(pf, false);
3525 if (irq.index < 0)
3526 return irq.index;
3527
3528 pf->oicr_irq = irq;
3529 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3530 ice_misc_intr_thread_fn, 0,
3531 pf->int_name, pf);
3532 if (err) {
3533 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3534 pf->int_name, err);
3535 ice_free_irq(pf, pf->oicr_irq);
3536 return err;
3537 }
3538
3539 /* reserve one vector in irq_tracker for ll_ts interrupt */
3540 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3541 goto skip_req_irq;
3542
3543 irq = ice_alloc_irq(pf, false);
3544 if (irq.index < 0)
3545 return irq.index;
3546
3547 pf->ll_ts_irq = irq;
3548 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0,
3549 pf->int_name_ll_ts, pf);
3550 if (err) {
3551 dev_err(dev, "devm_request_irq for %s failed: %d\n",
3552 pf->int_name_ll_ts, err);
3553 ice_free_irq(pf, pf->ll_ts_irq);
3554 return err;
3555 }
3556
3557 skip_req_irq:
3558 ice_ena_misc_vector(pf);
3559
3560 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3561 /* This enables LL TS interrupt */
3562 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3563 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3564 wr32(hw, PFINT_SB_CTL,
3565 ((pf->ll_ts_irq.index + pf_intr_start_offset) &
3566 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M);
3567 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3568 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3569
3570 ice_flush(hw);
3571 ice_irq_dynamic_ena(hw, NULL, NULL);
3572
3573 return 0;
3574 }
3575
3576 /**
3577 * ice_set_ops - set netdev and ethtools ops for the given netdev
3578 * @vsi: the VSI associated with the new netdev
3579 */
ice_set_ops(struct ice_vsi * vsi)3580 static void ice_set_ops(struct ice_vsi *vsi)
3581 {
3582 struct net_device *netdev = vsi->netdev;
3583 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3584
3585 if (ice_is_safe_mode(pf)) {
3586 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3587 ice_set_ethtool_safe_mode_ops(netdev);
3588 return;
3589 }
3590
3591 netdev->netdev_ops = &ice_netdev_ops;
3592 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3593 netdev->xdp_metadata_ops = &ice_xdp_md_ops;
3594 ice_set_ethtool_ops(netdev);
3595
3596 if (vsi->type != ICE_VSI_PF)
3597 return;
3598
3599 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3600 NETDEV_XDP_ACT_XSK_ZEROCOPY |
3601 NETDEV_XDP_ACT_RX_SG;
3602 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3603 }
3604
3605 /**
3606 * ice_set_netdev_features - set features for the given netdev
3607 * @netdev: netdev instance
3608 */
ice_set_netdev_features(struct net_device * netdev)3609 void ice_set_netdev_features(struct net_device *netdev)
3610 {
3611 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3612 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3613 netdev_features_t csumo_features;
3614 netdev_features_t vlano_features;
3615 netdev_features_t dflt_features;
3616 netdev_features_t tso_features;
3617
3618 if (ice_is_safe_mode(pf)) {
3619 /* safe mode */
3620 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3621 netdev->hw_features = netdev->features;
3622 return;
3623 }
3624
3625 dflt_features = NETIF_F_SG |
3626 NETIF_F_HIGHDMA |
3627 NETIF_F_NTUPLE |
3628 NETIF_F_RXHASH;
3629
3630 csumo_features = NETIF_F_RXCSUM |
3631 NETIF_F_IP_CSUM |
3632 NETIF_F_SCTP_CRC |
3633 NETIF_F_IPV6_CSUM;
3634
3635 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3636 NETIF_F_HW_VLAN_CTAG_TX |
3637 NETIF_F_HW_VLAN_CTAG_RX;
3638
3639 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3640 if (is_dvm_ena)
3641 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3642
3643 tso_features = NETIF_F_TSO |
3644 NETIF_F_TSO_ECN |
3645 NETIF_F_TSO6 |
3646 NETIF_F_GSO_GRE |
3647 NETIF_F_GSO_UDP_TUNNEL |
3648 NETIF_F_GSO_GRE_CSUM |
3649 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3650 NETIF_F_GSO_PARTIAL |
3651 NETIF_F_GSO_IPXIP4 |
3652 NETIF_F_GSO_IPXIP6 |
3653 NETIF_F_GSO_UDP_L4;
3654
3655 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3656 NETIF_F_GSO_GRE_CSUM;
3657 /* set features that user can change */
3658 netdev->hw_features = dflt_features | csumo_features |
3659 vlano_features | tso_features;
3660
3661 /* add support for HW_CSUM on packets with MPLS header */
3662 netdev->mpls_features = NETIF_F_HW_CSUM |
3663 NETIF_F_TSO |
3664 NETIF_F_TSO6;
3665
3666 /* enable features */
3667 netdev->features |= netdev->hw_features;
3668
3669 netdev->hw_features |= NETIF_F_HW_TC;
3670 netdev->hw_features |= NETIF_F_LOOPBACK;
3671
3672 /* encap and VLAN devices inherit default, csumo and tso features */
3673 netdev->hw_enc_features |= dflt_features | csumo_features |
3674 tso_features;
3675 netdev->vlan_features |= dflt_features | csumo_features |
3676 tso_features;
3677
3678 /* advertise support but don't enable by default since only one type of
3679 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3680 * type turns on the other has to be turned off. This is enforced by the
3681 * ice_fix_features() ndo callback.
3682 */
3683 if (is_dvm_ena)
3684 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3685 NETIF_F_HW_VLAN_STAG_TX;
3686
3687 /* Leave CRC / FCS stripping enabled by default, but allow the value to
3688 * be changed at runtime
3689 */
3690 netdev->hw_features |= NETIF_F_RXFCS;
3691
3692 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3693 }
3694
3695 /**
3696 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3697 * @lut: Lookup table
3698 * @rss_table_size: Lookup table size
3699 * @rss_size: Range of queue number for hashing
3700 */
ice_fill_rss_lut(u8 * lut,u16 rss_table_size,u16 rss_size)3701 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3702 {
3703 u16 i;
3704
3705 for (i = 0; i < rss_table_size; i++)
3706 lut[i] = i % rss_size;
3707 }
3708
3709 /**
3710 * ice_pf_vsi_setup - Set up a PF VSI
3711 * @pf: board private structure
3712 * @pi: pointer to the port_info instance
3713 *
3714 * Returns pointer to the successfully allocated VSI software struct
3715 * on success, otherwise returns NULL on failure.
3716 */
3717 static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3718 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3719 {
3720 struct ice_vsi_cfg_params params = {};
3721
3722 params.type = ICE_VSI_PF;
3723 params.port_info = pi;
3724 params.flags = ICE_VSI_FLAG_INIT;
3725
3726 return ice_vsi_setup(pf, ¶ms);
3727 }
3728
3729 static struct ice_vsi *
ice_chnl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi,struct ice_channel * ch)3730 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3731 struct ice_channel *ch)
3732 {
3733 struct ice_vsi_cfg_params params = {};
3734
3735 params.type = ICE_VSI_CHNL;
3736 params.port_info = pi;
3737 params.ch = ch;
3738 params.flags = ICE_VSI_FLAG_INIT;
3739
3740 return ice_vsi_setup(pf, ¶ms);
3741 }
3742
3743 /**
3744 * ice_ctrl_vsi_setup - Set up a control VSI
3745 * @pf: board private structure
3746 * @pi: pointer to the port_info instance
3747 *
3748 * Returns pointer to the successfully allocated VSI software struct
3749 * on success, otherwise returns NULL on failure.
3750 */
3751 static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3752 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3753 {
3754 struct ice_vsi_cfg_params params = {};
3755
3756 params.type = ICE_VSI_CTRL;
3757 params.port_info = pi;
3758 params.flags = ICE_VSI_FLAG_INIT;
3759
3760 return ice_vsi_setup(pf, ¶ms);
3761 }
3762
3763 /**
3764 * ice_lb_vsi_setup - Set up a loopback VSI
3765 * @pf: board private structure
3766 * @pi: pointer to the port_info instance
3767 *
3768 * Returns pointer to the successfully allocated VSI software struct
3769 * on success, otherwise returns NULL on failure.
3770 */
3771 struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3772 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3773 {
3774 struct ice_vsi_cfg_params params = {};
3775
3776 params.type = ICE_VSI_LB;
3777 params.port_info = pi;
3778 params.flags = ICE_VSI_FLAG_INIT;
3779
3780 return ice_vsi_setup(pf, ¶ms);
3781 }
3782
3783 /**
3784 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3785 * @netdev: network interface to be adjusted
3786 * @proto: VLAN TPID
3787 * @vid: VLAN ID to be added
3788 *
3789 * net_device_ops implementation for adding VLAN IDs
3790 */
ice_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)3791 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3792 {
3793 struct ice_netdev_priv *np = netdev_priv(netdev);
3794 struct ice_vsi_vlan_ops *vlan_ops;
3795 struct ice_vsi *vsi = np->vsi;
3796 struct ice_vlan vlan;
3797 int ret;
3798
3799 /* VLAN 0 is added by default during load/reset */
3800 if (!vid)
3801 return 0;
3802
3803 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3804 usleep_range(1000, 2000);
3805
3806 /* Add multicast promisc rule for the VLAN ID to be added if
3807 * all-multicast is currently enabled.
3808 */
3809 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3810 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3811 ICE_MCAST_VLAN_PROMISC_BITS,
3812 vid);
3813 if (ret)
3814 goto finish;
3815 }
3816
3817 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3818
3819 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3820 * packets aren't pruned by the device's internal switch on Rx
3821 */
3822 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3823 ret = vlan_ops->add_vlan(vsi, &vlan);
3824 if (ret)
3825 goto finish;
3826
3827 /* If all-multicast is currently enabled and this VLAN ID is only one
3828 * besides VLAN-0 we have to update look-up type of multicast promisc
3829 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3830 */
3831 if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3832 ice_vsi_num_non_zero_vlans(vsi) == 1) {
3833 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3834 ICE_MCAST_PROMISC_BITS, 0);
3835 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3836 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3837 }
3838
3839 finish:
3840 clear_bit(ICE_CFG_BUSY, vsi->state);
3841
3842 return ret;
3843 }
3844
3845 /**
3846 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3847 * @netdev: network interface to be adjusted
3848 * @proto: VLAN TPID
3849 * @vid: VLAN ID to be removed
3850 *
3851 * net_device_ops implementation for removing VLAN IDs
3852 */
ice_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)3853 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3854 {
3855 struct ice_netdev_priv *np = netdev_priv(netdev);
3856 struct ice_vsi_vlan_ops *vlan_ops;
3857 struct ice_vsi *vsi = np->vsi;
3858 struct ice_vlan vlan;
3859 int ret;
3860
3861 /* don't allow removal of VLAN 0 */
3862 if (!vid)
3863 return 0;
3864
3865 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3866 usleep_range(1000, 2000);
3867
3868 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3869 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3870 if (ret) {
3871 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3872 vsi->vsi_num);
3873 vsi->current_netdev_flags |= IFF_ALLMULTI;
3874 }
3875
3876 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3877
3878 /* Make sure VLAN delete is successful before updating VLAN
3879 * information
3880 */
3881 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3882 ret = vlan_ops->del_vlan(vsi, &vlan);
3883 if (ret)
3884 goto finish;
3885
3886 /* Remove multicast promisc rule for the removed VLAN ID if
3887 * all-multicast is enabled.
3888 */
3889 if (vsi->current_netdev_flags & IFF_ALLMULTI)
3890 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3891 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3892
3893 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3894 /* Update look-up type of multicast promisc rule for VLAN 0
3895 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3896 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3897 */
3898 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3899 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3900 ICE_MCAST_VLAN_PROMISC_BITS,
3901 0);
3902 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3903 ICE_MCAST_PROMISC_BITS, 0);
3904 }
3905 }
3906
3907 finish:
3908 clear_bit(ICE_CFG_BUSY, vsi->state);
3909
3910 return ret;
3911 }
3912
3913 /**
3914 * ice_rep_indr_tc_block_unbind
3915 * @cb_priv: indirection block private data
3916 */
ice_rep_indr_tc_block_unbind(void * cb_priv)3917 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3918 {
3919 struct ice_indr_block_priv *indr_priv = cb_priv;
3920
3921 list_del(&indr_priv->list);
3922 kfree(indr_priv);
3923 }
3924
3925 /**
3926 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3927 * @vsi: VSI struct which has the netdev
3928 */
ice_tc_indir_block_unregister(struct ice_vsi * vsi)3929 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3930 {
3931 struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3932
3933 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3934 ice_rep_indr_tc_block_unbind);
3935 }
3936
3937 /**
3938 * ice_tc_indir_block_register - Register TC indirect block notifications
3939 * @vsi: VSI struct which has the netdev
3940 *
3941 * Returns 0 on success, negative value on failure
3942 */
ice_tc_indir_block_register(struct ice_vsi * vsi)3943 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3944 {
3945 struct ice_netdev_priv *np;
3946
3947 if (!vsi || !vsi->netdev)
3948 return -EINVAL;
3949
3950 np = netdev_priv(vsi->netdev);
3951
3952 INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3953 return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3954 }
3955
3956 /**
3957 * ice_get_avail_q_count - Get count of queues in use
3958 * @pf_qmap: bitmap to get queue use count from
3959 * @lock: pointer to a mutex that protects access to pf_qmap
3960 * @size: size of the bitmap
3961 */
3962 static u16
ice_get_avail_q_count(unsigned long * pf_qmap,struct mutex * lock,u16 size)3963 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3964 {
3965 unsigned long bit;
3966 u16 count = 0;
3967
3968 mutex_lock(lock);
3969 for_each_clear_bit(bit, pf_qmap, size)
3970 count++;
3971 mutex_unlock(lock);
3972
3973 return count;
3974 }
3975
3976 /**
3977 * ice_get_avail_txq_count - Get count of Tx queues in use
3978 * @pf: pointer to an ice_pf instance
3979 */
ice_get_avail_txq_count(struct ice_pf * pf)3980 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3981 {
3982 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3983 pf->max_pf_txqs);
3984 }
3985
3986 /**
3987 * ice_get_avail_rxq_count - Get count of Rx queues in use
3988 * @pf: pointer to an ice_pf instance
3989 */
ice_get_avail_rxq_count(struct ice_pf * pf)3990 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3991 {
3992 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3993 pf->max_pf_rxqs);
3994 }
3995
3996 /**
3997 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3998 * @pf: board private structure to initialize
3999 */
ice_deinit_pf(struct ice_pf * pf)4000 static void ice_deinit_pf(struct ice_pf *pf)
4001 {
4002 ice_service_task_stop(pf);
4003 mutex_destroy(&pf->lag_mutex);
4004 mutex_destroy(&pf->adev_mutex);
4005 mutex_destroy(&pf->sw_mutex);
4006 mutex_destroy(&pf->tc_mutex);
4007 mutex_destroy(&pf->avail_q_mutex);
4008 mutex_destroy(&pf->vfs.table_lock);
4009
4010 if (pf->avail_txqs) {
4011 bitmap_free(pf->avail_txqs);
4012 pf->avail_txqs = NULL;
4013 }
4014
4015 if (pf->avail_rxqs) {
4016 bitmap_free(pf->avail_rxqs);
4017 pf->avail_rxqs = NULL;
4018 }
4019
4020 if (pf->ptp.clock)
4021 ptp_clock_unregister(pf->ptp.clock);
4022
4023 xa_destroy(&pf->dyn_ports);
4024 xa_destroy(&pf->sf_nums);
4025 }
4026
4027 /**
4028 * ice_set_pf_caps - set PFs capability flags
4029 * @pf: pointer to the PF instance
4030 */
ice_set_pf_caps(struct ice_pf * pf)4031 static void ice_set_pf_caps(struct ice_pf *pf)
4032 {
4033 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
4034
4035 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4036 if (func_caps->common_cap.rdma)
4037 set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4038 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4039 if (func_caps->common_cap.dcb)
4040 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4041 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
4042 if (func_caps->common_cap.sr_iov_1_1) {
4043 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
4044 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
4045 ICE_MAX_SRIOV_VFS);
4046 }
4047 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
4048 if (func_caps->common_cap.rss_table_size)
4049 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
4050
4051 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
4052 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
4053 u16 unused;
4054
4055 /* ctrl_vsi_idx will be set to a valid value when flow director
4056 * is setup by ice_init_fdir
4057 */
4058 pf->ctrl_vsi_idx = ICE_NO_VSI;
4059 set_bit(ICE_FLAG_FD_ENA, pf->flags);
4060 /* force guaranteed filter pool for PF */
4061 ice_alloc_fd_guar_item(&pf->hw, &unused,
4062 func_caps->fd_fltr_guar);
4063 /* force shared filter pool for PF */
4064 ice_alloc_fd_shrd_item(&pf->hw, &unused,
4065 func_caps->fd_fltr_best_effort);
4066 }
4067
4068 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4069 if (func_caps->common_cap.ieee_1588 &&
4070 !(pf->hw.mac_type == ICE_MAC_E830))
4071 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4072
4073 pf->max_pf_txqs = func_caps->common_cap.num_txq;
4074 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
4075 }
4076
4077 /**
4078 * ice_init_pf - Initialize general software structures (struct ice_pf)
4079 * @pf: board private structure to initialize
4080 */
ice_init_pf(struct ice_pf * pf)4081 static int ice_init_pf(struct ice_pf *pf)
4082 {
4083 ice_set_pf_caps(pf);
4084
4085 mutex_init(&pf->sw_mutex);
4086 mutex_init(&pf->tc_mutex);
4087 mutex_init(&pf->adev_mutex);
4088 mutex_init(&pf->lag_mutex);
4089
4090 INIT_HLIST_HEAD(&pf->aq_wait_list);
4091 spin_lock_init(&pf->aq_wait_lock);
4092 init_waitqueue_head(&pf->aq_wait_queue);
4093
4094 init_waitqueue_head(&pf->reset_wait_queue);
4095
4096 /* setup service timer and periodic service task */
4097 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
4098 pf->serv_tmr_period = HZ;
4099 INIT_WORK(&pf->serv_task, ice_service_task);
4100 clear_bit(ICE_SERVICE_SCHED, pf->state);
4101
4102 mutex_init(&pf->avail_q_mutex);
4103 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
4104 if (!pf->avail_txqs)
4105 return -ENOMEM;
4106
4107 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
4108 if (!pf->avail_rxqs) {
4109 bitmap_free(pf->avail_txqs);
4110 pf->avail_txqs = NULL;
4111 return -ENOMEM;
4112 }
4113
4114 mutex_init(&pf->vfs.table_lock);
4115 hash_init(pf->vfs.table);
4116 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT))
4117 wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH,
4118 ICE_MBX_OVERFLOW_WATERMARK);
4119 else
4120 ice_mbx_init_snapshot(&pf->hw);
4121
4122 xa_init(&pf->dyn_ports);
4123 xa_init(&pf->sf_nums);
4124
4125 return 0;
4126 }
4127
4128 /**
4129 * ice_is_wol_supported - check if WoL is supported
4130 * @hw: pointer to hardware info
4131 *
4132 * Check if WoL is supported based on the HW configuration.
4133 * Returns true if NVM supports and enables WoL for this port, false otherwise
4134 */
ice_is_wol_supported(struct ice_hw * hw)4135 bool ice_is_wol_supported(struct ice_hw *hw)
4136 {
4137 u16 wol_ctrl;
4138
4139 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4140 * word) indicates WoL is not supported on the corresponding PF ID.
4141 */
4142 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4143 return false;
4144
4145 return !(BIT(hw->port_info->lport) & wol_ctrl);
4146 }
4147
4148 /**
4149 * ice_vsi_recfg_qs - Change the number of queues on a VSI
4150 * @vsi: VSI being changed
4151 * @new_rx: new number of Rx queues
4152 * @new_tx: new number of Tx queues
4153 * @locked: is adev device_lock held
4154 *
4155 * Only change the number of queues if new_tx, or new_rx is non-0.
4156 *
4157 * Returns 0 on success.
4158 */
ice_vsi_recfg_qs(struct ice_vsi * vsi,int new_rx,int new_tx,bool locked)4159 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
4160 {
4161 struct ice_pf *pf = vsi->back;
4162 int i, err = 0, timeout = 50;
4163
4164 if (!new_rx && !new_tx)
4165 return -EINVAL;
4166
4167 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4168 timeout--;
4169 if (!timeout)
4170 return -EBUSY;
4171 usleep_range(1000, 2000);
4172 }
4173
4174 if (new_tx)
4175 vsi->req_txq = (u16)new_tx;
4176 if (new_rx)
4177 vsi->req_rxq = (u16)new_rx;
4178
4179 /* set for the next time the netdev is started */
4180 if (!netif_running(vsi->netdev)) {
4181 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4182 if (err)
4183 goto rebuild_err;
4184 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4185 goto done;
4186 }
4187
4188 ice_vsi_close(vsi);
4189 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4190 if (err)
4191 goto rebuild_err;
4192
4193 ice_for_each_traffic_class(i) {
4194 if (vsi->tc_cfg.ena_tc & BIT(i))
4195 netdev_set_tc_queue(vsi->netdev,
4196 vsi->tc_cfg.tc_info[i].netdev_tc,
4197 vsi->tc_cfg.tc_info[i].qcount_tx,
4198 vsi->tc_cfg.tc_info[i].qoffset);
4199 }
4200 ice_pf_dcb_recfg(pf, locked);
4201 ice_vsi_open(vsi);
4202 goto done;
4203
4204 rebuild_err:
4205 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n",
4206 err);
4207 done:
4208 clear_bit(ICE_CFG_BUSY, pf->state);
4209 return err;
4210 }
4211
4212 /**
4213 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4214 * @pf: PF to configure
4215 *
4216 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4217 * VSI can still Tx/Rx VLAN tagged packets.
4218 */
ice_set_safe_mode_vlan_cfg(struct ice_pf * pf)4219 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4220 {
4221 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4222 struct ice_vsi_ctx *ctxt;
4223 struct ice_hw *hw;
4224 int status;
4225
4226 if (!vsi)
4227 return;
4228
4229 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4230 if (!ctxt)
4231 return;
4232
4233 hw = &pf->hw;
4234 ctxt->info = vsi->info;
4235
4236 ctxt->info.valid_sections =
4237 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4238 ICE_AQ_VSI_PROP_SECURITY_VALID |
4239 ICE_AQ_VSI_PROP_SW_VALID);
4240
4241 /* disable VLAN anti-spoof */
4242 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4243 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4244
4245 /* disable VLAN pruning and keep all other settings */
4246 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4247
4248 /* allow all VLANs on Tx and don't strip on Rx */
4249 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4250 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4251
4252 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4253 if (status) {
4254 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4255 status, ice_aq_str(hw->adminq.sq_last_status));
4256 } else {
4257 vsi->info.sec_flags = ctxt->info.sec_flags;
4258 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4259 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4260 }
4261
4262 kfree(ctxt);
4263 }
4264
4265 /**
4266 * ice_log_pkg_init - log result of DDP package load
4267 * @hw: pointer to hardware info
4268 * @state: state of package load
4269 */
ice_log_pkg_init(struct ice_hw * hw,enum ice_ddp_state state)4270 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4271 {
4272 struct ice_pf *pf = hw->back;
4273 struct device *dev;
4274
4275 dev = ice_pf_to_dev(pf);
4276
4277 switch (state) {
4278 case ICE_DDP_PKG_SUCCESS:
4279 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4280 hw->active_pkg_name,
4281 hw->active_pkg_ver.major,
4282 hw->active_pkg_ver.minor,
4283 hw->active_pkg_ver.update,
4284 hw->active_pkg_ver.draft);
4285 break;
4286 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4287 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4288 hw->active_pkg_name,
4289 hw->active_pkg_ver.major,
4290 hw->active_pkg_ver.minor,
4291 hw->active_pkg_ver.update,
4292 hw->active_pkg_ver.draft);
4293 break;
4294 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4295 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
4296 hw->active_pkg_name,
4297 hw->active_pkg_ver.major,
4298 hw->active_pkg_ver.minor,
4299 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4300 break;
4301 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4302 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4303 hw->active_pkg_name,
4304 hw->active_pkg_ver.major,
4305 hw->active_pkg_ver.minor,
4306 hw->active_pkg_ver.update,
4307 hw->active_pkg_ver.draft,
4308 hw->pkg_name,
4309 hw->pkg_ver.major,
4310 hw->pkg_ver.minor,
4311 hw->pkg_ver.update,
4312 hw->pkg_ver.draft);
4313 break;
4314 case ICE_DDP_PKG_FW_MISMATCH:
4315 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
4316 break;
4317 case ICE_DDP_PKG_INVALID_FILE:
4318 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4319 break;
4320 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4321 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
4322 break;
4323 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4324 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
4325 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4326 break;
4327 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4328 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
4329 break;
4330 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4331 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
4332 break;
4333 case ICE_DDP_PKG_LOAD_ERROR:
4334 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
4335 /* poll for reset to complete */
4336 if (ice_check_reset(hw))
4337 dev_err(dev, "Error resetting device. Please reload the driver\n");
4338 break;
4339 case ICE_DDP_PKG_ERR:
4340 default:
4341 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n");
4342 break;
4343 }
4344 }
4345
4346 /**
4347 * ice_load_pkg - load/reload the DDP Package file
4348 * @firmware: firmware structure when firmware requested or NULL for reload
4349 * @pf: pointer to the PF instance
4350 *
4351 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4352 * initialize HW tables.
