1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
4 *
5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
6 */
7
8 #include <linux/module.h>
9 #include <linux/delay.h>
10 #include <linux/mmc/mmc.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/pm_opp.h>
13 #include <linux/slab.h>
14 #include <linux/iopoll.h>
15 #include <linux/regulator/consumer.h>
16 #include <linux/interconnect.h>
17 #include <linux/of.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/reset.h>
20
21 #include <soc/qcom/ice.h>
22
23 #include "sdhci-cqhci.h"
24 #include "sdhci-pltfm.h"
25 #include "cqhci.h"
26
27 #define CORE_MCI_VERSION 0x50
28 #define CORE_VERSION_MAJOR_SHIFT 28
29 #define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT)
30 #define CORE_VERSION_MINOR_MASK 0xff
31
32 #define CORE_MCI_GENERICS 0x70
33 #define SWITCHABLE_SIGNALING_VOLTAGE BIT(29)
34
35 #define HC_MODE_EN 0x1
36 #define CORE_POWER 0x0
37 #define CORE_SW_RST BIT(7)
38 #define FF_CLK_SW_RST_DIS BIT(13)
39
40 #define CORE_PWRCTL_BUS_OFF BIT(0)
41 #define CORE_PWRCTL_BUS_ON BIT(1)
42 #define CORE_PWRCTL_IO_LOW BIT(2)
43 #define CORE_PWRCTL_IO_HIGH BIT(3)
44 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
45 #define CORE_PWRCTL_BUS_FAIL BIT(1)
46 #define CORE_PWRCTL_IO_SUCCESS BIT(2)
47 #define CORE_PWRCTL_IO_FAIL BIT(3)
48 #define REQ_BUS_OFF BIT(0)
49 #define REQ_BUS_ON BIT(1)
50 #define REQ_IO_LOW BIT(2)
51 #define REQ_IO_HIGH BIT(3)
52 #define INT_MASK 0xf
53 #define MAX_PHASES 16
54 #define CORE_DLL_LOCK BIT(7)
55 #define CORE_DDR_DLL_LOCK BIT(11)
56 #define CORE_DLL_EN BIT(16)
57 #define CORE_CDR_EN BIT(17)
58 #define CORE_CK_OUT_EN BIT(18)
59 #define CORE_CDR_EXT_EN BIT(19)
60 #define CORE_DLL_PDN BIT(29)
61 #define CORE_DLL_RST BIT(30)
62 #define CORE_CMD_DAT_TRACK_SEL BIT(0)
63
64 #define CORE_DDR_CAL_EN BIT(0)
65 #define CORE_FLL_CYCLE_CNT BIT(18)
66 #define CORE_DLL_CLOCK_DISABLE BIT(21)
67
68 #define DLL_USR_CTL_POR_VAL 0x10800
69 #define ENABLE_DLL_LOCK_STATUS BIT(26)
70 #define FINE_TUNE_MODE_EN BIT(27)
71 #define BIAS_OK_SIGNAL BIT(29)
72
73 #define DLL_CONFIG_3_LOW_FREQ_VAL 0x08
74 #define DLL_CONFIG_3_HIGH_FREQ_VAL 0x10
75
76 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c
77 #define CORE_CLK_PWRSAVE BIT(1)
78 #define CORE_HC_MCLK_SEL_DFLT (2 << 8)
79 #define CORE_HC_MCLK_SEL_HS400 (3 << 8)
80 #define CORE_HC_MCLK_SEL_MASK (3 << 8)
81 #define CORE_IO_PAD_PWR_SWITCH_EN BIT(15)
82 #define CORE_IO_PAD_PWR_SWITCH BIT(16)
83 #define CORE_HC_SELECT_IN_EN BIT(18)
84 #define CORE_HC_SELECT_IN_HS400 (6 << 19)
85 #define CORE_HC_SELECT_IN_MASK (7 << 19)
86
87 #define CORE_3_0V_SUPPORT BIT(25)
88 #define CORE_1_8V_SUPPORT BIT(26)
89 #define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
90
91 #define CORE_CSR_CDC_CTLR_CFG0 0x130
92 #define CORE_SW_TRIG_FULL_CALIB BIT(16)
93 #define CORE_HW_AUTOCAL_ENA BIT(17)
94
95 #define CORE_CSR_CDC_CTLR_CFG1 0x134
96 #define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138
97 #define CORE_TIMER_ENA BIT(16)
98
99 #define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C
100 #define CORE_CSR_CDC_REFCOUNT_CFG 0x140
101 #define CORE_CSR_CDC_COARSE_CAL_CFG 0x144
102 #define CORE_CDC_OFFSET_CFG 0x14C
103 #define CORE_CSR_CDC_DELAY_CFG 0x150
104 #define CORE_CDC_SLAVE_DDA_CFG 0x160
105 #define CORE_CSR_CDC_STATUS0 0x164
106 #define CORE_CALIBRATION_DONE BIT(0)
107
108 #define CORE_CDC_ERROR_CODE_MASK 0x7000000
109
110 #define CORE_CSR_CDC_GEN_CFG 0x178
111 #define CORE_CDC_SWITCH_BYPASS_OFF BIT(0)
112 #define CORE_CDC_SWITCH_RC_EN BIT(1)
113
114 #define CORE_CDC_T4_DLY_SEL BIT(0)
115 #define CORE_CMDIN_RCLK_EN BIT(1)
116 #define CORE_START_CDC_TRAFFIC BIT(6)
117
118 #define CORE_PWRSAVE_DLL BIT(3)
119
120 #define DDR_CONFIG_POR_VAL 0x80040873
121
122
123 #define INVALID_TUNING_PHASE -1
124 #define SDHCI_MSM_MIN_CLOCK 400000
125 #define CORE_FREQ_100MHZ (100 * 1000 * 1000)
126
127 #define CDR_SELEXT_SHIFT 20
128 #define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT)
129 #define CMUX_SHIFT_PHASE_SHIFT 24
130 #define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT)
131
132 #define MSM_MMC_AUTOSUSPEND_DELAY_MS 50
133
134 /* Timeout value to avoid infinite waiting for pwr_irq */
135 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
136
137 /* Max load for eMMC Vdd supply */
138 #define MMC_VMMC_MAX_LOAD_UA 570000
139
140 /* Max load for eMMC Vdd-io supply */
141 #define MMC_VQMMC_MAX_LOAD_UA 325000
142
143 /* Max load for SD Vdd supply */
144 #define SD_VMMC_MAX_LOAD_UA 800000
145
146 /* Max load for SD Vdd-io supply */
147 #define SD_VQMMC_MAX_LOAD_UA 22000
148
149 #define msm_host_readl(msm_host, host, offset) \
150 msm_host->var_ops->msm_readl_relaxed(host, offset)
151
152 #define msm_host_writel(msm_host, val, host, offset) \
153 msm_host->var_ops->msm_writel_relaxed(val, host, offset)
154
155 /* CQHCI vendor specific registers */
156 #define CQHCI_VENDOR_CFG1 0xA00
157 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN (0x3 << 13)
158
159 struct sdhci_msm_offset {
160 u32 core_hc_mode;
161 u32 core_mci_data_cnt;
162 u32 core_mci_status;
163 u32 core_mci_fifo_cnt;
164 u32 core_mci_version;
165 u32 core_generics;
166 u32 core_testbus_config;
167 u32 core_testbus_sel2_bit;
168 u32 core_testbus_ena;
169 u32 core_testbus_sel2;
170 u32 core_pwrctl_status;
171 u32 core_pwrctl_mask;
172 u32 core_pwrctl_clear;
173 u32 core_pwrctl_ctl;
174 u32 core_sdcc_debug_reg;
175 u32 core_dll_config;
176 u32 core_dll_status;
177 u32 core_vendor_spec;
178 u32 core_vendor_spec_adma_err_addr0;
179 u32 core_vendor_spec_adma_err_addr1;
180 u32 core_vendor_spec_func2;
181 u32 core_vendor_spec_capabilities0;
182 u32 core_ddr_200_cfg;
183 u32 core_vendor_spec3;
184 u32 core_dll_config_2;
185 u32 core_dll_config_3;
186 u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
187 u32 core_ddr_config;
188 u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
189 };
190
191 static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
192 .core_mci_data_cnt = 0x35c,
193 .core_mci_status = 0x324,
194 .core_mci_fifo_cnt = 0x308,
195 .core_mci_version = 0x318,
196 .core_generics = 0x320,
197 .core_testbus_config = 0x32c,
198 .core_testbus_sel2_bit = 3,
199 .core_testbus_ena = (1 << 31),
200 .core_testbus_sel2 = (1 << 3),
201 .core_pwrctl_status = 0x240,
202 .core_pwrctl_mask = 0x244,
203 .core_pwrctl_clear = 0x248,
204 .core_pwrctl_ctl = 0x24c,
205 .core_sdcc_debug_reg = 0x358,
206 .core_dll_config = 0x200,
207 .core_dll_status = 0x208,
208 .core_vendor_spec = 0x20c,
209 .core_vendor_spec_adma_err_addr0 = 0x214,
210 .core_vendor_spec_adma_err_addr1 = 0x218,
211 .core_vendor_spec_func2 = 0x210,
212 .core_vendor_spec_capabilities0 = 0x21c,
213 .core_ddr_200_cfg = 0x224,
214 .core_vendor_spec3 = 0x250,
215 .core_dll_config_2 = 0x254,
216 .core_dll_config_3 = 0x258,
217 .core_ddr_config = 0x25c,
218 .core_dll_usr_ctl = 0x388,
219 };
220
221 static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
222 .core_hc_mode = 0x78,
223 .core_mci_data_cnt = 0x30,
224 .core_mci_status = 0x34,
225 .core_mci_fifo_cnt = 0x44,
226 .core_mci_version = 0x050,
227 .core_generics = 0x70,
228 .core_testbus_config = 0x0cc,
229 .core_testbus_sel2_bit = 4,
230 .core_testbus_ena = (1 << 3),
231 .core_testbus_sel2 = (1 << 4),
232 .core_pwrctl_status = 0xdc,
233 .core_pwrctl_mask = 0xe0,
234 .core_pwrctl_clear = 0xe4,
235 .core_pwrctl_ctl = 0xe8,
236 .core_sdcc_debug_reg = 0x124,
237 .core_dll_config = 0x100,
238 .core_dll_status = 0x108,
239 .core_vendor_spec = 0x10c,
240 .core_vendor_spec_adma_err_addr0 = 0x114,
241 .core_vendor_spec_adma_err_addr1 = 0x118,
242 .core_vendor_spec_func2 = 0x110,
243 .core_vendor_spec_capabilities0 = 0x11c,
244 .core_ddr_200_cfg = 0x184,
245 .core_vendor_spec3 = 0x1b0,
246 .core_dll_config_2 = 0x1b4,
247 .core_ddr_config_old = 0x1b8,
248 .core_ddr_config = 0x1bc,
249 };
250
251 struct sdhci_msm_variant_ops {
252 u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
253 void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
254 u32 offset);
255 };
256
257 /*
258 * From V5, register spaces have changed. Wrap this info in a structure
259 * and choose the data_structure based on version info mentioned in DT.
260 */
261 struct sdhci_msm_variant_info {
262 bool mci_removed;
263 bool restore_dll_config;
264 const struct sdhci_msm_variant_ops *var_ops;
265 const struct sdhci_msm_offset *offset;
266 };
267
268 struct sdhci_msm_host {
269 struct platform_device *pdev;
270 void __iomem *core_mem; /* MSM SDCC mapped address */
271 int pwr_irq; /* power irq */
272 struct clk *bus_clk; /* SDHC bus voter clock */
273 struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/
274 /* core, iface, cal and sleep clocks */
275 struct clk_bulk_data bulk_clks[4];
276 #ifdef CONFIG_MMC_CRYPTO
277 struct qcom_ice *ice;
278 #endif
279 unsigned long clk_rate;
280 struct mmc_host *mmc;
281 bool use_14lpp_dll_reset;
282 bool tuning_done;
283 bool calibration_done;
284 u8 saved_tuning_phase;
285 bool use_cdclp533;
286 u32 curr_pwr_state;
287 u32 curr_io_level;
288 wait_queue_head_t pwr_irq_wait;
289 bool pwr_irq_flag;
290 u32 caps_0;
291 bool mci_removed;
292 bool restore_dll_config;
293 const struct sdhci_msm_variant_ops *var_ops;
294 const struct sdhci_msm_offset *offset;
295 bool use_cdr;
296 u32 transfer_mode;
297 bool updated_ddr_cfg;
298 bool uses_tassadar_dll;
299 u32 dll_config;
300 u32 ddr_config;
301 bool vqmmc_enabled;
302 };
303
sdhci_priv_msm_offset(struct sdhci_host * host)304 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
305 {
306 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
307 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
308
309 return msm_host->offset;
310 }
311
312 /*
313 * APIs to read/write to vendor specific registers which were there in the
314 * core_mem region before MCI was removed.
