1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Clocksource driver for the synthetic counter and timers
5 * provided by the Hyper-V hypervisor to guest VMs, as described
6 * in the Hyper-V Top Level Functional Spec (TLFS). This driver
7 * is instruction set architecture independent.
8 *
9 * Copyright (C) 2019, Microsoft, Inc.
10 *
11 * Author: Michael Kelley <mikelley@microsoft.com>
12 */
13
14 #include <linux/percpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/clockchips.h>
17 #include <linux/clocksource.h>
18 #include <linux/sched_clock.h>
19 #include <linux/mm.h>
20 #include <linux/cpuhotplug.h>
21 #include <linux/interrupt.h>
22 #include <linux/irq.h>
23 #include <linux/acpi.h>
24 #include <linux/hyperv.h>
25 #include <linux/export.h>
26 #include <clocksource/hyperv_timer.h>
27 #include <hyperv/hvhdk.h>
28 #include <asm/mshyperv.h>
29
30 static struct clock_event_device __percpu *hv_clock_event;
31 /* Note: offset can hold negative values after hibernation. */
32 static u64 hv_sched_clock_offset __read_mostly;
33
34 /*
35 * If false, we're using the old mechanism for stimer0 interrupts
36 * where it sends a VMbus message when it expires. The old
37 * mechanism is used when running on older versions of Hyper-V
38 * that don't support Direct Mode. While Hyper-V provides
39 * four stimer's per CPU, Linux uses only stimer0.
40 *
41 * Because Direct Mode does not require processing a VMbus
42 * message, stimer interrupts can be enabled earlier in the
43 * process of booting a CPU, and consistent with when timer
44 * interrupts are enabled for other clocksource drivers.
45 * However, for legacy versions of Hyper-V when Direct Mode
46 * is not enabled, setting up stimer interrupts must be
47 * delayed until VMbus is initialized and can process the
48 * interrupt message.
49 */
50 static bool direct_mode_enabled;
51
52 static int stimer0_irq = -1;
53 static int stimer0_message_sint;
54 static __maybe_unused DEFINE_PER_CPU(long, stimer0_evt);
55
56 /*
57 * Common code for stimer0 interrupts coming via Direct Mode or
58 * as a VMbus message.
59 */
hv_stimer0_isr(void)60 void hv_stimer0_isr(void)
61 {
62 struct clock_event_device *ce;
63
64 ce = this_cpu_ptr(hv_clock_event);
65 ce->event_handler(ce);
66 }
67 EXPORT_SYMBOL_GPL(hv_stimer0_isr);
68
69 /*
70 * stimer0 interrupt handler for architectures that support
71 * per-cpu interrupts, which also implies Direct Mode.
72 */
hv_stimer0_percpu_isr(int irq,void * dev_id)73 static irqreturn_t __maybe_unused hv_stimer0_percpu_isr(int irq, void *dev_id)
74 {
75 hv_stimer0_isr();
76 return IRQ_HANDLED;
77 }
78
hv_ce_set_next_event(unsigned long delta,struct clock_event_device * evt)79 static int hv_ce_set_next_event(unsigned long delta,
80 struct clock_event_device *evt)
81 {
82 u64 current_tick;
83
84 current_tick = hv_read_reference_counter();
85 current_tick += delta;
86 hv_set_msr(HV_MSR_STIMER0_COUNT, current_tick);
87 return 0;
88 }
89
hv_ce_shutdown(struct clock_event_device * evt)90 static int hv_ce_shutdown(struct clock_event_device *evt)
91 {
92 hv_set_msr(HV_MSR_STIMER0_COUNT, 0);
93 hv_set_msr(HV_MSR_STIMER0_CONFIG, 0);
94 if (direct_mode_enabled && stimer0_irq >= 0)
95 disable_percpu_irq(stimer0_irq);
96
97 return 0;
98 }
99
hv_ce_set_oneshot(struct clock_event_device * evt)100 static int hv_ce_set_oneshot(struct clock_event_device *evt)
101 {
102 union hv_stimer_config timer_cfg;
103
104 timer_cfg.as_uint64 = 0;
105 timer_cfg.enable = 1;
106 timer_cfg.auto_enable = 1;
107 if (direct_mode_enabled) {
108 /*
109 * When it expires, the timer will directly interrupt
110 * on the specified hardware vector/IRQ.
111 */
112 timer_cfg.direct_mode = 1;
113 timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
114 if (stimer0_irq >= 0)
115 enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
116 } else {
117 /*
118 * When it expires, the timer will generate a VMbus message,
119 * to be handled by the normal VMbus interrupt handler.