4353 */
4354 static void
ice_load_pkg(const struct firmware * firmware,struct ice_pf * pf)4355 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4356 {
4357 enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4358 struct device *dev = ice_pf_to_dev(pf);
4359 struct ice_hw *hw = &pf->hw;
4360
4361 /* Load DDP Package */
4362 if (firmware && !hw->pkg_copy) {
4363 state = ice_copy_and_init_pkg(hw, firmware->data,
4364 firmware->size);
4365 ice_log_pkg_init(hw, state);
4366 } else if (!firmware && hw->pkg_copy) {
4367 /* Reload package during rebuild after CORER/GLOBR reset */
4368 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4369 ice_log_pkg_init(hw, state);
4370 } else {
4371 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4372 }
4373
4374 if (!ice_is_init_pkg_successful(state)) {
4375 /* Safe Mode */
4376 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4377 return;
4378 }
4379
4380 /* Successful download package is the precondition for advanced
4381 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4382 */
4383 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4384 }
4385
4386 /**
4387 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4388 * @pf: pointer to the PF structure
4389 *
4390 * There is no error returned here because the driver should be able to handle
4391 * 128 Byte cache lines, so we only print a warning in case issues are seen,
4392 * specifically with Tx.
4393 */
ice_verify_cacheline_size(struct ice_pf * pf)4394 static void ice_verify_cacheline_size(struct ice_pf *pf)
4395 {
4396 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4397 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4398 ICE_CACHE_LINE_BYTES);
4399 }
4400
4401 /**
4402 * ice_send_version - update firmware with driver version
4403 * @pf: PF struct
4404 *
4405 * Returns 0 on success, else error code
4406 */
ice_send_version(struct ice_pf * pf)4407 static int ice_send_version(struct ice_pf *pf)
4408 {
4409 struct ice_driver_ver dv;
4410
4411 dv.major_ver = 0xff;
4412 dv.minor_ver = 0xff;
4413 dv.build_ver = 0xff;
4414 dv.subbuild_ver = 0;
4415 strscpy((char *)dv.driver_string, UTS_RELEASE,
4416 sizeof(dv.driver_string));
4417 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4418 }
4419
4420 /**
4421 * ice_init_fdir - Initialize flow director VSI and configuration
4422 * @pf: pointer to the PF instance
4423 *
4424 * returns 0 on success, negative on error
4425 */
ice_init_fdir(struct ice_pf * pf)4426 static int ice_init_fdir(struct ice_pf *pf)
4427 {
4428 struct device *dev = ice_pf_to_dev(pf);
4429 struct ice_vsi *ctrl_vsi;
4430 int err;
4431
4432 /* Side Band Flow Director needs to have a control VSI.
4433 * Allocate it and store it in the PF.
4434 */
4435 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4436 if (!ctrl_vsi) {
4437 dev_dbg(dev, "could not create control VSI\n");
4438 return -ENOMEM;
4439 }
4440
4441 err = ice_vsi_open_ctrl(ctrl_vsi);
4442 if (err) {
4443 dev_dbg(dev, "could not open control VSI\n");
4444 goto err_vsi_open;
4445 }
4446
4447 mutex_init(&pf->hw.fdir_fltr_lock);
4448
4449 err = ice_fdir_create_dflt_rules(pf);
4450 if (err)
4451 goto err_fdir_rule;
4452
4453 return 0;
4454
4455 err_fdir_rule:
4456 ice_fdir_release_flows(&pf->hw);
4457 ice_vsi_close(ctrl_vsi);
4458 err_vsi_open:
4459 ice_vsi_release(ctrl_vsi);
4460 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4461 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4462 pf->ctrl_vsi_idx = ICE_NO_VSI;
4463 }
4464 return err;
4465 }
4466
ice_deinit_fdir(struct ice_pf * pf)4467 static void ice_deinit_fdir(struct ice_pf *pf)
4468 {
4469 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4470
4471 if (!vsi)
4472 return;
4473
4474 ice_vsi_manage_fdir(vsi, false);
4475 ice_vsi_release(vsi);
4476 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4477 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4478 pf->ctrl_vsi_idx = ICE_NO_VSI;
4479 }
4480
4481 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4482 }
4483
4484 /**
4485 * ice_get_opt_fw_name - return optional firmware file name or NULL
4486 * @pf: pointer to the PF instance
4487 */
ice_get_opt_fw_name(struct ice_pf * pf)4488 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4489 {
4490 /* Optional firmware name same as default with additional dash
4491 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4492 */
4493 struct pci_dev *pdev = pf->pdev;
4494 char *opt_fw_filename;
4495 u64 dsn;
4496
4497 /* Determine the name of the optional file using the DSN (two
4498 * dwords following the start of the DSN Capability).
4499 */
4500 dsn = pci_get_dsn(pdev);
4501 if (!dsn)
4502 return NULL;
4503
4504 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4505 if (!opt_fw_filename)
4506 return NULL;
4507
4508 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4509 ICE_DDP_PKG_PATH, dsn);
4510
4511 return opt_fw_filename;
4512 }
4513
4514 /**
4515 * ice_request_fw - Device initialization routine
4516 * @pf: pointer to the PF instance
4517 * @firmware: double pointer to firmware struct
4518 *
4519 * Return: zero when successful, negative values otherwise.
4520 */
ice_request_fw(struct ice_pf * pf,const struct firmware ** firmware)4521 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware)
4522 {
4523 char *opt_fw_filename = ice_get_opt_fw_name(pf);
4524 struct device *dev = ice_pf_to_dev(pf);
4525 int err = 0;
4526
4527 /* optional device-specific DDP (if present) overrides the default DDP
4528 * package file. kernel logs a debug message if the file doesn't exist,
4529 * and warning messages for other errors.
4530 */
4531 if (opt_fw_filename) {
4532 err = firmware_request_nowarn(firmware, opt_fw_filename, dev);
4533 kfree(opt_fw_filename);
4534 if (!err)
4535 return err;
4536 }
4537 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev);
4538 if (err)
4539 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4540
4541 return err;
4542 }
4543
4544 /**
4545 * ice_init_tx_topology - performs Tx topology initialization
4546 * @hw: pointer to the hardware structure
4547 * @firmware: pointer to firmware structure
4548 *
4549 * Return: zero when init was successful, negative values otherwise.
4550 */
4551 static int
ice_init_tx_topology(struct ice_hw * hw,const struct firmware * firmware)4552 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware)
4553 {
4554 u8 num_tx_sched_layers = hw->num_tx_sched_layers;
4555 struct ice_pf *pf = hw->back;
4556 struct device *dev;
4557 int err;
4558
4559 dev = ice_pf_to_dev(pf);
4560 err = ice_cfg_tx_topo(hw, firmware->data, firmware->size);
4561 if (!err) {
4562 if (hw->num_tx_sched_layers > num_tx_sched_layers)
4563 dev_info(dev, "Tx scheduling layers switching feature disabled\n");
4564 else
4565 dev_info(dev, "Tx scheduling layers switching feature enabled\n");
4566 /* if there was a change in topology ice_cfg_tx_topo triggered
4567 * a CORER and we need to re-init hw
4568 */
4569 ice_deinit_hw(hw);
4570 err = ice_init_hw(hw);
4571
4572 return err;
4573 } else if (err == -EIO) {
4574 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n");
4575 }
4576
4577 return 0;
4578 }
4579
4580 /**
4581 * ice_init_supported_rxdids - Initialize supported Rx descriptor IDs
4582 * @hw: pointer to the hardware structure
4583 * @pf: pointer to pf structure
4584 *
4585 * The pf->supported_rxdids bitmap is used to indicate to VFs which descriptor
4586 * formats the PF hardware supports. The exact list of supported RXDIDs
4587 * depends on the loaded DDP package. The IDs can be determined by reading the
4588 * GLFLXP_RXDID_FLAGS register after the DDP package is loaded.
4589 *
4590 * Note that the legacy 32-byte RXDID 0 is always supported but is not listed
4591 * in the DDP package. The 16-byte legacy descriptor is never supported by
4592 * VFs.
4593 */
ice_init_supported_rxdids(struct ice_hw * hw,struct ice_pf * pf)4594 static void ice_init_supported_rxdids(struct ice_hw *hw, struct ice_pf *pf)
4595 {
4596 pf->supported_rxdids = BIT(ICE_RXDID_LEGACY_1);
4597
4598 for (int i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
4599 u32 regval;
4600
4601 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
4602 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
4603 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
4604 pf->supported_rxdids |= BIT(i);
4605 }
4606 }
4607
4608 /**
4609 * ice_init_ddp_config - DDP related configuration
4610 * @hw: pointer to the hardware structure
4611 * @pf: pointer to pf structure
4612 *
4613 * This function loads DDP file from the disk, then initializes Tx
4614 * topology. At the end DDP package is loaded on the card.
4615 *
4616 * Return: zero when init was successful, negative values otherwise.
4617 */
ice_init_ddp_config(struct ice_hw * hw,struct ice_pf * pf)4618 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf)
4619 {
4620 struct device *dev = ice_pf_to_dev(pf);
4621 const struct firmware *firmware = NULL;
4622 int err;
4623
4624 err = ice_request_fw(pf, &firmware);
4625 if (err) {
4626 dev_err(dev, "Fail during requesting FW: %d\n", err);
4627 return err;
4628 }
4629
4630 err = ice_init_tx_topology(hw, firmware);
4631 if (err) {
4632 dev_err(dev, "Fail during initialization of Tx topology: %d\n",
4633 err);
4634 release_firmware(firmware);
4635 return err;
4636 }
4637
4638 /* Download firmware to device */
4639 ice_load_pkg(firmware, pf);
4640 release_firmware(firmware);
4641
4642 /* Initialize the supported Rx descriptor IDs after loading DDP */
4643 ice_init_supported_rxdids(hw, pf);
4644
4645 return 0;
4646 }
4647
4648 /**
4649 * ice_print_wake_reason - show the wake up cause in the log
4650 * @pf: pointer to the PF struct
4651 */
ice_print_wake_reason(struct ice_pf * pf)4652 static void ice_print_wake_reason(struct ice_pf *pf)
4653 {
4654 u32 wus = pf->wakeup_reason;
4655 const char *wake_str;
4656
4657 /* if no wake event, nothing to print */
4658 if (!wus)
4659 return;
4660
4661 if (wus & PFPM_WUS_LNKC_M)
4662 wake_str = "Link\n";
4663 else if (wus & PFPM_WUS_MAG_M)
4664 wake_str = "Magic Packet\n";
4665 else if (wus & PFPM_WUS_MNG_M)
4666 wake_str = "Management\n";
4667 else if (wus & PFPM_WUS_FW_RST_WK_M)
4668 wake_str = "Firmware Reset\n";
4669 else
4670 wake_str = "Unknown\n";
4671
4672 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4673 }
4674
4675 /**
4676 * ice_pf_fwlog_update_module - update 1 module
4677 * @pf: pointer to the PF struct
4678 * @log_level: log_level to use for the @module
4679 * @module: module to update
4680 */
ice_pf_fwlog_update_module(struct ice_pf * pf,int log_level,int module)4681 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module)
4682 {
4683 struct ice_hw *hw = &pf->hw;
4684
4685 hw->fwlog_cfg.module_entries[module].log_level = log_level;
4686 }
4687
4688 /**
4689 * ice_register_netdev - register netdev
4690 * @vsi: pointer to the VSI struct
4691 */
ice_register_netdev(struct ice_vsi * vsi)4692 static int ice_register_netdev(struct ice_vsi *vsi)
4693 {
4694 int err;
4695
4696 if (!vsi || !vsi->netdev)
4697 return -EIO;
4698
4699 err = register_netdev(vsi->netdev);
4700 if (err)
4701 return err;
4702
4703 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4704 netif_carrier_off(vsi->netdev);
4705 netif_tx_stop_all_queues(vsi->netdev);
4706
4707 return 0;
4708 }
4709
ice_unregister_netdev(struct ice_vsi * vsi)4710 static void ice_unregister_netdev(struct ice_vsi *vsi)
4711 {
4712 if (!vsi || !vsi->netdev)
4713 return;
4714
4715 unregister_netdev(vsi->netdev);
4716 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4717 }
4718
4719 /**
4720 * ice_cfg_netdev - Allocate, configure and register a netdev
4721 * @vsi: the VSI associated with the new netdev
4722 *
4723 * Returns 0 on success, negative value on failure
4724 */
ice_cfg_netdev(struct ice_vsi * vsi)4725 static int ice_cfg_netdev(struct ice_vsi *vsi)
4726 {
4727 struct ice_netdev_priv *np;
4728 struct net_device *netdev;
4729 u8 mac_addr[ETH_ALEN];
4730
4731 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4732 vsi->alloc_rxq);
4733 if (!netdev)
4734 return -ENOMEM;
4735
4736 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4737 vsi->netdev = netdev;
4738 np = netdev_priv(netdev);
4739 np->vsi = vsi;
4740
4741 ice_set_netdev_features(netdev);
4742 ice_set_ops(vsi);
4743
4744 if (vsi->type == ICE_VSI_PF) {
4745 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4746 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4747 eth_hw_addr_set(netdev, mac_addr);
4748 }
4749
4750 netdev->priv_flags |= IFF_UNICAST_FLT;
4751
4752 /* Setup netdev TC information */
4753 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4754
4755 netdev->max_mtu = ICE_MAX_MTU;
4756
4757 return 0;
4758 }
4759
ice_decfg_netdev(struct ice_vsi * vsi)4760 static void ice_decfg_netdev(struct ice_vsi *vsi)
4761 {
4762 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4763 free_netdev(vsi->netdev);
4764 vsi->netdev = NULL;
4765 }
4766
ice_init_dev(struct ice_pf * pf)4767 int ice_init_dev(struct ice_pf *pf)
4768 {
4769 struct device *dev = ice_pf_to_dev(pf);
4770 struct ice_hw *hw = &pf->hw;
4771 int err;
4772
4773 ice_init_feature_support(pf);
4774
4775 err = ice_init_ddp_config(hw, pf);
4776
4777 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be
4778 * set in pf->state, which will cause ice_is_safe_mode to return
4779 * true
4780 */
4781 if (err || ice_is_safe_mode(pf)) {
4782 /* we already got function/device capabilities but these don't
4783 * reflect what the driver needs to do in safe mode. Instead of
4784 * adding conditional logic everywhere to ignore these
4785 * device/function capabilities, override them.
4786 */
4787 ice_set_safe_mode_caps(hw);
4788 }
4789
4790 err = ice_init_pf(pf);
4791 if (err) {
4792 dev_err(dev, "ice_init_pf failed: %d\n", err);
4793 return err;
4794 }
4795
4796 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4797 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4798 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4799 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4800 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4801 pf->hw.udp_tunnel_nic.tables[0].n_entries =
4802 pf->hw.tnl.valid_count[TNL_VXLAN];
4803 pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4804 UDP_TUNNEL_TYPE_VXLAN;
4805 }
4806 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4807 pf->hw.udp_tunnel_nic.tables[1].n_entries =
4808 pf->hw.tnl.valid_count[TNL_GENEVE];
4809 pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4810 UDP_TUNNEL_TYPE_GENEVE;
4811 }
4812
4813 err = ice_init_interrupt_scheme(pf);
4814 if (err) {
4815 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4816 err = -EIO;
4817 goto unroll_pf_init;
4818 }
4819
4820 /* In case of MSIX we are going to setup the misc vector right here
4821 * to handle admin queue events etc. In case of legacy and MSI
4822 * the misc functionality and queue processing is combined in
4823 * the same vector and that gets setup at open.
4824 */
4825 err = ice_req_irq_msix_misc(pf);
4826 if (err) {
4827 dev_err(dev, "setup of misc vector failed: %d\n", err);
4828 goto unroll_irq_scheme_init;
4829 }
4830
4831 return 0;
4832
4833 unroll_irq_scheme_init:
4834 ice_clear_interrupt_scheme(pf);
4835 unroll_pf_init:
4836 ice_deinit_pf(pf);
4837 return err;
4838 }
4839
ice_deinit_dev(struct ice_pf * pf)4840 void ice_deinit_dev(struct ice_pf *pf)
4841 {
4842 ice_free_irq_msix_misc(pf);
4843 ice_deinit_pf(pf);
4844 ice_deinit_hw(&pf->hw);
4845
4846 /* Service task is already stopped, so call reset directly. */
4847 ice_reset(&pf->hw, ICE_RESET_PFR);
4848 pci_wait_for_pending_transaction(pf->pdev);
4849 ice_clear_interrupt_scheme(pf);
4850 }
4851
ice_init_features(struct ice_pf * pf)4852 static void ice_init_features(struct ice_pf *pf)
4853 {
4854 struct device *dev = ice_pf_to_dev(pf);
4855
4856 if (ice_is_safe_mode(pf))
4857 return;
4858
4859 /* initialize DDP driven features */
4860 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4861 ice_ptp_init(pf);
4862
4863 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4864 ice_gnss_init(pf);
4865
4866 if (ice_is_feature_supported(pf, ICE_F_CGU) ||
4867 ice_is_feature_supported(pf, ICE_F_PHY_RCLK))
4868 ice_dpll_init(pf);
4869
4870 /* Note: Flow director init failure is non-fatal to load */
4871 if (ice_init_fdir(pf))
4872 dev_err(dev, "could not initialize flow director\n");
4873
4874 /* Note: DCB init failure is non-fatal to load */
4875 if (ice_init_pf_dcb(pf, false)) {
4876 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4877 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4878 } else {
4879 ice_cfg_lldp_mib_change(&pf->hw, true);
4880 }
4881
4882 if (ice_init_lag(pf))
4883 dev_warn(dev, "Failed to init link aggregation support\n");
4884
4885 ice_hwmon_init(pf);
4886 }
4887
ice_deinit_features(struct ice_pf * pf)4888 static void ice_deinit_features(struct ice_pf *pf)
4889 {
4890 if (ice_is_safe_mode(pf))
4891 return;
4892
4893 ice_deinit_lag(pf);
4894 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4895 ice_cfg_lldp_mib_change(&pf->hw, false);
4896 ice_deinit_fdir(pf);
4897 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4898 ice_gnss_exit(pf);
4899 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4900 ice_ptp_release(pf);
4901 if (test_bit(ICE_FLAG_DPLL, pf->flags))
4902 ice_dpll_deinit(pf);
4903 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV)
4904 xa_destroy(&pf->eswitch.reprs);
4905 }
4906
ice_init_wakeup(struct ice_pf * pf)4907 static void ice_init_wakeup(struct ice_pf *pf)
4908 {
4909 /* Save wakeup reason register for later use */
4910 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4911
4912 /* check for a power management event */
4913 ice_print_wake_reason(pf);
4914
4915 /* clear wake status, all bits */
4916 wr32(&pf->hw, PFPM_WUS, U32_MAX);
4917
4918 /* Disable WoL at init, wait for user to enable */
4919 device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4920 }
4921
ice_init_link(struct ice_pf * pf)4922 static int ice_init_link(struct ice_pf *pf)
4923 {
4924 struct device *dev = ice_pf_to_dev(pf);
4925 int err;
4926
4927 err = ice_init_link_events(pf->hw.port_info);
4928 if (err) {
4929 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4930 return err;
4931 }
4932
4933 /* not a fatal error if this fails */
4934 err = ice_init_nvm_phy_type(pf->hw.port_info);
4935 if (err)
4936 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4937
4938 /* not a fatal error if this fails */
4939 err = ice_update_link_info(pf->hw.port_info);
4940 if (err)
4941 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4942
4943 ice_init_link_dflt_override(pf->hw.port_info);
4944
4945 ice_check_link_cfg_err(pf,
4946 pf->hw.port_info->phy.link_info.link_cfg_err);
4947
4948 /* if media available, initialize PHY settings */
4949 if (pf->hw.port_info->phy.link_info.link_info &
4950 ICE_AQ_MEDIA_AVAILABLE) {
4951 /* not a fatal error if this fails */
4952 err = ice_init_phy_user_cfg(pf->hw.port_info);
4953 if (err)
4954 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4955
4956 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4957 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4958
4959 if (vsi)
4960 ice_configure_phy(vsi);
4961 }
4962 } else {
4963 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4964 }
4965
4966 return err;
4967 }
4968
ice_init_pf_sw(struct ice_pf * pf)4969 static int ice_init_pf_sw(struct ice_pf *pf)
4970 {
4971 bool dvm = ice_is_dvm_ena(&pf->hw);
4972 struct ice_vsi *vsi;
4973 int err;
4974
4975 /* create switch struct for the switch element created by FW on boot */
4976 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4977 if (!pf->first_sw)
4978 return -ENOMEM;
4979
4980 if (pf->hw.evb_veb)
4981 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4982 else
4983 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4984
4985 pf->first_sw->pf = pf;
4986
4987 /* record the sw_id available for later use */
4988 pf->first_sw->sw_id = pf->hw.port_info->sw_id;
4989
4990 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
4991 if (err)
4992 goto err_aq_set_port_params;
4993
4994 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
4995 if (!vsi) {
4996 err = -ENOMEM;
4997 goto err_pf_vsi_setup;
4998 }
4999
5000 return 0;
5001
5002 err_pf_vsi_setup:
5003 err_aq_set_port_params:
5004 kfree(pf->first_sw);
5005 return err;
5006 }
5007
ice_deinit_pf_sw(struct ice_pf * pf)5008 static void ice_deinit_pf_sw(struct ice_pf *pf)
5009 {
5010 struct ice_vsi *vsi = ice_get_main_vsi(pf);
5011
5012 if (!vsi)
5013 return;
5014
5015 ice_vsi_release(vsi);
5016 kfree(pf->first_sw);
5017 }
5018
ice_alloc_vsis(struct ice_pf * pf)5019 static int ice_alloc_vsis(struct ice_pf *pf)
5020 {
5021 struct device *dev = ice_pf_to_dev(pf);
5022
5023 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
5024 if (!pf->num_alloc_vsi)
5025 return -EIO;
5026
5027 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
5028 dev_warn(dev,
5029 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
5030 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
5031 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
5032 }
5033
5034 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
5035 GFP_KERNEL);
5036 if (!pf->vsi)
5037 return -ENOMEM;
5038
5039 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
5040 sizeof(*pf->vsi_stats), GFP_KERNEL);
5041 if (!pf->vsi_stats) {
5042 devm_kfree(dev, pf->vsi);
5043 return -ENOMEM;
5044 }
5045
5046 return 0;
5047 }
5048
ice_dealloc_vsis(struct ice_pf * pf)5049 static void ice_dealloc_vsis(struct ice_pf *pf)
5050 {
5051 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
5052 pf->vsi_stats = NULL;
5053
5054 pf->num_alloc_vsi = 0;
5055 devm_kfree(ice_pf_to_dev(pf), pf->vsi);
5056 pf->vsi = NULL;
5057 }
5058
ice_init_devlink(struct ice_pf * pf)5059 static int ice_init_devlink(struct ice_pf *pf)
5060 {
5061 int err;
5062
5063 err = ice_devlink_register_params(pf);
5064 if (err)
5065 return err;
5066
5067 ice_devlink_init_regions(pf);
5068 ice_health_init(pf);
5069 ice_devlink_register(pf);
5070
5071 return 0;
5072 }
5073
ice_deinit_devlink(struct ice_pf * pf)5074 static void ice_deinit_devlink(struct ice_pf *pf)
5075 {
5076 ice_devlink_unregister(pf);
5077 ice_health_deinit(pf);
5078 ice_devlink_destroy_regions(pf);
5079 ice_devlink_unregister_params(pf);
5080 }
5081
ice_init(struct ice_pf * pf)5082 static int ice_init(struct ice_pf *pf)
5083 {
5084 int err;
5085
5086 err = ice_init_dev(pf);
5087 if (err)
5088 return err;
5089
5090 err = ice_alloc_vsis(pf);
5091 if (err)
5092 goto err_alloc_vsis;
5093
5094 err = ice_init_pf_sw(pf);
5095 if (err)
5096 goto err_init_pf_sw;
5097
5098 ice_init_wakeup(pf);
5099
5100 err = ice_init_link(pf);
5101 if (err)
5102 goto err_init_link;
5103
5104 err = ice_send_version(pf);
5105 if (err)
5106 goto err_init_link;
5107
5108 ice_verify_cacheline_size(pf);
5109
5110 if (ice_is_safe_mode(pf))
5111 ice_set_safe_mode_vlan_cfg(pf);
5112 else
5113 /* print PCI link speed and width */
5114 pcie_print_link_status(pf->pdev);
5115
5116 /* ready to go, so clear down state bit */
5117 clear_bit(ICE_DOWN, pf->state);
5118 clear_bit(ICE_SERVICE_DIS, pf->state);
5119
5120 /* since everything is good, start the service timer */
5121 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5122
5123 return 0;
5124
5125 err_init_link:
5126 ice_deinit_pf_sw(pf);
5127 err_init_pf_sw:
5128 ice_dealloc_vsis(pf);
5129 err_alloc_vsis:
5130 ice_deinit_dev(pf);
5131 return err;
5132 }
5133
ice_deinit(struct ice_pf * pf)5134 static void ice_deinit(struct ice_pf *pf)
5135 {
5136 set_bit(ICE_SERVICE_DIS, pf->state);
5137 set_bit(ICE_DOWN, pf->state);
5138
5139 ice_deinit_pf_sw(pf);
5140 ice_dealloc_vsis(pf);
5141 ice_deinit_dev(pf);
5142 }
5143
5144 /**
5145 * ice_load - load pf by init hw and starting VSI
5146 * @pf: pointer to the pf instance
5147 *
5148 * This function has to be called under devl_lock.