315 */
sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host * host,u32 offset)316 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
317 u32 offset)
318 {
319 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
320 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
321
322 return readl_relaxed(msm_host->core_mem + offset);
323 }
324
sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host * host,u32 offset)325 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
326 u32 offset)
327 {
328 return readl_relaxed(host->ioaddr + offset);
329 }
330
sdhci_msm_mci_variant_writel_relaxed(u32 val,struct sdhci_host * host,u32 offset)331 static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
332 struct sdhci_host *host, u32 offset)
333 {
334 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
335 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
336
337 writel_relaxed(val, msm_host->core_mem + offset);
338 }
339
sdhci_msm_v5_variant_writel_relaxed(u32 val,struct sdhci_host * host,u32 offset)340 static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
341 struct sdhci_host *host, u32 offset)
342 {
343 writel_relaxed(val, host->ioaddr + offset);
344 }
345
msm_get_clock_mult_for_bus_mode(struct sdhci_host * host)346 static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
347 {
348 struct mmc_ios ios = host->mmc->ios;
349 /*
350 * The SDHC requires internal clock frequency to be double the
351 * actual clock that will be set for DDR mode. The controller
352 * uses the faster clock(100/400MHz) for some of its parts and
353 * send the actual required clock (50/200MHz) to the card.
354 */
355 if (ios.timing == MMC_TIMING_UHS_DDR50 ||
356 ios.timing == MMC_TIMING_MMC_DDR52 ||
357 ios.timing == MMC_TIMING_MMC_HS400 ||
358 host->flags & SDHCI_HS400_TUNING)
359 return 2;
360 return 1;
361 }
362
msm_set_clock_rate_for_bus_mode(struct sdhci_host * host,unsigned int clock)363 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
364 unsigned int clock)
365 {
366 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
367 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
368 struct mmc_ios curr_ios = host->mmc->ios;
369 struct clk *core_clk = msm_host->bulk_clks[0].clk;
370 unsigned long achieved_rate;
371 unsigned int desired_rate;
372 unsigned int mult;
373 int rc;
374
375 mult = msm_get_clock_mult_for_bus_mode(host);
376 desired_rate = clock * mult;
377 rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
378 if (rc) {
379 pr_err("%s: Failed to set clock at rate %u at timing %d\n",
380 mmc_hostname(host->mmc), desired_rate, curr_ios.timing);
381 return;
382 }
383
384 /*
385 * Qualcomm clock drivers by default round clock _up_ if they can't
386 * make the requested rate. This is not good for SD. Yell if we
387 * encounter it.
388 */
389 achieved_rate = clk_get_rate(core_clk);
390 if (achieved_rate > desired_rate)
391 pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
392 mmc_hostname(host->mmc), desired_rate, achieved_rate);
393 host->mmc->actual_clock = achieved_rate / mult;
394
395 /* Stash the rate we requested to use in sdhci_msm_runtime_resume() */
396 msm_host->clk_rate = desired_rate;
397
398 pr_debug("%s: Setting clock at rate %lu at timing %d\n",
399 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing);
400 }
401
402 /* Platform specific tuning */
msm_dll_poll_ck_out_en(struct sdhci_host * host,u8 poll)403 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
404 {
405 u32 wait_cnt = 50;
406 u8 ck_out_en;
407 struct mmc_host *mmc = host->mmc;
408 const struct sdhci_msm_offset *msm_offset =
409 sdhci_priv_msm_offset(host);
410
411 /* Poll for CK_OUT_EN bit. max. poll time = 50us */
412 ck_out_en = !!(readl_relaxed(host->ioaddr +
413 msm_offset->core_dll_config) & CORE_CK_OUT_EN);
414
415 while (ck_out_en != poll) {
416 if (--wait_cnt == 0) {
417 dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
418 mmc_hostname(mmc), poll);
419 return -ETIMEDOUT;
420 }
421 udelay(1);
422
423 ck_out_en = !!(readl_relaxed(host->ioaddr +
424 msm_offset->core_dll_config) & CORE_CK_OUT_EN);
425 }
426
427 return 0;
428 }
429
msm_config_cm_dll_phase(struct sdhci_host * host,u8 phase)430 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
431 {
432 int rc;
433 static const u8 grey_coded_phase_table[] = {
434 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
435 0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
436 };
437 unsigned long flags;
438 u32 config;
439 struct mmc_host *mmc = host->mmc;
440 const struct sdhci_msm_offset *msm_offset =
441 sdhci_priv_msm_offset(host);
442
443 if (phase > 0xf)
444 return -EINVAL;
445
446 spin_lock_irqsave(&host->lock, flags);
447
448 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
449 config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
450 config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
451 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
452
453 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
454 rc = msm_dll_poll_ck_out_en(host, 0);
455 if (rc)
456 goto err_out;
457
458 /*
459 * Write the selected DLL clock output phase (0 ... 15)
460 * to CDR_SELEXT bit field of DLL_CONFIG register.
461 */
462 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
463 config &= ~CDR_SELEXT_MASK;
464 config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
465 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
466
467 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
468 config |= CORE_CK_OUT_EN;
469 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
470
471 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
472 rc = msm_dll_poll_ck_out_en(host, 1);
473 if (rc)
474 goto err_out;
475
476 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
477 config |= CORE_CDR_EN;
478 config &= ~CORE_CDR_EXT_EN;
479 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
480 goto out;
481
482 err_out:
483 dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
484 mmc_hostname(mmc), phase);
485 out:
486 spin_unlock_irqrestore(&host->lock, flags);
487 return rc;
488 }
489
490 /*
491 * Find out the greatest range of consecuitive selected
492 * DLL clock output phases that can be used as sampling
493 * setting for SD3.0 UHS-I card read operation (in SDR104
494 * timing mode) or for eMMC4.5 card read operation (in
495 * HS400/HS200 timing mode).
496 * Select the 3/4 of the range and configure the DLL with the
497 * selected DLL clock output phase.
498 */
499
msm_find_most_appropriate_phase(struct sdhci_host * host,u8 * phase_table,u8 total_phases)500 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
501 u8 *phase_table, u8 total_phases)
502 {
503 int ret;
504 u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
505 u8 phases_per_row[MAX_PHASES] = { 0 };
506 int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
507 int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
508 bool phase_0_found = false, phase_15_found = false;
509 struct mmc_host *mmc = host->mmc;
510
511 if (!total_phases || (total_phases > MAX_PHASES)) {
512 dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
513 mmc_hostname(mmc), total_phases);
514 return -EINVAL;
515 }
516
517 for (cnt = 0; cnt < total_phases; cnt++) {
518 ranges[row_index][col_index] = phase_table[cnt];
519 phases_per_row[row_index] += 1;
520 col_index++;
521
522 if ((cnt + 1) == total_phases) {
523 continue;
524 /* check if next phase in phase_table is consecutive or not */
525 } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
526 row_index++;
527 col_index = 0;
528 }
529 }
530
531 if (row_index >= MAX_PHASES)
532 return -EINVAL;
533
534 /* Check if phase-0 is present in first valid window? */
535 if (!ranges[0][0]) {
536 phase_0_found = true;
537 phase_0_raw_index = 0;
538 /* Check if cycle exist between 2 valid windows */
539 for (cnt = 1; cnt <= row_index; cnt++) {
540 if (phases_per_row[cnt]) {
541 for (i = 0; i < phases_per_row[cnt]; i++) {
542 if (ranges[cnt][i] == 15) {
543 phase_15_found = true;
544 phase_15_raw_index = cnt;
545 break;
546 }
547 }
548 }
549 }
550 }
551
552 /* If 2 valid windows form cycle then merge them as single window */
553 if (phase_0_found && phase_15_found) {
554 /* number of phases in raw where phase 0 is present */
555 u8 phases_0 = phases_per_row[phase_0_raw_index];
556 /* number of phases in raw where phase 15 is present */
557 u8 phases_15 = phases_per_row[phase_15_raw_index];
558
559 if (phases_0 + phases_15 >= MAX_PHASES)
560 /*
561 * If there are more than 1 phase windows then total
562 * number of phases in both the windows should not be
563 * more than or equal to MAX_PHASES.
564 */
565 return -EINVAL;
566
567 /* Merge 2 cyclic windows */
568 i = phases_15;
569 for (cnt = 0; cnt < phases_0; cnt++) {
570 ranges[phase_15_raw_index][i] =
571 ranges[phase_0_raw_index][cnt];
572 if (++i >= MAX_PHASES)
573 break;
574 }
575
576 phases_per_row[phase_0_raw_index] = 0;
577 phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
578 }
579
580 for (cnt = 0; cnt <= row_index; cnt++) {
581 if (phases_per_row[cnt] > curr_max) {
582 curr_max = phases_per_row[cnt];
583 selected_row_index = cnt;
584 }
585 }
586
587 i = (curr_max * 3) / 4;
588 if (i)
589 i--;
590
591 ret = ranges[selected_row_index][i];
592
593 if (ret >= MAX_PHASES) {
594 ret = -EINVAL;
595 dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
596 mmc_hostname(mmc), ret);
597 }
598
599 return ret;
600 }
601
msm_cm_dll_set_freq(struct sdhci_host * host)602 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
603 {
604 u32 mclk_freq = 0, config;
605 const struct sdhci_msm_offset *msm_offset =
606 sdhci_priv_msm_offset(host);
607
608 /* Program the MCLK value to MCLK_FREQ bit field */
609 if (host->clock <= 112000000)
610 mclk_freq = 0;
611 else if (host->clock <= 125000000)
612 mclk_freq = 1;
613 else if (host->clock <= 137000000)
614 mclk_freq = 2;
615 else if (host->clock <= 150000000)
616 mclk_freq = 3;
617 else if (host->clock <= 162000000)
618 mclk_freq = 4;
619 else if (host->clock <= 175000000)
620 mclk_freq = 5;
621 else if (host->clock <= 187000000)
622 mclk_freq = 6;
623 else if (host->clock <= 200000000)
624 mclk_freq = 7;
625
626 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
627 config &= ~CMUX_SHIFT_PHASE_MASK;
628 config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
629 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
630 }
631
632 /* Initialize the DLL (Programmable Delay Line) */
msm_init_cm_dll(struct sdhci_host * host)633 static int msm_init_cm_dll(struct sdhci_host *host)
634 {
635 struct mmc_host *mmc = host->mmc;
636 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
637 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
638 int wait_cnt = 50;
639 unsigned long flags, xo_clk = 0;
640 u32 config;
641 const struct sdhci_msm_offset *msm_offset =
642 msm_host->offset;
643
644 if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
645 xo_clk = clk_get_rate(msm_host->xo_clk);
646
647 spin_lock_irqsave(&host->lock, flags);
648
649 /*
650 * Make sure that clock is always enabled when DLL
651 * tuning is in progress. Keeping PWRSAVE ON may
652 * turn off the clock.