120 */
121 timer_cfg.direct_mode = 0;
122 timer_cfg.sintx = stimer0_message_sint;
123 }
124 hv_set_msr(HV_MSR_STIMER0_CONFIG, timer_cfg.as_uint64);
125 return 0;
126 }
127
128 /*
129 * hv_stimer_init - Per-cpu initialization of the clockevent
130 */
hv_stimer_init(unsigned int cpu)131 static int hv_stimer_init(unsigned int cpu)
132 {
133 struct clock_event_device *ce;
134
135 if (!hv_clock_event)
136 return 0;
137
138 ce = per_cpu_ptr(hv_clock_event, cpu);
139 ce->name = "Hyper-V clockevent";
140 ce->features = CLOCK_EVT_FEAT_ONESHOT;
141 ce->cpumask = cpumask_of(cpu);
142
143 /*
144 * Lower the rating of the Hyper-V timer in a TDX VM without paravisor,
145 * so the local APIC timer (lapic_clockevent) is the default timer in
146 * such a VM. The Hyper-V timer is not preferred in such a VM because
147 * it depends on the slow VM Reference Counter MSR (the Hyper-V TSC
148 * page is not enbled in such a VM because the VM uses Invariant TSC
149 * as a better clocksource and it's challenging to mark the Hyper-V
150 * TSC page shared in very early boot).
151 */
152 if (!ms_hyperv.paravisor_present && hv_isolation_type_tdx())
153 ce->rating = 90;
154 else
155 ce->rating = 1000;
156
157 ce->set_state_shutdown = hv_ce_shutdown;
158 ce->set_state_oneshot = hv_ce_set_oneshot;
159 ce->set_next_event = hv_ce_set_next_event;
160
161 clockevents_config_and_register(ce,
162 HV_CLOCK_HZ,
163 HV_MIN_DELTA_TICKS,
164 HV_MAX_MAX_DELTA_TICKS);
165 return 0;
166 }
167
168 /*
169 * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
170 */
hv_stimer_cleanup(unsigned int cpu)171 int hv_stimer_cleanup(unsigned int cpu)
172 {
173 struct clock_event_device *ce;
174
175 if (!hv_clock_event)
176 return 0;
177
178 /*
179 * In the legacy case where Direct Mode is not enabled
180 * (which can only be on x86/64), stimer cleanup happens
181 * relatively early in the CPU offlining process. We
182 * must unbind the stimer-based clockevent device so
183 * that the LAPIC timer can take over until clockevents
184 * are no longer needed in the offlining process. Note
185 * that clockevents_unbind_device() eventually calls
186 * hv_ce_shutdown().
187 *
188 * The unbind should not be done when Direct Mode is
189 * enabled because we may be on an architecture where
190 * there are no other clockevent devices to fallback to.
191 */
192 ce = per_cpu_ptr(hv_clock_event, cpu);
193 if (direct_mode_enabled)
194 hv_ce_shutdown(ce);
195 else
196 clockevents_unbind_device(ce, cpu);
197
198 return 0;
199 }
200 EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
201
202 /*
203 * These placeholders are overridden by arch specific code on
204 * architectures that need special setup of the stimer0 IRQ because
205 * they don't support per-cpu IRQs (such as x86/x64).
206 */
hv_setup_stimer0_handler(void (* handler)(void))207 void __weak hv_setup_stimer0_handler(void (*handler)(void))
208 {
209 };
210
hv_remove_stimer0_handler(void)211 void __weak hv_remove_stimer0_handler(void)
212 {
213 };
214
215 #ifdef CONFIG_ACPI
216 /* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
hv_setup_stimer0_irq(void)217 static int hv_setup_stimer0_irq(void)
218 {
219 int ret;
220
221 ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
222 ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
223 if (ret < 0) {
224 pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
225 return ret;
226 }
227 stimer0_irq = ret;
228
229 ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
230 "Hyper-V stimer0", &stimer0_evt);
231 if (ret) {
232 pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
233 stimer0_irq, ret);
234 acpi_unregister_gsi(stimer0_irq);
235 stimer0_irq = -1;
236 }
237 return ret;
238 }
239
hv_remove_stimer0_irq(void)240 static void hv_remove_stimer0_irq(void)
241 {
242 if (stimer0_irq == -1) {
243 hv_remove_stimer0_handler();
244 } else {
245 free_percpu_irq(stimer0_irq, &stimer0_evt);
246 acpi_unregister_gsi(stimer0_irq);
247 stimer0_irq = -1;
248 }
249 }
250 #else
hv_setup_stimer0_irq(void)251 static int hv_setup_stimer0_irq(void)
252 {
253 return 0;
254 }
255
hv_remove_stimer0_irq(void)256 static void hv_remove_stimer0_irq(void)
257 {
258 }
259 #endif
260
261 /* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
hv_stimer_alloc(bool have_percpu_irqs)262 int hv_stimer_alloc(bool have_percpu_irqs)
263 {
264 int ret;
265
266 /*
267 * Synthetic timers are always available except on old versions of
268 * Hyper-V on x86. In that case, return as error as Linux will use a
269 * clockevent based on emulated LAPIC timer hardware.
