xref: /linux/fs/xfs/scrub/repair.c (revision c148bc7535650fbfa95a1f571b9ffa2ab478ea33)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2018-2023 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <djwong@kernel.org>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans.h"
15 #include "xfs_sb.h"
16 #include "xfs_inode.h"
17 #include "xfs_alloc.h"
18 #include "xfs_alloc_btree.h"
19 #include "xfs_ialloc.h"
20 #include "xfs_ialloc_btree.h"
21 #include "xfs_rmap.h"
22 #include "xfs_rmap_btree.h"
23 #include "xfs_refcount_btree.h"
24 #include "xfs_rtbitmap.h"
25 #include "xfs_extent_busy.h"
26 #include "xfs_ag.h"
27 #include "xfs_ag_resv.h"
28 #include "xfs_quota.h"
29 #include "xfs_qm.h"
30 #include "xfs_defer.h"
31 #include "xfs_errortag.h"
32 #include "xfs_error.h"
33 #include "xfs_reflink.h"
34 #include "xfs_health.h"
35 #include "xfs_buf_mem.h"
36 #include "xfs_da_format.h"
37 #include "xfs_da_btree.h"
38 #include "xfs_attr.h"
39 #include "xfs_dir2.h"
40 #include "xfs_rtrmap_btree.h"
41 #include "xfs_rtbitmap.h"
42 #include "xfs_rtgroup.h"
43 #include "xfs_rtalloc.h"
44 #include "xfs_metafile.h"
45 #include "xfs_rtrefcount_btree.h"
46 #include "xfs_zone_alloc.h"
47 #include "scrub/scrub.h"
48 #include "scrub/common.h"
49 #include "scrub/trace.h"
50 #include "scrub/repair.h"
51 #include "scrub/bitmap.h"
52 #include "scrub/stats.h"
53 #include "scrub/xfile.h"
54 #include "scrub/attr_repair.h"
55 
56 /*
57  * Attempt to repair some metadata, if the metadata is corrupt and userspace
58  * told us to fix it.  This function returns -EAGAIN to mean "re-run scrub",
59  * and will set *fixed to true if it thinks it repaired anything.
60  */
61 int
xrep_attempt(struct xfs_scrub * sc,struct xchk_stats_run * run)62 xrep_attempt(
63 	struct xfs_scrub	*sc,
64 	struct xchk_stats_run	*run)
65 {
66 	u64			repair_start;
67 	int			error = 0;
68 
69 	trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error);
70 
71 	xchk_ag_btcur_free(&sc->sa);
72 	xchk_rtgroup_btcur_free(&sc->sr);
73 
74 	/* Repair whatever's broken. */
75 	ASSERT(sc->ops->repair);
76 	run->repair_attempted = true;
77 	repair_start = xchk_stats_now();
78 	error = sc->ops->repair(sc);
79 	trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error);
80 	run->repair_ns += xchk_stats_elapsed_ns(repair_start);
81 	switch (error) {
82 	case 0:
83 		/*
84 		 * Repair succeeded.  Commit the fixes and perform a second
85 		 * scrub so that we can tell userspace if we fixed the problem.
86 		 */
87 		sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
88 		sc->flags |= XREP_ALREADY_FIXED;
89 		run->repair_succeeded = true;
90 		return -EAGAIN;
91 	case -ECHRNG:
92 		sc->flags |= XCHK_NEED_DRAIN;
93 		run->retries++;
94 		return -EAGAIN;
95 	case -EDEADLOCK:
96 		/* Tell the caller to try again having grabbed all the locks. */
97 		if (!(sc->flags & XCHK_TRY_HARDER)) {
98 			sc->flags |= XCHK_TRY_HARDER;
99 			run->retries++;
100 			return -EAGAIN;
101 		}
102 		/*
103 		 * We tried harder but still couldn't grab all the resources
104 		 * we needed to fix it.  The corruption has not been fixed,
105 		 * so exit to userspace with the scan's output flags unchanged.
106 		 */
107 		return 0;
108 	default:
109 		/*
110 		 * EAGAIN tells the caller to re-scrub, so we cannot return
111 		 * that here.
112 		 */
113 		ASSERT(error != -EAGAIN);
114 		return error;
115 	}
116 }
117 
118 /*
119  * Complain about unfixable problems in the filesystem.  We don't log
120  * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
121  * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
122  * administrator isn't running xfs_scrub in no-repairs mode.