653 */
654 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
655 config &= ~CORE_CLK_PWRSAVE;
656 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
657
658 if (msm_host->dll_config)
659 writel_relaxed(msm_host->dll_config,
660 host->ioaddr + msm_offset->core_dll_config);
661
662 if (msm_host->use_14lpp_dll_reset) {
663 config = readl_relaxed(host->ioaddr +
664 msm_offset->core_dll_config);
665 config &= ~CORE_CK_OUT_EN;
666 writel_relaxed(config, host->ioaddr +
667 msm_offset->core_dll_config);
668
669 config = readl_relaxed(host->ioaddr +
670 msm_offset->core_dll_config_2);
671 config |= CORE_DLL_CLOCK_DISABLE;
672 writel_relaxed(config, host->ioaddr +
673 msm_offset->core_dll_config_2);
674 }
675
676 config = readl_relaxed(host->ioaddr +
677 msm_offset->core_dll_config);
678 config |= CORE_DLL_RST;
679 writel_relaxed(config, host->ioaddr +
680 msm_offset->core_dll_config);
681
682 config = readl_relaxed(host->ioaddr +
683 msm_offset->core_dll_config);
684 config |= CORE_DLL_PDN;
685 writel_relaxed(config, host->ioaddr +
686 msm_offset->core_dll_config);
687
688 if (!msm_host->dll_config)
689 msm_cm_dll_set_freq(host);
690
691 if (msm_host->use_14lpp_dll_reset &&
692 !IS_ERR_OR_NULL(msm_host->xo_clk)) {
693 u32 mclk_freq = 0;
694
695 config = readl_relaxed(host->ioaddr +
696 msm_offset->core_dll_config_2);
697 config &= CORE_FLL_CYCLE_CNT;
698 if (config)
699 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
700 xo_clk);
701 else
702 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
703 xo_clk);
704
705 config = readl_relaxed(host->ioaddr +
706 msm_offset->core_dll_config_2);
707 config &= ~(0xFF << 10);
708 config |= mclk_freq << 10;
709
710 writel_relaxed(config, host->ioaddr +
711 msm_offset->core_dll_config_2);
712 /* wait for 5us before enabling DLL clock */
713 udelay(5);
714 }
715
716 config = readl_relaxed(host->ioaddr +
717 msm_offset->core_dll_config);
718 config &= ~CORE_DLL_RST;
719 writel_relaxed(config, host->ioaddr +
720 msm_offset->core_dll_config);
721
722 config = readl_relaxed(host->ioaddr +
723 msm_offset->core_dll_config);
724 config &= ~CORE_DLL_PDN;
725 writel_relaxed(config, host->ioaddr +
726 msm_offset->core_dll_config);
727
728 if (msm_host->use_14lpp_dll_reset) {
729 if (!msm_host->dll_config)
730 msm_cm_dll_set_freq(host);
731 config = readl_relaxed(host->ioaddr +
732 msm_offset->core_dll_config_2);
733 config &= ~CORE_DLL_CLOCK_DISABLE;
734 writel_relaxed(config, host->ioaddr +
735 msm_offset->core_dll_config_2);
736 }
737
738 /*
739 * Configure DLL user control register to enable DLL status.
740 * This setting is applicable to SDCC v5.1 onwards only.
741 */
742 if (msm_host->uses_tassadar_dll) {
743 config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
744 ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
745 writel_relaxed(config, host->ioaddr +
746 msm_offset->core_dll_usr_ctl);
747
748 config = readl_relaxed(host->ioaddr +
749 msm_offset->core_dll_config_3);
750 config &= ~0xFF;
751 if (msm_host->clk_rate < 150000000)
752 config |= DLL_CONFIG_3_LOW_FREQ_VAL;
753 else
754 config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
755 writel_relaxed(config, host->ioaddr +
756 msm_offset->core_dll_config_3);
757 }
758
759 config = readl_relaxed(host->ioaddr +
760 msm_offset->core_dll_config);
761 config |= CORE_DLL_EN;
762 writel_relaxed(config, host->ioaddr +
763 msm_offset->core_dll_config);
764
765 config = readl_relaxed(host->ioaddr +
766 msm_offset->core_dll_config);
767 config |= CORE_CK_OUT_EN;
768 writel_relaxed(config, host->ioaddr +
769 msm_offset->core_dll_config);
770
771 /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
772 while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
773 CORE_DLL_LOCK)) {
774 /* max. wait for 50us sec for LOCK bit to be set */
775 if (--wait_cnt == 0) {
776 dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
777 mmc_hostname(mmc));
778 spin_unlock_irqrestore(&host->lock, flags);
779 return -ETIMEDOUT;
780 }
781 udelay(1);
782 }
783
784 spin_unlock_irqrestore(&host->lock, flags);
785 return 0;
786 }
787
msm_hc_select_default(struct sdhci_host * host)788 static void msm_hc_select_default(struct sdhci_host *host)
789 {
790 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
791 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
792 u32 config;
793 const struct sdhci_msm_offset *msm_offset =
794 msm_host->offset;
795
796 if (!msm_host->use_cdclp533) {
797 config = readl_relaxed(host->ioaddr +
798 msm_offset->core_vendor_spec3);
799 config &= ~CORE_PWRSAVE_DLL;
800 writel_relaxed(config, host->ioaddr +
801 msm_offset->core_vendor_spec3);
802 }
803
804 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
805 config &= ~CORE_HC_MCLK_SEL_MASK;
806 config |= CORE_HC_MCLK_SEL_DFLT;
807 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
808
809 /*
810 * Disable HC_SELECT_IN to be able to use the UHS mode select
811 * configuration from Host Control2 register for all other
812 * modes.
813 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
814 * in VENDOR_SPEC_FUNC
815 */
816 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
817 config &= ~CORE_HC_SELECT_IN_EN;
818 config &= ~CORE_HC_SELECT_IN_MASK;
819 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
820
821 /*
822 * Make sure above writes impacting free running MCLK are completed
823 * before changing the clk_rate at GCC.
824 */
825 wmb();
826 }
827
msm_hc_select_hs400(struct sdhci_host * host)828 static void msm_hc_select_hs400(struct sdhci_host *host)
829 {
830 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
831 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
832 struct mmc_ios ios = host->mmc->ios;
833 u32 config, dll_lock;
834 int rc;
835 const struct sdhci_msm_offset *msm_offset =
836 msm_host->offset;
837
838 /* Select the divided clock (free running MCLK/2) */
839 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
840 config &= ~CORE_HC_MCLK_SEL_MASK;
841 config |= CORE_HC_MCLK_SEL_HS400;
842
843 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
844 /*
845 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
846 * register
847 */
848 if ((msm_host->tuning_done || ios.enhanced_strobe) &&
849 !msm_host->calibration_done) {
850 config = readl_relaxed(host->ioaddr +
851 msm_offset->core_vendor_spec);
852 config |= CORE_HC_SELECT_IN_HS400;
853 config |= CORE_HC_SELECT_IN_EN;
854 writel_relaxed(config, host->ioaddr +
855 msm_offset->core_vendor_spec);
856 }
857 if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
858 /*
859 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
860 * core_dll_status to be set. This should get set
861 * within 15 us at 200 MHz.
862 */
863 rc = readl_relaxed_poll_timeout(host->ioaddr +
864 msm_offset->core_dll_status,
865 dll_lock,
866 (dll_lock &
867 (CORE_DLL_LOCK |
868 CORE_DDR_DLL_LOCK)), 10,
869 1000);
870 if (rc == -ETIMEDOUT)
871 pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
872 mmc_hostname(host->mmc), dll_lock);
873 }
874 /*
875 * Make sure above writes impacting free running MCLK are completed
876 * before changing the clk_rate at GCC.
877 */
878 wmb();
879 }
880
881 /*
882 * sdhci_msm_hc_select_mode :- In general all timing modes are
883 * controlled via UHS mode select in Host Control2 register.
884 * eMMC specific HS200/HS400 doesn't have their respective modes
885 * defined here, hence we use these values.
886 *
887 * HS200 - SDR104 (Since they both are equivalent in functionality)
888 * HS400 - This involves multiple configurations
889 * Initially SDR104 - when tuning is required as HS200
890 * Then when switching to DDR @ 400MHz (HS400) we use
891 * the vendor specific HC_SELECT_IN to control the mode.
892 *
893 * In addition to controlling the modes we also need to select the
894 * correct input clock for DLL depending on the mode.
895 *
896 * HS400 - divided clock (free running MCLK/2)
897 * All other modes - default (free running MCLK)
898 */
sdhci_msm_hc_select_mode(struct sdhci_host * host)899 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
900 {
901 struct mmc_ios ios = host->mmc->ios;
902
903 if (ios.timing == MMC_TIMING_MMC_HS400 ||
904 host->flags & SDHCI_HS400_TUNING)
905 msm_hc_select_hs400(host);
906 else
907 msm_hc_select_default(host);
908 }
909
sdhci_msm_cdclp533_calibration(struct sdhci_host * host)910 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
911 {
912 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
913 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
914 u32 config, calib_done;
915 int ret;
916 const struct sdhci_msm_offset *msm_offset =
917 msm_host->offset;
918
919 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
920
921 /*
922 * Retuning in HS400 (DDR mode) will fail, just reset the
923 * tuning block and restore the saved tuning phase.
924 */
925 ret = msm_init_cm_dll(host);
926 if (ret)
927 goto out;
928
929 /* Set the selected phase in delay line hw block */
930 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
931 if (ret)
932 goto out;
933
934 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
935 config |= CORE_CMD_DAT_TRACK_SEL;
936 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
937
938 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
939 config &= ~CORE_CDC_T4_DLY_SEL;
940 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
941
942 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
943 config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
944 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
945
946 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
947 config |= CORE_CDC_SWITCH_RC_EN;
948 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
949
950 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
951 config &= ~CORE_START_CDC_TRAFFIC;
952 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
953
954 /* Perform CDC Register Initialization Sequence */
955
956 writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
957 writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
958 writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
959 writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
960 writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
961 writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
962 writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
963 writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
964 writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
965
966 /* CDC HW Calibration */
967
968 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
969 config |= CORE_SW_TRIG_FULL_CALIB;
970 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
971
972 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
973 config &= ~CORE_SW_TRIG_FULL_CALIB;
974 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
975
976 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
977 config |= CORE_HW_AUTOCAL_ENA;
978 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
979
980 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
981 config |= CORE_TIMER_ENA;
982 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
983
984 ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
985 calib_done,
986 (calib_done & CORE_CALIBRATION_DONE),
987 1, 50);
988
989 if (ret == -ETIMEDOUT) {
990 pr_err("%s: %s: CDC calibration was not completed\n",
991 mmc_hostname(host->mmc), __func__);
992 goto out;
993 }
994
995 ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
996 & CORE_CDC_ERROR_CODE_MASK;
997 if (ret) {
998 pr_err("%s: %s: CDC error code %d\n",
999 mmc_hostname(host->mmc), __func__, ret);
1000 ret = -EINVAL;
1001 goto out;
1002 }
1003
1004 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
1005 config |= CORE_START_CDC_TRAFFIC;
1006 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
1007 out:
1008 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1009 __func__, ret);
1010 return ret;
1011 }
1012
sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host * host)1013 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
1014 {
1015 struct mmc_host *mmc = host->mmc;
1016 u32 dll_status, config, ddr_cfg_offset;
1017 int ret;
1018 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1019 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1020 const struct sdhci_msm_offset *msm_offset =
1021 sdhci_priv_msm_offset(host);
1022
1023 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1024
1025 /*
1026 * Currently the core_ddr_config register defaults to desired
1027 * configuration on reset. Currently reprogramming the power on
1028 * reset (POR) value in case it might have been modified by
1029 * bootloaders. In the future, if this changes, then the desired
1030 * values will need to be programmed appropriately.
1031 */
1032 if (msm_host->updated_ddr_cfg)
1033 ddr_cfg_offset = msm_offset->core_ddr_config;
1034 else
1035 ddr_cfg_offset = msm_offset->core_ddr_config_old;
1036 writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1037
1038 if (mmc->ios.enhanced_strobe) {
1039 config = readl_relaxed(host->ioaddr +
1040 msm_offset->core_ddr_200_cfg);
1041 config |= CORE_CMDIN_RCLK_EN;
1042 writel_relaxed(config, host->ioaddr +
1043 msm_offset->core_ddr_200_cfg);
1044 }
1045
1046 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1047 config |= CORE_DDR_CAL_EN;
1048 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1049
1050 ret = readl_relaxed_poll_timeout(host->ioaddr +
1051 msm_offset->core_dll_status,
1052 dll_status,
1053 (dll_status & CORE_DDR_DLL_LOCK),
1054 10, 1000);
1055
1056 if (ret == -ETIMEDOUT) {
1057 pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1058 mmc_hostname(host->mmc), __func__);
1059 goto out;
1060 }
1061
1062 /*
1063 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1064 * When MCLK is gated OFF, it is not gated for less than 0.5us
1065 * and MCLK must be switched on for at-least 1us before DATA
1066 * starts coming. Controllers with 14lpp and later tech DLL cannot
1067 * guarantee above requirement. So PWRSAVE_DLL should not be
1068 * turned on for host controllers using this DLL.
