xref: /linux/drivers/clocksource/hyperv_timer.c (revision 5f054ef2e0f1ca7d32ac48e275d08e2ac29d84f3)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Clocksource driver for the synthetic counter and timers
5  * provided by the Hyper-V hypervisor to guest VMs, as described
6  * in the Hyper-V Top Level Functional Spec (TLFS). This driver
7  * is instruction set architecture independent.
8  *
9  * Copyright (C) 2019, Microsoft, Inc.
10  *
11  * Author:  Michael Kelley <mikelley@microsoft.com>
12  */
13 
14 #include <linux/percpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/clockchips.h>
17 #include <linux/clocksource.h>
18 #include <linux/sched_clock.h>
19 #include <linux/mm.h>
20 #include <linux/cpuhotplug.h>
21 #include <linux/interrupt.h>
22 #include <linux/irq.h>
23 #include <linux/acpi.h>
24 #include <linux/hyperv.h>
25 #include <linux/export.h>
26 #include <clocksource/hyperv_timer.h>
27 #include <hyperv/hvhdk.h>
28 #include <asm/mshyperv.h>
29 
30 static struct clock_event_device __percpu *hv_clock_event;
31 /* Note: offset can hold negative values after hibernation. */
32 static u64 hv_sched_clock_offset __read_mostly;
33 
34 /*
35  * If false, we're using the old mechanism for stimer0 interrupts
36  * where it sends a VMbus message when it expires. The old
37  * mechanism is used when running on older versions of Hyper-V
38  * that don't support Direct Mode. While Hyper-V provides
39  * four stimer's per CPU, Linux uses only stimer0.
40  *
41  * Because Direct Mode does not require processing a VMbus
42  * message, stimer interrupts can be enabled earlier in the
43  * process of booting a CPU, and consistent with when timer
44  * interrupts are enabled for other clocksource drivers.
45  * However, for legacy versions of Hyper-V when Direct Mode
46  * is not enabled, setting up stimer interrupts must be
47  * delayed until VMbus is initialized and can process the
48  * interrupt message.
49  */
50 static bool direct_mode_enabled;
51 
52 static int stimer0_irq = -1;
53 static int stimer0_message_sint;
54 static __maybe_unused DEFINE_PER_CPU(long, stimer0_evt);
55 
56 /*
57  * Common code for stimer0 interrupts coming via Direct Mode or
58  * as a VMbus message.
59  */
hv_stimer0_isr(void)60 void hv_stimer0_isr(void)
61 {
62 	struct clock_event_device *ce;
63 
64 	ce = this_cpu_ptr(hv_clock_event);
65 	ce->event_handler(ce);
66 }
67 EXPORT_SYMBOL_GPL(hv_stimer0_isr);
68 
69 /*
70  * stimer0 interrupt handler for architectures that support
71  * per-cpu interrupts, which also implies Direct Mode.
72  */
hv_stimer0_percpu_isr(int irq,void * dev_id)73 static irqreturn_t __maybe_unused hv_stimer0_percpu_isr(int irq, void *dev_id)
74 {
75 	hv_stimer0_isr();
76 	return IRQ_HANDLED;
77 }
78 
hv_ce_set_next_event(unsigned long delta,struct clock_event_device * evt)79 static int hv_ce_set_next_event(unsigned long delta,
80 				struct clock_event_device *evt)
81 {
82 	u64 current_tick;
83 
84 	current_tick = hv_read_reference_counter();
85 	current_tick += delta;
86 	hv_set_msr(HV_MSR_STIMER0_COUNT, current_tick);
87 	return 0;
88 }
89 
hv_ce_shutdown(struct clock_event_device * evt)90 static int hv_ce_shutdown(struct clock_event_device *evt)
91 {
92 	hv_set_msr(HV_MSR_STIMER0_COUNT, 0);
93 	hv_set_msr(HV_MSR_STIMER0_CONFIG, 0);
94 	if (direct_mode_enabled && stimer0_irq >= 0)
95 		disable_percpu_irq(stimer0_irq);
96 
97 	return 0;
98 }
99 
hv_ce_set_oneshot(struct clock_event_device * evt)100 static int hv_ce_set_oneshot(struct clock_event_device *evt)
101 {
102 	union hv_stimer_config timer_cfg;
103 
104 	timer_cfg.as_uint64 = 0;
105 	timer_cfg.enable = 1;
106 	timer_cfg.auto_enable = 1;
107 	if (direct_mode_enabled) {
108 		/*
109 		 * When it expires, the timer will directly interrupt
110 		 * on the specified hardware vector/IRQ.