123  *
124  * Use this helper function because _ratelimited silently declares a static
125  * structure to track rate limiting information.
126  */
127 void
xrep_failure(struct xfs_mount * mp)128 xrep_failure(
129 	struct xfs_mount	*mp)
130 {
131 	xfs_alert_ratelimited(mp,
132 "Corruption not fixed during online repair.  Unmount and run xfs_repair.");
133 }
134 
135 /*
136  * Repair probe -- userspace uses this to probe if we're willing to repair a
137  * given mountpoint.
138  */
139 int
xrep_probe(struct xfs_scrub * sc)140 xrep_probe(
141 	struct xfs_scrub	*sc)
142 {
143 	int			error = 0;
144 
145 	if (xchk_should_terminate(sc, &error))
146 		return error;
147 
148 	return 0;
149 }
150 
151 /*
152  * Roll a transaction, keeping the AG headers locked and reinitializing
153  * the btree cursors.
154  */
155 int
xrep_roll_ag_trans(struct xfs_scrub * sc)156 xrep_roll_ag_trans(
157 	struct xfs_scrub	*sc)
158 {
159 	int			error;
160 
161 	/*
162 	 * Keep the AG header buffers locked while we roll the transaction.
163 	 * Ensure that both AG buffers are dirty and held when we roll the
164 	 * transaction so that they move forward in the log without losing the
165 	 * bli (and hence the bli type) when the transaction commits.
166 	 *
167 	 * Normal code would never hold clean buffers across a roll, but repair
168 	 * needs both buffers to maintain a total lock on the AG.
169 	 */
170 	if (sc->sa.agi_bp) {
171 		xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM);
172 		xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
173 	}
174 
175 	if (sc->sa.agf_bp) {
176 		xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM);
177 		xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
178 	}
179 
180 	/*
181 	 * Roll the transaction.  We still hold the AG header buffers locked
182 	 * regardless of whether or not that succeeds.  On failure, the buffers
183 	 * will be released during teardown on our way out of the kernel.  If
184 	 * successful, join the buffers to the new transaction and move on.
185 	 */
186 	error = xfs_trans_roll(&sc->tp);
187 	if (error)
188 		return error;
189 
190 	/* Join the AG headers to the new transaction. */
191 	if (sc->sa.agi_bp)
192 		xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
193 	if (sc->sa.agf_bp)
194 		xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
195 
196 	return 0;
197 }
198 
199 /* Roll the scrub transaction, holding the primary metadata locked. */
200 int
xrep_roll_trans(struct xfs_scrub * sc)201 xrep_roll_trans(
202 	struct xfs_scrub	*sc)
203 {
204 	if (!sc->ip)
205 		return xrep_roll_ag_trans(sc);
206 	return xfs_trans_roll_inode(&sc->tp, sc->ip);
207 }
208 
209 /* Finish all deferred work attached to the repair transaction. */
210 int
xrep_defer_finish(struct xfs_scrub * sc)211 xrep_defer_finish(
212 	struct xfs_scrub	*sc)
213 {
214 	int			error;
215 
216 	/*
217 	 * Keep the AG header buffers locked while we complete deferred work
218 	 * items.  Ensure that both AG buffers are dirty and held when we roll
219 	 * the transaction so that they move forward in the log without losing
220 	 * the bli (and hence the bli type) when the transaction commits.
221 	 *
222 	 * Normal code would never hold clean buffers across a roll, but repair
223 	 * needs both buffers to maintain a total lock on the AG.
224 	 */
225 	if (sc->sa.agi_bp) {
226 		xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM);
227 		xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
228 	}
229 
230 	if (sc->sa.agf_bp) {
231 		xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM);
232 		xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
233 	}
234 
235 	/*
236 	 * Finish all deferred work items.  We still hold the AG header buffers
237 	 * locked regardless of whether or not that succeeds.  On failure, the
238 	 * buffers will be released during teardown on our way out of the
239 	 * kernel.  If successful, join the buffers to the new transaction
240 	 * and move on.
241 	 */
242 	error = xfs_defer_finish(&sc->tp);
243 	if (error)
244 		return error;
245 
246 	/*
247 	 * Release the hold that we set above because defer_finish won't do
248 	 * that for us.  The defer roll code redirties held buffers after each
249 	 * roll, so the AG header buffers should be ready for logging.