5149 */
ice_load(struct ice_pf * pf)5150 int ice_load(struct ice_pf *pf)
5151 {
5152 struct ice_vsi *vsi;
5153 int err;
5154
5155 devl_assert_locked(priv_to_devlink(pf));
5156
5157 vsi = ice_get_main_vsi(pf);
5158
5159 /* init channel list */
5160 INIT_LIST_HEAD(&vsi->ch_list);
5161
5162 err = ice_cfg_netdev(vsi);
5163 if (err)
5164 return err;
5165
5166 /* Setup DCB netlink interface */
5167 ice_dcbnl_setup(vsi);
5168
5169 err = ice_init_mac_fltr(pf);
5170 if (err)
5171 goto err_init_mac_fltr;
5172
5173 err = ice_devlink_create_pf_port(pf);
5174 if (err)
5175 goto err_devlink_create_pf_port;
5176
5177 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
5178
5179 err = ice_register_netdev(vsi);
5180 if (err)
5181 goto err_register_netdev;
5182
5183 err = ice_tc_indir_block_register(vsi);
5184 if (err)
5185 goto err_tc_indir_block_register;
5186
5187 ice_napi_add(vsi);
5188
5189 err = ice_init_rdma(pf);
5190 if (err)
5191 goto err_init_rdma;
5192
5193 ice_init_features(pf);
5194 ice_service_task_restart(pf);
5195
5196 clear_bit(ICE_DOWN, pf->state);
5197
5198 return 0;
5199
5200 err_init_rdma:
5201 ice_tc_indir_block_unregister(vsi);
5202 err_tc_indir_block_register:
5203 ice_unregister_netdev(vsi);
5204 err_register_netdev:
5205 ice_devlink_destroy_pf_port(pf);
5206 err_devlink_create_pf_port:
5207 err_init_mac_fltr:
5208 ice_decfg_netdev(vsi);
5209 return err;
5210 }
5211
5212 /**
5213 * ice_unload - unload pf by stopping VSI and deinit hw
5214 * @pf: pointer to the pf instance
5215 *
5216 * This function has to be called under devl_lock.
5217 */
ice_unload(struct ice_pf * pf)5218 void ice_unload(struct ice_pf *pf)
5219 {
5220 struct ice_vsi *vsi = ice_get_main_vsi(pf);
5221
5222 devl_assert_locked(priv_to_devlink(pf));
5223
5224 ice_deinit_features(pf);
5225 ice_deinit_rdma(pf);
5226 ice_tc_indir_block_unregister(vsi);
5227 ice_unregister_netdev(vsi);
5228 ice_devlink_destroy_pf_port(pf);
5229 ice_decfg_netdev(vsi);
5230 }
5231
ice_probe_recovery_mode(struct ice_pf * pf)5232 static int ice_probe_recovery_mode(struct ice_pf *pf)
5233 {
5234 struct device *dev = ice_pf_to_dev(pf);
5235 int err;
5236
5237 dev_err(dev, "Firmware recovery mode detected. Limiting functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode\n");
5238
5239 INIT_HLIST_HEAD(&pf->aq_wait_list);
5240 spin_lock_init(&pf->aq_wait_lock);
5241 init_waitqueue_head(&pf->aq_wait_queue);
5242
5243 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
5244 pf->serv_tmr_period = HZ;
5245 INIT_WORK(&pf->serv_task, ice_service_task_recovery_mode);
5246 clear_bit(ICE_SERVICE_SCHED, pf->state);
5247 err = ice_create_all_ctrlq(&pf->hw);
5248 if (err)
5249 return err;
5250
5251 scoped_guard(devl, priv_to_devlink(pf)) {
5252 err = ice_init_devlink(pf);
5253 if (err)
5254 return err;
5255 }
5256
5257 ice_service_task_restart(pf);
5258
5259 return 0;
5260 }
5261
5262 /**
5263 * ice_probe - Device initialization routine
5264 * @pdev: PCI device information struct
5265 * @ent: entry in ice_pci_tbl
5266 *
5267 * Returns 0 on success, negative on failure
5268 */
5269 static int
ice_probe(struct pci_dev * pdev,const struct pci_device_id __always_unused * ent)5270 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5271 {
5272 struct device *dev = &pdev->dev;
5273 struct ice_adapter *adapter;
5274 struct ice_pf *pf;
5275 struct ice_hw *hw;
5276 int err;
5277
5278 if (pdev->is_virtfn) {
5279 dev_err(dev, "can't probe a virtual function\n");
5280 return -EINVAL;
5281 }
5282
5283 /* when under a kdump kernel initiate a reset before enabling the
5284 * device in order to clear out any pending DMA transactions. These
5285 * transactions can cause some systems to machine check when doing
5286 * the pcim_enable_device() below.
5287 */
5288 if (is_kdump_kernel()) {
5289 pci_save_state(pdev);
5290 pci_clear_master(pdev);
5291 err = pcie_flr(pdev);
5292 if (err)
5293 return err;
5294 pci_restore_state(pdev);
5295 }
5296
5297 /* this driver uses devres, see
5298 * Documentation/driver-api/driver-model/devres.rst
5299 */
5300 err = pcim_enable_device(pdev);
5301 if (err)
5302 return err;
5303
5304 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5305 if (err) {
5306 dev_err(dev, "BAR0 I/O map error %d\n", err);
5307 return err;
5308 }
5309
5310 pf = ice_allocate_pf(dev);
5311 if (!pf)
5312 return -ENOMEM;
5313
5314 /* initialize Auxiliary index to invalid value */
5315 pf->aux_idx = -1;
5316
5317 /* set up for high or low DMA */
5318 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5319 if (err) {
5320 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5321 return err;
5322 }
5323
5324 pci_set_master(pdev);
5325 pf->pdev = pdev;
5326 pci_set_drvdata(pdev, pf);
5327 set_bit(ICE_DOWN, pf->state);
5328 /* Disable service task until DOWN bit is cleared */
5329 set_bit(ICE_SERVICE_DIS, pf->state);
5330
5331 hw = &pf->hw;
5332 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5333 pci_save_state(pdev);
5334
5335 hw->back = pf;
5336 hw->port_info = NULL;
5337 hw->vendor_id = pdev->vendor;
5338 hw->device_id = pdev->device;
5339 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5340 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5341 hw->subsystem_device_id = pdev->subsystem_device;
5342 hw->bus.device = PCI_SLOT(pdev->devfn);
5343 hw->bus.func = PCI_FUNC(pdev->devfn);
5344 ice_set_ctrlq_len(hw);
5345
5346 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5347
5348 #ifndef CONFIG_DYNAMIC_DEBUG
5349 if (debug < -1)
5350 hw->debug_mask = debug;
5351 #endif
5352
5353 if (ice_is_recovery_mode(hw))
5354 return ice_probe_recovery_mode(pf);
5355
5356 err = ice_init_hw(hw);
5357 if (err) {
5358 dev_err(dev, "ice_init_hw failed: %d\n", err);
5359 return err;
5360 }
5361
5362 adapter = ice_adapter_get(pdev);
5363 if (IS_ERR(adapter)) {
5364 err = PTR_ERR(adapter);
5365 goto unroll_hw_init;
5366 }
5367 pf->adapter = adapter;
5368
5369 err = ice_init(pf);
5370 if (err)
5371 goto unroll_adapter;
5372
5373 devl_lock(priv_to_devlink(pf));
5374 err = ice_load(pf);
5375 if (err)
5376 goto unroll_init;
5377
5378 err = ice_init_devlink(pf);
5379 if (err)
5380 goto unroll_load;
5381 devl_unlock(priv_to_devlink(pf));
5382
5383 return 0;
5384
5385 unroll_load:
5386 ice_unload(pf);
5387 unroll_init:
5388 devl_unlock(priv_to_devlink(pf));
5389 ice_deinit(pf);
5390 unroll_adapter:
5391 ice_adapter_put(pdev);
5392 unroll_hw_init:
5393 ice_deinit_hw(hw);
5394 return err;
5395 }
5396
5397 /**
5398 * ice_set_wake - enable or disable Wake on LAN
5399 * @pf: pointer to the PF struct
5400 *
5401 * Simple helper for WoL control
5402 */
ice_set_wake(struct ice_pf * pf)5403 static void ice_set_wake(struct ice_pf *pf)
5404 {
5405 struct ice_hw *hw = &pf->hw;
5406 bool wol = pf->wol_ena;
5407
5408 /* clear wake state, otherwise new wake events won't fire */
5409 wr32(hw, PFPM_WUS, U32_MAX);
5410
5411 /* enable / disable APM wake up, no RMW needed */
5412 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5413
5414 /* set magic packet filter enabled */
5415 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5416 }
5417
5418 /**
5419 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5420 * @pf: pointer to the PF struct
5421 *
5422 * Issue firmware command to enable multicast magic wake, making
5423 * sure that any locally administered address (LAA) is used for
5424 * wake, and that PF reset doesn't undo the LAA.
5425 */
ice_setup_mc_magic_wake(struct ice_pf * pf)5426 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5427 {
5428 struct device *dev = ice_pf_to_dev(pf);
5429 struct ice_hw *hw = &pf->hw;
5430 u8 mac_addr[ETH_ALEN];
5431 struct ice_vsi *vsi;
5432 int status;
5433 u8 flags;
5434
5435 if (!pf->wol_ena)
5436 return;
5437
5438 vsi = ice_get_main_vsi(pf);
5439 if (!vsi)
5440 return;
5441
5442 /* Get current MAC address in case it's an LAA */
5443 if (vsi->netdev)
5444 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5445 else
5446 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5447
5448 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5449 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5450 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5451
5452 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5453 if (status)
5454 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5455 status, ice_aq_str(hw->adminq.sq_last_status));
5456 }
5457
5458 /**
5459 * ice_remove - Device removal routine
5460 * @pdev: PCI device information struct
5461 */
ice_remove(struct pci_dev * pdev)5462 static void ice_remove(struct pci_dev *pdev)
5463 {
5464 struct ice_pf *pf = pci_get_drvdata(pdev);
5465 int i;
5466
5467 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5468 if (!ice_is_reset_in_progress(pf->state))
5469 break;
5470 msleep(100);
5471 }
5472
5473 if (ice_is_recovery_mode(&pf->hw)) {
5474 ice_service_task_stop(pf);
5475 scoped_guard(devl, priv_to_devlink(pf)) {
5476 ice_deinit_devlink(pf);
5477 }
5478 return;
5479 }
5480
5481 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5482 set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5483 ice_free_vfs(pf);
5484 }
5485
5486 ice_hwmon_exit(pf);
5487
5488 ice_service_task_stop(pf);
5489 ice_aq_cancel_waiting_tasks(pf);
5490 set_bit(ICE_DOWN, pf->state);
5491
5492 if (!ice_is_safe_mode(pf))
5493 ice_remove_arfs(pf);
5494
5495 devl_lock(priv_to_devlink(pf));
5496 ice_dealloc_all_dynamic_ports(pf);
5497 ice_deinit_devlink(pf);
5498
5499 ice_unload(pf);
5500 devl_unlock(priv_to_devlink(pf));
5501
5502 ice_deinit(pf);
5503 ice_vsi_release_all(pf);
5504
5505 ice_setup_mc_magic_wake(pf);
5506 ice_set_wake(pf);
5507
5508 ice_adapter_put(pdev);
5509 }
5510
5511 /**
5512 * ice_shutdown - PCI callback for shutting down device
5513 * @pdev: PCI device information struct
5514 */
ice_shutdown(struct pci_dev * pdev)5515 static void ice_shutdown(struct pci_dev *pdev)
5516 {
5517 struct ice_pf *pf = pci_get_drvdata(pdev);
5518
5519 ice_remove(pdev);
5520
5521 if (system_state == SYSTEM_POWER_OFF) {
5522 pci_wake_from_d3(pdev, pf->wol_ena);
5523 pci_set_power_state(pdev, PCI_D3hot);
5524 }
5525 }
5526
5527 /**
5528 * ice_prepare_for_shutdown - prep for PCI shutdown
5529 * @pf: board private structure
5530 *
5531 * Inform or close all dependent features in prep for PCI device shutdown
5532 */
ice_prepare_for_shutdown(struct ice_pf * pf)5533 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5534 {
5535 struct ice_hw *hw = &pf->hw;
5536 u32 v;
5537
5538 /* Notify VFs of impending reset */
5539 if (ice_check_sq_alive(hw, &hw->mailboxq))
5540 ice_vc_notify_reset(pf);
5541
5542 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5543
5544 /* disable the VSIs and their queues that are not already DOWN */
5545 ice_pf_dis_all_vsi(pf, false);
5546
5547 ice_for_each_vsi(pf, v)
5548 if (pf->vsi[v])
5549 pf->vsi[v]->vsi_num = 0;
5550
5551 ice_shutdown_all_ctrlq(hw, true);
5552 }
5553
5554 /**
5555 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5556 * @pf: board private structure to reinitialize
5557 *
5558 * This routine reinitialize interrupt scheme that was cleared during
5559 * power management suspend callback.
5560 *
5561 * This should be called during resume routine to re-allocate the q_vectors
5562 * and reacquire interrupts.
5563 */
ice_reinit_interrupt_scheme(struct ice_pf * pf)5564 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5565 {
5566 struct device *dev = ice_pf_to_dev(pf);
5567 int ret, v;
5568
5569 /* Since we clear MSIX flag during suspend, we need to
5570 * set it back during resume...
5571 */
5572
5573 ret = ice_init_interrupt_scheme(pf);
5574 if (ret) {
5575 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5576 return ret;
5577 }
5578
5579 /* Remap vectors and rings, after successful re-init interrupts */
5580 ice_for_each_vsi(pf, v) {
5581 if (!pf->vsi[v])
5582 continue;
5583
5584 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5585 if (ret)
5586 goto err_reinit;
5587 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5588 rtnl_lock();
5589 ice_vsi_set_napi_queues(pf->vsi[v]);
5590 rtnl_unlock();
5591 }
5592
5593 ret = ice_req_irq_msix_misc(pf);
5594 if (ret) {
5595 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5596 ret);
5597 goto err_reinit;
5598 }
5599
5600 return 0;
5601
5602 err_reinit:
5603 while (v--)
5604 if (pf->vsi[v]) {
5605 rtnl_lock();
5606 ice_vsi_clear_napi_queues(pf->vsi[v]);
5607 rtnl_unlock();
5608 ice_vsi_free_q_vectors(pf->vsi[v]);
5609 }
5610
5611 return ret;
5612 }
5613
5614 /**
5615 * ice_suspend
5616 * @dev: generic device information structure
5617 *
5618 * Power Management callback to quiesce the device and prepare
5619 * for D3 transition.
5620 */
ice_suspend(struct device * dev)5621 static int ice_suspend(struct device *dev)
5622 {
5623 struct pci_dev *pdev = to_pci_dev(dev);
5624 struct ice_pf *pf;
5625 int disabled, v;
5626
5627 pf = pci_get_drvdata(pdev);
5628
5629 if (!ice_pf_state_is_nominal(pf)) {
5630 dev_err(dev, "Device is not ready, no need to suspend it\n");
5631 return -EBUSY;
5632 }
5633
5634 /* Stop watchdog tasks until resume completion.
5635 * Even though it is most likely that the service task is
5636 * disabled if the device is suspended or down, the service task's
5637 * state is controlled by a different state bit, and we should
5638 * store and honor whatever state that bit is in at this point.
5639 */
5640 disabled = ice_service_task_stop(pf);
5641
5642 ice_deinit_rdma(pf);
5643
5644 /* Already suspended?, then there is nothing to do */
5645 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5646 if (!disabled)
5647 ice_service_task_restart(pf);
5648 return 0;
5649 }
5650
5651 if (test_bit(ICE_DOWN, pf->state) ||
5652 ice_is_reset_in_progress(pf->state)) {
5653 dev_err(dev, "can't suspend device in reset or already down\n");
5654 if (!disabled)
5655 ice_service_task_restart(pf);
5656 return 0;
5657 }
5658
5659 ice_setup_mc_magic_wake(pf);
5660
5661 ice_prepare_for_shutdown(pf);
5662
5663 ice_set_wake(pf);
5664
5665 /* Free vectors, clear the interrupt scheme and release IRQs
5666 * for proper hibernation, especially with large number of CPUs.
5667 * Otherwise hibernation might fail when mapping all the vectors back
5668 * to CPU0.
5669 */
5670 ice_free_irq_msix_misc(pf);
5671 ice_for_each_vsi(pf, v) {
5672 if (!pf->vsi[v])
5673 continue;
5674 rtnl_lock();
5675 ice_vsi_clear_napi_queues(pf->vsi[v]);
5676 rtnl_unlock();
5677 ice_vsi_free_q_vectors(pf->vsi[v]);
5678 }
5679 ice_clear_interrupt_scheme(pf);
5680
5681 pci_save_state(pdev);
5682 pci_wake_from_d3(pdev, pf->wol_ena);
5683 pci_set_power_state(pdev, PCI_D3hot);
5684 return 0;
5685 }
5686
5687 /**
5688 * ice_resume - PM callback for waking up from D3
5689 * @dev: generic device information structure
5690 */
ice_resume(struct device * dev)5691 static int ice_resume(struct device *dev)
5692 {
5693 struct pci_dev *pdev = to_pci_dev(dev);
5694 enum ice_reset_req reset_type;
5695 struct ice_pf *pf;
5696 struct ice_hw *hw;
5697 int ret;
5698
5699 pci_set_power_state(pdev, PCI_D0);
5700 pci_restore_state(pdev);
5701 pci_save_state(pdev);
5702
5703 if (!pci_device_is_present(pdev))
5704 return -ENODEV;
5705
5706 ret = pci_enable_device_mem(pdev);
5707 if (ret) {
5708 dev_err(dev, "Cannot enable device after suspend\n");
5709 return ret;
5710 }
5711
5712 pf = pci_get_drvdata(pdev);
5713 hw = &pf->hw;
5714
5715 pf->wakeup_reason = rd32(hw, PFPM_WUS);
5716 ice_print_wake_reason(pf);
5717
5718 /* We cleared the interrupt scheme when we suspended, so we need to
5719 * restore it now to resume device functionality.
5720 */
5721 ret = ice_reinit_interrupt_scheme(pf);
5722 if (ret)
5723 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5724
5725 ret = ice_init_rdma(pf);
5726 if (ret)
5727 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n",
5728 ret);
5729
5730 clear_bit(ICE_DOWN, pf->state);
5731 /* Now perform PF reset and rebuild */
5732 reset_type = ICE_RESET_PFR;
5733 /* re-enable service task for reset, but allow reset to schedule it */
5734 clear_bit(ICE_SERVICE_DIS, pf->state);
5735
5736 if (ice_schedule_reset(pf, reset_type))
5737 dev_err(dev, "Reset during resume failed.\n");
5738
5739 clear_bit(ICE_SUSPENDED, pf->state);
5740 ice_service_task_restart(pf);
5741
5742 /* Restart the service task */
5743 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5744
5745 return 0;
5746 }
5747
5748 /**
5749 * ice_pci_err_detected - warning that PCI error has been detected
5750 * @pdev: PCI device information struct
5751 * @err: the type of PCI error
5752 *
5753 * Called to warn that something happened on the PCI bus and the error handling
5754 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
5755 */
5756 static pci_ers_result_t
ice_pci_err_detected(struct pci_dev * pdev,pci_channel_state_t err)5757 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5758 {
5759 struct ice_pf *pf = pci_get_drvdata(pdev);
5760
5761 if (!pf) {
5762 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5763 __func__, err);
5764 return PCI_ERS_RESULT_DISCONNECT;
5765 }
5766
5767 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5768 ice_service_task_stop(pf);
5769
5770 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5771 set_bit(ICE_PFR_REQ, pf->state);
5772 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5773 }
5774 }
5775
5776 return PCI_ERS_RESULT_NEED_RESET;
5777 }
5778
5779 /**
5780 * ice_pci_err_slot_reset - a PCI slot reset has just happened
5781 * @pdev: PCI device information struct
5782 *
5783 * Called to determine if the driver can recover from the PCI slot reset by
5784 * using a register read to determine if the device is recoverable.