111 		 */
112 		timer_cfg.direct_mode = 1;
113 		timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
114 		if (stimer0_irq >= 0)
115 			enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
116 	} else {
117 		/*
118 		 * When it expires, the timer will generate a VMbus message,
119 		 * to be handled by the normal VMbus interrupt handler.
120 		 */
121 		timer_cfg.direct_mode = 0;
122 		timer_cfg.sintx = stimer0_message_sint;
123 	}
124 	hv_set_msr(HV_MSR_STIMER0_CONFIG, timer_cfg.as_uint64);
125 	return 0;
126 }
127 
128 /*
129  * hv_stimer_init - Per-cpu initialization of the clockevent
130  */
hv_stimer_init(unsigned int cpu)131 static int hv_stimer_init(unsigned int cpu)
132 {
133 	struct clock_event_device *ce;
134 
135 	if (!hv_clock_event)
136 		return 0;
137 
138 	ce = per_cpu_ptr(hv_clock_event, cpu);
139 	ce->name = "Hyper-V clockevent";
140 	ce->features = CLOCK_EVT_FEAT_ONESHOT;
141 	ce->cpumask = cpumask_of(cpu);
142 
143 	/*
144 	 * Lower the rating of the Hyper-V timer in a TDX VM without paravisor,
145 	 * so the local APIC timer (lapic_clockevent) is the default timer in
146 	 * such a VM. The Hyper-V timer is not preferred in such a VM because
147 	 * it depends on the slow VM Reference Counter MSR (the Hyper-V TSC
148 	 * page is not enbled in such a VM because the VM uses Invariant TSC
149 	 * as a better clocksource and it's challenging to mark the Hyper-V
150 	 * TSC page shared in very early boot).
151 	 */
152 	if (!ms_hyperv.paravisor_present && hv_isolation_type_tdx())
153 		ce->rating = 90;
154 	else
155 		ce->rating = 1000;
156 
157 	ce->set_state_shutdown = hv_ce_shutdown;
158 	ce->set_state_oneshot = hv_ce_set_oneshot;
159 	ce->set_next_event = hv_ce_set_next_event;
160 
161 	clockevents_config_and_register(ce,
162 					HV_CLOCK_HZ,
163 					HV_MIN_DELTA_TICKS,
164 					HV_MAX_MAX_DELTA_TICKS);
165 	return 0;
166 }
167 
168 /*
169  * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
170  */
hv_stimer_cleanup(unsigned int cpu)171 int hv_stimer_cleanup(unsigned int cpu)
172 {
173 	struct clock_event_device *ce;
174 
175 	if (!hv_clock_event)
176 		return 0;
177 
178 	/*
179 	 * In the legacy case where Direct Mode is not enabled
180 	 * (which can only be on x86/64), stimer cleanup happens
181 	 * relatively early in the CPU offlining process. We
182 	 * must unbind the stimer-based clockevent device so
183 	 * that the LAPIC timer can take over until clockevents
184 	 * are no longer needed in the offlining process. Note
185 	 * that clockevents_unbind_device() eventually calls
186 	 * hv_ce_shutdown().
187 	 *
188 	 * The unbind should not be done when Direct Mode is
189 	 * enabled because we may be on an architecture where
190 	 * there are no other clockevent devices to fallback to.
191 	 */
192 	ce = per_cpu_ptr(hv_clock_event, cpu);
193 	if (direct_mode_enabled)
194 		hv_ce_shutdown(ce);
195 	else
196 		clockevents_unbind_device(ce, cpu);
197 
198 	return 0;
199 }
200 EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
201 
202 /*
203  * These placeholders are overridden by arch specific code on
204  * architectures that need special setup of the stimer0 IRQ because
205  * they don't support per-cpu IRQs (such as x86/x64).