270 */
271 if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
272 return -EINVAL;
273
274 hv_clock_event = alloc_percpu(struct clock_event_device);
275 if (!hv_clock_event)
276 return -ENOMEM;
277
278 direct_mode_enabled = ms_hyperv.misc_features &
279 HV_STIMER_DIRECT_MODE_AVAILABLE;
280
281 /*
282 * If Direct Mode isn't enabled, the remainder of the initialization
283 * is done later by hv_stimer_legacy_init()
284 */
285 if (!direct_mode_enabled)
286 return 0;
287
288 if (have_percpu_irqs) {
289 ret = hv_setup_stimer0_irq();
290 if (ret)
291 goto free_clock_event;
292 } else {
293 hv_setup_stimer0_handler(hv_stimer0_isr);
294 }
295
296 /*
297 * Since we are in Direct Mode, stimer initialization
298 * can be done now with a CPUHP value in the same range
299 * as other clockevent devices.
300 */
301 ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
302 "clockevents/hyperv/stimer:starting",
303 hv_stimer_init, hv_stimer_cleanup);
304 if (ret < 0) {
305 hv_remove_stimer0_irq();
306 goto free_clock_event;
307 }
308 return ret;
309
310 free_clock_event:
311 free_percpu(hv_clock_event);
312 hv_clock_event = NULL;
313 return ret;
314 }
315 EXPORT_SYMBOL_GPL(hv_stimer_alloc);
316
317 /*
318 * hv_stimer_legacy_init -- Called from the VMbus driver to handle
319 * the case when Direct Mode is not enabled, and the stimer
320 * must be initialized late in the CPU onlining process.
321 *
322 */
hv_stimer_legacy_init(unsigned int cpu,int sint)323 void hv_stimer_legacy_init(unsigned int cpu, int sint)
324 {
325 if (direct_mode_enabled)
326 return;
327
328 /*
329 * This function gets called by each vCPU, so setting the
330 * global stimer_message_sint value each time is conceptually
331 * not ideal, but the value passed in is always the same and
332 * it avoids introducing yet another interface into this
333 * clocksource driver just to set the sint in the legacy case.
334 */
335 stimer0_message_sint = sint;
336 (void)hv_stimer_init(cpu);
337 }
338 EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
339
340 /*
341 * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
342 * handle the case when Direct Mode is not enabled, and the
343 * stimer must be cleaned up early in the CPU offlining
344 * process.
345 */
hv_stimer_legacy_cleanup(unsigned int cpu)346 void hv_stimer_legacy_cleanup(unsigned int cpu)
347 {
348 if (direct_mode_enabled)
349 return;
350 (void)hv_stimer_cleanup(cpu);
351 }
352 EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
353
354 /*
355 * Do a global cleanup of clockevents for the cases of kexec and
356 * vmbus exit
357 */
hv_stimer_global_cleanup(void)358 void hv_stimer_global_cleanup(void)
359 {
360 int cpu;
361
362 /*
363 * hv_stime_legacy_cleanup() will stop the stimer if Direct
364 * Mode is not enabled, and fallback to the LAPIC timer.
365 */
366 for_each_present_cpu(cpu) {
367 hv_stimer_legacy_cleanup(cpu);
368 }
369
370 if (!hv_clock_event)
371 return;
372
373 if (direct_mode_enabled) {
374 cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
375 hv_remove_stimer0_irq();
376 stimer0_irq = -1;
377 }
378 free_percpu(hv_clock_event);
379 hv_clock_event = NULL;
380
381 }
382 EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
383
read_hv_clock_msr(void)384 static __always_inline u64 read_hv_clock_msr(void)
385 {
386 /*
387 * Read the partition counter to get the current tick count. This count
388 * is set to 0 when the partition is created and is incremented in 100
389 * nanosecond units.
390 *
391 * Use hv_raw_get_msr() because this function is used from
392 * noinstr. Notable; while HV_MSR_TIME_REF_COUNT is a synthetic
393 * register it doesn't need the GHCB path.