5785 */
ice_pci_err_slot_reset(struct pci_dev * pdev)5786 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5787 {
5788 struct ice_pf *pf = pci_get_drvdata(pdev);
5789 pci_ers_result_t result;
5790 int err;
5791 u32 reg;
5792
5793 err = pci_enable_device_mem(pdev);
5794 if (err) {
5795 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5796 err);
5797 result = PCI_ERS_RESULT_DISCONNECT;
5798 } else {
5799 pci_set_master(pdev);
5800 pci_restore_state(pdev);
5801 pci_save_state(pdev);
5802 pci_wake_from_d3(pdev, false);
5803
5804 /* Check for life */
5805 reg = rd32(&pf->hw, GLGEN_RTRIG);
5806 if (!reg)
5807 result = PCI_ERS_RESULT_RECOVERED;
5808 else
5809 result = PCI_ERS_RESULT_DISCONNECT;
5810 }
5811
5812 return result;
5813 }
5814
5815 /**
5816 * ice_pci_err_resume - restart operations after PCI error recovery
5817 * @pdev: PCI device information struct
5818 *
5819 * Called to allow the driver to bring things back up after PCI error and/or
5820 * reset recovery have finished
5821 */
ice_pci_err_resume(struct pci_dev * pdev)5822 static void ice_pci_err_resume(struct pci_dev *pdev)
5823 {
5824 struct ice_pf *pf = pci_get_drvdata(pdev);
5825
5826 if (!pf) {
5827 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5828 __func__);
5829 return;
5830 }
5831
5832 if (test_bit(ICE_SUSPENDED, pf->state)) {
5833 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5834 __func__);
5835 return;
5836 }
5837
5838 ice_restore_all_vfs_msi_state(pf);
5839
5840 ice_do_reset(pf, ICE_RESET_PFR);
5841 ice_service_task_restart(pf);
5842 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5843 }
5844
5845 /**
5846 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5847 * @pdev: PCI device information struct
5848 */
ice_pci_err_reset_prepare(struct pci_dev * pdev)5849 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5850 {
5851 struct ice_pf *pf = pci_get_drvdata(pdev);
5852
5853 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5854 ice_service_task_stop(pf);
5855
5856 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5857 set_bit(ICE_PFR_REQ, pf->state);
5858 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5859 }
5860 }
5861 }
5862
5863 /**
5864 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5865 * @pdev: PCI device information struct
5866 */
ice_pci_err_reset_done(struct pci_dev * pdev)5867 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5868 {
5869 ice_pci_err_resume(pdev);
5870 }
5871
5872 /* ice_pci_tbl - PCI Device ID Table
5873 *
5874 * Wildcard entries (PCI_ANY_ID) should come last
5875 * Last entry must be all 0s
5876 *
5877 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5878 * Class, Class Mask, private data (not used) }
5879 */
5880 static const struct pci_device_id ice_pci_tbl[] = {
5881 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) },
5882 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) },
5883 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) },
5884 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) },
5885 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) },
5886 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) },
5887 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) },
5888 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) },
5889 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) },
5890 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) },
5891 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) },
5892 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) },
5893 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) },
5894 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) },
5895 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) },
5896 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) },
5897 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) },
5898 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) },
5899 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) },
5900 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) },
5901 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) },
5902 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) },
5903 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) },
5904 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) },
5905 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) },
5906 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) },
5907 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), },
5908 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), },
5909 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), },
5910 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), },
5911 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) },
5912 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) },
5913 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) },
5914 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) },
5915 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), },
5916 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), },
5917 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), },
5918 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), },
5919 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), },
5920 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), },
5921 /* required last entry */
5922 {}
5923 };
5924 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5925
5926 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5927
5928 static const struct pci_error_handlers ice_pci_err_handler = {
5929 .error_detected = ice_pci_err_detected,
5930 .slot_reset = ice_pci_err_slot_reset,
5931 .reset_prepare = ice_pci_err_reset_prepare,
5932 .reset_done = ice_pci_err_reset_done,
5933 .resume = ice_pci_err_resume
5934 };
5935
5936 static struct pci_driver ice_driver = {
5937 .name = KBUILD_MODNAME,
5938 .id_table = ice_pci_tbl,
5939 .probe = ice_probe,
5940 .remove = ice_remove,
5941 .driver.pm = pm_sleep_ptr(&ice_pm_ops),
5942 .shutdown = ice_shutdown,
5943 .sriov_configure = ice_sriov_configure,
5944 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix,
5945 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count,
5946 .err_handler = &ice_pci_err_handler
5947 };
5948
5949 /**
5950 * ice_module_init - Driver registration routine
5951 *
5952 * ice_module_init is the first routine called when the driver is
5953 * loaded. All it does is register with the PCI subsystem.
5954 */
ice_module_init(void)5955 static int __init ice_module_init(void)
5956 {
5957 int status = -ENOMEM;
5958
5959 pr_info("%s\n", ice_driver_string);
5960 pr_info("%s\n", ice_copyright);
5961
5962 ice_adv_lnk_speed_maps_init();
5963
5964 ice_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, KBUILD_MODNAME);
5965 if (!ice_wq) {
5966 pr_err("Failed to create workqueue\n");
5967 return status;
5968 }
5969
5970 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5971 if (!ice_lag_wq) {
5972 pr_err("Failed to create LAG workqueue\n");
5973 goto err_dest_wq;
5974 }
5975
5976 ice_debugfs_init();
5977
5978 status = pci_register_driver(&ice_driver);
5979 if (status) {
5980 pr_err("failed to register PCI driver, err %d\n", status);
5981 goto err_dest_lag_wq;
5982 }
5983
5984 status = ice_sf_driver_register();
5985 if (status) {
5986 pr_err("Failed to register SF driver, err %d\n", status);
5987 goto err_sf_driver;
5988 }
5989
5990 return 0;
5991
5992 err_sf_driver:
5993 pci_unregister_driver(&ice_driver);
5994 err_dest_lag_wq:
5995 destroy_workqueue(ice_lag_wq);
5996 ice_debugfs_exit();
5997 err_dest_wq:
5998 destroy_workqueue(ice_wq);
5999 return status;
6000 }
6001 module_init(ice_module_init);
6002
6003 /**
6004 * ice_module_exit - Driver exit cleanup routine
6005 *
6006 * ice_module_exit is called just before the driver is removed
6007 * from memory.
6008 */
ice_module_exit(void)6009 static void __exit ice_module_exit(void)
6010 {
6011 ice_sf_driver_unregister();
6012 pci_unregister_driver(&ice_driver);
6013 ice_debugfs_exit();
6014 destroy_workqueue(ice_wq);
6015 destroy_workqueue(ice_lag_wq);
6016 pr_info("module unloaded\n");
6017 }
6018 module_exit(ice_module_exit);
6019
6020 /**
6021 * ice_set_mac_address - NDO callback to set MAC address
6022 * @netdev: network interface device structure
6023 * @pi: pointer to an address structure
6024 *
6025 * Returns 0 on success, negative on failure
6026 */
ice_set_mac_address(struct net_device * netdev,void * pi)6027 static int ice_set_mac_address(struct net_device *netdev, void *pi)
6028 {
6029 struct ice_netdev_priv *np = netdev_priv(netdev);
6030 struct ice_vsi *vsi = np->vsi;
6031 struct ice_pf *pf = vsi->back;
6032 struct ice_hw *hw = &pf->hw;
6033 struct sockaddr *addr = pi;
6034 u8 old_mac[ETH_ALEN];
6035 u8 flags = 0;
6036 u8 *mac;
6037 int err;
6038
6039 mac = (u8 *)addr->sa_data;
6040
6041 if (!is_valid_ether_addr(mac))
6042 return -EADDRNOTAVAIL;
6043
6044 if (test_bit(ICE_DOWN, pf->state) ||
6045 ice_is_reset_in_progress(pf->state)) {
6046 netdev_err(netdev, "can't set mac %pM. device not ready\n",
6047 mac);
6048 return -EBUSY;
6049 }
6050
6051 if (ice_chnl_dmac_fltr_cnt(pf)) {
6052 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
6053 mac);
6054 return -EAGAIN;
6055 }
6056
6057 netif_addr_lock_bh(netdev);
6058 ether_addr_copy(old_mac, netdev->dev_addr);
6059 /* change the netdev's MAC address */
6060 eth_hw_addr_set(netdev, mac);
6061 netif_addr_unlock_bh(netdev);
6062
6063 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
6064 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
6065 if (err && err != -ENOENT) {
6066 err = -EADDRNOTAVAIL;
6067 goto err_update_filters;
6068 }
6069
6070 /* Add filter for new MAC. If filter exists, return success */
6071 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
6072 if (err == -EEXIST) {
6073 /* Although this MAC filter is already present in hardware it's
6074 * possible in some cases (e.g. bonding) that dev_addr was
6075 * modified outside of the driver and needs to be restored back
6076 * to this value.
6077 */
6078 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
6079
6080 return 0;
6081 } else if (err) {
6082 /* error if the new filter addition failed */
6083 err = -EADDRNOTAVAIL;
6084 }
6085
6086 err_update_filters:
6087 if (err) {
6088 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
6089 mac);
6090 netif_addr_lock_bh(netdev);
6091 eth_hw_addr_set(netdev, old_mac);
6092 netif_addr_unlock_bh(netdev);
6093 return err;
6094 }
6095
6096 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
6097 netdev->dev_addr);
6098
6099 /* write new MAC address to the firmware */
6100 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
6101 err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
6102 if (err) {
6103 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
6104 mac, err);
6105 }
6106 return 0;
6107 }
6108
6109 /**
6110 * ice_set_rx_mode - NDO callback to set the netdev filters
6111 * @netdev: network interface device structure
6112 */
ice_set_rx_mode(struct net_device * netdev)6113 static void ice_set_rx_mode(struct net_device *netdev)
6114 {
6115 struct ice_netdev_priv *np = netdev_priv(netdev);
6116 struct ice_vsi *vsi = np->vsi;
6117
6118 if (!vsi || ice_is_switchdev_running(vsi->back))
6119 return;
6120
6121 /* Set the flags to synchronize filters
6122 * ndo_set_rx_mode may be triggered even without a change in netdev
6123 * flags
6124 */
6125 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
6126 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
6127 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
6128
6129 /* schedule our worker thread which will take care of
6130 * applying the new filter changes
6131 */
6132 ice_service_task_schedule(vsi->back);
6133 }
6134
6135 /**
6136 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
6137 * @netdev: network interface device structure
6138 * @queue_index: Queue ID
6139 * @maxrate: maximum bandwidth in Mbps
6140 */
6141 static int
ice_set_tx_maxrate(struct net_device * netdev,int queue_index,u32 maxrate)6142 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
6143 {
6144 struct ice_netdev_priv *np = netdev_priv(netdev);
6145 struct ice_vsi *vsi = np->vsi;
6146 u16 q_handle;
6147 int status;
6148 u8 tc;
6149
6150 /* Validate maxrate requested is within permitted range */
6151 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
6152 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
6153 maxrate, queue_index);
6154 return -EINVAL;
6155 }
6156
6157 q_handle = vsi->tx_rings[queue_index]->q_handle;
6158 tc = ice_dcb_get_tc(vsi, queue_index);
6159
6160 vsi = ice_locate_vsi_using_queue(vsi, queue_index);
6161 if (!vsi) {
6162 netdev_err(netdev, "Invalid VSI for given queue %d\n",
6163 queue_index);
6164 return -EINVAL;
6165 }
6166
6167 /* Set BW back to default, when user set maxrate to 0 */
6168 if (!maxrate)
6169 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
6170 q_handle, ICE_MAX_BW);
6171 else
6172 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
6173 q_handle, ICE_MAX_BW, maxrate * 1000);
6174 if (status)
6175 netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
6176 status);
6177
6178 return status;
6179 }
6180
6181 /**
6182 * ice_fdb_add - add an entry to the hardware database
6183 * @ndm: the input from the stack
6184 * @tb: pointer to array of nladdr (unused)
6185 * @dev: the net device pointer
6186 * @addr: the MAC address entry being added
6187 * @vid: VLAN ID
6188 * @flags: instructions from stack about fdb operation
6189 * @notified: whether notification was emitted
6190 * @extack: netlink extended ack
6191 */
6192 static int
ice_fdb_add(struct ndmsg * ndm,struct nlattr __always_unused * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,bool * notified,struct netlink_ext_ack __always_unused * extack)6193 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
6194 struct net_device *dev, const unsigned char *addr, u16 vid,
6195 u16 flags, bool *notified,
6196 struct netlink_ext_ack __always_unused *extack)
6197 {
6198 int err;
6199
6200 if (vid) {
6201 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
6202 return -EINVAL;
6203 }
6204 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
6205 netdev_err(dev, "FDB only supports static addresses\n");
6206 return -EINVAL;
6207 }
6208
6209 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
6210 err = dev_uc_add_excl(dev, addr);
6211 else if (is_multicast_ether_addr(addr))
6212 err = dev_mc_add_excl(dev, addr);
6213 else
6214 err = -EINVAL;
6215
6216 /* Only return duplicate errors if NLM_F_EXCL is set */
6217 if (err == -EEXIST && !(flags & NLM_F_EXCL))
6218 err = 0;
6219
6220 return err;
6221 }
6222
6223 /**
6224 * ice_fdb_del - delete an entry from the hardware database
6225 * @ndm: the input from the stack
6226 * @tb: pointer to array of nladdr (unused)
6227 * @dev: the net device pointer
6228 * @addr: the MAC address entry being added
6229 * @vid: VLAN ID
6230 * @notified: whether notification was emitted
6231 * @extack: netlink extended ack
6232 */
6233 static int
ice_fdb_del(struct ndmsg * ndm,__always_unused struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,__always_unused u16 vid,bool * notified,struct netlink_ext_ack * extack)6234 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
6235 struct net_device *dev, const unsigned char *addr,
6236 __always_unused u16 vid, bool *notified,
6237 struct netlink_ext_ack *extack)
6238 {
6239 int err;
6240
6241 if (ndm->ndm_state & NUD_PERMANENT) {
6242 netdev_err(dev, "FDB only supports static addresses\n");
6243 return -EINVAL;
6244 }
6245
6246 if (is_unicast_ether_addr(addr))
6247 err = dev_uc_del(dev, addr);
6248 else if (is_multicast_ether_addr(addr))
6249 err = dev_mc_del(dev, addr);
6250 else
6251 err = -EINVAL;
6252
6253 return err;
6254 }
6255
6256 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
6257 NETIF_F_HW_VLAN_CTAG_TX | \
6258 NETIF_F_HW_VLAN_STAG_RX | \
6259 NETIF_F_HW_VLAN_STAG_TX)
6260
6261 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
6262 NETIF_F_HW_VLAN_STAG_RX)
6263
6264 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \
6265 NETIF_F_HW_VLAN_STAG_FILTER)
6266
6267 /**
6268 * ice_fix_features - fix the netdev features flags based on device limitations
6269 * @netdev: ptr to the netdev that flags are being fixed on
6270 * @features: features that need to be checked and possibly fixed
6271 *
6272 * Make sure any fixups are made to features in this callback. This enables the
6273 * driver to not have to check unsupported configurations throughout the driver
6274 * because that's the responsiblity of this callback.
6275 *
6276 * Single VLAN Mode (SVM) Supported Features:
6277 * NETIF_F_HW_VLAN_CTAG_FILTER
6278 * NETIF_F_HW_VLAN_CTAG_RX
6279 * NETIF_F_HW_VLAN_CTAG_TX
6280 *
6281 * Double VLAN Mode (DVM) Supported Features:
6282 * NETIF_F_HW_VLAN_CTAG_FILTER
6283 * NETIF_F_HW_VLAN_CTAG_RX
6284 * NETIF_F_HW_VLAN_CTAG_TX
6285 *
6286 * NETIF_F_HW_VLAN_STAG_FILTER
6287 * NETIF_HW_VLAN_STAG_RX
6288 * NETIF_HW_VLAN_STAG_TX
6289 *
6290 * Features that need fixing:
6291 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
6292 * These are mutually exlusive as the VSI context cannot support multiple
6293 * VLAN ethertypes simultaneously for stripping and/or insertion. If this
6294 * is not done, then default to clearing the requested STAG offload
6295 * settings.
6296 *
6297 * All supported filtering has to be enabled or disabled together. For
6298 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled
6299 * together. If this is not done, then default to VLAN filtering disabled.
6300 * These are mutually exclusive as there is currently no way to
6301 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN
6302 * prune rules.
6303 */
6304 static netdev_features_t
ice_fix_features(struct net_device * netdev,netdev_features_t features)6305 ice_fix_features(struct net_device *netdev, netdev_features_t features)
6306 {
6307 struct ice_netdev_priv *np = netdev_priv(netdev);
6308 netdev_features_t req_vlan_fltr, cur_vlan_fltr;
6309 bool cur_ctag, cur_stag, req_ctag, req_stag;
6310
6311 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
6312 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6313 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6314
6315 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6316 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6317 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6318
6319 if (req_vlan_fltr != cur_vlan_fltr) {
6320 if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6321 if (req_ctag && req_stag) {
6322 features |= NETIF_VLAN_FILTERING_FEATURES;
6323 } else if (!req_ctag && !req_stag) {
6324 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6325 } else if ((!cur_ctag && req_ctag && !cur_stag) ||
6326 (!cur_stag && req_stag && !cur_ctag)) {
6327 features |= NETIF_VLAN_FILTERING_FEATURES;
6328 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6329 } else if ((cur_ctag && !req_ctag && cur_stag) ||
6330 (cur_stag && !req_stag && cur_ctag)) {
6331 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6332 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6333 }
6334 } else {
6335 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6336 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6337
6338 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6339 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6340 }
6341 }
6342
6343 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6344 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6345 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6346 features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6347 NETIF_F_HW_VLAN_STAG_TX);
6348 }
6349
6350 if (!(netdev->features & NETIF_F_RXFCS) &&
6351 (features & NETIF_F_RXFCS) &&
6352 (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6353 !ice_vsi_has_non_zero_vlans(np->vsi)) {
6354 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6355 features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6356 }
6357
6358 return features;
6359 }
6360
6361 /**
6362 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto
6363 * @vsi: PF's VSI
6364 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order
6365 *
6366 * Store current stripped VLAN proto in ring packet context,
6367 * so it can be accessed more efficiently by packet processing code.
6368 */
6369 static void
ice_set_rx_rings_vlan_proto(struct ice_vsi * vsi,__be16 vlan_ethertype)6370 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype)
6371 {
6372 u16 i;
6373
6374 ice_for_each_alloc_rxq(vsi, i)
6375 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype;
6376 }
6377
6378 /**
6379 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6380 * @vsi: PF's VSI
6381 * @features: features used to determine VLAN offload settings
6382 *
6383 * First, determine the vlan_ethertype based on the VLAN offload bits in
6384 * features. Then determine if stripping and insertion should be enabled or
6385 * disabled. Finally enable or disable VLAN stripping and insertion.
6386 */
6387 static int
ice_set_vlan_offload_features(struct ice_vsi * vsi,netdev_features_t features)6388 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6389 {
6390 bool enable_stripping = true, enable_insertion = true;
6391 struct ice_vsi_vlan_ops *vlan_ops;
6392 int strip_err = 0, insert_err = 0;
6393 u16 vlan_ethertype = 0;
6394
6395 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6396
6397 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6398 vlan_ethertype = ETH_P_8021AD;
6399 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6400 vlan_ethertype = ETH_P_8021Q;
6401
6402 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6403 enable_stripping = false;
6404 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6405 enable_insertion = false;
6406
6407 if (enable_stripping)
6408 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6409 else
6410 strip_err = vlan_ops->dis_stripping(vsi);
6411
6412 if (enable_insertion)
6413 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6414 else
6415 insert_err = vlan_ops->dis_insertion(vsi);
6416
6417 if (strip_err || insert_err)
6418 return -EIO;
6419
6420 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ?
6421 htons(vlan_ethertype) : 0);
6422
6423 return 0;
6424 }
6425
6426 /**
6427 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6428 * @vsi: PF's VSI
6429 * @features: features used to determine VLAN filtering settings
6430 *
6431 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6432 * features.
6433 */
6434 static int
ice_set_vlan_filtering_features(struct ice_vsi * vsi,netdev_features_t features)6435 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6436 {
6437 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6438 int err = 0;
6439
6440 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6441 * if either bit is set. In switchdev mode Rx filtering should never be
6442 * enabled.
6443 */
6444 if ((features &
6445 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) &&
6446 !ice_is_eswitch_mode_switchdev(vsi->back))
6447 err = vlan_ops->ena_rx_filtering(vsi);
6448 else
6449 err = vlan_ops->dis_rx_filtering(vsi);
6450
6451 return err;
6452 }
6453
6454 /**
6455 * ice_set_vlan_features - set VLAN settings based on suggested feature set
6456 * @netdev: ptr to the netdev being adjusted
6457 * @features: the feature set that the stack is suggesting
6458 *
6459 * Only update VLAN settings if the requested_vlan_features are different than
6460 * the current_vlan_features.
6461 */
6462 static int
ice_set_vlan_features(struct net_device * netdev,netdev_features_t features)6463 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6464 {
6465 netdev_features_t current_vlan_features, requested_vlan_features;
6466 struct ice_netdev_priv *np = netdev_priv(netdev);
6467 struct ice_vsi *vsi = np->vsi;
6468 int err;
6469
6470 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6471 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6472 if (current_vlan_features ^ requested_vlan_features) {
6473 if ((features & NETIF_F_RXFCS) &&
6474 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6475 dev_err(ice_pf_to_dev(vsi->back),
6476 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6477 return -EIO;
6478 }
6479
6480 err = ice_set_vlan_offload_features(vsi, features);
6481 if (err)
6482 return err;
6483 }
6484
6485 current_vlan_features = netdev->features &
6486 NETIF_VLAN_FILTERING_FEATURES;
6487 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6488 if (current_vlan_features ^ requested_vlan_features) {
6489 err = ice_set_vlan_filtering_features(vsi, features);
6490 if (err)
6491 return err;
6492 }
6493
6494 return 0;
6495 }
6496
6497 /**
6498 * ice_set_loopback - turn on/off loopback mode on underlying PF
6499 * @vsi: ptr to VSI
6500 * @ena: flag to indicate the on/off setting
6501 */
ice_set_loopback(struct ice_vsi * vsi,bool ena)6502 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6503 {
6504 bool if_running = netif_running(vsi->netdev);
6505 int ret;
6506
6507 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6508 ret = ice_down(vsi);
6509 if (ret) {
6510 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6511 return ret;
6512 }
6513 }
6514 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6515 if (ret)
6516 netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6517 if (if_running)
6518 ret = ice_up(vsi);
6519
6520 return ret;
6521 }
6522
6523 /**
6524 * ice_set_features - set the netdev feature flags
6525 * @netdev: ptr to the netdev being adjusted
6526 * @features: the feature set that the stack is suggesting
6527 */
6528 static int
ice_set_features(struct net_device * netdev,netdev_features_t features)6529 ice_set_features(struct net_device *netdev, netdev_features_t features)
6530 {
6531 netdev_features_t changed = netdev->features ^ features;
6532 struct ice_netdev_priv *np = netdev_priv(netdev);
6533 struct ice_vsi *vsi = np->vsi;
6534 struct ice_pf *pf = vsi->back;
6535 int ret = 0;
6536
6537 /* Don't set any netdev advanced features with device in Safe Mode */
6538 if (ice_is_safe_mode(pf)) {
6539 dev_err(ice_pf_to_dev(pf),
6540 "Device is in Safe Mode - not enabling advanced netdev features\n");
6541 return ret;
6542 }
6543
6544 /* Do not change setting during reset */
6545 if (ice_is_reset_in_progress(pf->state)) {
6546 dev_err(ice_pf_to_dev(pf),
6547 "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6548 return -EBUSY;
6549 }
6550
6551 /* Multiple features can be changed in one call so keep features in
6552 * separate if/else statements to guarantee each feature is checked
6553 */
6554 if (changed & NETIF_F_RXHASH)
6555 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6556
6557 ret = ice_set_vlan_features(netdev, features);
6558 if (ret)
6559 return ret;
6560
6561 /* Turn on receive of FCS aka CRC, and after setting this
6562 * flag the packet data will have the 4 byte CRC appended
6563 */
6564 if (changed & NETIF_F_RXFCS) {
6565 if ((features & NETIF_F_RXFCS) &&
6566 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6567 dev_err(ice_pf_to_dev(vsi->back),
6568 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6569 return -EIO;
6570 }
6571
6572 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6573 ret = ice_down_up(vsi);
6574 if (ret)
6575 return ret;
6576 }
6577
6578 if (changed & NETIF_F_NTUPLE) {
6579 bool ena = !!(features & NETIF_F_NTUPLE);
6580
6581 ice_vsi_manage_fdir(vsi, ena);
6582 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6583 }
6584
6585 /* don't turn off hw_tc_offload when ADQ is already enabled */
6586 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6587 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6588 return -EACCES;
6589 }
6590
6591 if (changed & NETIF_F_HW_TC) {
6592 bool ena = !!(features & NETIF_F_HW_TC);
6593
6594 assign_bit(ICE_FLAG_CLS_FLOWER, pf->flags, ena);
6595 }
6596
6597 if (changed & NETIF_F_LOOPBACK)
6598 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6599
6600 return ret;
6601 }
6602
6603 /**
6604 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6605 * @vsi: VSI to setup VLAN properties for
6606 */
ice_vsi_vlan_setup(struct ice_vsi * vsi)6607 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6608 {
6609 int err;
6610
6611 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6612 if (err)
6613 return err;
6614
6615 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6616 if (err)
6617 return err;
6618
6619 return ice_vsi_add_vlan_zero(vsi);
6620 }
6621
6622 /**
6623 * ice_vsi_cfg_lan - Setup the VSI lan related config
6624 * @vsi: the VSI being configured
6625 *
6626 * Return 0 on success and negative value on error
6627 */
ice_vsi_cfg_lan(struct ice_vsi * vsi)6628 int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6629 {
6630 int err;
6631
6632 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6633 ice_set_rx_mode(vsi->netdev);
6634
6635 err = ice_vsi_vlan_setup(vsi);
6636 if (err)
6637 return err;
6638 }
6639 ice_vsi_cfg_dcb_rings(vsi);
6640
6641 err = ice_vsi_cfg_lan_txqs(vsi);
6642 if (!err && ice_is_xdp_ena_vsi(vsi))
6643 err = ice_vsi_cfg_xdp_txqs(vsi);
6644 if (!err)
6645 err = ice_vsi_cfg_rxqs(vsi);
6646
6647 return err;
6648 }
6649
6650 /* THEORY OF MODERATION:
6651 * The ice driver hardware works differently than the hardware that DIMLIB was
6652 * originally made for. ice hardware doesn't have packet count limits that
6653 * can trigger an interrupt, but it *does* have interrupt rate limit support,
6654 * which is hard-coded to a limit of 250,000 ints/second.