206  */
hv_setup_stimer0_handler(void (* handler)(void))207 void __weak hv_setup_stimer0_handler(void (*handler)(void))
208 {
209 };
210 
hv_remove_stimer0_handler(void)211 void __weak hv_remove_stimer0_handler(void)
212 {
213 };
214 
215 #ifdef CONFIG_ACPI
216 /* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
hv_setup_stimer0_irq(void)217 static int hv_setup_stimer0_irq(void)
218 {
219 	int ret;
220 
221 	ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
222 			ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
223 	if (ret < 0) {
224 		pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
225 		return ret;
226 	}
227 	stimer0_irq = ret;
228 
229 	ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
230 		"Hyper-V stimer0", &stimer0_evt);
231 	if (ret) {
232 		pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
233 			stimer0_irq, ret);
234 		acpi_unregister_gsi(stimer0_irq);
235 		stimer0_irq = -1;
236 	}
237 	return ret;
238 }
239 
hv_remove_stimer0_irq(void)240 static void hv_remove_stimer0_irq(void)
241 {
242 	if (stimer0_irq == -1) {
243 		hv_remove_stimer0_handler();
244 	} else {
245 		free_percpu_irq(stimer0_irq, &stimer0_evt);
246 		acpi_unregister_gsi(stimer0_irq);
247 		stimer0_irq = -1;
248 	}
249 }
250 #else
hv_setup_stimer0_irq(void)251 static int hv_setup_stimer0_irq(void)
252 {
253 	return 0;
254 }
255 
hv_remove_stimer0_irq(void)256 static void hv_remove_stimer0_irq(void)
257 {
258 }
259 #endif
260 
261 /* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
hv_stimer_alloc(bool have_percpu_irqs)262 int hv_stimer_alloc(bool have_percpu_irqs)
263 {
264 	int ret;
265 
266 	/*
267 	 * Synthetic timers are always available except on old versions of
268 	 * Hyper-V on x86.  In that case, return as error as Linux will use a
269 	 * clockevent based on emulated LAPIC timer hardware.
270 	 */
271 	if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
272 		return -EINVAL;
273 
274 	hv_clock_event = alloc_percpu(struct clock_event_device);
275 	if (!hv_clock_event)
276 		return -ENOMEM;
277 
278 	direct_mode_enabled = ms_hyperv.misc_features &
279 			HV_STIMER_DIRECT_MODE_AVAILABLE;
280 
281 	/*
282 	 * If Direct Mode isn't enabled, the remainder of the initialization
283 	 * is done later by hv_stimer_legacy_init()
284 	 */
285 	if (!direct_mode_enabled)
286 		return 0;
287 
288 	if (have_percpu_irqs) {
289 		ret = hv_setup_stimer0_irq();
290 		if (ret)
291 			goto free_clock_event;
292 	} else {
293 		hv_setup_stimer0_handler(hv_stimer0_isr);
294 	}
295 
296 	/*
297 	 * Since we are in Direct Mode, stimer initialization
298 	 * can be done now with a CPUHP value in the same range
299 	 * as other clockevent devices.
300 	 */
301 	ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
302 			"clockevents/hyperv/stimer:starting",
303 			hv_stimer_init, hv_stimer_cleanup);
304 	if (ret < 0) {
305 		hv_remove_stimer0_irq();
306 		goto free_clock_event;
307 	}
308 	return ret;
309 
310 free_clock_event:
311 	free_percpu(hv_clock_event);
312 	hv_clock_event = NULL;
313 	return ret;
314 }
315 EXPORT_SYMBOL_GPL(hv_stimer_alloc);
316 
317 /*
318  * hv_stimer_legacy_init -- Called from the VMbus driver to handle
319  * the case when Direct Mode is not enabled, and the stimer
320  * must be initialized late in the CPU onlining process.