250 	 */
251 	if (sc->sa.agi_bp)
252 		xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp);
253 	if (sc->sa.agf_bp)
254 		xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp);
255 
256 	return 0;
257 }
258 
259 /*
260  * Does the given AG have enough space to rebuild a btree?  Neither AG
261  * reservation can be critical, and we must have enough space (factoring
262  * in AG reservations) to construct a whole btree.
263  */
264 bool
xrep_ag_has_space(struct xfs_perag * pag,xfs_extlen_t nr_blocks,enum xfs_ag_resv_type type)265 xrep_ag_has_space(
266 	struct xfs_perag	*pag,
267 	xfs_extlen_t		nr_blocks,
268 	enum xfs_ag_resv_type	type)
269 {
270 	return  !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
271 		!xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
272 		pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
273 }
274 
275 /*
276  * Figure out how many blocks to reserve for an AG repair.  We calculate the
277  * worst case estimate for the number of blocks we'd need to rebuild one of
278  * any type of per-AG btree.
279  */
280 xfs_extlen_t
xrep_calc_ag_resblks(struct xfs_scrub * sc)281 xrep_calc_ag_resblks(
282 	struct xfs_scrub		*sc)
283 {
284 	struct xfs_mount		*mp = sc->mp;
285 	struct xfs_scrub_metadata	*sm = sc->sm;
286 	struct xfs_perag		*pag;
287 	struct xfs_buf			*bp;
288 	xfs_agino_t			icount = NULLAGINO;
289 	xfs_extlen_t			aglen = NULLAGBLOCK;
290 	xfs_extlen_t			usedlen;
291 	xfs_extlen_t			freelen;
292 	xfs_extlen_t			bnobt_sz;
293 	xfs_extlen_t			inobt_sz;
294 	xfs_extlen_t			rmapbt_sz;
295 	xfs_extlen_t			refcbt_sz;
296 	int				error;
297 
298 	if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
299 		return 0;
300 
301 	pag = xfs_perag_get(mp, sm->sm_agno);
302 	if (xfs_perag_initialised_agi(pag)) {
303 		/* Use in-core icount if possible. */
304 		icount = pag->pagi_count;
305 	} else {
306 		/* Try to get the actual counters from disk. */
307 		error = xfs_ialloc_read_agi(pag, NULL, 0, &bp);
308 		if (!error) {
309 			icount = pag->pagi_count;
310 			xfs_buf_relse(bp);
311 		}
312 	}
313 
314 	/* Now grab the block counters from the AGF. */
315 	error = xfs_alloc_read_agf(pag, NULL, 0, &bp);
316 	if (error) {
317 		aglen = pag_group(pag)->xg_block_count;
318 		freelen = aglen;
319 		usedlen = aglen;
320 	} else {
321 		struct xfs_agf	*agf = bp->b_addr;
322 
323 		aglen = be32_to_cpu(agf->agf_length);
324 		freelen = be32_to_cpu(agf->agf_freeblks);
325 		usedlen = aglen - freelen;
326 		xfs_buf_relse(bp);
327 	}
328 
329 	/* If the icount is impossible, make some worst-case assumptions. */
330 	if (icount == NULLAGINO ||
331 	    !xfs_verify_agino(pag, icount)) {
332 		icount = pag->agino_max - pag->agino_min + 1;
333 	}
334 
335 	/* If the block counts are impossible, make worst-case assumptions. */
336 	if (aglen == NULLAGBLOCK ||
337 	    aglen != pag_group(pag)->xg_block_count ||
338 	    freelen >= aglen) {
339 		aglen = pag_group(pag)->xg_block_count;
340 		freelen = aglen;
341 		usedlen = aglen;
342 	}
343 
344 	trace_xrep_calc_ag_resblks(pag, icount, aglen, freelen, usedlen);
345 
346 	/*
347 	 * Figure out how many blocks we'd need worst case to rebuild
348 	 * each type of btree.  Note that we can only rebuild the
349 	 * bnobt/cntbt or inobt/finobt as pairs.