6655 * If not using dynamic moderation, the INTRL value can be modified
6656 * by ethtool rx-usecs-high.
6657 */
6658 struct ice_dim {
6659 /* the throttle rate for interrupts, basically worst case delay before
6660 * an initial interrupt fires, value is stored in microseconds.
6661 */
6662 u16 itr;
6663 };
6664
6665 /* Make a different profile for Rx that doesn't allow quite so aggressive
6666 * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6667 * second.
6668 */
6669 static const struct ice_dim rx_profile[] = {
6670 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6671 {8}, /* 125,000 ints/s */
6672 {16}, /* 62,500 ints/s */
6673 {62}, /* 16,129 ints/s */
6674 {126} /* 7,936 ints/s */
6675 };
6676
6677 /* The transmit profile, which has the same sorts of values
6678 * as the previous struct
6679 */
6680 static const struct ice_dim tx_profile[] = {
6681 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6682 {8}, /* 125,000 ints/s */
6683 {40}, /* 16,125 ints/s */
6684 {128}, /* 7,812 ints/s */
6685 {256} /* 3,906 ints/s */
6686 };
6687
ice_tx_dim_work(struct work_struct * work)6688 static void ice_tx_dim_work(struct work_struct *work)
6689 {
6690 struct ice_ring_container *rc;
6691 struct dim *dim;
6692 u16 itr;
6693
6694 dim = container_of(work, struct dim, work);
6695 rc = dim->priv;
6696
6697 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6698
6699 /* look up the values in our local table */
6700 itr = tx_profile[dim->profile_ix].itr;
6701
6702 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6703 ice_write_itr(rc, itr);
6704
6705 dim->state = DIM_START_MEASURE;
6706 }
6707
ice_rx_dim_work(struct work_struct * work)6708 static void ice_rx_dim_work(struct work_struct *work)
6709 {
6710 struct ice_ring_container *rc;
6711 struct dim *dim;
6712 u16 itr;
6713
6714 dim = container_of(work, struct dim, work);
6715 rc = dim->priv;
6716
6717 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6718
6719 /* look up the values in our local table */
6720 itr = rx_profile[dim->profile_ix].itr;
6721
6722 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6723 ice_write_itr(rc, itr);
6724
6725 dim->state = DIM_START_MEASURE;
6726 }
6727
6728 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6729
6730 /**
6731 * ice_init_moderation - set up interrupt moderation
6732 * @q_vector: the vector containing rings to be configured
6733 *
6734 * Set up interrupt moderation registers, with the intent to do the right thing
6735 * when called from reset or from probe, and whether or not dynamic moderation
6736 * is enabled or not. Take special care to write all the registers in both
6737 * dynamic moderation mode or not in order to make sure hardware is in a known
6738 * state.
6739 */
ice_init_moderation(struct ice_q_vector * q_vector)6740 static void ice_init_moderation(struct ice_q_vector *q_vector)
6741 {
6742 struct ice_ring_container *rc;
6743 bool tx_dynamic, rx_dynamic;
6744
6745 rc = &q_vector->tx;
6746 INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6747 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6748 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6749 rc->dim.priv = rc;
6750 tx_dynamic = ITR_IS_DYNAMIC(rc);
6751
6752 /* set the initial TX ITR to match the above */
6753 ice_write_itr(rc, tx_dynamic ?
6754 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6755
6756 rc = &q_vector->rx;
6757 INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6758 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6759 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6760 rc->dim.priv = rc;
6761 rx_dynamic = ITR_IS_DYNAMIC(rc);
6762
6763 /* set the initial RX ITR to match the above */
6764 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6765 rc->itr_setting);
6766
6767 ice_set_q_vector_intrl(q_vector);
6768 }
6769
6770 /**
6771 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6772 * @vsi: the VSI being configured
6773 */
ice_napi_enable_all(struct ice_vsi * vsi)6774 static void ice_napi_enable_all(struct ice_vsi *vsi)
6775 {
6776 int q_idx;
6777
6778 if (!vsi->netdev)
6779 return;
6780
6781 ice_for_each_q_vector(vsi, q_idx) {
6782 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6783
6784 ice_init_moderation(q_vector);
6785
6786 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6787 napi_enable(&q_vector->napi);
6788 }
6789 }
6790
6791 /**
6792 * ice_up_complete - Finish the last steps of bringing up a connection
6793 * @vsi: The VSI being configured
6794 *
6795 * Return 0 on success and negative value on error
6796 */
ice_up_complete(struct ice_vsi * vsi)6797 static int ice_up_complete(struct ice_vsi *vsi)
6798 {
6799 struct ice_pf *pf = vsi->back;
6800 int err;
6801
6802 ice_vsi_cfg_msix(vsi);
6803
6804 /* Enable only Rx rings, Tx rings were enabled by the FW when the
6805 * Tx queue group list was configured and the context bits were
6806 * programmed using ice_vsi_cfg_txqs
6807 */
6808 err = ice_vsi_start_all_rx_rings(vsi);
6809 if (err)
6810 return err;
6811
6812 clear_bit(ICE_VSI_DOWN, vsi->state);
6813 ice_napi_enable_all(vsi);
6814 ice_vsi_ena_irq(vsi);
6815
6816 if (vsi->port_info &&
6817 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6818 ((vsi->netdev && (vsi->type == ICE_VSI_PF ||
6819 vsi->type == ICE_VSI_SF)))) {
6820 ice_print_link_msg(vsi, true);
6821 netif_tx_start_all_queues(vsi->netdev);
6822 netif_carrier_on(vsi->netdev);
6823 ice_ptp_link_change(pf, true);
6824 }
6825
6826 /* Perform an initial read of the statistics registers now to
6827 * set the baseline so counters are ready when interface is up
6828 */
6829 ice_update_eth_stats(vsi);
6830
6831 if (vsi->type == ICE_VSI_PF)
6832 ice_service_task_schedule(pf);
6833
6834 return 0;
6835 }
6836
6837 /**
6838 * ice_up - Bring the connection back up after being down
6839 * @vsi: VSI being configured
6840 */
ice_up(struct ice_vsi * vsi)6841 int ice_up(struct ice_vsi *vsi)
6842 {
6843 int err;
6844
6845 err = ice_vsi_cfg_lan(vsi);
6846 if (!err)
6847 err = ice_up_complete(vsi);
6848
6849 return err;
6850 }
6851
6852 /**
6853 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6854 * @syncp: pointer to u64_stats_sync
6855 * @stats: stats that pkts and bytes count will be taken from
6856 * @pkts: packets stats counter
6857 * @bytes: bytes stats counter
6858 *
6859 * This function fetches stats from the ring considering the atomic operations
6860 * that needs to be performed to read u64 values in 32 bit machine.
6861 */
6862 void
ice_fetch_u64_stats_per_ring(struct u64_stats_sync * syncp,struct ice_q_stats stats,u64 * pkts,u64 * bytes)6863 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6864 struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6865 {
6866 unsigned int start;
6867
6868 do {
6869 start = u64_stats_fetch_begin(syncp);
6870 *pkts = stats.pkts;
6871 *bytes = stats.bytes;
6872 } while (u64_stats_fetch_retry(syncp, start));
6873 }
6874
6875 /**
6876 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6877 * @vsi: the VSI to be updated
6878 * @vsi_stats: the stats struct to be updated
6879 * @rings: rings to work on
6880 * @count: number of rings
6881 */
6882 static void
ice_update_vsi_tx_ring_stats(struct ice_vsi * vsi,struct rtnl_link_stats64 * vsi_stats,struct ice_tx_ring ** rings,u16 count)6883 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6884 struct rtnl_link_stats64 *vsi_stats,
6885 struct ice_tx_ring **rings, u16 count)
6886 {
6887 u16 i;
6888
6889 for (i = 0; i < count; i++) {
6890 struct ice_tx_ring *ring;
6891 u64 pkts = 0, bytes = 0;
6892
6893 ring = READ_ONCE(rings[i]);
6894 if (!ring || !ring->ring_stats)
6895 continue;
6896 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6897 ring->ring_stats->stats, &pkts,
6898 &bytes);
6899 vsi_stats->tx_packets += pkts;
6900 vsi_stats->tx_bytes += bytes;
6901 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6902 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6903 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6904 }
6905 }
6906
6907 /**
6908 * ice_update_vsi_ring_stats - Update VSI stats counters
6909 * @vsi: the VSI to be updated
6910 */
ice_update_vsi_ring_stats(struct ice_vsi * vsi)6911 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6912 {
6913 struct rtnl_link_stats64 *net_stats, *stats_prev;
6914 struct rtnl_link_stats64 *vsi_stats;
6915 struct ice_pf *pf = vsi->back;
6916 u64 pkts, bytes;
6917 int i;
6918
6919 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6920 if (!vsi_stats)
6921 return;
6922
6923 /* reset non-netdev (extended) stats */
6924 vsi->tx_restart = 0;
6925 vsi->tx_busy = 0;
6926 vsi->tx_linearize = 0;
6927 vsi->rx_buf_failed = 0;
6928 vsi->rx_page_failed = 0;
6929
6930 rcu_read_lock();
6931
6932 /* update Tx rings counters */
6933 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6934 vsi->num_txq);
6935
6936 /* update Rx rings counters */
6937 ice_for_each_rxq(vsi, i) {
6938 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6939 struct ice_ring_stats *ring_stats;
6940
6941 ring_stats = ring->ring_stats;
6942 ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6943 ring_stats->stats, &pkts,
6944 &bytes);
6945 vsi_stats->rx_packets += pkts;
6946 vsi_stats->rx_bytes += bytes;
6947 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6948 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6949 }
6950
6951 /* update XDP Tx rings counters */
6952 if (ice_is_xdp_ena_vsi(vsi))
6953 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6954 vsi->num_xdp_txq);
6955
6956 rcu_read_unlock();
6957
6958 net_stats = &vsi->net_stats;
6959 stats_prev = &vsi->net_stats_prev;
6960
6961 /* Update netdev counters, but keep in mind that values could start at
6962 * random value after PF reset. And as we increase the reported stat by
6963 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not,
6964 * let's skip this round.
6965 */
6966 if (likely(pf->stat_prev_loaded)) {
6967 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6968 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6969 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6970 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6971 }
6972
6973 stats_prev->tx_packets = vsi_stats->tx_packets;
6974 stats_prev->tx_bytes = vsi_stats->tx_bytes;
6975 stats_prev->rx_packets = vsi_stats->rx_packets;
6976 stats_prev->rx_bytes = vsi_stats->rx_bytes;
6977
6978 kfree(vsi_stats);
6979 }
6980
6981 /**
6982 * ice_update_vsi_stats - Update VSI stats counters
6983 * @vsi: the VSI to be updated
6984 */
ice_update_vsi_stats(struct ice_vsi * vsi)6985 void ice_update_vsi_stats(struct ice_vsi *vsi)
6986 {
6987 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6988 struct ice_eth_stats *cur_es = &vsi->eth_stats;
6989 struct ice_pf *pf = vsi->back;
6990
6991 if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6992 test_bit(ICE_CFG_BUSY, pf->state))
6993 return;
6994
6995 /* get stats as recorded by Tx/Rx rings */
6996 ice_update_vsi_ring_stats(vsi);
6997
6998 /* get VSI stats as recorded by the hardware */
6999 ice_update_eth_stats(vsi);
7000
7001 cur_ns->tx_errors = cur_es->tx_errors;
7002 cur_ns->rx_dropped = cur_es->rx_discards;
7003 cur_ns->tx_dropped = cur_es->tx_discards;
7004 cur_ns->multicast = cur_es->rx_multicast;
7005
7006 /* update some more netdev stats if this is main VSI */
7007 if (vsi->type == ICE_VSI_PF) {
7008 cur_ns->rx_crc_errors = pf->stats.crc_errors;
7009 cur_ns->rx_errors = pf->stats.crc_errors +
7010 pf->stats.illegal_bytes +
7011 pf->stats.rx_undersize +
7012 pf->hw_csum_rx_error +
7013 pf->stats.rx_jabber +
7014 pf->stats.rx_fragments +
7015 pf->stats.rx_oversize;
7016 /* record drops from the port level */
7017 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
7018 }
7019 }
7020
7021 /**
7022 * ice_update_pf_stats - Update PF port stats counters
7023 * @pf: PF whose stats needs to be updated
7024 */
ice_update_pf_stats(struct ice_pf * pf)7025 void ice_update_pf_stats(struct ice_pf *pf)
7026 {
7027 struct ice_hw_port_stats *prev_ps, *cur_ps;
7028 struct ice_hw *hw = &pf->hw;
7029 u16 fd_ctr_base;
7030 u8 port;
7031
7032 port = hw->port_info->lport;
7033 prev_ps = &pf->stats_prev;
7034 cur_ps = &pf->stats;
7035
7036 if (ice_is_reset_in_progress(pf->state))
7037 pf->stat_prev_loaded = false;
7038
7039 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
7040 &prev_ps->eth.rx_bytes,
7041 &cur_ps->eth.rx_bytes);
7042
7043 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
7044 &prev_ps->eth.rx_unicast,
7045 &cur_ps->eth.rx_unicast);
7046
7047 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
7048 &prev_ps->eth.rx_multicast,
7049 &cur_ps->eth.rx_multicast);
7050
7051 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
7052 &prev_ps->eth.rx_broadcast,
7053 &cur_ps->eth.rx_broadcast);
7054
7055 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
7056 &prev_ps->eth.rx_discards,
7057 &cur_ps->eth.rx_discards);
7058
7059 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
7060 &prev_ps->eth.tx_bytes,
7061 &cur_ps->eth.tx_bytes);
7062
7063 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
7064 &prev_ps->eth.tx_unicast,
7065 &cur_ps->eth.tx_unicast);
7066
7067 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
7068 &prev_ps->eth.tx_multicast,
7069 &cur_ps->eth.tx_multicast);
7070
7071 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
7072 &prev_ps->eth.tx_broadcast,
7073 &cur_ps->eth.tx_broadcast);
7074
7075 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
7076 &prev_ps->tx_dropped_link_down,
7077 &cur_ps->tx_dropped_link_down);
7078
7079 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
7080 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
7081
7082 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
7083 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
7084
7085 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
7086 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
7087
7088 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
7089 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
7090
7091 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
7092 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
7093
7094 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
7095 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
7096
7097 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
7098 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
7099
7100 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
7101 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
7102
7103 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
7104 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
7105
7106 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
7107 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
7108
7109 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
7110 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
7111
7112 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
7113 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
7114
7115 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
7116 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
7117
7118 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
7119 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
7120
7121 fd_ctr_base = hw->fd_ctr_base;
7122
7123 ice_stat_update40(hw,
7124 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
7125 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
7126 &cur_ps->fd_sb_match);
7127 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
7128 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
7129
7130 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
7131 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
7132
7133 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
7134 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
7135
7136 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
7137 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
7138
7139 ice_update_dcb_stats(pf);
7140
7141 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
7142 &prev_ps->crc_errors, &cur_ps->crc_errors);
7143
7144 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
7145 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
7146
7147 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
7148 &prev_ps->mac_local_faults,
7149 &cur_ps->mac_local_faults);
7150
7151 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
7152 &prev_ps->mac_remote_faults,
7153 &cur_ps->mac_remote_faults);
7154
7155 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
7156 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
7157
7158 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
7159 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
7160
7161 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
7162 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
7163
7164 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
7165 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
7166
7167 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
7168
7169 pf->stat_prev_loaded = true;
7170 }
7171
7172 /**
7173 * ice_get_stats64 - get statistics for network device structure
7174 * @netdev: network interface device structure
7175 * @stats: main device statistics structure
7176 */
ice_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)7177 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
7178 {
7179 struct ice_netdev_priv *np = netdev_priv(netdev);
7180 struct rtnl_link_stats64 *vsi_stats;
7181 struct ice_vsi *vsi = np->vsi;
7182
7183 vsi_stats = &vsi->net_stats;
7184
7185 if (!vsi->num_txq || !vsi->num_rxq)
7186 return;
7187
7188 /* netdev packet/byte stats come from ring counter. These are obtained
7189 * by summing up ring counters (done by ice_update_vsi_ring_stats).
7190 * But, only call the update routine and read the registers if VSI is
7191 * not down.
7192 */
7193 if (!test_bit(ICE_VSI_DOWN, vsi->state))
7194 ice_update_vsi_ring_stats(vsi);
7195 stats->tx_packets = vsi_stats->tx_packets;
7196 stats->tx_bytes = vsi_stats->tx_bytes;
7197 stats->rx_packets = vsi_stats->rx_packets;
7198 stats->rx_bytes = vsi_stats->rx_bytes;
7199
7200 /* The rest of the stats can be read from the hardware but instead we
7201 * just return values that the watchdog task has already obtained from
7202 * the hardware.
7203 */
7204 stats->multicast = vsi_stats->multicast;
7205 stats->tx_errors = vsi_stats->tx_errors;
7206 stats->tx_dropped = vsi_stats->tx_dropped;
7207 stats->rx_errors = vsi_stats->rx_errors;
7208 stats->rx_dropped = vsi_stats->rx_dropped;
7209 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
7210 stats->rx_length_errors = vsi_stats->rx_length_errors;
7211 }
7212
7213 /**
7214 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
7215 * @vsi: VSI having NAPI disabled
7216 */
ice_napi_disable_all(struct ice_vsi * vsi)7217 static void ice_napi_disable_all(struct ice_vsi *vsi)
7218 {
7219 int q_idx;
7220
7221 if (!vsi->netdev)
7222 return;
7223
7224 ice_for_each_q_vector(vsi, q_idx) {
7225 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
7226
7227 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
7228 napi_disable(&q_vector->napi);
7229
7230 cancel_work_sync(&q_vector->tx.dim.work);
7231 cancel_work_sync(&q_vector->rx.dim.work);
7232 }
7233 }
7234
7235 /**
7236 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
7237 * @vsi: the VSI being un-configured
7238 */
ice_vsi_dis_irq(struct ice_vsi * vsi)7239 static void ice_vsi_dis_irq(struct ice_vsi *vsi)
7240 {
7241 struct ice_pf *pf = vsi->back;
7242 struct ice_hw *hw = &pf->hw;
7243 u32 val;
7244 int i;
7245
7246 /* disable interrupt causation from each Rx queue; Tx queues are
7247 * handled in ice_vsi_stop_tx_ring()
7248 */
7249 if (vsi->rx_rings) {
7250 ice_for_each_rxq(vsi, i) {
7251 if (vsi->rx_rings[i]) {
7252 u16 reg;
7253
7254 reg = vsi->rx_rings[i]->reg_idx;
7255 val = rd32(hw, QINT_RQCTL(reg));
7256 val &= ~QINT_RQCTL_CAUSE_ENA_M;
7257 wr32(hw, QINT_RQCTL(reg), val);
7258 }
7259 }
7260 }
7261
7262 /* disable each interrupt */
7263 ice_for_each_q_vector(vsi, i) {
7264 if (!vsi->q_vectors[i])
7265 continue;
7266 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
7267 }
7268
7269 ice_flush(hw);
7270
7271 /* don't call synchronize_irq() for VF's from the host */
7272 if (vsi->type == ICE_VSI_VF)
7273 return;
7274
7275 ice_for_each_q_vector(vsi, i)
7276 synchronize_irq(vsi->q_vectors[i]->irq.virq);
7277 }
7278
7279 /**
7280 * ice_down - Shutdown the connection
7281 * @vsi: The VSI being stopped
7282 *
7283 * Caller of this function is expected to set the vsi->state ICE_DOWN bit
7284 */
ice_down(struct ice_vsi * vsi)7285 int ice_down(struct ice_vsi *vsi)
7286 {
7287 int i, tx_err, rx_err, vlan_err = 0;
7288
7289 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
7290
7291 if (vsi->netdev) {
7292 vlan_err = ice_vsi_del_vlan_zero(vsi);
7293 ice_ptp_link_change(vsi->back, false);
7294 netif_carrier_off(vsi->netdev);
7295 netif_tx_disable(vsi->netdev);
7296 }
7297
7298 ice_vsi_dis_irq(vsi);
7299
7300 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
7301 if (tx_err)
7302 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
7303 vsi->vsi_num, tx_err);
7304 if (!tx_err && vsi->xdp_rings) {
7305 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
7306 if (tx_err)
7307 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
7308 vsi->vsi_num, tx_err);
7309 }
7310
7311 rx_err = ice_vsi_stop_all_rx_rings(vsi);
7312 if (rx_err)
7313 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
7314 vsi->vsi_num, rx_err);
7315
7316 ice_napi_disable_all(vsi);
7317
7318 ice_for_each_txq(vsi, i)
7319 ice_clean_tx_ring(vsi->tx_rings[i]);
7320
7321 if (vsi->xdp_rings)
7322 ice_for_each_xdp_txq(vsi, i)
7323 ice_clean_tx_ring(vsi->xdp_rings[i]);
7324
7325 ice_for_each_rxq(vsi, i)
7326 ice_clean_rx_ring(vsi->rx_rings[i]);
7327
7328 if (tx_err || rx_err || vlan_err) {
7329 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
7330 vsi->vsi_num, vsi->vsw->sw_id);
7331 return -EIO;
7332 }
7333
7334 return 0;
7335 }
7336
7337 /**
7338 * ice_down_up - shutdown the VSI connection and bring it up
7339 * @vsi: the VSI to be reconnected
7340 */
ice_down_up(struct ice_vsi * vsi)7341 int ice_down_up(struct ice_vsi *vsi)
7342 {
7343 int ret;
7344
7345 /* if DOWN already set, nothing to do */
7346 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
7347 return 0;
7348
7349 ret = ice_down(vsi);
7350 if (ret)
7351 return ret;
7352
7353 ret = ice_up(vsi);
7354 if (ret) {
7355 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
7356 return ret;
7357 }
7358
7359 return 0;
7360 }
7361
7362 /**
7363 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
7364 * @vsi: VSI having resources allocated
7365 *
7366 * Return 0 on success, negative on failure
7367 */
ice_vsi_setup_tx_rings(struct ice_vsi * vsi)7368 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
7369 {
7370 int i, err = 0;
7371
7372 if (!vsi->num_txq) {
7373 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7374 vsi->vsi_num);
7375 return -EINVAL;
7376 }
7377
7378 ice_for_each_txq(vsi, i) {
7379 struct ice_tx_ring *ring = vsi->tx_rings[i];
7380
7381 if (!ring)
7382 return -EINVAL;
7383
7384 if (vsi->netdev)
7385 ring->netdev = vsi->netdev;
7386 err = ice_setup_tx_ring(ring);
7387 if (err)
7388 break;
7389 }
7390
7391 return err;
7392 }
7393
7394 /**
7395 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7396 * @vsi: VSI having resources allocated
7397 *
7398 * Return 0 on success, negative on failure
7399 */
ice_vsi_setup_rx_rings(struct ice_vsi * vsi)7400 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7401 {
7402 int i, err = 0;
7403
7404 if (!vsi->num_rxq) {
7405 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7406 vsi->vsi_num);
7407 return -EINVAL;
7408 }
7409
7410 ice_for_each_rxq(vsi, i) {
7411 struct ice_rx_ring *ring = vsi->rx_rings[i];
7412
7413 if (!ring)
7414 return -EINVAL;
7415
7416 if (vsi->netdev)
7417 ring->netdev = vsi->netdev;
7418 err = ice_setup_rx_ring(ring);
7419 if (err)
7420 break;
7421 }
7422
7423 return err;
7424 }
7425
7426 /**
7427 * ice_vsi_open_ctrl - open control VSI for use
7428 * @vsi: the VSI to open
7429 *
7430 * Initialization of the Control VSI
7431 *
7432 * Returns 0 on success, negative value on error
7433 */
ice_vsi_open_ctrl(struct ice_vsi * vsi)7434 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7435 {
7436 char int_name[ICE_INT_NAME_STR_LEN];
7437 struct ice_pf *pf = vsi->back;
7438 struct device *dev;
7439 int err;
7440
7441 dev = ice_pf_to_dev(pf);
7442 /* allocate descriptors */
7443 err = ice_vsi_setup_tx_rings(vsi);
7444 if (err)
7445 goto err_setup_tx;
7446
7447 err = ice_vsi_setup_rx_rings(vsi);
7448 if (err)
7449 goto err_setup_rx;
7450
7451 err = ice_vsi_cfg_lan(vsi);
7452 if (err)
7453 goto err_setup_rx;
7454
7455 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7456 dev_driver_string(dev), dev_name(dev));
7457 err = ice_vsi_req_irq_msix(vsi, int_name);
7458 if (err)
7459 goto err_setup_rx;
7460
7461 ice_vsi_cfg_msix(vsi);
7462
7463 err = ice_vsi_start_all_rx_rings(vsi);
7464 if (err)
7465 goto err_up_complete;
7466
7467 clear_bit(ICE_VSI_DOWN, vsi->state);
7468 ice_vsi_ena_irq(vsi);
7469
7470 return 0;
7471
7472 err_up_complete:
7473 ice_down(vsi);
7474 err_setup_rx:
7475 ice_vsi_free_rx_rings(vsi);
7476 err_setup_tx:
7477 ice_vsi_free_tx_rings(vsi);
7478
7479 return err;
7480 }
7481
7482 /**
7483 * ice_vsi_open - Called when a network interface is made active
7484 * @vsi: the VSI to open
7485 *
7486 * Initialization of the VSI
7487 *
7488 * Returns 0 on success, negative value on error
7489 */
ice_vsi_open(struct ice_vsi * vsi)7490 int ice_vsi_open(struct ice_vsi *vsi)
7491 {
7492 char int_name[ICE_INT_NAME_STR_LEN];
7493 struct ice_pf *pf = vsi->back;
7494 int err;
7495
7496 /* allocate descriptors */
7497 err = ice_vsi_setup_tx_rings(vsi);
7498 if (err)
7499 goto err_setup_tx;
7500
7501 err = ice_vsi_setup_rx_rings(vsi);
7502 if (err)
7503 goto err_setup_rx;
7504
7505 err = ice_vsi_cfg_lan(vsi);
7506 if (err)
7507 goto err_setup_rx;
7508
7509 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7510 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7511 err = ice_vsi_req_irq_msix(vsi, int_name);
7512 if (err)
7513 goto err_setup_rx;
7514
7515 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7516
7517 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) {
7518 /* Notify the stack of the actual queue counts. */
7519 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7520 if (err)
7521 goto err_set_qs;
7522
7523 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7524 if (err)
7525 goto err_set_qs;
7526
7527 ice_vsi_set_napi_queues(vsi);
7528 }
7529
7530 err = ice_up_complete(vsi);
7531 if (err)
7532 goto err_up_complete;
7533
7534 return 0;
7535
7536 err_up_complete:
7537 ice_down(vsi);
7538 err_set_qs:
7539 ice_vsi_free_irq(vsi);
7540 err_setup_rx:
7541 ice_vsi_free_rx_rings(vsi);
7542 err_setup_tx:
7543 ice_vsi_free_tx_rings(vsi);
7544
7545 return err;
7546 }
7547
7548 /**
7549 * ice_vsi_release_all - Delete all VSIs
7550 * @pf: PF from which all VSIs are being removed
7551 */
ice_vsi_release_all(struct ice_pf * pf)7552 static void ice_vsi_release_all(struct ice_pf *pf)
7553 {
7554 int err, i;
7555
7556 if (!pf->vsi)
7557 return;
7558
7559 ice_for_each_vsi(pf, i) {
7560 if (!pf->vsi[i])
7561 continue;
7562
7563 if (pf->vsi[i]->type == ICE_VSI_CHNL)
7564 continue;
7565
7566 err = ice_vsi_release(pf->vsi[i]);
7567 if (err)
7568 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7569 i, err, pf->vsi[i]->vsi_num);
7570 }
7571 }
7572
7573 /**
7574 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7575 * @pf: pointer to the PF instance
7576 * @type: VSI type to rebuild
7577 *
7578 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7579 */
ice_vsi_rebuild_by_type(struct ice_pf * pf,enum ice_vsi_type type)7580 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7581 {
7582 struct device *dev = ice_pf_to_dev(pf);
7583 int i, err;
7584
7585 ice_for_each_vsi(pf, i) {
7586 struct ice_vsi *vsi = pf->vsi[i];
7587
7588 if (!vsi || vsi->type != type)
7589 continue;
7590
7591 /* rebuild the VSI */
7592 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7593 if (err) {
7594 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7595 err, vsi->idx, ice_vsi_type_str(type));
7596 return err;
7597 }
7598
7599 /* replay filters for the VSI */
7600 err = ice_replay_vsi(&pf->hw, vsi->idx);
7601 if (err) {
7602 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7603 err, vsi->idx, ice_vsi_type_str(type));
7604 return err;
7605 }
7606
7607 /* Re-map HW VSI number, using VSI handle that has been
7608 * previously validated in ice_replay_vsi() call above
7609 */
7610 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7611
7612 /* enable the VSI */
7613 err = ice_ena_vsi(vsi, false);
7614 if (err) {
7615 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7616 err, vsi->idx, ice_vsi_type_str(type));
7617 return err;
7618 }
7619
7620 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7621 ice_vsi_type_str(type));
7622 }
7623
7624 return 0;
7625 }
7626
7627 /**
7628 * ice_update_pf_netdev_link - Update PF netdev link status
7629 * @pf: pointer to the PF instance
7630 */
ice_update_pf_netdev_link(struct ice_pf * pf)7631 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7632 {
7633 bool link_up;
7634 int i;
7635
7636 ice_for_each_vsi(pf, i) {
7637 struct ice_vsi *vsi = pf->vsi[i];
7638
7639 if (!vsi || vsi->type != ICE_VSI_PF)
7640 return;
7641
7642 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7643 if (link_up) {
7644 netif_carrier_on(pf->vsi[i]->netdev);
7645 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7646 } else {
7647 netif_carrier_off(pf->vsi[i]->netdev);
7648 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7649 }
7650 }
7651 }
7652
7653 /**
7654 * ice_rebuild - rebuild after reset
7655 * @pf: PF to rebuild
7656 * @reset_type: type of reset
7657 *
7658 * Do not rebuild VF VSI in this flow because that is already handled via
7659 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7660 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7661 * to reset/rebuild all the VF VSI twice.