321  *
322  */
hv_stimer_legacy_init(unsigned int cpu,int sint)323 void hv_stimer_legacy_init(unsigned int cpu, int sint)
324 {
325 	if (direct_mode_enabled)
326 		return;
327 
328 	/*
329 	 * This function gets called by each vCPU, so setting the
330 	 * global stimer_message_sint value each time is conceptually
331 	 * not ideal, but the value passed in is always the same and
332 	 * it avoids introducing yet another interface into this
333 	 * clocksource driver just to set the sint in the legacy case.
334 	 */
335 	stimer0_message_sint = sint;
336 	(void)hv_stimer_init(cpu);
337 }
338 EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
339 
340 /*
341  * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
342  * handle the case when Direct Mode is not enabled, and the
343  * stimer must be cleaned up early in the CPU offlining
344  * process.
345  */
hv_stimer_legacy_cleanup(unsigned int cpu)346 void hv_stimer_legacy_cleanup(unsigned int cpu)
347 {
348 	if (direct_mode_enabled)
349 		return;
350 	(void)hv_stimer_cleanup(cpu);
351 }
352 EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
353 
354 /*
355  * Do a global cleanup of clockevents for the cases of kexec and
356  * vmbus exit
357  */
hv_stimer_global_cleanup(void)358 void hv_stimer_global_cleanup(void)
359 {
360 	int	cpu;
361 
362 	/*
363 	 * hv_stime_legacy_cleanup() will stop the stimer if Direct
364 	 * Mode is not enabled, and fallback to the LAPIC timer.
365 	 */
366 	for_each_present_cpu(cpu) {
367 		hv_stimer_legacy_cleanup(cpu);
368 	}
369 
370 	if (!hv_clock_event)
371 		return;
372 
373 	if (direct_mode_enabled) {
374 		cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
375 		hv_remove_stimer0_irq();
376 		stimer0_irq = -1;
377 	}
378 	free_percpu(hv_clock_event);
379 	hv_clock_event = NULL;
380 
381 }
382 EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
383 
read_hv_clock_msr(void)384 static __always_inline u64 read_hv_clock_msr(void)
385 {
386 	/*
387 	 * Read the partition counter to get the current tick count. This count
388 	 * is set to 0 when the partition is created and is incremented in 100
389 	 * nanosecond units.
390 	 *
391 	 * Use hv_raw_get_msr() because this function is used from
392 	 * noinstr. Notable; while HV_MSR_TIME_REF_COUNT is a synthetic
393 	 * register it doesn't need the GHCB path.
394 	 */
395 	return hv_raw_get_msr(HV_MSR_TIME_REF_COUNT);
396 }
397 
398 /*
399  * Code and definitions for the Hyper-V clocksources.  Two
400  * clocksources are defined: one that reads the Hyper-V defined MSR, and
401  * the other that uses the TSC reference page feature as defined in the
402  * TLFS.  The MSR version is for compatibility with old versions of
403  * Hyper-V and 32-bit x86.  The TSC reference page version is preferred.
404  */
405 
406 static union {
407 	struct ms_hyperv_tsc_page page;
408 	u8 reserved[PAGE_SIZE];
409 } tsc_pg __bss_decrypted __aligned(PAGE_SIZE);
410 
411 static struct ms_hyperv_tsc_page *tsc_page = &tsc_pg.page;
412 static unsigned long tsc_pfn;
413 
hv_get_tsc_pfn(void)414 unsigned long hv_get_tsc_pfn(void)
415 {
416 	return tsc_pfn;
417 }
418 EXPORT_SYMBOL_GPL(hv_get_tsc_pfn);
419 
hv_get_tsc_page(void)420 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
421 {
422 	return tsc_page;
423 }
424 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
425 
read_hv_clock_tsc(void)426 static __always_inline u64 read_hv_clock_tsc(void)
427 {
428 	u64 cur_tsc, time;
429 
430 	/*
431 	 * The Hyper-V Top-Level Function Spec (TLFS), section Timers,
432 	 * subsection Refererence Counter, guarantees that the TSC and MSR
433 	 * times are in sync and monotonic. Therefore we can fall back
434 	 * to the MSR in case the TSC page indicates unavailability.