1069 */
1070 if (!msm_host->use_14lpp_dll_reset) {
1071 config = readl_relaxed(host->ioaddr +
1072 msm_offset->core_vendor_spec3);
1073 config |= CORE_PWRSAVE_DLL;
1074 writel_relaxed(config, host->ioaddr +
1075 msm_offset->core_vendor_spec3);
1076 }
1077
1078 /*
1079 * Drain writebuffer to ensure above DLL calibration
1080 * and PWRSAVE DLL is enabled.
1081 */
1082 wmb();
1083 out:
1084 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1085 __func__, ret);
1086 return ret;
1087 }
1088
sdhci_msm_hs400_dll_calibration(struct sdhci_host * host)1089 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1090 {
1091 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1092 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1093 struct mmc_host *mmc = host->mmc;
1094 int ret;
1095 u32 config;
1096 const struct sdhci_msm_offset *msm_offset =
1097 msm_host->offset;
1098
1099 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1100
1101 /*
1102 * Retuning in HS400 (DDR mode) will fail, just reset the
1103 * tuning block and restore the saved tuning phase.
1104 */
1105 ret = msm_init_cm_dll(host);
1106 if (ret)
1107 goto out;
1108
1109 if (!mmc->ios.enhanced_strobe) {
1110 /* Set the selected phase in delay line hw block */
1111 ret = msm_config_cm_dll_phase(host,
1112 msm_host->saved_tuning_phase);
1113 if (ret)
1114 goto out;
1115 config = readl_relaxed(host->ioaddr +
1116 msm_offset->core_dll_config);
1117 config |= CORE_CMD_DAT_TRACK_SEL;
1118 writel_relaxed(config, host->ioaddr +
1119 msm_offset->core_dll_config);
1120 }
1121
1122 if (msm_host->use_cdclp533)
1123 ret = sdhci_msm_cdclp533_calibration(host);
1124 else
1125 ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1126 out:
1127 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1128 __func__, ret);
1129 return ret;
1130 }
1131
sdhci_msm_is_tuning_needed(struct sdhci_host * host)1132 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1133 {
1134 struct mmc_ios *ios = &host->mmc->ios;
1135
1136 /*
1137 * Tuning is required for SDR104, HS200 and HS400 cards and
1138 * if clock frequency is greater than 100MHz in these modes.
1139 */
1140 if (host->clock <= CORE_FREQ_100MHZ ||
1141 !(ios->timing == MMC_TIMING_MMC_HS400 ||
1142 ios->timing == MMC_TIMING_MMC_HS200 ||
1143 ios->timing == MMC_TIMING_UHS_SDR104) ||
1144 ios->enhanced_strobe)
1145 return false;
1146
1147 return true;
1148 }
1149
sdhci_msm_restore_sdr_dll_config(struct sdhci_host * host)1150 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1151 {
1152 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1153 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1154 int ret;
1155
1156 /*
1157 * SDR DLL comes into picture only for timing modes which needs
1158 * tuning.
1159 */
1160 if (!sdhci_msm_is_tuning_needed(host))
1161 return 0;
1162
1163 /* Reset the tuning block */
1164 ret = msm_init_cm_dll(host);
1165 if (ret)
1166 return ret;
1167
1168 /* Restore the tuning block */
1169 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1170
1171 return ret;
1172 }
1173
sdhci_msm_set_cdr(struct sdhci_host * host,bool enable)1174 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1175 {
1176 const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1177 u32 config, oldconfig = readl_relaxed(host->ioaddr +
1178 msm_offset->core_dll_config);
1179
1180 config = oldconfig;
1181 if (enable) {
1182 config |= CORE_CDR_EN;
1183 config &= ~CORE_CDR_EXT_EN;
1184 } else {
1185 config &= ~CORE_CDR_EN;
1186 config |= CORE_CDR_EXT_EN;
1187 }
1188
1189 if (config != oldconfig) {
1190 writel_relaxed(config, host->ioaddr +
1191 msm_offset->core_dll_config);
1192 }
1193 }
1194
sdhci_msm_execute_tuning(struct mmc_host * mmc,u32 opcode)1195 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1196 {
1197 struct sdhci_host *host = mmc_priv(mmc);
1198 int tuning_seq_cnt = 10;
1199 u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1200 int rc;
1201 struct mmc_ios ios = host->mmc->ios;
1202 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1203 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1204
1205 if (!sdhci_msm_is_tuning_needed(host)) {
1206 msm_host->use_cdr = false;
1207 sdhci_msm_set_cdr(host, false);
1208 return 0;
1209 }
1210
1211 /* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1212 msm_host->use_cdr = true;
1213
1214 /*
1215 * Clear tuning_done flag before tuning to ensure proper
1216 * HS400 settings.
1217 */
1218 msm_host->tuning_done = 0;
1219
1220 /*
1221 * For HS400 tuning in HS200 timing requires:
1222 * - select MCLK/2 in VENDOR_SPEC
1223 * - program MCLK to 400MHz (or nearest supported) in GCC
1224 */
1225 if (host->flags & SDHCI_HS400_TUNING) {
1226 sdhci_msm_hc_select_mode(host);
1227 msm_set_clock_rate_for_bus_mode(host, ios.clock);
1228 host->flags &= ~SDHCI_HS400_TUNING;
1229 }
1230
1231 retry:
1232 /* First of all reset the tuning block */
1233 rc = msm_init_cm_dll(host);
1234 if (rc)
1235 return rc;
1236
1237 phase = 0;
1238 do {
1239 /* Set the phase in delay line hw block */
1240 rc = msm_config_cm_dll_phase(host, phase);
1241 if (rc)
1242 return rc;
1243
1244 rc = mmc_send_tuning(mmc, opcode, NULL);
1245 if (!rc) {
1246 /* Tuning is successful at this tuning point */
1247 tuned_phases[tuned_phase_cnt++] = phase;
1248 dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1249 mmc_hostname(mmc), phase);
1250 }
1251 } while (++phase < ARRAY_SIZE(tuned_phases));
1252
1253 if (tuned_phase_cnt) {
1254 if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1255 /*
1256 * All phases valid is _almost_ as bad as no phases
1257 * valid. Probably all phases are not really reliable
1258 * but we didn't detect where the unreliable place is.
1259 * That means we'll essentially be guessing and hoping
1260 * we get a good phase. Better to try a few times.
1261 */
1262 dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1263 mmc_hostname(mmc));
1264 if (--tuning_seq_cnt) {
1265 tuned_phase_cnt = 0;
1266 goto retry;
1267 }
1268 }
1269
1270 rc = msm_find_most_appropriate_phase(host, tuned_phases,
1271 tuned_phase_cnt);
1272 if (rc < 0)
1273 return rc;
1274 else
1275 phase = rc;
1276
1277 /*
1278 * Finally set the selected phase in delay
1279 * line hw block.
1280 */
1281 rc = msm_config_cm_dll_phase(host, phase);
1282 if (rc)
1283 return rc;
1284 msm_host->saved_tuning_phase = phase;
1285 dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1286 mmc_hostname(mmc), phase);
1287 } else {
1288 if (--tuning_seq_cnt)
1289 goto retry;
1290 /* Tuning failed */
1291 dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1292 mmc_hostname(mmc));
1293 rc = -EIO;
1294 }
1295
1296 if (!rc)
1297 msm_host->tuning_done = true;
1298 return rc;
1299 }
1300
1301 /*
1302 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1303 * This needs to be done for both tuning and enhanced_strobe mode.
1304 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1305 * fixed feedback clock is used.
1306 */
sdhci_msm_hs400(struct sdhci_host * host,struct mmc_ios * ios)1307 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1308 {
1309 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1310 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1311 int ret;
1312
1313 if (host->clock > CORE_FREQ_100MHZ &&
1314 (msm_host->tuning_done || ios->enhanced_strobe) &&
1315 !msm_host->calibration_done) {
1316 ret = sdhci_msm_hs400_dll_calibration(host);
1317 if (!ret)
1318 msm_host->calibration_done = true;
1319 else
1320 pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1321 mmc_hostname(host->mmc), ret);
1322 }
1323 }
1324
sdhci_msm_set_uhs_signaling(struct sdhci_host * host,unsigned int uhs)1325 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1326 unsigned int uhs)
1327 {
1328 struct mmc_host *mmc = host->mmc;
1329 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1330 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1331 u16 ctrl_2;
1332 u32 config;
1333 const struct sdhci_msm_offset *msm_offset =
1334 msm_host->offset;
1335
1336 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1337 /* Select Bus Speed Mode for host */
1338 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1339 switch (uhs) {
1340 case MMC_TIMING_UHS_SDR12:
1341 ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1342 break;
1343 case MMC_TIMING_UHS_SDR25:
1344 ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1345 break;
1346 case MMC_TIMING_UHS_SDR50:
1347 ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1348 break;
1349 case MMC_TIMING_MMC_HS400:
1350 case MMC_TIMING_MMC_HS200:
1351 case MMC_TIMING_UHS_SDR104:
1352 ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1353 break;
1354 case MMC_TIMING_UHS_DDR50:
1355 case MMC_TIMING_MMC_DDR52:
1356 ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1357 break;
1358 }
1359
1360 /*
1361 * When clock frequency is less than 100MHz, the feedback clock must be
1362 * provided and DLL must not be used so that tuning can be skipped. To
1363 * provide feedback clock, the mode selection can be any value less
1364 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1365 */
1366 if (host->clock <= CORE_FREQ_100MHZ) {
1367 if (uhs == MMC_TIMING_MMC_HS400 ||
1368 uhs == MMC_TIMING_MMC_HS200 ||
1369 uhs == MMC_TIMING_UHS_SDR104)
1370 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1371 /*
1372 * DLL is not required for clock <= 100MHz
1373 * Thus, make sure DLL it is disabled when not required
1374 */
1375 config = readl_relaxed(host->ioaddr +
1376 msm_offset->core_dll_config);
1377 config |= CORE_DLL_RST;
1378 writel_relaxed(config, host->ioaddr +
1379 msm_offset->core_dll_config);
1380
1381 config = readl_relaxed(host->ioaddr +
1382 msm_offset->core_dll_config);
1383 config |= CORE_DLL_PDN;
1384 writel_relaxed(config, host->ioaddr +
1385 msm_offset->core_dll_config);
1386
1387 /*
1388 * The DLL needs to be restored and CDCLP533 recalibrated
1389 * when the clock frequency is set back to 400MHz.