7662 */
ice_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)7663 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7664 {
7665 struct ice_vsi *vsi = ice_get_main_vsi(pf);
7666 struct device *dev = ice_pf_to_dev(pf);
7667 struct ice_hw *hw = &pf->hw;
7668 bool dvm;
7669 int err;
7670
7671 if (test_bit(ICE_DOWN, pf->state))
7672 goto clear_recovery;
7673
7674 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7675
7676 #define ICE_EMP_RESET_SLEEP_MS 5000
7677 if (reset_type == ICE_RESET_EMPR) {
7678 /* If an EMP reset has occurred, any previously pending flash
7679 * update will have completed. We no longer know whether or
7680 * not the NVM update EMP reset is restricted.
7681 */
7682 pf->fw_emp_reset_disabled = false;
7683
7684 msleep(ICE_EMP_RESET_SLEEP_MS);
7685 }
7686
7687 err = ice_init_all_ctrlq(hw);
7688 if (err) {
7689 dev_err(dev, "control queues init failed %d\n", err);
7690 goto err_init_ctrlq;
7691 }
7692
7693 /* if DDP was previously loaded successfully */
7694 if (!ice_is_safe_mode(pf)) {
7695 /* reload the SW DB of filter tables */
7696 if (reset_type == ICE_RESET_PFR)
7697 ice_fill_blk_tbls(hw);
7698 else
7699 /* Reload DDP Package after CORER/GLOBR reset */
7700 ice_load_pkg(NULL, pf);
7701 }
7702
7703 err = ice_clear_pf_cfg(hw);
7704 if (err) {
7705 dev_err(dev, "clear PF configuration failed %d\n", err);
7706 goto err_init_ctrlq;
7707 }
7708
7709 ice_clear_pxe_mode(hw);
7710
7711 err = ice_init_nvm(hw);
7712 if (err) {
7713 dev_err(dev, "ice_init_nvm failed %d\n", err);
7714 goto err_init_ctrlq;
7715 }
7716
7717 err = ice_get_caps(hw);
7718 if (err) {
7719 dev_err(dev, "ice_get_caps failed %d\n", err);
7720 goto err_init_ctrlq;
7721 }
7722
7723 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7724 if (err) {
7725 dev_err(dev, "set_mac_cfg failed %d\n", err);
7726 goto err_init_ctrlq;
7727 }
7728
7729 dvm = ice_is_dvm_ena(hw);
7730
7731 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7732 if (err)
7733 goto err_init_ctrlq;
7734
7735 err = ice_sched_init_port(hw->port_info);
7736 if (err)
7737 goto err_sched_init_port;
7738
7739 /* start misc vector */
7740 err = ice_req_irq_msix_misc(pf);
7741 if (err) {
7742 dev_err(dev, "misc vector setup failed: %d\n", err);
7743 goto err_sched_init_port;
7744 }
7745
7746 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7747 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7748 if (!rd32(hw, PFQF_FD_SIZE)) {
7749 u16 unused, guar, b_effort;
7750
7751 guar = hw->func_caps.fd_fltr_guar;
7752 b_effort = hw->func_caps.fd_fltr_best_effort;
7753
7754 /* force guaranteed filter pool for PF */
7755 ice_alloc_fd_guar_item(hw, &unused, guar);
7756 /* force shared filter pool for PF */
7757 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7758 }
7759 }
7760
7761 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7762 ice_dcb_rebuild(pf);
7763
7764 /* If the PF previously had enabled PTP, PTP init needs to happen before
7765 * the VSI rebuild. If not, this causes the PTP link status events to
7766 * fail.
7767 */
7768 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7769 ice_ptp_rebuild(pf, reset_type);
7770
7771 if (ice_is_feature_supported(pf, ICE_F_GNSS))
7772 ice_gnss_init(pf);
7773
7774 /* rebuild PF VSI */
7775 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7776 if (err) {
7777 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7778 goto err_vsi_rebuild;
7779 }
7780
7781 if (reset_type == ICE_RESET_PFR) {
7782 err = ice_rebuild_channels(pf);
7783 if (err) {
7784 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7785 err);
7786 goto err_vsi_rebuild;
7787 }
7788 }
7789
7790 /* If Flow Director is active */
7791 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7792 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7793 if (err) {
7794 dev_err(dev, "control VSI rebuild failed: %d\n", err);
7795 goto err_vsi_rebuild;
7796 }
7797
7798 /* replay HW Flow Director recipes */
7799 if (hw->fdir_prof)
7800 ice_fdir_replay_flows(hw);
7801
7802 /* replay Flow Director filters */
7803 ice_fdir_replay_fltrs(pf);
7804
7805 ice_rebuild_arfs(pf);
7806 }
7807
7808 if (vsi && vsi->netdev)
7809 netif_device_attach(vsi->netdev);
7810
7811 ice_update_pf_netdev_link(pf);
7812
7813 /* tell the firmware we are up */
7814 err = ice_send_version(pf);
7815 if (err) {
7816 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7817 err);
7818 goto err_vsi_rebuild;
7819 }
7820
7821 ice_replay_post(hw);
7822
7823 /* if we get here, reset flow is successful */
7824 clear_bit(ICE_RESET_FAILED, pf->state);
7825
7826 ice_health_clear(pf);
7827
7828 ice_plug_aux_dev(pf);
7829 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7830 ice_lag_rebuild(pf);
7831
7832 /* Restore timestamp mode settings after VSI rebuild */
7833 ice_ptp_restore_timestamp_mode(pf);
7834 return;
7835
7836 err_vsi_rebuild:
7837 err_sched_init_port:
7838 ice_sched_cleanup_all(hw);
7839 err_init_ctrlq:
7840 ice_shutdown_all_ctrlq(hw, false);
7841 set_bit(ICE_RESET_FAILED, pf->state);
7842 clear_recovery:
7843 /* set this bit in PF state to control service task scheduling */
7844 set_bit(ICE_NEEDS_RESTART, pf->state);
7845 dev_err(dev, "Rebuild failed, unload and reload driver\n");
7846 }
7847
7848 /**
7849 * ice_change_mtu - NDO callback to change the MTU
7850 * @netdev: network interface device structure
7851 * @new_mtu: new value for maximum frame size
7852 *
7853 * Returns 0 on success, negative on failure
7854 */
ice_change_mtu(struct net_device * netdev,int new_mtu)7855 int ice_change_mtu(struct net_device *netdev, int new_mtu)
7856 {
7857 struct ice_netdev_priv *np = netdev_priv(netdev);
7858 struct ice_vsi *vsi = np->vsi;
7859 struct ice_pf *pf = vsi->back;
7860 struct bpf_prog *prog;
7861 u8 count = 0;
7862 int err = 0;
7863
7864 if (new_mtu == (int)netdev->mtu) {
7865 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7866 return 0;
7867 }
7868
7869 prog = vsi->xdp_prog;
7870 if (prog && !prog->aux->xdp_has_frags) {
7871 int frame_size = ice_max_xdp_frame_size(vsi);
7872
7873 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7874 netdev_err(netdev, "max MTU for XDP usage is %d\n",
7875 frame_size - ICE_ETH_PKT_HDR_PAD);
7876 return -EINVAL;
7877 }
7878 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7879 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7880 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7881 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7882 return -EINVAL;
7883 }
7884 }
7885
7886 /* if a reset is in progress, wait for some time for it to complete */
7887 do {
7888 if (ice_is_reset_in_progress(pf->state)) {
7889 count++;
7890 usleep_range(1000, 2000);
7891 } else {
7892 break;
7893 }
7894
7895 } while (count < 100);
7896
7897 if (count == 100) {
7898 netdev_err(netdev, "can't change MTU. Device is busy\n");
7899 return -EBUSY;
7900 }
7901
7902 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu);
7903 err = ice_down_up(vsi);
7904 if (err)
7905 return err;
7906
7907 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7908 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7909
7910 return err;
7911 }
7912
7913 /**
7914 * ice_eth_ioctl - Access the hwtstamp interface
7915 * @netdev: network interface device structure
7916 * @ifr: interface request data
7917 * @cmd: ioctl command
7918 */
ice_eth_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)7919 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7920 {
7921 struct ice_netdev_priv *np = netdev_priv(netdev);
7922 struct ice_pf *pf = np->vsi->back;
7923
7924 switch (cmd) {
7925 case SIOCGHWTSTAMP:
7926 return ice_ptp_get_ts_config(pf, ifr);
7927 case SIOCSHWTSTAMP:
7928 return ice_ptp_set_ts_config(pf, ifr);
7929 default:
7930 return -EOPNOTSUPP;
7931 }
7932 }
7933
7934 /**
7935 * ice_aq_str - convert AQ err code to a string
7936 * @aq_err: the AQ error code to convert
7937 */
ice_aq_str(enum ice_aq_err aq_err)7938 const char *ice_aq_str(enum ice_aq_err aq_err)
7939 {
7940 switch (aq_err) {
7941 case ICE_AQ_RC_OK:
7942 return "OK";
7943 case ICE_AQ_RC_EPERM:
7944 return "ICE_AQ_RC_EPERM";
7945 case ICE_AQ_RC_ENOENT:
7946 return "ICE_AQ_RC_ENOENT";
7947 case ICE_AQ_RC_ENOMEM:
7948 return "ICE_AQ_RC_ENOMEM";
7949 case ICE_AQ_RC_EBUSY:
7950 return "ICE_AQ_RC_EBUSY";
7951 case ICE_AQ_RC_EEXIST:
7952 return "ICE_AQ_RC_EEXIST";
7953 case ICE_AQ_RC_EINVAL:
7954 return "ICE_AQ_RC_EINVAL";
7955 case ICE_AQ_RC_ENOSPC:
7956 return "ICE_AQ_RC_ENOSPC";
7957 case ICE_AQ_RC_ENOSYS:
7958 return "ICE_AQ_RC_ENOSYS";
7959 case ICE_AQ_RC_EMODE:
7960 return "ICE_AQ_RC_EMODE";
7961 case ICE_AQ_RC_ENOSEC:
7962 return "ICE_AQ_RC_ENOSEC";
7963 case ICE_AQ_RC_EBADSIG:
7964 return "ICE_AQ_RC_EBADSIG";
7965 case ICE_AQ_RC_ESVN:
7966 return "ICE_AQ_RC_ESVN";
7967 case ICE_AQ_RC_EBADMAN:
7968 return "ICE_AQ_RC_EBADMAN";
7969 case ICE_AQ_RC_EBADBUF:
7970 return "ICE_AQ_RC_EBADBUF";
7971 }
7972
7973 return "ICE_AQ_RC_UNKNOWN";
7974 }
7975
7976 /**
7977 * ice_set_rss_lut - Set RSS LUT
7978 * @vsi: Pointer to VSI structure
7979 * @lut: Lookup table
7980 * @lut_size: Lookup table size
7981 *
7982 * Returns 0 on success, negative on failure
7983 */
ice_set_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7984 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7985 {
7986 struct ice_aq_get_set_rss_lut_params params = {};
7987 struct ice_hw *hw = &vsi->back->hw;
7988 int status;
7989
7990 if (!lut)
7991 return -EINVAL;
7992
7993 params.vsi_handle = vsi->idx;
7994 params.lut_size = lut_size;
7995 params.lut_type = vsi->rss_lut_type;
7996 params.lut = lut;
7997
7998 status = ice_aq_set_rss_lut(hw, ¶ms);
7999 if (status)
8000 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
8001 status, ice_aq_str(hw->adminq.sq_last_status));
8002
8003 return status;
8004 }
8005
8006 /**
8007 * ice_set_rss_key - Set RSS key
8008 * @vsi: Pointer to the VSI structure
8009 * @seed: RSS hash seed
8010 *
8011 * Returns 0 on success, negative on failure
8012 */
ice_set_rss_key(struct ice_vsi * vsi,u8 * seed)8013 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
8014 {
8015 struct ice_hw *hw = &vsi->back->hw;
8016 int status;
8017
8018 if (!seed)
8019 return -EINVAL;
8020
8021 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
8022 if (status)
8023 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
8024 status, ice_aq_str(hw->adminq.sq_last_status));
8025
8026 return status;
8027 }
8028
8029 /**
8030 * ice_get_rss_lut - Get RSS LUT
8031 * @vsi: Pointer to VSI structure
8032 * @lut: Buffer to store the lookup table entries
8033 * @lut_size: Size of buffer to store the lookup table entries
8034 *
8035 * Returns 0 on success, negative on failure
8036 */
ice_get_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)8037 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
8038 {
8039 struct ice_aq_get_set_rss_lut_params params = {};
8040 struct ice_hw *hw = &vsi->back->hw;
8041 int status;
8042
8043 if (!lut)
8044 return -EINVAL;
8045
8046 params.vsi_handle = vsi->idx;
8047 params.lut_size = lut_size;
8048 params.lut_type = vsi->rss_lut_type;
8049 params.lut = lut;
8050
8051 status = ice_aq_get_rss_lut(hw, ¶ms);
8052 if (status)
8053 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
8054 status, ice_aq_str(hw->adminq.sq_last_status));
8055
8056 return status;
8057 }
8058
8059 /**
8060 * ice_get_rss_key - Get RSS key
8061 * @vsi: Pointer to VSI structure
8062 * @seed: Buffer to store the key in
8063 *
8064 * Returns 0 on success, negative on failure
8065 */
ice_get_rss_key(struct ice_vsi * vsi,u8 * seed)8066 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
8067 {
8068 struct ice_hw *hw = &vsi->back->hw;
8069 int status;
8070
8071 if (!seed)
8072 return -EINVAL;
8073
8074 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
8075 if (status)
8076 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
8077 status, ice_aq_str(hw->adminq.sq_last_status));
8078
8079 return status;
8080 }
8081
8082 /**
8083 * ice_set_rss_hfunc - Set RSS HASH function
8084 * @vsi: Pointer to VSI structure
8085 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*)
8086 *
8087 * Returns 0 on success, negative on failure
8088 */
ice_set_rss_hfunc(struct ice_vsi * vsi,u8 hfunc)8089 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc)
8090 {
8091 struct ice_hw *hw = &vsi->back->hw;
8092 struct ice_vsi_ctx *ctx;
8093 bool symm;
8094 int err;
8095
8096 if (hfunc == vsi->rss_hfunc)
8097 return 0;
8098
8099 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ &&
8100 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
8101 return -EOPNOTSUPP;
8102
8103 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8104 if (!ctx)
8105 return -ENOMEM;
8106
8107 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
8108 ctx->info.q_opt_rss = vsi->info.q_opt_rss;
8109 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M;
8110 ctx->info.q_opt_rss |=
8111 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc);
8112 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
8113 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
8114
8115 err = ice_update_vsi(hw, vsi->idx, ctx, NULL);
8116 if (err) {
8117 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n",
8118 vsi->vsi_num, err);
8119 } else {
8120 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
8121 vsi->rss_hfunc = hfunc;
8122 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n",
8123 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ?
8124 "Symmetric " : "");
8125 }
8126 kfree(ctx);
8127 if (err)
8128 return err;
8129
8130 /* Fix the symmetry setting for all existing RSS configurations */
8131 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
8132 return ice_set_rss_cfg_symm(hw, vsi, symm);
8133 }
8134
8135 /**
8136 * ice_bridge_getlink - Get the hardware bridge mode
8137 * @skb: skb buff
8138 * @pid: process ID
8139 * @seq: RTNL message seq
8140 * @dev: the netdev being configured
8141 * @filter_mask: filter mask passed in
8142 * @nlflags: netlink flags passed in
8143 *
8144 * Return the bridge mode (VEB/VEPA)
8145 */
8146 static int
ice_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)8147 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
8148 struct net_device *dev, u32 filter_mask, int nlflags)
8149 {
8150 struct ice_netdev_priv *np = netdev_priv(dev);
8151 struct ice_vsi *vsi = np->vsi;
8152 struct ice_pf *pf = vsi->back;
8153 u16 bmode;
8154
8155 bmode = pf->first_sw->bridge_mode;
8156
8157 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
8158 filter_mask, NULL);
8159 }
8160
8161 /**
8162 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
8163 * @vsi: Pointer to VSI structure
8164 * @bmode: Hardware bridge mode (VEB/VEPA)
8165 *
8166 * Returns 0 on success, negative on failure
8167 */
ice_vsi_update_bridge_mode(struct ice_vsi * vsi,u16 bmode)8168 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
8169 {
8170 struct ice_aqc_vsi_props *vsi_props;
8171 struct ice_hw *hw = &vsi->back->hw;
8172 struct ice_vsi_ctx *ctxt;
8173 int ret;
8174
8175 vsi_props = &vsi->info;
8176
8177 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
8178 if (!ctxt)
8179 return -ENOMEM;
8180
8181 ctxt->info = vsi->info;
8182
8183 if (bmode == BRIDGE_MODE_VEB)
8184 /* change from VEPA to VEB mode */
8185 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8186 else
8187 /* change from VEB to VEPA mode */
8188 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8189 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
8190
8191 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
8192 if (ret) {
8193 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
8194 bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
8195 goto out;
8196 }
8197 /* Update sw flags for book keeping */
8198 vsi_props->sw_flags = ctxt->info.sw_flags;
8199
8200 out:
8201 kfree(ctxt);
8202 return ret;
8203 }
8204
8205 /**
8206 * ice_bridge_setlink - Set the hardware bridge mode
8207 * @dev: the netdev being configured
8208 * @nlh: RTNL message
8209 * @flags: bridge setlink flags
8210 * @extack: netlink extended ack
8211 *
8212 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
8213 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
8214 * not already set for all VSIs connected to this switch. And also update the
8215 * unicast switch filter rules for the corresponding switch of the netdev.