435 	 */
436 	if (!hv_read_tsc_page_tsc(tsc_page, &cur_tsc, &time))
437 		time = read_hv_clock_msr();
438 
439 	return time;
440 }
441 
read_hv_clock_tsc_cs(struct clocksource * arg)442 static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
443 {
444 	return read_hv_clock_tsc();
445 }
446 
read_hv_sched_clock_tsc(void)447 static u64 noinstr read_hv_sched_clock_tsc(void)
448 {
449 	return (read_hv_clock_tsc() - hv_sched_clock_offset) *
450 		(NSEC_PER_SEC / HV_CLOCK_HZ);
451 }
452 
suspend_hv_clock_tsc(struct clocksource * arg)453 static void suspend_hv_clock_tsc(struct clocksource *arg)
454 {
455 	union hv_reference_tsc_msr tsc_msr;
456 
457 	/* Disable the TSC page */
458 	tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
459 	tsc_msr.enable = 0;
460 	hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
461 }
462 
463 
resume_hv_clock_tsc(struct clocksource * arg)464 static void resume_hv_clock_tsc(struct clocksource *arg)
465 {
466 	union hv_reference_tsc_msr tsc_msr;
467 
468 	/* Re-enable the TSC page */
469 	tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
470 	tsc_msr.enable = 1;
471 	tsc_msr.pfn = tsc_pfn;
472 	hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
473 }
474 
475 /*
476  * Called during resume from hibernation, from overridden
477  * x86_platform.restore_sched_clock_state routine. This is to adjust offsets
478  * used to calculate time for hv tsc page based sched_clock, to account for
479  * time spent before hibernation.
480  */
hv_adj_sched_clock_offset(u64 offset)481 void hv_adj_sched_clock_offset(u64 offset)
482 {
483 	hv_sched_clock_offset -= offset;
484 }
485 
486 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
hv_cs_enable(struct clocksource * cs)487 static int hv_cs_enable(struct clocksource *cs)
488 {
489 	vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
490 	return 0;
491 }
492 #endif
493 
494 static struct clocksource hyperv_cs_tsc = {
495 	.name	= "hyperv_clocksource_tsc_page",
496 	.rating	= 500,
497 	.read	= read_hv_clock_tsc_cs,
498 	.mask	= CLOCKSOURCE_MASK(64),
499 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
500 	.suspend= suspend_hv_clock_tsc,
501 	.resume	= resume_hv_clock_tsc,
502 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
503 	.enable = hv_cs_enable,
504 	.vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
505 #else
506 	.vdso_clock_mode = VDSO_CLOCKMODE_NONE,
507 #endif
508 };
509 
read_hv_clock_msr_cs(struct clocksource * arg)510 static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
511 {
512 	return read_hv_clock_msr();
513 }
514 
515 static struct clocksource hyperv_cs_msr = {
516 	.name	= "hyperv_clocksource_msr",
517 	.rating	= 495,
518 	.read	= read_hv_clock_msr_cs,
519 	.mask	= CLOCKSOURCE_MASK(64),
520 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
521 };
522 
523 /*
524  * Reference to pv_ops must be inline so objtool
525  * detection of noinstr violations can work correctly.
526  */
527 #ifdef CONFIG_GENERIC_SCHED_CLOCK
hv_setup_sched_clock(void * sched_clock)528 static __always_inline void hv_setup_sched_clock(void *sched_clock)
529 {
530 	/*
531 	 * We're on an architecture with generic sched clock (not x86/x64).
532 	 * The Hyper-V sched clock read function returns nanoseconds, not
533 	 * the normal 100ns units of the Hyper-V synthetic clock.