1390 */
1391 msm_host->calibration_done = false;
1392 }
1393
1394 dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1395 mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1396 sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1397
1398 if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1399 sdhci_msm_hs400(host, &mmc->ios);
1400 }
1401
sdhci_msm_set_pincfg(struct sdhci_msm_host * msm_host,bool level)1402 static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1403 {
1404 struct platform_device *pdev = msm_host->pdev;
1405 int ret;
1406
1407 if (level)
1408 ret = pinctrl_pm_select_default_state(&pdev->dev);
1409 else
1410 ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1411
1412 return ret;
1413 }
1414
msm_config_vmmc_regulator(struct mmc_host * mmc,bool hpm)1415 static void msm_config_vmmc_regulator(struct mmc_host *mmc, bool hpm)
1416 {
1417 int load;
1418
1419 if (!hpm)
1420 load = 0;
1421 else if (!mmc->card)
1422 load = max(MMC_VMMC_MAX_LOAD_UA, SD_VMMC_MAX_LOAD_UA);
1423 else if (mmc_card_mmc(mmc->card))
1424 load = MMC_VMMC_MAX_LOAD_UA;
1425 else if (mmc_card_sd(mmc->card))
1426 load = SD_VMMC_MAX_LOAD_UA;
1427 else
1428 return;
1429
1430 regulator_set_load(mmc->supply.vmmc, load);
1431 }
1432
msm_config_vqmmc_regulator(struct mmc_host * mmc,bool hpm)1433 static void msm_config_vqmmc_regulator(struct mmc_host *mmc, bool hpm)
1434 {
1435 int load;
1436
1437 if (!hpm)
1438 load = 0;
1439 else if (!mmc->card)
1440 load = max(MMC_VQMMC_MAX_LOAD_UA, SD_VQMMC_MAX_LOAD_UA);
1441 else if (mmc_card_sd(mmc->card))
1442 load = SD_VQMMC_MAX_LOAD_UA;
1443 else
1444 return;
1445
1446 regulator_set_load(mmc->supply.vqmmc, load);
1447 }
1448
sdhci_msm_set_vmmc(struct sdhci_msm_host * msm_host,struct mmc_host * mmc,bool hpm)1449 static int sdhci_msm_set_vmmc(struct sdhci_msm_host *msm_host,
1450 struct mmc_host *mmc, bool hpm)
1451 {
1452 if (IS_ERR(mmc->supply.vmmc))
1453 return 0;
1454
1455 msm_config_vmmc_regulator(mmc, hpm);
1456
1457 return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1458 }
1459
msm_toggle_vqmmc(struct sdhci_msm_host * msm_host,struct mmc_host * mmc,bool level)1460 static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1461 struct mmc_host *mmc, bool level)
1462 {
1463 int ret;
1464 struct mmc_ios ios;
1465
1466 if (msm_host->vqmmc_enabled == level)
1467 return 0;
1468
1469 msm_config_vqmmc_regulator(mmc, level);
1470
1471 if (level) {
1472 /* Set the IO voltage regulator to default voltage level */
1473 if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1474 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1475 else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1476 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1477
1478 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1479 ret = mmc_regulator_set_vqmmc(mmc, &ios);
1480 if (ret < 0) {
1481 dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1482 mmc_hostname(mmc), ret);
1483 goto out;
1484 }
1485 }
1486 ret = regulator_enable(mmc->supply.vqmmc);
1487 } else {
1488 ret = regulator_disable(mmc->supply.vqmmc);
1489 }
1490
1491 if (ret)
1492 dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1493 mmc_hostname(mmc), level ? "en":"dis", ret);
1494 else
1495 msm_host->vqmmc_enabled = level;
1496 out:
1497 return ret;
1498 }
1499
msm_config_vqmmc_mode(struct sdhci_msm_host * msm_host,struct mmc_host * mmc,bool hpm)1500 static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1501 struct mmc_host *mmc, bool hpm)
1502 {
1503 int load, ret;
1504
1505 load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1506 ret = regulator_set_load(mmc->supply.vqmmc, load);
1507 if (ret)
1508 dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1509 mmc_hostname(mmc), ret);
1510 return ret;
1511 }
1512
sdhci_msm_set_vqmmc(struct sdhci_msm_host * msm_host,struct mmc_host * mmc,bool level)1513 static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1514 struct mmc_host *mmc, bool level)
1515 {
1516 int ret;
1517 bool always_on;
1518
1519 if (IS_ERR(mmc->supply.vqmmc) ||
1520 (mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1521 return 0;
1522 /*
1523 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1524 * and HPM modes by setting the corresponding load.
1525 *
1526 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1527 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1528 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1529 * Vqmmc should remain ON, So just set the load instead of turning it
1530 * off/on.
1531 */
1532 always_on = !mmc_card_is_removable(mmc) &&
1533 mmc->card && mmc_card_mmc(mmc->card);
1534
1535 if (always_on)
1536 ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1537 else
1538 ret = msm_toggle_vqmmc(msm_host, mmc, level);
1539
1540 return ret;
1541 }
1542
sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host * msm_host)1543 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1544 {
1545 init_waitqueue_head(&msm_host->pwr_irq_wait);
1546 }
1547
sdhci_msm_complete_pwr_irq_wait(struct sdhci_msm_host * msm_host)1548 static inline void sdhci_msm_complete_pwr_irq_wait(
1549 struct sdhci_msm_host *msm_host)
1550 {
1551 wake_up(&msm_host->pwr_irq_wait);
1552 }
1553
1554 /*
1555 * sdhci_msm_check_power_status API should be called when registers writes
1556 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1557 * To what state the register writes will change the IO lines should be passed
1558 * as the argument req_type. This API will check whether the IO line's state
1559 * is already the expected state and will wait for power irq only if
1560 * power irq is expected to be triggered based on the current IO line state
1561 * and expected IO line state.
1562 */
sdhci_msm_check_power_status(struct sdhci_host * host,u32 req_type)1563 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1564 {
1565 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1566 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1567 bool done = false;
1568 u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1569 const struct sdhci_msm_offset *msm_offset =
1570 msm_host->offset;
1571
1572 pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1573 mmc_hostname(host->mmc), __func__, req_type,
1574 msm_host->curr_pwr_state, msm_host->curr_io_level);
1575
1576 /*
1577 * The power interrupt will not be generated for signal voltage
1578 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1579 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1580 * it as always set.
1581 */
1582 if (!msm_host->mci_removed)
1583 val = msm_host_readl(msm_host, host,
1584 msm_offset->core_generics);
1585 if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1586 !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1587 return;
1588 }
1589
1590 /*
1591 * The IRQ for request type IO High/LOW will be generated when -
1592 * there is a state change in 1.8V enable bit (bit 3) of
1593 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1594 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1595 * to set it to 3.3V before card detection happens, the
1596 * IRQ doesn't get triggered as there is no state change in this bit.
1597 * The driver already handles this case by changing the IO voltage
1598 * level to high as part of controller power up sequence. Hence, check
1599 * for host->pwr to handle a case where IO voltage high request is
1600 * issued even before controller power up.
1601 */
1602 if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1603 pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1604 mmc_hostname(host->mmc), req_type);
1605 return;
1606 }
1607 if ((req_type & msm_host->curr_pwr_state) ||
1608 (req_type & msm_host->curr_io_level))
1609 done = true;
1610 /*
1611 * This is needed here to handle cases where register writes will
1612 * not change the current bus state or io level of the controller.
1613 * In this case, no power irq will be triggerred and we should
1614 * not wait.
1615 */
1616 if (!done) {
1617 if (!wait_event_timeout(msm_host->pwr_irq_wait,
1618 msm_host->pwr_irq_flag,
1619 msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1620 dev_warn(&msm_host->pdev->dev,
1621 "%s: pwr_irq for req: (%d) timed out\n",
1622 mmc_hostname(host->mmc), req_type);
1623 }
1624 pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1625 __func__, req_type);
1626 }
1627
sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host * host)1628 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1629 {
1630 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1631 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1632 const struct sdhci_msm_offset *msm_offset =
1633 msm_host->offset;
1634
1635 pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1636 mmc_hostname(host->mmc),
1637 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1638 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1639 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1640 }
1641
sdhci_msm_handle_pwr_irq(struct sdhci_host * host,int irq)1642 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1643 {
1644 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1645 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1646 struct mmc_host *mmc = host->mmc;
1647 u32 irq_status, irq_ack = 0;
1648 int retry = 10, ret;
1649 u32 pwr_state = 0, io_level = 0;
1650 u32 config;
1651 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1652
1653 irq_status = msm_host_readl(msm_host, host,
1654 msm_offset->core_pwrctl_status);
1655 irq_status &= INT_MASK;
1656
1657 msm_host_writel(msm_host, irq_status, host,
1658 msm_offset->core_pwrctl_clear);
1659
1660 /*
1661 * There is a rare HW scenario where the first clear pulse could be
1662 * lost when actual reset and clear/read of status register is
1663 * happening at a time. Hence, retry for at least 10 times to make
1664 * sure status register is cleared. Otherwise, this will result in
1665 * a spurious power IRQ resulting in system instability.
1666 */
1667 while (irq_status & msm_host_readl(msm_host, host,
1668 msm_offset->core_pwrctl_status)) {
1669 if (retry == 0) {
1670 pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1671 mmc_hostname(host->mmc), irq_status);
1672 sdhci_msm_dump_pwr_ctrl_regs(host);
1673 WARN_ON(1);
1674 break;
1675 }
1676 msm_host_writel(msm_host, irq_status, host,
1677 msm_offset->core_pwrctl_clear);
1678 retry--;
1679 udelay(10);
1680 }
1681
1682 /* Handle BUS ON/OFF*/
1683 if (irq_status & CORE_PWRCTL_BUS_ON) {
1684 pwr_state = REQ_BUS_ON;
1685 io_level = REQ_IO_HIGH;
1686 }
1687 if (irq_status & CORE_PWRCTL_BUS_OFF) {
1688 pwr_state = REQ_BUS_OFF;
1689 io_level = REQ_IO_LOW;
1690 }
1691
1692 if (pwr_state) {
1693 ret = sdhci_msm_set_vmmc(msm_host, mmc,
1694 pwr_state & REQ_BUS_ON);
1695 if (!ret)
1696 ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1697 pwr_state & REQ_BUS_ON);
1698 if (!ret)
1699 ret = sdhci_msm_set_pincfg(msm_host,
1700 pwr_state & REQ_BUS_ON);
1701 if (!ret)
1702 irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1703 else
1704 irq_ack |= CORE_PWRCTL_BUS_FAIL;
1705 }
1706
1707 /* Handle IO LOW/HIGH */
1708 if (irq_status & CORE_PWRCTL_IO_LOW)
1709 io_level = REQ_IO_LOW;
1710
1711 if (irq_status & CORE_PWRCTL_IO_HIGH)
1712 io_level = REQ_IO_HIGH;
1713
1714 if (io_level)
1715 irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1716
1717 if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1718 ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1719 if (ret < 0) {
1720 dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1721 mmc_hostname(mmc), ret,
1722 mmc->ios.signal_voltage, mmc->ios.vdd,
1723 irq_status);
1724 irq_ack |= CORE_PWRCTL_IO_FAIL;
1725 }
1726 }
1727
1728 /*
1729 * The driver has to acknowledge the interrupt, switch voltages and
1730 * report back if it succeded or not to this register. The voltage
1731 * switches are handled by the sdhci core, so just report success.
1732 */
1733 msm_host_writel(msm_host, irq_ack, host,
1734 msm_offset->core_pwrctl_ctl);
1735
1736 /*
1737 * If we don't have info regarding the voltage levels supported by
1738 * regulators, don't change the IO PAD PWR SWITCH.
1739 */
1740 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1741 u32 new_config;
1742 /*
1743 * We should unset IO PAD PWR switch only if the register write
1744 * can set IO lines high and the regulator also switches to 3 V.
1745 * Else, we should keep the IO PAD PWR switch set.
1746 * This is applicable to certain targets where eMMC vccq supply
1747 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1748 * IO PAD PWR switch must be kept set to reflect actual
1749 * regulator voltage. This way, during initialization of
1750 * controllers with only 1.8V, we will set the IO PAD bit
1751 * without waiting for a REQ_IO_LOW.
1752 */
1753 config = readl_relaxed(host->ioaddr +
1754 msm_offset->core_vendor_spec);
1755 new_config = config;
1756
1757 if ((io_level & REQ_IO_HIGH) &&
1758 (msm_host->caps_0 & CORE_3_0V_SUPPORT))
1759 new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1760 else if ((io_level & REQ_IO_LOW) ||
1761 (msm_host->caps_0 & CORE_1_8V_SUPPORT))
1762 new_config |= CORE_IO_PAD_PWR_SWITCH;
1763
1764 if (config ^ new_config)
1765 writel_relaxed(new_config, host->ioaddr +
1766 msm_offset->core_vendor_spec);
1767 }
1768
1769 if (pwr_state)
1770 msm_host->curr_pwr_state = pwr_state;
1771 if (io_level)
1772 msm_host->curr_io_level = io_level;
1773
1774 dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1775 mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1776 irq_ack);
1777 }
1778
sdhci_msm_pwr_irq(int irq,void * data)1779 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1780 {
1781 struct sdhci_host *host = (struct sdhci_host *)data;
1782 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1783 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1784
1785 sdhci_msm_handle_pwr_irq(host, irq);
1786 msm_host->pwr_irq_flag = 1;
1787 sdhci_msm_complete_pwr_irq_wait(msm_host);
1788
1789
1790 return IRQ_HANDLED;
1791 }
1792
sdhci_msm_get_max_clock(struct sdhci_host * host)1793 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1794 {
1795 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1796 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1797 struct clk *core_clk = msm_host->bulk_clks[0].clk;
1798
1799 return clk_round_rate(core_clk, ULONG_MAX);
1800 }
1801
sdhci_msm_get_min_clock(struct sdhci_host * host)1802 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1803 {
1804 return SDHCI_MSM_MIN_CLOCK;
1805 }
1806
1807 /*
1808 * __sdhci_msm_set_clock - sdhci_msm clock control.