8216 */
8217 static int
ice_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 __always_unused flags,struct netlink_ext_ack __always_unused * extack)8218 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8219 u16 __always_unused flags,
8220 struct netlink_ext_ack __always_unused *extack)
8221 {
8222 struct ice_netdev_priv *np = netdev_priv(dev);
8223 struct ice_pf *pf = np->vsi->back;
8224 struct nlattr *attr, *br_spec;
8225 struct ice_hw *hw = &pf->hw;
8226 struct ice_sw *pf_sw;
8227 int rem, v, err = 0;
8228
8229 pf_sw = pf->first_sw;
8230 /* find the attribute in the netlink message */
8231 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8232 if (!br_spec)
8233 return -EINVAL;
8234
8235 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) {
8236 __u16 mode = nla_get_u16(attr);
8237
8238 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
8239 return -EINVAL;
8240 /* Continue if bridge mode is not being flipped */
8241 if (mode == pf_sw->bridge_mode)
8242 continue;
8243 /* Iterates through the PF VSI list and update the loopback
8244 * mode of the VSI
8245 */
8246 ice_for_each_vsi(pf, v) {
8247 if (!pf->vsi[v])
8248 continue;
8249 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
8250 if (err)
8251 return err;
8252 }
8253
8254 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
8255 /* Update the unicast switch filter rules for the corresponding
8256 * switch of the netdev
8257 */
8258 err = ice_update_sw_rule_bridge_mode(hw);
8259 if (err) {
8260 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
8261 mode, err,
8262 ice_aq_str(hw->adminq.sq_last_status));
8263 /* revert hw->evb_veb */
8264 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
8265 return err;
8266 }
8267
8268 pf_sw->bridge_mode = mode;
8269 }
8270
8271 return 0;
8272 }
8273
8274 /**
8275 * ice_tx_timeout - Respond to a Tx Hang
8276 * @netdev: network interface device structure
8277 * @txqueue: Tx queue
8278 */
ice_tx_timeout(struct net_device * netdev,unsigned int txqueue)8279 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
8280 {
8281 struct ice_netdev_priv *np = netdev_priv(netdev);
8282 struct ice_tx_ring *tx_ring = NULL;
8283 struct ice_vsi *vsi = np->vsi;
8284 struct ice_pf *pf = vsi->back;
8285 u32 i;
8286
8287 pf->tx_timeout_count++;
8288
8289 /* Check if PFC is enabled for the TC to which the queue belongs
8290 * to. If yes then Tx timeout is not caused by a hung queue, no
8291 * need to reset and rebuild
8292 */
8293 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
8294 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
8295 txqueue);
8296 return;
8297 }
8298
8299 /* now that we have an index, find the tx_ring struct */
8300 ice_for_each_txq(vsi, i)
8301 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
8302 if (txqueue == vsi->tx_rings[i]->q_index) {
8303 tx_ring = vsi->tx_rings[i];
8304 break;
8305 }
8306
8307 /* Reset recovery level if enough time has elapsed after last timeout.
8308 * Also ensure no new reset action happens before next timeout period.
8309 */
8310 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
8311 pf->tx_timeout_recovery_level = 1;
8312 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
8313 netdev->watchdog_timeo)))
8314 return;
8315
8316 if (tx_ring) {
8317 struct ice_hw *hw = &pf->hw;
8318 u32 head, intr = 0;
8319
8320 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M,
8321 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])));
8322 /* Read interrupt register */
8323 intr = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
8324
8325 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
8326 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
8327 head, tx_ring->next_to_use, intr);
8328
8329 ice_prep_tx_hang_report(pf, tx_ring, vsi->vsi_num, head, intr);
8330 }
8331
8332 pf->tx_timeout_last_recovery = jiffies;
8333 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
8334 pf->tx_timeout_recovery_level, txqueue);
8335
8336 switch (pf->tx_timeout_recovery_level) {
8337 case 1:
8338 set_bit(ICE_PFR_REQ, pf->state);
8339 break;
8340 case 2:
8341 set_bit(ICE_CORER_REQ, pf->state);
8342 break;
8343 case 3:
8344 set_bit(ICE_GLOBR_REQ, pf->state);
8345 break;
8346 default:
8347 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
8348 set_bit(ICE_DOWN, pf->state);
8349 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
8350 set_bit(ICE_SERVICE_DIS, pf->state);
8351 break;
8352 }
8353
8354 ice_service_task_schedule(pf);
8355 pf->tx_timeout_recovery_level++;
8356 }
8357
8358 /**
8359 * ice_setup_tc_cls_flower - flower classifier offloads
8360 * @np: net device to configure
8361 * @filter_dev: device on which filter is added
8362 * @cls_flower: offload data
8363 */
8364 static int
ice_setup_tc_cls_flower(struct ice_netdev_priv * np,struct net_device * filter_dev,struct flow_cls_offload * cls_flower)8365 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
8366 struct net_device *filter_dev,
8367 struct flow_cls_offload *cls_flower)
8368 {
8369 struct ice_vsi *vsi = np->vsi;
8370
8371 if (cls_flower->common.chain_index)
8372 return -EOPNOTSUPP;
8373
8374 switch (cls_flower->command) {
8375 case FLOW_CLS_REPLACE:
8376 return ice_add_cls_flower(filter_dev, vsi, cls_flower);
8377 case FLOW_CLS_DESTROY:
8378 return ice_del_cls_flower(vsi, cls_flower);
8379 default:
8380 return -EINVAL;
8381 }
8382 }
8383
8384 /**
8385 * ice_setup_tc_block_cb - callback handler registered for TC block
8386 * @type: TC SETUP type
8387 * @type_data: TC flower offload data that contains user input
8388 * @cb_priv: netdev private data
8389 */
8390 static int
ice_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)8391 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
8392 {
8393 struct ice_netdev_priv *np = cb_priv;
8394
8395 switch (type) {
8396 case TC_SETUP_CLSFLOWER:
8397 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8398 type_data);
8399 default:
8400 return -EOPNOTSUPP;
8401 }
8402 }
8403
8404 /**
8405 * ice_validate_mqprio_qopt - Validate TCF input parameters
8406 * @vsi: Pointer to VSI
8407 * @mqprio_qopt: input parameters for mqprio queue configuration
8408 *
8409 * This function validates MQPRIO params, such as qcount (power of 2 wherever
8410 * needed), and make sure user doesn't specify qcount and BW rate limit
8411 * for TCs, which are more than "num_tc"
8412 */
8413 static int
ice_validate_mqprio_qopt(struct ice_vsi * vsi,struct tc_mqprio_qopt_offload * mqprio_qopt)8414 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
8415 struct tc_mqprio_qopt_offload *mqprio_qopt)
8416 {
8417 int non_power_of_2_qcount = 0;
8418 struct ice_pf *pf = vsi->back;
8419 int max_rss_q_cnt = 0;
8420 u64 sum_min_rate = 0;
8421 struct device *dev;
8422 int i, speed;
8423 u8 num_tc;
8424
8425 if (vsi->type != ICE_VSI_PF)
8426 return -EINVAL;
8427
8428 if (mqprio_qopt->qopt.offset[0] != 0 ||
8429 mqprio_qopt->qopt.num_tc < 1 ||
8430 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8431 return -EINVAL;
8432
8433 dev = ice_pf_to_dev(pf);
8434 vsi->ch_rss_size = 0;
8435 num_tc = mqprio_qopt->qopt.num_tc;
8436 speed = ice_get_link_speed_kbps(vsi);
8437
8438 for (i = 0; num_tc; i++) {
8439 int qcount = mqprio_qopt->qopt.count[i];
8440 u64 max_rate, min_rate, rem;
8441
8442 if (!qcount)
8443 return -EINVAL;
8444
8445 if (is_power_of_2(qcount)) {
8446 if (non_power_of_2_qcount &&
8447 qcount > non_power_of_2_qcount) {
8448 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8449 qcount, non_power_of_2_qcount);
8450 return -EINVAL;
8451 }
8452 if (qcount > max_rss_q_cnt)
8453 max_rss_q_cnt = qcount;
8454 } else {
8455 if (non_power_of_2_qcount &&
8456 qcount != non_power_of_2_qcount) {
8457 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8458 qcount, non_power_of_2_qcount);
8459 return -EINVAL;
8460 }
8461 if (qcount < max_rss_q_cnt) {
8462 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8463 qcount, max_rss_q_cnt);
8464 return -EINVAL;
8465 }
8466 max_rss_q_cnt = qcount;
8467 non_power_of_2_qcount = qcount;
8468 }
8469
8470 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8471 * converts the bandwidth rate limit into Bytes/s when
8472 * passing it down to the driver. So convert input bandwidth
8473 * from Bytes/s to Kbps
8474 */
8475 max_rate = mqprio_qopt->max_rate[i];
8476 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8477
8478 /* min_rate is minimum guaranteed rate and it can't be zero */
8479 min_rate = mqprio_qopt->min_rate[i];
8480 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8481 sum_min_rate += min_rate;
8482
8483 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8484 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8485 min_rate, ICE_MIN_BW_LIMIT);
8486 return -EINVAL;
8487 }
8488
8489 if (max_rate && max_rate > speed) {
8490 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8491 i, max_rate, speed);
8492 return -EINVAL;
8493 }
8494
8495 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8496 if (rem) {
8497 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8498 i, ICE_MIN_BW_LIMIT);
8499 return -EINVAL;
8500 }
8501
8502 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8503 if (rem) {
8504 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8505 i, ICE_MIN_BW_LIMIT);
8506 return -EINVAL;
8507 }
8508
8509 /* min_rate can't be more than max_rate, except when max_rate
8510 * is zero (implies max_rate sought is max line rate). In such
8511 * a case min_rate can be more than max.
8512 */
8513 if (max_rate && min_rate > max_rate) {
8514 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8515 min_rate, max_rate);
8516 return -EINVAL;
8517 }
8518
8519 if (i >= mqprio_qopt->qopt.num_tc - 1)
8520 break;
8521 if (mqprio_qopt->qopt.offset[i + 1] !=
8522 (mqprio_qopt->qopt.offset[i] + qcount))
8523 return -EINVAL;
8524 }
8525 if (vsi->num_rxq <
8526 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8527 return -EINVAL;
8528 if (vsi->num_txq <
8529 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8530 return -EINVAL;
8531
8532 if (sum_min_rate && sum_min_rate > (u64)speed) {
8533 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8534 sum_min_rate, speed);
8535 return -EINVAL;
8536 }
8537
8538 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8539 vsi->ch_rss_size = max_rss_q_cnt;
8540
8541 return 0;
8542 }
8543
8544 /**
8545 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8546 * @pf: ptr to PF device
8547 * @vsi: ptr to VSI
8548 */
ice_add_vsi_to_fdir(struct ice_pf * pf,struct ice_vsi * vsi)8549 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8550 {
8551 struct device *dev = ice_pf_to_dev(pf);
8552 bool added = false;
8553 struct ice_hw *hw;
8554 int flow;
8555
8556 if (!(vsi->num_gfltr || vsi->num_bfltr))
8557 return -EINVAL;
8558
8559 hw = &pf->hw;
8560 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8561 struct ice_fd_hw_prof *prof;
8562 int tun, status;
8563 u64 entry_h;
8564
8565 if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8566 hw->fdir_prof[flow]->cnt))
8567 continue;
8568
8569 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8570 enum ice_flow_priority prio;
8571
8572 /* add this VSI to FDir profile for this flow */
8573 prio = ICE_FLOW_PRIO_NORMAL;
8574 prof = hw->fdir_prof[flow];
8575 status = ice_flow_add_entry(hw, ICE_BLK_FD,
8576 prof->prof_id[tun],
8577 prof->vsi_h[0], vsi->idx,
8578 prio, prof->fdir_seg[tun],
8579 &entry_h);
8580 if (status) {
8581 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8582 vsi->idx, flow);
8583 continue;
8584 }
8585
8586 prof->entry_h[prof->cnt][tun] = entry_h;
8587 }
8588
8589 /* store VSI for filter replay and delete */
8590 prof->vsi_h[prof->cnt] = vsi->idx;
8591 prof->cnt++;
8592
8593 added = true;
8594 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8595 flow);
8596 }
8597
8598 if (!added)
8599 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8600
8601 return 0;
8602 }
8603
8604 /**
8605 * ice_add_channel - add a channel by adding VSI
8606 * @pf: ptr to PF device
8607 * @sw_id: underlying HW switching element ID
8608 * @ch: ptr to channel structure
8609 *
8610 * Add a channel (VSI) using add_vsi and queue_map
8611 */
ice_add_channel(struct ice_pf * pf,u16 sw_id,struct ice_channel * ch)8612 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8613 {
8614 struct device *dev = ice_pf_to_dev(pf);
8615 struct ice_vsi *vsi;
8616
8617 if (ch->type != ICE_VSI_CHNL) {
8618 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8619 return -EINVAL;
8620 }
8621
8622 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8623 if (!vsi || vsi->type != ICE_VSI_CHNL) {
8624 dev_err(dev, "create chnl VSI failure\n");
8625 return -EINVAL;
8626 }
8627
8628 ice_add_vsi_to_fdir(pf, vsi);
8629
8630 ch->sw_id = sw_id;
8631 ch->vsi_num = vsi->vsi_num;
8632 ch->info.mapping_flags = vsi->info.mapping_flags;
8633 ch->ch_vsi = vsi;
8634 /* set the back pointer of channel for newly created VSI */
8635 vsi->ch = ch;
8636
8637 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8638 sizeof(vsi->info.q_mapping));
8639 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8640 sizeof(vsi->info.tc_mapping));
8641
8642 return 0;
8643 }
8644
8645 /**
8646 * ice_chnl_cfg_res
8647 * @vsi: the VSI being setup
8648 * @ch: ptr to channel structure
8649 *
8650 * Configure channel specific resources such as rings, vector.
8651 */
ice_chnl_cfg_res(struct ice_vsi * vsi,struct ice_channel * ch)8652 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8653 {
8654 int i;
8655
8656 for (i = 0; i < ch->num_txq; i++) {
8657 struct ice_q_vector *tx_q_vector, *rx_q_vector;
8658 struct ice_ring_container *rc;
8659 struct ice_tx_ring *tx_ring;
8660 struct ice_rx_ring *rx_ring;
8661
8662 tx_ring = vsi->tx_rings[ch->base_q + i];
8663 rx_ring = vsi->rx_rings[ch->base_q + i];
8664 if (!tx_ring || !rx_ring)
8665 continue;
8666
8667 /* setup ring being channel enabled */
8668 tx_ring->ch = ch;
8669 rx_ring->ch = ch;
8670
8671 /* following code block sets up vector specific attributes */
8672 tx_q_vector = tx_ring->q_vector;
8673 rx_q_vector = rx_ring->q_vector;
8674 if (!tx_q_vector && !rx_q_vector)
8675 continue;
8676
8677 if (tx_q_vector) {
8678 tx_q_vector->ch = ch;
8679 /* setup Tx and Rx ITR setting if DIM is off */
8680 rc = &tx_q_vector->tx;
8681 if (!ITR_IS_DYNAMIC(rc))
8682 ice_write_itr(rc, rc->itr_setting);
8683 }
8684 if (rx_q_vector) {
8685 rx_q_vector->ch = ch;
8686 /* setup Tx and Rx ITR setting if DIM is off */
8687 rc = &rx_q_vector->rx;
8688 if (!ITR_IS_DYNAMIC(rc))
8689 ice_write_itr(rc, rc->itr_setting);
8690 }
8691 }
8692
8693 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8694 * GLINT_ITR register would have written to perform in-context
8695 * update, hence perform flush
8696 */
8697 if (ch->num_txq || ch->num_rxq)
8698 ice_flush(&vsi->back->hw);
8699 }
8700
8701 /**
8702 * ice_cfg_chnl_all_res - configure channel resources
8703 * @vsi: pte to main_vsi
8704 * @ch: ptr to channel structure
8705 *
8706 * This function configures channel specific resources such as flow-director
8707 * counter index, and other resources such as queues, vectors, ITR settings
8708 */
8709 static void
ice_cfg_chnl_all_res(struct ice_vsi * vsi,struct ice_channel * ch)8710 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8711 {
8712 /* configure channel (aka ADQ) resources such as queues, vectors,
8713 * ITR settings for channel specific vectors and anything else
8714 */
8715 ice_chnl_cfg_res(vsi, ch);
8716 }
8717
8718 /**
8719 * ice_setup_hw_channel - setup new channel
8720 * @pf: ptr to PF device
8721 * @vsi: the VSI being setup
8722 * @ch: ptr to channel structure
8723 * @sw_id: underlying HW switching element ID
8724 * @type: type of channel to be created (VMDq2/VF)
8725 *
8726 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8727 * and configures Tx rings accordingly
8728 */
8729 static int
ice_setup_hw_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch,u16 sw_id,u8 type)8730 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8731 struct ice_channel *ch, u16 sw_id, u8 type)
8732 {
8733 struct device *dev = ice_pf_to_dev(pf);
8734 int ret;
8735
8736 ch->base_q = vsi->next_base_q;
8737 ch->type = type;
8738
8739 ret = ice_add_channel(pf, sw_id, ch);
8740 if (ret) {
8741 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8742 return ret;
8743 }
8744
8745 /* configure/setup ADQ specific resources */
8746 ice_cfg_chnl_all_res(vsi, ch);
8747
8748 /* make sure to update the next_base_q so that subsequent channel's
8749 * (aka ADQ) VSI queue map is correct
8750 */
8751 vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8752 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8753 ch->num_rxq);
8754
8755 return 0;
8756 }
8757
8758 /**
8759 * ice_setup_channel - setup new channel using uplink element
8760 * @pf: ptr to PF device
8761 * @vsi: the VSI being setup
8762 * @ch: ptr to channel structure
8763 *
8764 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8765 * and uplink switching element
8766 */
8767 static bool
ice_setup_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch)8768 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8769 struct ice_channel *ch)
8770 {
8771 struct device *dev = ice_pf_to_dev(pf);
8772 u16 sw_id;
8773 int ret;
8774
8775 if (vsi->type != ICE_VSI_PF) {
8776 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8777 return false;
8778 }
8779
8780 sw_id = pf->first_sw->sw_id;
8781
8782 /* create channel (VSI) */
8783 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8784 if (ret) {
8785 dev_err(dev, "failed to setup hw_channel\n");
8786 return false;
8787 }
8788 dev_dbg(dev, "successfully created channel()\n");
8789
8790 return ch->ch_vsi ? true : false;
8791 }
8792
8793 /**
8794 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8795 * @vsi: VSI to be configured
8796 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8797 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8798 */
8799 static int
ice_set_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate,u64 min_tx_rate)8800 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8801 {
8802 int err;
8803
8804 err = ice_set_min_bw_limit(vsi, min_tx_rate);
8805 if (err)
8806 return err;
8807
8808 return ice_set_max_bw_limit(vsi, max_tx_rate);
8809 }
8810
8811 /**
8812 * ice_create_q_channel - function to create channel
8813 * @vsi: VSI to be configured
8814 * @ch: ptr to channel (it contains channel specific params)
8815 *
8816 * This function creates channel (VSI) using num_queues specified by user,
8817 * reconfigs RSS if needed.