350 	 */
351 	bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
352 	if (xfs_has_sparseinodes(mp))
353 		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
354 				XFS_INODES_PER_HOLEMASK_BIT);
355 	else
356 		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
357 				XFS_INODES_PER_CHUNK);
358 	if (xfs_has_finobt(mp))
359 		inobt_sz *= 2;
360 	if (xfs_has_reflink(mp))
361 		refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
362 	else
363 		refcbt_sz = 0;
364 	if (xfs_has_rmapbt(mp)) {
365 		/*
366 		 * Guess how many blocks we need to rebuild the rmapbt.
367 		 * For non-reflink filesystems we can't have more records than
368 		 * used blocks.  However, with reflink it's possible to have
369 		 * more than one rmap record per AG block.  We don't know how
370 		 * many rmaps there could be in the AG, so we start off with
371 		 * what we hope is an generous over-estimation.
372 		 */
373 		if (xfs_has_reflink(mp))
374 			rmapbt_sz = xfs_rmapbt_calc_size(mp,
375 					(unsigned long long)aglen * 2);
376 		else
377 			rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
378 	} else {
379 		rmapbt_sz = 0;
380 	}
381 
382 	trace_xrep_calc_ag_resblks_btsize(pag, bnobt_sz, inobt_sz, rmapbt_sz,
383 			refcbt_sz);
384 	xfs_perag_put(pag);
385 
386 	return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
387 }
388 
389 #ifdef CONFIG_XFS_RT
390 /*
391  * Figure out how many blocks to reserve for a rtgroup repair.  We calculate
392  * the worst case estimate for the number of blocks we'd need to rebuild one of
393  * any type of per-rtgroup btree.
394  */
395 xfs_extlen_t
xrep_calc_rtgroup_resblks(struct xfs_scrub * sc)396 xrep_calc_rtgroup_resblks(
397 	struct xfs_scrub		*sc)
398 {
399 	struct xfs_mount		*mp = sc->mp;
400 	struct xfs_scrub_metadata	*sm = sc->sm;
401 	uint64_t			usedlen;
402 	xfs_extlen_t			rmapbt_sz = 0;
403 
404 	if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
405 		return 0;
406 	if (!xfs_has_rtgroups(mp)) {
407 		ASSERT(0);
408 		return -EFSCORRUPTED;
409 	}
410 
411 	usedlen = xfs_rtbxlen_to_blen(mp, xfs_rtgroup_extents(mp, sm->sm_agno));
412 	ASSERT(usedlen <= XFS_MAX_RGBLOCKS);
413 
414 	if (xfs_has_rmapbt(mp))
415 		rmapbt_sz = xfs_rtrmapbt_calc_size(mp, usedlen);
416 
417 	trace_xrep_calc_rtgroup_resblks_btsize(mp, sm->sm_agno, usedlen,
418 			rmapbt_sz);
419 
420 	return rmapbt_sz;
421 }
422 #endif /* CONFIG_XFS_RT */
423 
424 /*
425  * Reconstructing per-AG Btrees
426  *
427  * When a space btree is corrupt, we don't bother trying to fix it.  Instead,
428  * we scan secondary space metadata to derive the records that should be in
429  * the damaged btree, initialize a fresh btree root, and insert the records.
430  * Note that for rebuilding the rmapbt we scan all the primary data to
431  * generate the new records.
432  *
433  * However, that leaves the matter of removing all the metadata describing the
434  * old broken structure.  For primary metadata we use the rmap data to collect
435  * every extent with a matching rmap owner (bitmap); we then iterate all other
436  * metadata structures with the same rmap owner to collect the extents that
437  * cannot be removed (sublist).  We then subtract sublist from bitmap to
438  * derive the blocks that were used by the old btree.  These blocks can be
439  * reaped.
440  *
441  * For rmapbt reconstructions we must use different tactics for extent
442  * collection.  First we iterate all primary metadata (this excludes the old
443  * rmapbt, obviously) to generate new rmap records.  The gaps in the rmap
444  * records are collected as bitmap.  The bnobt records are collected as
445  * sublist.  As with the other btrees we subtract sublist from bitmap, and the
446  * result (since the rmapbt lives in the free space) are the blocks from the
447  * old rmapbt.