1809 *
1810 * Description:
1811 * MSM controller does not use internal divider and
1812 * instead directly control the GCC clock as per
1813 * HW recommendation.
1814 **/
__sdhci_msm_set_clock(struct sdhci_host * host,unsigned int clock)1815 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1816 {
1817 u16 clk;
1818
1819 sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1820
1821 if (clock == 0)
1822 return;
1823
1824 /*
1825 * MSM controller do not use clock divider.
1826 * Thus read SDHCI_CLOCK_CONTROL and only enable
1827 * clock with no divider value programmed.
1828 */
1829 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1830 sdhci_enable_clk(host, clk);
1831 }
1832
1833 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
sdhci_msm_set_clock(struct sdhci_host * host,unsigned int clock)1834 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1835 {
1836 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1837 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1838
1839 if (!clock) {
1840 host->mmc->actual_clock = msm_host->clk_rate = 0;
1841 goto out;
1842 }
1843
1844 sdhci_msm_hc_select_mode(host);
1845
1846 msm_set_clock_rate_for_bus_mode(host, clock);
1847 out:
1848 __sdhci_msm_set_clock(host, clock);
1849 }
1850
1851 /*****************************************************************************\
1852 * *
1853 * Inline Crypto Engine (ICE) support *
1854 * *
1855 \*****************************************************************************/
1856
1857 #ifdef CONFIG_MMC_CRYPTO
1858
1859 static const struct blk_crypto_ll_ops sdhci_msm_crypto_ops; /* forward decl */
1860
sdhci_msm_ice_init(struct sdhci_msm_host * msm_host,struct cqhci_host * cq_host)1861 static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1862 struct cqhci_host *cq_host)
1863 {
1864 struct mmc_host *mmc = msm_host->mmc;
1865 struct blk_crypto_profile *profile = &mmc->crypto_profile;
1866 struct device *dev = mmc_dev(mmc);
1867 struct qcom_ice *ice;
1868 union cqhci_crypto_capabilities caps;
1869 union cqhci_crypto_cap_entry cap;
1870 int err;
1871 int i;
1872
1873 if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
1874 return 0;
1875
1876 ice = devm_of_qcom_ice_get(dev);
1877 if (ice == ERR_PTR(-EOPNOTSUPP)) {
1878 dev_warn(dev, "Disabling inline encryption support\n");
1879 ice = NULL;
1880 }
1881
1882 if (IS_ERR_OR_NULL(ice))
1883 return PTR_ERR_OR_ZERO(ice);
1884
1885 msm_host->ice = ice;
1886
1887 /* Initialize the blk_crypto_profile */
1888
1889 caps.reg_val = cpu_to_le32(cqhci_readl(cq_host, CQHCI_CCAP));
1890
1891 /* The number of keyslots supported is (CFGC+1) */
1892 err = devm_blk_crypto_profile_init(dev, profile, caps.config_count + 1);
1893 if (err)
1894 return err;
1895
1896 profile->ll_ops = sdhci_msm_crypto_ops;
1897 profile->max_dun_bytes_supported = 4;
1898 profile->key_types_supported = BLK_CRYPTO_KEY_TYPE_RAW;
1899 profile->dev = dev;
1900
1901 /*
1902 * Currently this driver only supports AES-256-XTS. All known versions
1903 * of ICE support it, but to be safe make sure it is really declared in
1904 * the crypto capability registers. The crypto capability registers
1905 * also give the supported data unit size(s).
1906 */
1907 for (i = 0; i < caps.num_crypto_cap; i++) {
1908 cap.reg_val = cpu_to_le32(cqhci_readl(cq_host,
1909 CQHCI_CRYPTOCAP +
1910 i * sizeof(__le32)));
1911 if (cap.algorithm_id == CQHCI_CRYPTO_ALG_AES_XTS &&
1912 cap.key_size == CQHCI_CRYPTO_KEY_SIZE_256)
1913 profile->modes_supported[BLK_ENCRYPTION_MODE_AES_256_XTS] |=
1914 cap.sdus_mask * 512;
1915 }
1916
1917 mmc->caps2 |= MMC_CAP2_CRYPTO;
1918 return 0;
1919 }
1920
sdhci_msm_ice_enable(struct sdhci_msm_host * msm_host)1921 static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1922 {
1923 if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1924 qcom_ice_enable(msm_host->ice);
1925 }
1926
sdhci_msm_ice_resume(struct sdhci_msm_host * msm_host)1927 static __maybe_unused int sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1928 {
1929 if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1930 return qcom_ice_resume(msm_host->ice);
1931
1932 return 0;
1933 }
1934
sdhci_msm_ice_suspend(struct sdhci_msm_host * msm_host)1935 static __maybe_unused int sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host)
1936 {
1937 if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1938 return qcom_ice_suspend(msm_host->ice);
1939
1940 return 0;
1941 }
1942
1943 static inline struct sdhci_msm_host *
sdhci_msm_host_from_crypto_profile(struct blk_crypto_profile * profile)1944 sdhci_msm_host_from_crypto_profile(struct blk_crypto_profile *profile)
1945 {
1946 struct mmc_host *mmc = mmc_from_crypto_profile(profile);
1947 struct sdhci_host *host = mmc_priv(mmc);
1948 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1949 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1950
1951 return msm_host;
1952 }
1953
1954 /*
1955 * Program a key into a QC ICE keyslot. QC ICE requires a QC-specific SCM call
1956 * for this; it doesn't support the standard way.
1957 */
sdhci_msm_ice_keyslot_program(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)1958 static int sdhci_msm_ice_keyslot_program(struct blk_crypto_profile *profile,
1959 const struct blk_crypto_key *key,
1960 unsigned int slot)
1961 {
1962 struct sdhci_msm_host *msm_host =
1963 sdhci_msm_host_from_crypto_profile(profile);
1964
1965 /* Only AES-256-XTS has been tested so far. */
1966 if (key->crypto_cfg.crypto_mode != BLK_ENCRYPTION_MODE_AES_256_XTS)
1967 return -EOPNOTSUPP;
1968
1969 return qcom_ice_program_key(msm_host->ice,
1970 QCOM_ICE_CRYPTO_ALG_AES_XTS,
1971 QCOM_ICE_CRYPTO_KEY_SIZE_256,
1972 key->bytes,
1973 key->crypto_cfg.data_unit_size / 512,
1974 slot);
1975 }
1976
sdhci_msm_ice_keyslot_evict(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)1977 static int sdhci_msm_ice_keyslot_evict(struct blk_crypto_profile *profile,
1978 const struct blk_crypto_key *key,
1979 unsigned int slot)
1980 {
1981 struct sdhci_msm_host *msm_host =
1982 sdhci_msm_host_from_crypto_profile(profile);
1983
1984 return qcom_ice_evict_key(msm_host->ice, slot);
1985 }
1986
1987 static const struct blk_crypto_ll_ops sdhci_msm_crypto_ops = {
1988 .keyslot_program = sdhci_msm_ice_keyslot_program,
1989 .keyslot_evict = sdhci_msm_ice_keyslot_evict,
1990 };
1991
1992 #else /* CONFIG_MMC_CRYPTO */
1993
sdhci_msm_ice_init(struct sdhci_msm_host * msm_host,struct cqhci_host * cq_host)1994 static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1995 struct cqhci_host *cq_host)
1996 {
1997 return 0;
1998 }
1999
sdhci_msm_ice_enable(struct sdhci_msm_host * msm_host)2000 static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
2001 {
2002 }
2003
2004 static inline __maybe_unused int
sdhci_msm_ice_resume(struct sdhci_msm_host * msm_host)2005 sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
2006 {
2007 return 0;
2008 }
2009
2010 static inline __maybe_unused int
sdhci_msm_ice_suspend(struct sdhci_msm_host * msm_host)2011 sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host)
2012 {
2013 return 0;
2014 }
2015 #endif /* !CONFIG_MMC_CRYPTO */
2016
2017 /*****************************************************************************\
2018 * *
2019 * MSM Command Queue Engine (CQE) *
2020 * *
2021 \*****************************************************************************/
2022
sdhci_msm_cqe_irq(struct sdhci_host * host,u32 intmask)2023 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
2024 {
2025 int cmd_error = 0;
2026 int data_error = 0;
2027
2028 if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
2029 return intmask;
2030
2031 cqhci_irq(host->mmc, intmask, cmd_error, data_error);
2032 return 0;
2033 }
2034
sdhci_msm_cqe_enable(struct mmc_host * mmc)2035 static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
2036 {
2037 struct sdhci_host *host = mmc_priv(mmc);
2038 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2039 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2040
2041 sdhci_cqe_enable(mmc);
2042 sdhci_msm_ice_enable(msm_host);
2043 }
2044
sdhci_msm_cqe_disable(struct mmc_host * mmc,bool recovery)2045 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
2046 {
2047 struct sdhci_host *host = mmc_priv(mmc);
2048 unsigned long flags;
2049 u32 ctrl;
2050
2051 /*
2052 * When CQE is halted, the legacy SDHCI path operates only
2053 * on 16-byte descriptors in 64bit mode.
2054 */
2055 if (host->flags & SDHCI_USE_64_BIT_DMA)
2056 host->desc_sz = 16;
2057
2058 spin_lock_irqsave(&host->lock, flags);
2059
2060 /*
2061 * During CQE command transfers, command complete bit gets latched.
2062 * So s/w should clear command complete interrupt status when CQE is
2063 * either halted or disabled. Otherwise unexpected SDCHI legacy
2064 * interrupt gets triggered when CQE is halted/disabled.
2065 */
2066 ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
2067 ctrl |= SDHCI_INT_RESPONSE;
2068 sdhci_writel(host, ctrl, SDHCI_INT_ENABLE);
2069 sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
2070
2071 spin_unlock_irqrestore(&host->lock, flags);
2072
2073 sdhci_cqe_disable(mmc, recovery);
2074 }
2075
sdhci_msm_set_timeout(struct sdhci_host * host,struct mmc_command * cmd)2076 static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
2077 {
2078 u32 count, start = 15;
2079
2080 __sdhci_set_timeout(host, cmd);
2081 count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
2082 /*
2083 * Update software timeout value if its value is less than hardware data
2084 * timeout value. Qcom SoC hardware data timeout value was calculated
2085 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
2086 */
2087 if (cmd && cmd->data && host->clock > 400000 &&
2088 host->clock <= 50000000 &&
2089 ((1 << (count + start)) > (10 * host->clock)))
2090 host->data_timeout = 22LL * NSEC_PER_SEC;
2091 }
2092
2093 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
2094 .enable = sdhci_msm_cqe_enable,
2095 .disable = sdhci_msm_cqe_disable,
2096 #ifdef CONFIG_MMC_CRYPTO
2097 .uses_custom_crypto_profile = true,
2098 #endif
2099 };
2100
sdhci_msm_cqe_add_host(struct sdhci_host * host,struct platform_device * pdev)2101 static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
2102 struct platform_device *pdev)
2103 {
2104 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2105 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2106 struct cqhci_host *cq_host;
2107 bool dma64;
2108 u32 cqcfg;
2109 int ret;
2110
2111 /*
2112 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
2113 * So ensure ADMA table is allocated for 16byte descriptors.