8818 */
ice_create_q_channel(struct ice_vsi * vsi,struct ice_channel * ch)8819 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8820 {
8821 struct ice_pf *pf = vsi->back;
8822 struct device *dev;
8823
8824 if (!ch)
8825 return -EINVAL;
8826
8827 dev = ice_pf_to_dev(pf);
8828 if (!ch->num_txq || !ch->num_rxq) {
8829 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8830 return -EINVAL;
8831 }
8832
8833 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8834 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8835 vsi->cnt_q_avail, ch->num_txq);
8836 return -EINVAL;
8837 }
8838
8839 if (!ice_setup_channel(pf, vsi, ch)) {
8840 dev_info(dev, "Failed to setup channel\n");
8841 return -EINVAL;
8842 }
8843 /* configure BW rate limit */
8844 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8845 int ret;
8846
8847 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8848 ch->min_tx_rate);
8849 if (ret)
8850 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8851 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8852 else
8853 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8854 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8855 }
8856
8857 vsi->cnt_q_avail -= ch->num_txq;
8858
8859 return 0;
8860 }
8861
8862 /**
8863 * ice_rem_all_chnl_fltrs - removes all channel filters
8864 * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8865 *
8866 * Remove all advanced switch filters only if they are channel specific
8867 * tc-flower based filter
8868 */
ice_rem_all_chnl_fltrs(struct ice_pf * pf)8869 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8870 {
8871 struct ice_tc_flower_fltr *fltr;
8872 struct hlist_node *node;
8873
8874 /* to remove all channel filters, iterate an ordered list of filters */
8875 hlist_for_each_entry_safe(fltr, node,
8876 &pf->tc_flower_fltr_list,
8877 tc_flower_node) {
8878 struct ice_rule_query_data rule;
8879 int status;
8880
8881 /* for now process only channel specific filters */
8882 if (!ice_is_chnl_fltr(fltr))
8883 continue;
8884
8885 rule.rid = fltr->rid;
8886 rule.rule_id = fltr->rule_id;
8887 rule.vsi_handle = fltr->dest_vsi_handle;
8888 status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8889 if (status) {
8890 if (status == -ENOENT)
8891 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8892 rule.rule_id);
8893 else
8894 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8895 status);
8896 } else if (fltr->dest_vsi) {
8897 /* update advanced switch filter count */
8898 if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8899 u32 flags = fltr->flags;
8900
8901 fltr->dest_vsi->num_chnl_fltr--;
8902 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8903 ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8904 pf->num_dmac_chnl_fltrs--;
8905 }
8906 }
8907
8908 hlist_del(&fltr->tc_flower_node);
8909 kfree(fltr);
8910 }
8911 }
8912
8913 /**
8914 * ice_remove_q_channels - Remove queue channels for the TCs
8915 * @vsi: VSI to be configured
8916 * @rem_fltr: delete advanced switch filter or not
8917 *
8918 * Remove queue channels for the TCs
8919 */
ice_remove_q_channels(struct ice_vsi * vsi,bool rem_fltr)8920 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8921 {
8922 struct ice_channel *ch, *ch_tmp;
8923 struct ice_pf *pf = vsi->back;
8924 int i;
8925
8926 /* remove all tc-flower based filter if they are channel filters only */
8927 if (rem_fltr)
8928 ice_rem_all_chnl_fltrs(pf);
8929
8930 /* remove ntuple filters since queue configuration is being changed */
8931 if (vsi->netdev->features & NETIF_F_NTUPLE) {
8932 struct ice_hw *hw = &pf->hw;
8933
8934 mutex_lock(&hw->fdir_fltr_lock);
8935 ice_fdir_del_all_fltrs(vsi);
8936 mutex_unlock(&hw->fdir_fltr_lock);
8937 }
8938
8939 /* perform cleanup for channels if they exist */
8940 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8941 struct ice_vsi *ch_vsi;
8942
8943 list_del(&ch->list);
8944 ch_vsi = ch->ch_vsi;
8945 if (!ch_vsi) {
8946 kfree(ch);
8947 continue;
8948 }
8949
8950 /* Reset queue contexts */
8951 for (i = 0; i < ch->num_rxq; i++) {
8952 struct ice_tx_ring *tx_ring;
8953 struct ice_rx_ring *rx_ring;
8954
8955 tx_ring = vsi->tx_rings[ch->base_q + i];
8956 rx_ring = vsi->rx_rings[ch->base_q + i];
8957 if (tx_ring) {
8958 tx_ring->ch = NULL;
8959 if (tx_ring->q_vector)
8960 tx_ring->q_vector->ch = NULL;
8961 }
8962 if (rx_ring) {
8963 rx_ring->ch = NULL;
8964 if (rx_ring->q_vector)
8965 rx_ring->q_vector->ch = NULL;
8966 }
8967 }
8968
8969 /* Release FD resources for the channel VSI */
8970 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8971
8972 /* clear the VSI from scheduler tree */
8973 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8974
8975 /* Delete VSI from FW, PF and HW VSI arrays */
8976 ice_vsi_delete(ch->ch_vsi);
8977
8978 /* free the channel */
8979 kfree(ch);
8980 }
8981
8982 /* clear the channel VSI map which is stored in main VSI */
8983 ice_for_each_chnl_tc(i)
8984 vsi->tc_map_vsi[i] = NULL;
8985
8986 /* reset main VSI's all TC information */
8987 vsi->all_enatc = 0;
8988 vsi->all_numtc = 0;
8989 }
8990
8991 /**
8992 * ice_rebuild_channels - rebuild channel
8993 * @pf: ptr to PF
8994 *
8995 * Recreate channel VSIs and replay filters
8996 */
ice_rebuild_channels(struct ice_pf * pf)8997 static int ice_rebuild_channels(struct ice_pf *pf)
8998 {
8999 struct device *dev = ice_pf_to_dev(pf);
9000 struct ice_vsi *main_vsi;
9001 bool rem_adv_fltr = true;
9002 struct ice_channel *ch;
9003 struct ice_vsi *vsi;
9004 int tc_idx = 1;
9005 int i, err;
9006
9007 main_vsi = ice_get_main_vsi(pf);
9008 if (!main_vsi)
9009 return 0;
9010
9011 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
9012 main_vsi->old_numtc == 1)
9013 return 0; /* nothing to be done */
9014
9015 /* reconfigure main VSI based on old value of TC and cached values
9016 * for MQPRIO opts
9017 */
9018 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
9019 if (err) {
9020 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
9021 main_vsi->old_ena_tc, main_vsi->vsi_num);
9022 return err;
9023 }
9024
9025 /* rebuild ADQ VSIs */
9026 ice_for_each_vsi(pf, i) {
9027 enum ice_vsi_type type;
9028
9029 vsi = pf->vsi[i];
9030 if (!vsi || vsi->type != ICE_VSI_CHNL)
9031 continue;
9032
9033 type = vsi->type;
9034
9035 /* rebuild ADQ VSI */
9036 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
9037 if (err) {
9038 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
9039 ice_vsi_type_str(type), vsi->idx, err);
9040 goto cleanup;
9041 }
9042
9043 /* Re-map HW VSI number, using VSI handle that has been
9044 * previously validated in ice_replay_vsi() call above
9045 */
9046 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
9047
9048 /* replay filters for the VSI */
9049 err = ice_replay_vsi(&pf->hw, vsi->idx);
9050 if (err) {
9051 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
9052 ice_vsi_type_str(type), err, vsi->idx);
9053 rem_adv_fltr = false;
9054 goto cleanup;
9055 }
9056 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
9057 ice_vsi_type_str(type), vsi->idx);
9058
9059 /* store ADQ VSI at correct TC index in main VSI's
9060 * map of TC to VSI
9061 */
9062 main_vsi->tc_map_vsi[tc_idx++] = vsi;
9063 }
9064
9065 /* ADQ VSI(s) has been rebuilt successfully, so setup
9066 * channel for main VSI's Tx and Rx rings
9067 */
9068 list_for_each_entry(ch, &main_vsi->ch_list, list) {
9069 struct ice_vsi *ch_vsi;
9070
9071 ch_vsi = ch->ch_vsi;
9072 if (!ch_vsi)
9073 continue;
9074
9075 /* reconfig channel resources */
9076 ice_cfg_chnl_all_res(main_vsi, ch);
9077
9078 /* replay BW rate limit if it is non-zero */
9079 if (!ch->max_tx_rate && !ch->min_tx_rate)
9080 continue;
9081
9082 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
9083 ch->min_tx_rate);
9084 if (err)
9085 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9086 err, ch->max_tx_rate, ch->min_tx_rate,
9087 ch_vsi->vsi_num);
9088 else
9089 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9090 ch->max_tx_rate, ch->min_tx_rate,
9091 ch_vsi->vsi_num);
9092 }
9093
9094 /* reconfig RSS for main VSI */
9095 if (main_vsi->ch_rss_size)
9096 ice_vsi_cfg_rss_lut_key(main_vsi);
9097
9098 return 0;
9099
9100 cleanup:
9101 ice_remove_q_channels(main_vsi, rem_adv_fltr);
9102 return err;
9103 }
9104
9105 /**
9106 * ice_create_q_channels - Add queue channel for the given TCs
9107 * @vsi: VSI to be configured
9108 *
9109 * Configures queue channel mapping to the given TCs
9110 */
ice_create_q_channels(struct ice_vsi * vsi)9111 static int ice_create_q_channels(struct ice_vsi *vsi)
9112 {
9113 struct ice_pf *pf = vsi->back;
9114 struct ice_channel *ch;
9115 int ret = 0, i;
9116
9117 ice_for_each_chnl_tc(i) {
9118 if (!(vsi->all_enatc & BIT(i)))
9119 continue;
9120
9121 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
9122 if (!ch) {
9123 ret = -ENOMEM;
9124 goto err_free;
9125 }
9126 INIT_LIST_HEAD(&ch->list);
9127 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
9128 ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
9129 ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
9130 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
9131 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
9132
9133 /* convert to Kbits/s */
9134 if (ch->max_tx_rate)
9135 ch->max_tx_rate = div_u64(ch->max_tx_rate,
9136 ICE_BW_KBPS_DIVISOR);
9137 if (ch->min_tx_rate)
9138 ch->min_tx_rate = div_u64(ch->min_tx_rate,
9139 ICE_BW_KBPS_DIVISOR);
9140
9141 ret = ice_create_q_channel(vsi, ch);
9142 if (ret) {
9143 dev_err(ice_pf_to_dev(pf),
9144 "failed creating channel TC:%d\n", i);
9145 kfree(ch);
9146 goto err_free;
9147 }
9148 list_add_tail(&ch->list, &vsi->ch_list);
9149 vsi->tc_map_vsi[i] = ch->ch_vsi;
9150 dev_dbg(ice_pf_to_dev(pf),
9151 "successfully created channel: VSI %pK\n", ch->ch_vsi);
9152 }
9153 return 0;
9154
9155 err_free:
9156 ice_remove_q_channels(vsi, false);
9157
9158 return ret;
9159 }
9160
9161 /**
9162 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
9163 * @netdev: net device to configure
9164 * @type_data: TC offload data
9165 */
ice_setup_tc_mqprio_qdisc(struct net_device * netdev,void * type_data)9166 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
9167 {
9168 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
9169 struct ice_netdev_priv *np = netdev_priv(netdev);
9170 struct ice_vsi *vsi = np->vsi;
9171 struct ice_pf *pf = vsi->back;
9172 u16 mode, ena_tc_qdisc = 0;
9173 int cur_txq, cur_rxq;
9174 u8 hw = 0, num_tcf;
9175 struct device *dev;
9176 int ret, i;
9177
9178 dev = ice_pf_to_dev(pf);
9179 num_tcf = mqprio_qopt->qopt.num_tc;
9180 hw = mqprio_qopt->qopt.hw;
9181 mode = mqprio_qopt->mode;
9182 if (!hw) {
9183 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9184 vsi->ch_rss_size = 0;
9185 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9186 goto config_tcf;
9187 }
9188
9189 /* Generate queue region map for number of TCF requested */
9190 for (i = 0; i < num_tcf; i++)
9191 ena_tc_qdisc |= BIT(i);
9192
9193 switch (mode) {
9194 case TC_MQPRIO_MODE_CHANNEL:
9195
9196 if (pf->hw.port_info->is_custom_tx_enabled) {
9197 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
9198 return -EBUSY;
9199 }
9200 ice_tear_down_devlink_rate_tree(pf);
9201
9202 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
9203 if (ret) {
9204 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
9205 ret);
9206 return ret;
9207 }
9208 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9209 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9210 /* don't assume state of hw_tc_offload during driver load
9211 * and set the flag for TC flower filter if hw_tc_offload
9212 * already ON
9213 */
9214 if (vsi->netdev->features & NETIF_F_HW_TC)
9215 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
9216 break;
9217 default:
9218 return -EINVAL;
9219 }
9220
9221 config_tcf:
9222
9223 /* Requesting same TCF configuration as already enabled */
9224 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
9225 mode != TC_MQPRIO_MODE_CHANNEL)
9226 return 0;
9227
9228 /* Pause VSI queues */
9229 ice_dis_vsi(vsi, true);
9230
9231 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
9232 ice_remove_q_channels(vsi, true);
9233
9234 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9235 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
9236 num_online_cpus());
9237 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
9238 num_online_cpus());
9239 } else {
9240 /* logic to rebuild VSI, same like ethtool -L */
9241 u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
9242
9243 for (i = 0; i < num_tcf; i++) {
9244 if (!(ena_tc_qdisc & BIT(i)))
9245 continue;
9246
9247 offset = vsi->mqprio_qopt.qopt.offset[i];
9248 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
9249 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
9250 }
9251 vsi->req_txq = offset + qcount_tx;
9252 vsi->req_rxq = offset + qcount_rx;
9253
9254 /* store away original rss_size info, so that it gets reused
9255 * form ice_vsi_rebuild during tc-qdisc delete stage - to
9256 * determine, what should be the rss_sizefor main VSI
9257 */
9258 vsi->orig_rss_size = vsi->rss_size;
9259 }
9260
9261 /* save current values of Tx and Rx queues before calling VSI rebuild
9262 * for fallback option
9263 */
9264 cur_txq = vsi->num_txq;
9265 cur_rxq = vsi->num_rxq;
9266
9267 /* proceed with rebuild main VSI using correct number of queues */
9268 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
9269 if (ret) {
9270 /* fallback to current number of queues */
9271 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
9272 vsi->req_txq = cur_txq;
9273 vsi->req_rxq = cur_rxq;
9274 clear_bit(ICE_RESET_FAILED, pf->state);
9275 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
9276 dev_err(dev, "Rebuild of main VSI failed again\n");
9277 return ret;
9278 }
9279 }
9280
9281 vsi->all_numtc = num_tcf;
9282 vsi->all_enatc = ena_tc_qdisc;
9283 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
9284 if (ret) {
9285 netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
9286 vsi->vsi_num);
9287 goto exit;
9288 }
9289
9290 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9291 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
9292 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
9293
9294 /* set TC0 rate limit if specified */
9295 if (max_tx_rate || min_tx_rate) {
9296 /* convert to Kbits/s */
9297 if (max_tx_rate)
9298 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
9299 if (min_tx_rate)
9300 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
9301
9302 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
9303 if (!ret) {
9304 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
9305 max_tx_rate, min_tx_rate, vsi->vsi_num);
9306 } else {
9307 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
9308 max_tx_rate, min_tx_rate, vsi->vsi_num);
9309 goto exit;
9310 }
9311 }
9312 ret = ice_create_q_channels(vsi);
9313 if (ret) {
9314 netdev_err(netdev, "failed configuring queue channels\n");
9315 goto exit;
9316 } else {
9317 netdev_dbg(netdev, "successfully configured channels\n");
9318 }
9319 }
9320
9321 if (vsi->ch_rss_size)
9322 ice_vsi_cfg_rss_lut_key(vsi);
9323
9324 exit:
9325 /* if error, reset the all_numtc and all_enatc */
9326 if (ret) {
9327 vsi->all_numtc = 0;
9328 vsi->all_enatc = 0;
9329 }
9330 /* resume VSI */
9331 ice_ena_vsi(vsi, true);
9332
9333 return ret;
9334 }
9335
9336 static LIST_HEAD(ice_block_cb_list);
9337
9338 static int
ice_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)9339 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
9340 void *type_data)
9341 {
9342 struct ice_netdev_priv *np = netdev_priv(netdev);
9343 struct ice_pf *pf = np->vsi->back;
9344 bool locked = false;
9345 int err;
9346
9347 switch (type) {
9348 case TC_SETUP_BLOCK:
9349 return flow_block_cb_setup_simple(type_data,
9350 &ice_block_cb_list,
9351 ice_setup_tc_block_cb,
9352 np, np, true);
9353 case TC_SETUP_QDISC_MQPRIO:
9354 if (ice_is_eswitch_mode_switchdev(pf)) {
9355 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
9356 return -EOPNOTSUPP;
9357 }
9358
9359 if (pf->adev) {
9360 mutex_lock(&pf->adev_mutex);
9361 device_lock(&pf->adev->dev);
9362 locked = true;
9363 if (pf->adev->dev.driver) {
9364 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
9365 err = -EBUSY;
9366 goto adev_unlock;
9367 }
9368 }
9369
9370 /* setup traffic classifier for receive side */
9371 mutex_lock(&pf->tc_mutex);
9372 err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
9373 mutex_unlock(&pf->tc_mutex);
9374
9375 adev_unlock:
9376 if (locked) {
9377 device_unlock(&pf->adev->dev);
9378 mutex_unlock(&pf->adev_mutex);
9379 }
9380 return err;
9381 default:
9382 return -EOPNOTSUPP;
9383 }
9384 return -EOPNOTSUPP;
9385 }
9386
9387 static struct ice_indr_block_priv *
ice_indr_block_priv_lookup(struct ice_netdev_priv * np,struct net_device * netdev)9388 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
9389 struct net_device *netdev)
9390 {
9391 struct ice_indr_block_priv *cb_priv;
9392
9393 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
9394 if (!cb_priv->netdev)
9395 return NULL;
9396 if (cb_priv->netdev == netdev)
9397 return cb_priv;
9398 }
9399 return NULL;
9400 }
9401
9402 static int
ice_indr_setup_block_cb(enum tc_setup_type type,void * type_data,void * indr_priv)9403 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
9404 void *indr_priv)
9405 {
9406 struct ice_indr_block_priv *priv = indr_priv;
9407 struct ice_netdev_priv *np = priv->np;
9408
9409 switch (type) {
9410 case TC_SETUP_CLSFLOWER:
9411 return ice_setup_tc_cls_flower(np, priv->netdev,
9412 (struct flow_cls_offload *)
9413 type_data);
9414 default:
9415 return -EOPNOTSUPP;
9416 }
9417 }
9418
9419 static int
ice_indr_setup_tc_block(struct net_device * netdev,struct Qdisc * sch,struct ice_netdev_priv * np,struct flow_block_offload * f,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9420 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
9421 struct ice_netdev_priv *np,
9422 struct flow_block_offload *f, void *data,
9423 void (*cleanup)(struct flow_block_cb *block_cb))
9424 {
9425 struct ice_indr_block_priv *indr_priv;
9426 struct flow_block_cb *block_cb;
9427
9428 if (!ice_is_tunnel_supported(netdev) &&
9429 !(is_vlan_dev(netdev) &&
9430 vlan_dev_real_dev(netdev) == np->vsi->netdev))
9431 return -EOPNOTSUPP;
9432
9433 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9434 return -EOPNOTSUPP;
9435
9436 switch (f->command) {
9437 case FLOW_BLOCK_BIND:
9438 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9439 if (indr_priv)
9440 return -EEXIST;
9441
9442 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9443 if (!indr_priv)
9444 return -ENOMEM;
9445
9446 indr_priv->netdev = netdev;
9447 indr_priv->np = np;
9448 list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9449
9450 block_cb =
9451 flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9452 indr_priv, indr_priv,
9453 ice_rep_indr_tc_block_unbind,
9454 f, netdev, sch, data, np,
9455 cleanup);
9456
9457 if (IS_ERR(block_cb)) {
9458 list_del(&indr_priv->list);
9459 kfree(indr_priv);
9460 return PTR_ERR(block_cb);
9461 }
9462 flow_block_cb_add(block_cb, f);
9463 list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9464 break;
9465 case FLOW_BLOCK_UNBIND:
9466 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9467 if (!indr_priv)
9468 return -ENOENT;
9469
9470 block_cb = flow_block_cb_lookup(f->block,
9471 ice_indr_setup_block_cb,
9472 indr_priv);
9473 if (!block_cb)
9474 return -ENOENT;
9475
9476 flow_indr_block_cb_remove(block_cb, f);
9477
9478 list_del(&block_cb->driver_list);
9479 break;
9480 default:
9481 return -EOPNOTSUPP;
9482 }
9483 return 0;
9484 }
9485
9486 static int
ice_indr_setup_tc_cb(struct net_device * netdev,struct Qdisc * sch,void * cb_priv,enum tc_setup_type type,void * type_data,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9487 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9488 void *cb_priv, enum tc_setup_type type, void *type_data,
9489 void *data,
9490 void (*cleanup)(struct flow_block_cb *block_cb))
9491 {
9492 switch (type) {
9493 case TC_SETUP_BLOCK:
9494 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9495 data, cleanup);
9496
9497 default:
9498 return -EOPNOTSUPP;
9499 }
9500 }
9501
9502 /**
9503 * ice_open - Called when a network interface becomes active
9504 * @netdev: network interface device structure
9505 *
9506 * The open entry point is called when a network interface is made
9507 * active by the system (IFF_UP). At this point all resources needed
9508 * for transmit and receive operations are allocated, the interrupt
9509 * handler is registered with the OS, the netdev watchdog is enabled,
9510 * and the stack is notified that the interface is ready.
9511 *
9512 * Returns 0 on success, negative value on failure
9513 */
ice_open(struct net_device * netdev)9514 int ice_open(struct net_device *netdev)
9515 {
9516 struct ice_netdev_priv *np = netdev_priv(netdev);
9517 struct ice_pf *pf = np->vsi->back;
9518
9519 if (ice_is_reset_in_progress(pf->state)) {
9520 netdev_err(netdev, "can't open net device while reset is in progress");
9521 return -EBUSY;
9522 }
9523
9524 return ice_open_internal(netdev);
9525 }
9526
9527 /**
9528 * ice_open_internal - Called when a network interface becomes active
9529 * @netdev: network interface device structure
9530 *
9531 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9532 * handling routine
9533 *
9534 * Returns 0 on success, negative value on failure
9535 */
ice_open_internal(struct net_device * netdev)9536 int ice_open_internal(struct net_device *netdev)
9537 {
9538 struct ice_netdev_priv *np = netdev_priv(netdev);
9539 struct ice_vsi *vsi = np->vsi;
9540 struct ice_pf *pf = vsi->back;
9541 struct ice_port_info *pi;
9542 int err;
9543
9544 if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9545 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9546 return -EIO;
9547 }
9548
9549 netif_carrier_off(netdev);
9550
9551 pi = vsi->port_info;
9552 err = ice_update_link_info(pi);
9553 if (err) {
9554 netdev_err(netdev, "Failed to get link info, error %d\n", err);
9555 return err;
9556 }
9557
9558 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9559
9560 /* Set PHY if there is media, otherwise, turn off PHY */
9561 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9562 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9563 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9564 err = ice_init_phy_user_cfg(pi);
9565 if (err) {
9566 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9567 err);
9568 return err;
9569 }
9570 }
9571
9572 err = ice_configure_phy(vsi);
9573 if (err) {
9574 netdev_err(netdev, "Failed to set physical link up, error %d\n",
9575 err);
9576 return err;
9577 }
9578 } else {
9579 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9580 ice_set_link(vsi, false);
9581 }
9582
9583 err = ice_vsi_open(vsi);
9584 if (err)
9585 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9586 vsi->vsi_num, vsi->vsw->sw_id);
9587
9588 /* Update existing tunnels information */
9589 udp_tunnel_get_rx_info(netdev);
9590
9591 return err;
9592 }
9593
9594 /**
9595 * ice_stop - Disables a network interface
9596 * @netdev: network interface device structure
9597 *
9598 * The stop entry point is called when an interface is de-activated by the OS,
9599 * and the netdevice enters the DOWN state. The hardware is still under the
9600 * driver's control, but the netdev interface is disabled.
9601 *
9602 * Returns success only - not allowed to fail
9603 */
ice_stop(struct net_device * netdev)9604 int ice_stop(struct net_device *netdev)
9605 {
9606 struct ice_netdev_priv *np = netdev_priv(netdev);
9607 struct ice_vsi *vsi = np->vsi;
9608 struct ice_pf *pf = vsi->back;
9609
9610 if (ice_is_reset_in_progress(pf->state)) {
9611 netdev_err(netdev, "can't stop net device while reset is in progress");
9612 return -EBUSY;
9613 }
9614
9615 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9616 int link_err = ice_force_phys_link_state(vsi, false);
9617
9618 if (link_err) {
9619 if (link_err == -ENOMEDIUM)
9620 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n",
9621 vsi->vsi_num);
9622 else
9623 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9624 vsi->vsi_num, link_err);
9625
9626 ice_vsi_close(vsi);
9627 return -EIO;
9628 }
9629 }
9630
9631 ice_vsi_close(vsi);
9632
9633 return 0;
9634 }
9635
9636 /**
9637 * ice_features_check - Validate encapsulated packet conforms to limits
9638 * @skb: skb buffer
9639 * @netdev: This port's netdev
9640 * @features: Offload features that the stack believes apply
9641 */
9642 static netdev_features_t
ice_features_check(struct sk_buff * skb,struct net_device __always_unused * netdev,netdev_features_t features)9643 ice_features_check(struct sk_buff *skb,
9644 struct net_device __always_unused *netdev,
9645 netdev_features_t features)
9646 {
9647 bool gso = skb_is_gso(skb);
9648 size_t len;
9649
9650 /* No point in doing any of this if neither checksum nor GSO are
9651 * being requested for this frame. We can rule out both by just
9652 * checking for CHECKSUM_PARTIAL
9653 */
9654 if (skb->ip_summed != CHECKSUM_PARTIAL)
9655 return features;
9656
9657 /* We cannot support GSO if the MSS is going to be less than
9658 * 64 bytes. If it is then we need to drop support for GSO.
9659 */
9660 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9661 features &= ~NETIF_F_GSO_MASK;
9662
9663 len = skb_network_offset(skb);
9664 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9665 goto out_rm_features;
9666
9667 len = skb_network_header_len(skb);
9668 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9669 goto out_rm_features;
9670
9671 if (skb->encapsulation) {
9672 /* this must work for VXLAN frames AND IPIP/SIT frames, and in
9673 * the case of IPIP frames, the transport header pointer is
9674 * after the inner header! So check to make sure that this
9675 * is a GRE or UDP_TUNNEL frame before doing that math.
9676 */
9677 if (gso && (skb_shinfo(skb)->gso_type &
9678 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9679 len = skb_inner_network_header(skb) -
9680 skb_transport_header(skb);
9681 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9682 goto out_rm_features;
9683 }
9684
9685 len = skb_inner_network_header_len(skb);
9686 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9687 goto out_rm_features;
9688 }
9689
9690 return features;
9691 out_rm_features:
9692 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9693 }
9694
9695 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9696 .ndo_open = ice_open,
9697 .ndo_stop = ice_stop,
9698 .ndo_start_xmit = ice_start_xmit,
9699 .ndo_set_mac_address = ice_set_mac_address,
9700 .ndo_validate_addr = eth_validate_addr,
9701 .ndo_change_mtu = ice_change_mtu,
9702 .ndo_get_stats64 = ice_get_stats64,
9703 .ndo_tx_timeout = ice_tx_timeout,
9704 .ndo_bpf = ice_xdp_safe_mode,
9705 };
9706
9707 static const struct net_device_ops ice_netdev_ops = {
9708 .ndo_open = ice_open,
9709 .ndo_stop = ice_stop,
9710 .ndo_start_xmit = ice_start_xmit,
9711 .ndo_select_queue = ice_select_queue,
9712 .ndo_features_check = ice_features_check,
9713 .ndo_fix_features = ice_fix_features,
9714 .ndo_set_rx_mode = ice_set_rx_mode,
9715 .ndo_set_mac_address = ice_set_mac_address,
9716 .ndo_validate_addr = eth_validate_addr,
9717 .ndo_change_mtu = ice_change_mtu,
9718 .ndo_get_stats64 = ice_get_stats64,
9719 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
9720 .ndo_eth_ioctl = ice_eth_ioctl,
9721 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9722 .ndo_set_vf_mac = ice_set_vf_mac,
9723 .ndo_get_vf_config = ice_get_vf_cfg,
9724 .ndo_set_vf_trust = ice_set_vf_trust,
9725 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
9726 .ndo_set_vf_link_state = ice_set_vf_link_state,
9727 .ndo_get_vf_stats = ice_get_vf_stats,
9728 .ndo_set_vf_rate = ice_set_vf_bw,
9729 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9730 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9731 .ndo_setup_tc = ice_setup_tc,
9732 .ndo_set_features = ice_set_features,
9733 .ndo_bridge_getlink = ice_bridge_getlink,
9734 .ndo_bridge_setlink = ice_bridge_setlink,
9735 .ndo_fdb_add = ice_fdb_add,
9736 .ndo_fdb_del = ice_fdb_del,
9737 #ifdef CONFIG_RFS_ACCEL
9738 .ndo_rx_flow_steer = ice_rx_flow_steer,
9739 #endif
9740 .ndo_tx_timeout = ice_tx_timeout,
9741 .ndo_bpf = ice_xdp,
9742 .ndo_xdp_xmit = ice_xdp_xmit,
9743 .ndo_xsk_wakeup = ice_xsk_wakeup,
9744 };
9745