448  */
449 
450 /* Ensure the freelist is the correct size. */
451 int
xrep_fix_freelist(struct xfs_scrub * sc,int alloc_flags)452 xrep_fix_freelist(
453 	struct xfs_scrub	*sc,
454 	int			alloc_flags)
455 {
456 	struct xfs_alloc_arg	args = {0};
457 
458 	args.mp = sc->mp;
459 	args.tp = sc->tp;
460 	args.agno = pag_agno(sc->sa.pag);
461 	args.alignment = 1;
462 	args.pag = sc->sa.pag;
463 
464 	return xfs_alloc_fix_freelist(&args, alloc_flags);
465 }
466 
467 /*
468  * Finding per-AG Btree Roots for AGF/AGI Reconstruction
469  *
470  * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
471  * the AG headers by using the rmap data to rummage through the AG looking for
472  * btree roots.  This is not guaranteed to work if the AG is heavily damaged
473  * or the rmap data are corrupt.
474  *
475  * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
476  * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
477  * AGI is being rebuilt.  It must maintain these locks until it's safe for
478  * other threads to change the btrees' shapes.  The caller provides
479  * information about the btrees to look for by passing in an array of
480  * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
481  * The (root, height) fields will be set on return if anything is found.  The
482  * last element of the array should have a NULL buf_ops to mark the end of the
483  * array.
484  *
485  * For every rmapbt record matching any of the rmap owners in btree_info,
486  * read each block referenced by the rmap record.  If the block is a btree
487  * block from this filesystem matching any of the magic numbers and has a
488  * level higher than what we've already seen, remember the block and the
489  * height of the tree required to have such a block.  When the call completes,
490  * we return the highest block we've found for each btree description; those
491  * should be the roots.
492  */
493 
494 struct xrep_findroot {
495 	struct xfs_scrub		*sc;
496 	struct xfs_buf			*agfl_bp;
497 	struct xfs_agf			*agf;
498 	struct xrep_find_ag_btree	*btree_info;
499 };
500 
501 /* See if our block is in the AGFL. */
502 STATIC int
xrep_findroot_agfl_walk(struct xfs_mount * mp,xfs_agblock_t bno,void * priv)503 xrep_findroot_agfl_walk(
504 	struct xfs_mount	*mp,
505 	xfs_agblock_t		bno,
506 	void			*priv)
507 {
508 	xfs_agblock_t		*agbno = priv;
509 
510 	return (*agbno == bno) ? -ECANCELED : 0;
511 }
512 
513 /* Does this block match the btree information passed in? */
514 STATIC int
xrep_findroot_block(struct xrep_findroot * ri,struct xrep_find_ag_btree * fab,uint64_t owner,xfs_agblock_t agbno,bool * done_with_block)515 xrep_findroot_block(
516 	struct xrep_findroot		*ri,
517 	struct xrep_find_ag_btree	*fab,
518 	uint64_t			owner,
519 	xfs_agblock_t			agbno,
520 	bool				*done_with_block)
521 {
522 	struct xfs_mount		*mp = ri->sc->mp;
523 	struct xfs_buf			*bp;
524 	struct xfs_btree_block		*btblock;
525 	xfs_daddr_t			daddr;
526 	int				block_level;
527 	int				error = 0;
528 
529 	daddr = xfs_agbno_to_daddr(ri->sc->sa.pag, agbno);
530 
531 	/*
532 	 * Blocks in the AGFL have stale contents that might just happen to
533 	 * have a matching magic and uuid.  We don't want to pull these blocks
534 	 * in as part of a tree root, so we have to filter out the AGFL stuff
535 	 * here.  If the AGFL looks insane we'll just refuse to repair.
536 	 */
537 	if (owner == XFS_RMAP_OWN_AG) {
538 		error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
539 				xrep_findroot_agfl_walk, &agbno);
540 		if (error == -ECANCELED)
541 			return 0;
542 		if (error)
543 			return error;
544 	}
545 
546 	/*
547 	 * Read the buffer into memory so that we can see if it's a match for
548 	 * our btree type.  We have no clue if it is beforehand, and we want to
549 	 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
550 	 * will cause needless disk reads in subsequent calls to this function)
551 	 * and logging metadata verifier failures.
552 	 *
553 	 * Therefore, pass in NULL buffer ops.  If the buffer was already in
554 	 * memory from some other caller it will already have b_ops assigned.
555 	 * If it was in memory from a previous unsuccessful findroot_block
556 	 * call, the buffer won't have b_ops but it should be clean and ready
557 	 * for us to try to verify if the read call succeeds.  The same applies
558 	 * if the buffer wasn't in memory at all.