2114 */
2115 if (host->caps & SDHCI_CAN_64BIT)
2116 host->alloc_desc_sz = 16;
2117
2118 ret = sdhci_setup_host(host);
2119 if (ret)
2120 return ret;
2121
2122 cq_host = cqhci_pltfm_init(pdev);
2123 if (IS_ERR(cq_host)) {
2124 ret = PTR_ERR(cq_host);
2125 dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
2126 goto cleanup;
2127 }
2128
2129 msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
2130 cq_host->ops = &sdhci_msm_cqhci_ops;
2131
2132 dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
2133
2134 ret = sdhci_msm_ice_init(msm_host, cq_host);
2135 if (ret)
2136 goto cleanup;
2137
2138 ret = cqhci_init(cq_host, host->mmc, dma64);
2139 if (ret) {
2140 dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
2141 mmc_hostname(host->mmc), ret);
2142 goto cleanup;
2143 }
2144
2145 /* Disable cqe reset due to cqe enable signal */
2146 cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
2147 cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
2148 cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
2149
2150 /*
2151 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
2152 * So limit desc_sz to 12 so that the data commands that are sent
2153 * during card initialization (before CQE gets enabled) would
2154 * get executed without any issues.
2155 */
2156 if (host->flags & SDHCI_USE_64_BIT_DMA)
2157 host->desc_sz = 12;
2158
2159 ret = __sdhci_add_host(host);
2160 if (ret)
2161 goto cleanup;
2162
2163 dev_info(&pdev->dev, "%s: CQE init: success\n",
2164 mmc_hostname(host->mmc));
2165 return ret;
2166
2167 cleanup:
2168 sdhci_cleanup_host(host);
2169 return ret;
2170 }
2171
2172 /*
2173 * Platform specific register write functions. This is so that, if any
2174 * register write needs to be followed up by platform specific actions,
2175 * they can be added here. These functions can go to sleep when writes
2176 * to certain registers are done.
2177 * These functions are relying on sdhci_set_ios not using spinlock.
2178 */
__sdhci_msm_check_write(struct sdhci_host * host,u16 val,int reg)2179 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
2180 {
2181 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2182 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2183 u32 req_type = 0;
2184
2185 switch (reg) {
2186 case SDHCI_HOST_CONTROL2:
2187 req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
2188 REQ_IO_HIGH;
2189 break;
2190 case SDHCI_SOFTWARE_RESET:
2191 if (host->pwr && (val & SDHCI_RESET_ALL))
2192 req_type = REQ_BUS_OFF;
2193 break;
2194 case SDHCI_POWER_CONTROL:
2195 req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
2196 break;
2197 case SDHCI_TRANSFER_MODE:
2198 msm_host->transfer_mode = val;
2199 break;
2200 case SDHCI_COMMAND:
2201 if (!msm_host->use_cdr)
2202 break;
2203 if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
2204 !mmc_op_tuning(SDHCI_GET_CMD(val)))
2205 sdhci_msm_set_cdr(host, true);
2206 else
2207 sdhci_msm_set_cdr(host, false);
2208 break;
2209 }
2210
2211 if (req_type) {
2212 msm_host->pwr_irq_flag = 0;
2213 /*
2214 * Since this register write may trigger a power irq, ensure
2215 * all previous register writes are complete by this point.
2216 */
2217 mb();
2218 }
2219 return req_type;
2220 }
2221
2222 /* This function may sleep*/
sdhci_msm_writew(struct sdhci_host * host,u16 val,int reg)2223 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
2224 {
2225 u32 req_type = 0;
2226
2227 req_type = __sdhci_msm_check_write(host, val, reg);
2228 writew_relaxed(val, host->ioaddr + reg);
2229
2230 if (req_type)
2231 sdhci_msm_check_power_status(host, req_type);
2232 }
2233
2234 /* This function may sleep*/
sdhci_msm_writeb(struct sdhci_host * host,u8 val,int reg)2235 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
2236 {
2237 u32 req_type = 0;
2238
2239 req_type = __sdhci_msm_check_write(host, val, reg);
2240
2241 writeb_relaxed(val, host->ioaddr + reg);
2242
2243 if (req_type)
2244 sdhci_msm_check_power_status(host, req_type);
2245 }
2246
sdhci_msm_set_regulator_caps(struct sdhci_msm_host * msm_host)2247 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
2248 {
2249 struct mmc_host *mmc = msm_host->mmc;
2250 struct regulator *supply = mmc->supply.vqmmc;
2251 u32 caps = 0, config;
2252 struct sdhci_host *host = mmc_priv(mmc);
2253 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2254
2255 if (!IS_ERR(mmc->supply.vqmmc)) {
2256 if (regulator_is_supported_voltage(supply, 1700000, 1950000))
2257 caps |= CORE_1_8V_SUPPORT;
2258 if (regulator_is_supported_voltage(supply, 2700000, 3600000))
2259 caps |= CORE_3_0V_SUPPORT;
2260
2261 if (!caps)
2262 pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2263 mmc_hostname(mmc));
2264 }
2265
2266 if (caps) {
2267 /*
2268 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2269 * bit can be used as required later on.
2270 */
2271 u32 io_level = msm_host->curr_io_level;
2272
2273 config = readl_relaxed(host->ioaddr +
2274 msm_offset->core_vendor_spec);
2275 config |= CORE_IO_PAD_PWR_SWITCH_EN;
2276
2277 if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT))
2278 config &= ~CORE_IO_PAD_PWR_SWITCH;
2279 else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2280 config |= CORE_IO_PAD_PWR_SWITCH;
2281
2282 writel_relaxed(config,
2283 host->ioaddr + msm_offset->core_vendor_spec);
2284 }
2285 msm_host->caps_0 |= caps;
2286 pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2287 }
2288
sdhci_msm_register_vreg(struct sdhci_msm_host * msm_host)2289 static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2290 {
2291 int ret;
2292
2293 ret = mmc_regulator_get_supply(msm_host->mmc);
2294 if (ret)
2295 return ret;
2296
2297 sdhci_msm_set_regulator_caps(msm_host);
2298
2299 return 0;
2300 }
2301
sdhci_msm_start_signal_voltage_switch(struct mmc_host * mmc,struct mmc_ios * ios)2302 static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2303 struct mmc_ios *ios)
2304 {
2305 struct sdhci_host *host = mmc_priv(mmc);
2306 u16 ctrl, status;
2307
2308 /*
2309 * Signal Voltage Switching is only applicable for Host Controllers
2310 * v3.00 and above.
2311 */
2312 if (host->version < SDHCI_SPEC_300)
2313 return 0;
2314
2315 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2316
2317 switch (ios->signal_voltage) {
2318 case MMC_SIGNAL_VOLTAGE_330:
2319 if (!(host->flags & SDHCI_SIGNALING_330))
2320 return -EINVAL;
2321
2322 /* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2323 ctrl &= ~SDHCI_CTRL_VDD_180;
2324 break;
2325 case MMC_SIGNAL_VOLTAGE_180:
2326 if (!(host->flags & SDHCI_SIGNALING_180))
2327 return -EINVAL;
2328
2329 /* Enable 1.8V Signal Enable in the Host Control2 register */
2330 ctrl |= SDHCI_CTRL_VDD_180;
2331 break;
2332
2333 default:
2334 return -EINVAL;
2335 }
2336
2337 sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2338
2339 /* Wait for 5ms */
2340 usleep_range(5000, 5500);
2341
2342 /* regulator output should be stable within 5 ms */
2343 status = ctrl & SDHCI_CTRL_VDD_180;
2344 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2345 if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2346 return 0;
2347
2348 dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2349 mmc_hostname(mmc));
2350
2351 return -EAGAIN;
2352 }
2353
2354 #define DRIVER_NAME "sdhci_msm"
2355 #define SDHCI_MSM_DUMP(f, x...) \
2356 pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2357
sdhci_msm_dump_vendor_regs(struct sdhci_host * host)2358 static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2359 {
2360 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2361 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2362 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2363
2364 SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2365
2366 SDHCI_MSM_DUMP(
2367 "DLL sts: 0x%08x | DLL cfg: 0x%08x | DLL cfg2: 0x%08x\n",
2368 readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2369 readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2370 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2371 SDHCI_MSM_DUMP(
2372 "DLL cfg3: 0x%08x | DLL usr ctl: 0x%08x | DDR cfg: 0x%08x\n",
2373 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2374 readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2375 readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2376 SDHCI_MSM_DUMP(
2377 "Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2378 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2379 readl_relaxed(host->ioaddr +
2380 msm_offset->core_vendor_spec_func2),
2381 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2382 }
2383
2384 static const struct sdhci_msm_variant_ops mci_var_ops = {
2385 .msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2386 .msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2387 };
2388
2389 static const struct sdhci_msm_variant_ops v5_var_ops = {
2390 .msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2391 .msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2392 };
2393
2394 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2395 .var_ops = &mci_var_ops,
2396 .offset = &sdhci_msm_mci_offset,
2397 };
2398
2399 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2400 .mci_removed = true,
2401 .var_ops = &v5_var_ops,
2402 .offset = &sdhci_msm_v5_offset,
2403 };
2404
2405 static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2406 .mci_removed = true,
2407 .restore_dll_config = true,
2408 .var_ops = &v5_var_ops,
2409 .offset = &sdhci_msm_v5_offset,
2410 };
2411
2412 static const struct of_device_id sdhci_msm_dt_match[] = {
2413 /*
2414 * Do not add new variants to the driver which are compatible with
2415 * generic ones, unless they need customization.
2416 */
2417 {.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2418 {.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2419 {.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var},
2420 {.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2421 {.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2422 {},
2423 };
2424
2425 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2426
2427 static const struct sdhci_ops sdhci_msm_ops = {
2428 .reset = sdhci_and_cqhci_reset,
2429 .set_clock = sdhci_msm_set_clock,
2430 .get_min_clock = sdhci_msm_get_min_clock,
2431 .get_max_clock = sdhci_msm_get_max_clock,
2432 .set_bus_width = sdhci_set_bus_width,
2433 .set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2434 .write_w = sdhci_msm_writew,
2435 .write_b = sdhci_msm_writeb,
2436 .irq = sdhci_msm_cqe_irq,
2437 .dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2438 .set_power = sdhci_set_power_noreg,
2439 .set_timeout = sdhci_msm_set_timeout,
2440 };
2441
2442 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2443 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2444 SDHCI_QUIRK_SINGLE_POWER_WRITE |
2445 SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2446 SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2447
2448 .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2449 .ops = &sdhci_msm_ops,
2450 };
2451
sdhci_msm_get_of_property(struct platform_device * pdev,struct sdhci_host * host)2452 static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2453 struct sdhci_host *host)
2454 {
2455 struct device_node *node = pdev->dev.of_node;
2456 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2457 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2458
2459 if (of_property_read_u32(node, "qcom,ddr-config",
2460 &msm_host->ddr_config))
2461 msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2462
2463 of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2464
2465 if (of_device_is_compatible(node, "qcom,msm8916-sdhci"))
2466 host->quirks2 |= SDHCI_QUIRK2_BROKEN_64_BIT_DMA;
2467 }
2468
sdhci_msm_gcc_reset(struct device * dev,struct sdhci_host * host)2469 static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host)
2470 {
2471 struct reset_control *reset;
2472 int ret = 0;
2473
2474 reset = reset_control_get_optional_exclusive(dev, NULL);
2475 if (IS_ERR(reset))
2476 return dev_err_probe(dev, PTR_ERR(reset),
2477 "unable to acquire core_reset\n");
2478
2479 if (!reset)
2480 return ret;
2481
2482 ret = reset_control_assert(reset);
2483 if (ret) {
2484 reset_control_put(reset);
2485 return dev_err_probe(dev, ret, "core_reset assert failed\n");
2486 }
2487
2488 /*
2489 * The hardware requirement for delay between assert/deassert
2490 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
2491 * ~125us (4/32768). To be on the safe side add 200us delay.