534 	 */
535 	sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
536 }
537 #elif defined CONFIG_PARAVIRT
hv_setup_sched_clock(void * sched_clock)538 static __always_inline void hv_setup_sched_clock(void *sched_clock)
539 {
540 	/* We're on x86/x64 *and* using PV ops */
541 	paravirt_set_sched_clock(sched_clock);
542 }
543 #else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
hv_setup_sched_clock(void * sched_clock)544 static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
545 #endif /* CONFIG_GENERIC_SCHED_CLOCK */
546 
hv_init_tsc_clocksource(void)547 static void __init hv_init_tsc_clocksource(void)
548 {
549 	union hv_reference_tsc_msr tsc_msr;
550 
551 	/*
552 	 * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
553 	 * handles frequency and offset changes due to live migration,
554 	 * pause/resume, and other VM management operations.  So lower the
555 	 * Hyper-V Reference TSC rating, causing the generic TSC to be used.
556 	 * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
557 	 * TSC will be preferred over the virtualized ARM64 arch counter.
558 	 */
559 	if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
560 		hyperv_cs_tsc.rating = 250;
561 		hyperv_cs_msr.rating = 245;
562 	}
563 
564 	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
565 		return;
566 
567 	hv_read_reference_counter = read_hv_clock_tsc;
568 
569 	/*
570 	 * TSC page mapping works differently in root compared to guest.
571 	 * - In guest partition the guest PFN has to be passed to the
572 	 *   hypervisor.
573 	 * - In root partition it's other way around: it has to map the PFN
574 	 *   provided by the hypervisor.
575 	 *   But it can't be mapped right here as it's too early and MMU isn't
576 	 *   ready yet. So, we only set the enable bit here and will remap the
577 	 *   page later in hv_remap_tsc_clocksource().
578 	 *
579 	 * It worth mentioning, that TSC clocksource read function
580 	 * (read_hv_clock_tsc) has a MSR-based fallback mechanism, used when
581 	 * TSC page is zeroed (which is the case until the PFN is remapped) and
582 	 * thus TSC clocksource will work even without the real TSC page
583 	 * mapped.
584 	 */
585 	tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
586 	if (hv_root_partition())
587 		tsc_pfn = tsc_msr.pfn;
588 	else
589 		tsc_pfn = HVPFN_DOWN(virt_to_phys(tsc_page));
590 	tsc_msr.enable = 1;
591 	tsc_msr.pfn = tsc_pfn;
592 	hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
593 
594 	clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
595 
596 	/*
597 	 * If TSC is invariant, then let it stay as the sched clock since it
598 	 * will be faster than reading the TSC page. But if not invariant, use
599 	 * the TSC page so that live migrations across hosts with different
600 	 * frequencies is handled correctly.
601 	 */
602 	if (!(ms_hyperv.features & HV_ACCESS_TSC_INVARIANT)) {
603 		hv_sched_clock_offset = hv_read_reference_counter();
604 		hv_setup_sched_clock(read_hv_sched_clock_tsc);
605 	}
606 }
607 
hv_init_clocksource(void)608 void __init hv_init_clocksource(void)
609 {
610 	/*
611 	 * Try to set up the TSC page clocksource, then the MSR clocksource.
612 	 * At least one of these will always be available except on very old
613 	 * versions of Hyper-V on x86.  In that case we won't have a Hyper-V
614 	 * clocksource, but Linux will still run with a clocksource based
615 	 * on the emulated PIT or LAPIC timer.
616 	 *
617 	 * Never use the MSR clocksource as sched clock.  It's too slow.
618 	 * Better to use the native sched clock as the fallback.
619 	 */
620 	hv_init_tsc_clocksource();
621 
622 	if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)
623 		clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
624 }
625 
hv_remap_tsc_clocksource(void)626 void __init hv_remap_tsc_clocksource(void)
627 {
628 	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
629 		return;
630 
631 	if (!hv_root_partition()) {
632 		WARN(1, "%s: attempt to remap TSC page in guest partition\n",
633 		     __func__);
634 		return;
635 	}
636 
637 	tsc_page = memremap(tsc_pfn << HV_HYP_PAGE_SHIFT, sizeof(tsc_pg),
638 			    MEMREMAP_WB);
639 	if (!tsc_page)
640 		pr_err("Failed to remap Hyper-V TSC page.\n");
641 }
642