394 */
395 return hv_raw_get_msr(HV_MSR_TIME_REF_COUNT);
396 }
397
398 /*
399 * Code and definitions for the Hyper-V clocksources. Two
400 * clocksources are defined: one that reads the Hyper-V defined MSR, and
401 * the other that uses the TSC reference page feature as defined in the
402 * TLFS. The MSR version is for compatibility with old versions of
403 * Hyper-V and 32-bit x86. The TSC reference page version is preferred.
404 */
405
406 static union {
407 struct ms_hyperv_tsc_page page;
408 u8 reserved[PAGE_SIZE];
409 } tsc_pg __bss_decrypted __aligned(PAGE_SIZE);
410
411 static struct ms_hyperv_tsc_page *tsc_page = &tsc_pg.page;
412 static unsigned long tsc_pfn;
413
hv_get_tsc_pfn(void)414 unsigned long hv_get_tsc_pfn(void)
415 {
416 return tsc_pfn;
417 }
418 EXPORT_SYMBOL_GPL(hv_get_tsc_pfn);
419
hv_get_tsc_page(void)420 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
421 {
422 return tsc_page;
423 }
424 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
425
read_hv_clock_tsc(void)426 static __always_inline u64 read_hv_clock_tsc(void)
427 {
428 u64 cur_tsc, time;
429
430 /*
431 * The Hyper-V Top-Level Function Spec (TLFS), section Timers,
432 * subsection Refererence Counter, guarantees that the TSC and MSR
433 * times are in sync and monotonic. Therefore we can fall back
434 * to the MSR in case the TSC page indicates unavailability.
435 */
436 if (!hv_read_tsc_page_tsc(tsc_page, &cur_tsc, &time))
437 time = read_hv_clock_msr();
438
439 return time;
440 }
441
read_hv_clock_tsc_cs(struct clocksource * arg)442 static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
443 {
444 return read_hv_clock_tsc();
445 }
446
read_hv_sched_clock_tsc(void)447 static u64 noinstr read_hv_sched_clock_tsc(void)
448 {
449 return (read_hv_clock_tsc() - hv_sched_clock_offset) *
450 (NSEC_PER_SEC / HV_CLOCK_HZ);
451 }
452
suspend_hv_clock_tsc(struct clocksource * arg)453 static void suspend_hv_clock_tsc(struct clocksource *arg)
454 {
455 union hv_reference_tsc_msr tsc_msr;
456
457 /* Disable the TSC page */
458 tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
459 tsc_msr.enable = 0;
460 hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
461 }
462
463
resume_hv_clock_tsc(struct clocksource * arg)464 static void resume_hv_clock_tsc(struct clocksource *arg)
465 {
466 union hv_reference_tsc_msr tsc_msr;
467
468 /* Re-enable the TSC page */
469 tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
470 tsc_msr.enable = 1;
471 tsc_msr.pfn = tsc_pfn;
472 hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
473 }
474
475 /*
476 * Called during resume from hibernation, from overridden
477 * x86_platform.restore_sched_clock_state routine. This is to adjust offsets
478 * used to calculate time for hv tsc page based sched_clock, to account for
479 * time spent before hibernation.
480 */
hv_adj_sched_clock_offset(u64 offset)481 void hv_adj_sched_clock_offset(u64 offset)
482 {
483 hv_sched_clock_offset -= offset;
484 }
485
486 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
hv_cs_enable(struct clocksource * cs)487 static int hv_cs_enable(struct clocksource *cs)
488 {
489 vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
490 return 0;
491 }
492 #endif
493
494 static struct clocksource hyperv_cs_tsc = {
495 .name = "hyperv_clocksource_tsc_page",
496 .rating = 500,
497 .read = read_hv_clock_tsc_cs,
498 .mask = CLOCKSOURCE_MASK(64),
499 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
500 .suspend= suspend_hv_clock_tsc,
501 .resume = resume_hv_clock_tsc,
502 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
503 .enable = hv_cs_enable,
504 .vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
505 #else
506 .vdso_clock_mode = VDSO_CLOCKMODE_NONE,
507 #endif
508 };
509
read_hv_clock_msr_cs(struct clocksource * arg)510 static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
511 {
512 return read_hv_clock_msr();
513 }
514
515 static struct clocksource hyperv_cs_msr = {
516 .name = "hyperv_clocksource_msr",
517 .rating = 495,
518 .read = read_hv_clock_msr_cs,
519 .mask = CLOCKSOURCE_MASK(64),
520 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
521 };
522
523 /*
524 * Reference to pv_ops must be inline so objtool
525 * detection of noinstr violations can work correctly.