2492 */
2493 usleep_range(200, 210);
2494
2495 ret = reset_control_deassert(reset);
2496 if (ret) {
2497 reset_control_put(reset);
2498 return dev_err_probe(dev, ret, "core_reset deassert failed\n");
2499 }
2500
2501 usleep_range(200, 210);
2502 reset_control_put(reset);
2503
2504 return ret;
2505 }
2506
sdhci_msm_probe(struct platform_device * pdev)2507 static int sdhci_msm_probe(struct platform_device *pdev)
2508 {
2509 struct sdhci_host *host;
2510 struct sdhci_pltfm_host *pltfm_host;
2511 struct sdhci_msm_host *msm_host;
2512 struct clk *clk;
2513 int ret;
2514 u16 host_version, core_minor;
2515 u32 core_version, config;
2516 u8 core_major;
2517 const struct sdhci_msm_offset *msm_offset;
2518 const struct sdhci_msm_variant_info *var_info;
2519 struct device_node *node = pdev->dev.of_node;
2520
2521 host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2522 if (IS_ERR(host))
2523 return PTR_ERR(host);
2524
2525 host->sdma_boundary = 0;
2526 pltfm_host = sdhci_priv(host);
2527 msm_host = sdhci_pltfm_priv(pltfm_host);
2528 msm_host->mmc = host->mmc;
2529 msm_host->pdev = pdev;
2530
2531 ret = mmc_of_parse(host->mmc);
2532 if (ret)
2533 goto pltfm_free;
2534
2535 /*
2536 * Based on the compatible string, load the required msm host info from
2537 * the data associated with the version info.
2538 */
2539 var_info = of_device_get_match_data(&pdev->dev);
2540
2541 msm_host->mci_removed = var_info->mci_removed;
2542 msm_host->restore_dll_config = var_info->restore_dll_config;
2543 msm_host->var_ops = var_info->var_ops;
2544 msm_host->offset = var_info->offset;
2545
2546 msm_offset = msm_host->offset;
2547
2548 sdhci_get_of_property(pdev);
2549 sdhci_msm_get_of_property(pdev, host);
2550
2551 msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2552
2553 ret = sdhci_msm_gcc_reset(&pdev->dev, host);
2554 if (ret)
2555 goto pltfm_free;
2556
2557 /* Setup SDCC bus voter clock. */
2558 msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2559 if (!IS_ERR(msm_host->bus_clk)) {
2560 /* Vote for max. clk rate for max. performance */
2561 ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2562 if (ret)
2563 goto pltfm_free;
2564 ret = clk_prepare_enable(msm_host->bus_clk);
2565 if (ret)
2566 goto pltfm_free;
2567 }
2568
2569 /* Setup main peripheral bus clock */
2570 clk = devm_clk_get(&pdev->dev, "iface");
2571 if (IS_ERR(clk)) {
2572 ret = PTR_ERR(clk);
2573 dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2574 goto bus_clk_disable;
2575 }
2576 msm_host->bulk_clks[1].clk = clk;
2577
2578 /* Setup SDC MMC clock */
2579 clk = devm_clk_get(&pdev->dev, "core");
2580 if (IS_ERR(clk)) {
2581 ret = PTR_ERR(clk);
2582 dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2583 goto bus_clk_disable;
2584 }
2585 msm_host->bulk_clks[0].clk = clk;
2586
2587 /* Check for optional interconnect paths */
2588 ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2589 if (ret)
2590 goto bus_clk_disable;
2591
2592 ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
2593 if (ret)
2594 goto bus_clk_disable;
2595
2596 /* OPP table is optional */
2597 ret = devm_pm_opp_of_add_table(&pdev->dev);
2598 if (ret && ret != -ENODEV) {
2599 dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2600 goto bus_clk_disable;
2601 }
2602
2603 /* Vote for maximum clock rate for maximum performance */
2604 ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2605 if (ret)
2606 dev_warn(&pdev->dev, "core clock boost failed\n");
2607
2608 clk = devm_clk_get(&pdev->dev, "cal");
2609 if (IS_ERR(clk))
2610 clk = NULL;
2611 msm_host->bulk_clks[2].clk = clk;
2612
2613 clk = devm_clk_get(&pdev->dev, "sleep");
2614 if (IS_ERR(clk))
2615 clk = NULL;
2616 msm_host->bulk_clks[3].clk = clk;
2617
2618 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2619 msm_host->bulk_clks);
2620 if (ret)
2621 goto bus_clk_disable;
2622
2623 /*
2624 * xo clock is needed for FLL feature of cm_dll.
2625 * In case if xo clock is not mentioned in DT, warn and proceed.
2626 */
2627 msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2628 if (IS_ERR(msm_host->xo_clk)) {
2629 ret = PTR_ERR(msm_host->xo_clk);
2630 dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2631 }
2632
2633 if (!msm_host->mci_removed) {
2634 msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2635 if (IS_ERR(msm_host->core_mem)) {
2636 ret = PTR_ERR(msm_host->core_mem);
2637 goto clk_disable;
2638 }
2639 }
2640
2641 /* Reset the vendor spec register to power on reset state */
2642 writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2643 host->ioaddr + msm_offset->core_vendor_spec);
2644
2645 if (!msm_host->mci_removed) {
2646 /* Set HC_MODE_EN bit in HC_MODE register */
2647 msm_host_writel(msm_host, HC_MODE_EN, host,
2648 msm_offset->core_hc_mode);
2649 config = msm_host_readl(msm_host, host,
2650 msm_offset->core_hc_mode);
2651 config |= FF_CLK_SW_RST_DIS;
2652 msm_host_writel(msm_host, config, host,
2653 msm_offset->core_hc_mode);
2654 }
2655
2656 host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2657 dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2658 host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2659 SDHCI_VENDOR_VER_SHIFT));
2660
2661 core_version = msm_host_readl(msm_host, host,
2662 msm_offset->core_mci_version);
2663 core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2664 CORE_VERSION_MAJOR_SHIFT;
2665 core_minor = core_version & CORE_VERSION_MINOR_MASK;
2666 dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2667 core_version, core_major, core_minor);
2668
2669 if (core_major == 1 && core_minor >= 0x42)
2670 msm_host->use_14lpp_dll_reset = true;
2671
2672 /*
2673 * SDCC 5 controller with major version 1, minor version 0x34 and later
2674 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2675 */
2676 if (core_major == 1 && core_minor < 0x34)
2677 msm_host->use_cdclp533 = true;
2678
2679 /*
2680 * Support for some capabilities is not advertised by newer
2681 * controller versions and must be explicitly enabled.
2682 */
2683 if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2684 config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2685 config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2686 writel_relaxed(config, host->ioaddr +
2687 msm_offset->core_vendor_spec_capabilities0);
2688 }
2689
2690 if (core_major == 1 && core_minor >= 0x49)
2691 msm_host->updated_ddr_cfg = true;
2692
2693 if (core_major == 1 && core_minor >= 0x71)
2694 msm_host->uses_tassadar_dll = true;
2695
2696 ret = sdhci_msm_register_vreg(msm_host);
2697 if (ret)
2698 goto clk_disable;
2699
2700 /*
2701 * Power on reset state may trigger power irq if previous status of
2702 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2703 * interrupt in GIC, any pending power irq interrupt should be
2704 * acknowledged. Otherwise power irq interrupt handler would be
2705 * fired prematurely.
2706 */
2707 sdhci_msm_handle_pwr_irq(host, 0);
2708
2709 /*
2710 * Ensure that above writes are propagated before interrupt enablement
2711 * in GIC.
2712 */
2713 mb();
2714
2715 /* Setup IRQ for handling power/voltage tasks with PMIC */
2716 msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2717 if (msm_host->pwr_irq < 0) {
2718 ret = msm_host->pwr_irq;
2719 goto clk_disable;
2720 }
2721
2722 sdhci_msm_init_pwr_irq_wait(msm_host);
2723 /* Enable pwr irq interrupts */
2724 msm_host_writel(msm_host, INT_MASK, host,
2725 msm_offset->core_pwrctl_mask);
2726
2727 ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2728 sdhci_msm_pwr_irq, IRQF_ONESHOT,
2729 dev_name(&pdev->dev), host);
2730 if (ret) {
2731 dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2732 goto clk_disable;
2733 }
2734
2735 msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2736
2737 /* Set the timeout value to max possible */
2738 host->max_timeout_count = 0xF;
2739
2740 pm_runtime_get_noresume(&pdev->dev);
2741 pm_runtime_set_active(&pdev->dev);
2742 pm_runtime_enable(&pdev->dev);
2743 pm_runtime_set_autosuspend_delay(&pdev->dev,
2744 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2745 pm_runtime_use_autosuspend(&pdev->dev);
2746
2747 host->mmc_host_ops.start_signal_voltage_switch =
2748 sdhci_msm_start_signal_voltage_switch;
2749 host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2750 if (of_property_read_bool(node, "supports-cqe"))
2751 ret = sdhci_msm_cqe_add_host(host, pdev);
2752 else
2753 ret = sdhci_add_host(host);
2754 if (ret)
2755 goto pm_runtime_disable;
2756
2757 pm_runtime_mark_last_busy(&pdev->dev);
2758 pm_runtime_put_autosuspend(&pdev->dev);
2759
2760 return 0;
2761
2762 pm_runtime_disable:
2763 pm_runtime_disable(&pdev->dev);
2764 pm_runtime_set_suspended(&pdev->dev);
2765 pm_runtime_put_noidle(&pdev->dev);
2766 clk_disable:
2767 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2768 msm_host->bulk_clks);
2769 bus_clk_disable:
2770 if (!IS_ERR(msm_host->bus_clk))
2771 clk_disable_unprepare(msm_host->bus_clk);
2772 pltfm_free:
2773 sdhci_pltfm_free(pdev);
2774 return ret;
2775 }
2776
sdhci_msm_remove(struct platform_device * pdev)2777 static void sdhci_msm_remove(struct platform_device *pdev)
2778 {
2779 struct sdhci_host *host = platform_get_drvdata(pdev);
2780 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2781 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2782 int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2783 0xffffffff);
2784
2785 sdhci_remove_host(host, dead);
2786
2787 pm_runtime_get_sync(&pdev->dev);
2788 pm_runtime_disable(&pdev->dev);
2789 pm_runtime_put_noidle(&pdev->dev);
2790
2791 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2792 msm_host->bulk_clks);
2793 if (!IS_ERR(msm_host->bus_clk))
2794 clk_disable_unprepare(msm_host->bus_clk);
2795 sdhci_pltfm_free(pdev);
2796 }
2797
sdhci_msm_runtime_suspend(struct device * dev)2798 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2799 {
2800 struct sdhci_host *host = dev_get_drvdata(dev);
2801 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2802 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2803 unsigned long flags;
2804
2805 spin_lock_irqsave(&host->lock, flags);
2806 host->runtime_suspended = true;
2807 spin_unlock_irqrestore(&host->lock, flags);
2808
2809 /* Drop the performance vote */
2810 dev_pm_opp_set_rate(dev, 0);
2811 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2812 msm_host->bulk_clks);
2813
2814 return sdhci_msm_ice_suspend(msm_host);
2815 }
2816
sdhci_msm_runtime_resume(struct device * dev)2817 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2818 {
2819 struct sdhci_host *host = dev_get_drvdata(dev);
2820 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2821 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2822 unsigned long flags;
2823 int ret;
2824
2825 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2826 msm_host->bulk_clks);
2827 if (ret)
2828 return ret;
2829 /*
2830 * Whenever core-clock is gated dynamically, it's needed to
2831 * restore the SDR DLL settings when the clock is ungated.
2832 */
2833 if (msm_host->restore_dll_config && msm_host->clk_rate) {
2834 ret = sdhci_msm_restore_sdr_dll_config(host);
2835 if (ret)
2836 return ret;
2837 }
2838
2839 dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2840
2841 ret = sdhci_msm_ice_resume(msm_host);
2842 if (ret)
2843 return ret;
2844
2845 spin_lock_irqsave(&host->lock, flags);
2846 host->runtime_suspended = false;
2847 spin_unlock_irqrestore(&host->lock, flags);
2848
2849 return ret;
2850 }
2851
2852 static const struct dev_pm_ops sdhci_msm_pm_ops = {
2853 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2854 pm_runtime_force_resume)
2855 SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2856 sdhci_msm_runtime_resume,
2857 NULL)
2858 };
2859
2860 static struct platform_driver sdhci_msm_driver = {
2861 .probe = sdhci_msm_probe,
2862 .remove = sdhci_msm_remove,
2863 .driver = {
2864 .name = "sdhci_msm",
2865 .of_match_table = sdhci_msm_dt_match,
2866 .pm = &sdhci_msm_pm_ops,
2867 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2868 },
2869 };
2870
2871 module_platform_driver(sdhci_msm_driver);
2872
2873 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2874 MODULE_LICENSE("GPL v2");
2875