526 */
527 #ifdef CONFIG_GENERIC_SCHED_CLOCK
hv_setup_sched_clock(void * sched_clock)528 static __always_inline void hv_setup_sched_clock(void *sched_clock)
529 {
530 /*
531 * We're on an architecture with generic sched clock (not x86/x64).
532 * The Hyper-V sched clock read function returns nanoseconds, not
533 * the normal 100ns units of the Hyper-V synthetic clock.
534 */
535 sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
536 }
537 #elif defined CONFIG_PARAVIRT
hv_setup_sched_clock(void * sched_clock)538 static __always_inline void hv_setup_sched_clock(void *sched_clock)
539 {
540 /* We're on x86/x64 *and* using PV ops */
541 paravirt_set_sched_clock(sched_clock);
542 }
543 #else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
hv_setup_sched_clock(void * sched_clock)544 static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
545 #endif /* CONFIG_GENERIC_SCHED_CLOCK */
546
hv_init_tsc_clocksource(void)547 static void __init hv_init_tsc_clocksource(void)
548 {
549 union hv_reference_tsc_msr tsc_msr;
550
551 /*
552 * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
553 * handles frequency and offset changes due to live migration,
554 * pause/resume, and other VM management operations. So lower the
555 * Hyper-V Reference TSC rating, causing the generic TSC to be used.
556 * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
557 * TSC will be preferred over the virtualized ARM64 arch counter.
558 */
559 if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
560 hyperv_cs_tsc.rating = 250;
561 hyperv_cs_msr.rating = 245;
562 }
563
564 if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
565 return;
566
567 hv_read_reference_counter = read_hv_clock_tsc;
568
569 /*
570 * TSC page mapping works differently in root compared to guest.
571 * - In guest partition the guest PFN has to be passed to the
572 * hypervisor.
573 * - In root partition it's other way around: it has to map the PFN
574 * provided by the hypervisor.
575 * But it can't be mapped right here as it's too early and MMU isn't
576 * ready yet. So, we only set the enable bit here and will remap the
577 * page later in hv_remap_tsc_clocksource().
578 *
579 * It worth mentioning, that TSC clocksource read function
580 * (read_hv_clock_tsc) has a MSR-based fallback mechanism, used when
581 * TSC page is zeroed (which is the case until the PFN is remapped) and
582 * thus TSC clocksource will work even without the real TSC page
583 * mapped.
584 */
585 tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
586 if (hv_root_partition())
587 tsc_pfn = tsc_msr.pfn;
588 else
589 tsc_pfn = HVPFN_DOWN(virt_to_phys(tsc_page));
590 tsc_msr.enable = 1;
591 tsc_msr.pfn = tsc_pfn;
592 hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
593
594 clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
595
596 /*
597 * If TSC is invariant, then let it stay as the sched clock since it
598 * will be faster than reading the TSC page. But if not invariant, use
599 * the TSC page so that live migrations across hosts with different
600 * frequencies is handled correctly.
601 */
602 if (!(ms_hyperv.features & HV_ACCESS_TSC_INVARIANT)) {
603 hv_sched_clock_offset = hv_read_reference_counter();
604 hv_setup_sched_clock(read_hv_sched_clock_tsc);
605 }
606 }
607
hv_init_clocksource(void)608 void __init hv_init_clocksource(void)
609 {
610 /*
611 * Try to set up the TSC page clocksource, then the MSR clocksource.
612 * At least one of these will always be available except on very old
613 * versions of Hyper-V on x86. In that case we won't have a Hyper-V
614 * clocksource, but Linux will still run with a clocksource based
615 * on the emulated PIT or LAPIC timer.
616 *
617 * Never use the MSR clocksource as sched clock. It's too slow.
618 * Better to use the native sched clock as the fallback.
619 */
620 hv_init_tsc_clocksource();
621
622 if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)
623 clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
624 }
625
hv_remap_tsc_clocksource(void)626 void __init hv_remap_tsc_clocksource(void)
627 {
628 if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
629 return;
630
631 if (!hv_root_partition()) {
632 WARN(1, "%s: attempt to remap TSC page in guest partition\n",
633 __func__);
634 return;
635 }
636
637 tsc_page = memremap(tsc_pfn << HV_HYP_PAGE_SHIFT, sizeof(tsc_pg),
638 MEMREMAP_WB);
639 if (!tsc_page)
640 pr_err("Failed to remap Hyper-V TSC page.\n");
641 }
642