559 	 *
560 	 * Note: If we never match a btree type with this buffer, it will be
561 	 * left in memory with NULL b_ops.  This shouldn't be a problem unless
562 	 * the buffer gets written.
563 	 */
564 	error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
565 			mp->m_bsize, 0, &bp, NULL);
566 	if (error)
567 		return error;
568 
569 	/* Ensure the block magic matches the btree type we're looking for. */
570 	btblock = XFS_BUF_TO_BLOCK(bp);
571 	ASSERT(fab->buf_ops->magic[1] != 0);
572 	if (btblock->bb_magic != fab->buf_ops->magic[1])
573 		goto out;
574 
575 	/*
576 	 * If the buffer already has ops applied and they're not the ones for
577 	 * this btree type, we know this block doesn't match the btree and we
578 	 * can bail out.
579 	 *
580 	 * If the buffer ops match ours, someone else has already validated
581 	 * the block for us, so we can move on to checking if this is a root
582 	 * block candidate.
583 	 *
584 	 * If the buffer does not have ops, nobody has successfully validated
585 	 * the contents and the buffer cannot be dirty.  If the magic, uuid,
586 	 * and structure match this btree type then we'll move on to checking
587 	 * if it's a root block candidate.  If there is no match, bail out.
588 	 */
589 	if (bp->b_ops) {
590 		if (bp->b_ops != fab->buf_ops)
591 			goto out;
592 	} else {
593 		ASSERT(!xfs_trans_buf_is_dirty(bp));
594 		if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
595 				&mp->m_sb.sb_meta_uuid))
596 			goto out;
597 		/*
598 		 * Read verifiers can reference b_ops, so we set the pointer
599 		 * here.  If the verifier fails we'll reset the buffer state
600 		 * to what it was before we touched the buffer.
601 		 */
602 		bp->b_ops = fab->buf_ops;
603 		fab->buf_ops->verify_read(bp);
604 		if (bp->b_error) {
605 			bp->b_ops = NULL;
606 			bp->b_error = 0;
607 			goto out;
608 		}
609 
610 		/*
611 		 * Some read verifiers will (re)set b_ops, so we must be
612 		 * careful not to change b_ops after running the verifier.
613 		 */
614 	}
615 
616 	/*
617 	 * This block passes the magic/uuid and verifier tests for this btree
618 	 * type.  We don't need the caller to try the other tree types.
619 	 */
620 	*done_with_block = true;
621 
622 	/*
623 	 * Compare this btree block's level to the height of the current
624 	 * candidate root block.
625 	 *
626 	 * If the level matches the root we found previously, throw away both
627 	 * blocks because there can't be two candidate roots.
628 	 *
629 	 * If level is lower in the tree than the root we found previously,
630 	 * ignore this block.
631 	 */
632 	block_level = xfs_btree_get_level(btblock);
633 	if (block_level + 1 == fab->height) {
634 		fab->root = NULLAGBLOCK;
635 		goto out;
636 	} else if (block_level < fab->height) {
637 		goto out;
638 	}
639 
640 	/*
641 	 * This is the highest block in the tree that we've found so far.
642 	 * Update the btree height to reflect what we've learned from this
643 	 * block.
644 	 */
645 	fab->height = block_level + 1;
646 
647 	/*
648 	 * If this block doesn't have sibling pointers, then it's the new root
649 	 * block candidate.  Otherwise, the root will be found farther up the
650 	 * tree.
651 	 */
652 	if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
653 	    btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
654 		fab->root = agbno;
655 	else
656 		fab->root = NULLAGBLOCK;
657 
658 	trace_xrep_findroot_block(ri->sc->sa.pag, agbno,
659 			be32_to_cpu(btblock->bb_magic), fab->height - 1);
660 out:
661 	xfs_trans_brelse(ri->sc->tp, bp);
662 	return error;
663 }
664 
665 /*
666  * Do any of the blocks in this rmap record match one of the btrees we're
667  * looking for?
668  */
669 STATIC int
xrep_findroot_rmap(struct xfs_btree_cur * cur,const struct xfs_rmap_irec * rec,void * priv)670 xrep_findroot_rmap(
671 	struct xfs_btree_cur		*cur,
672 	const struct xfs_rmap_irec	*rec,
673 	void				*priv)
674 {
675 	struct xrep_findroot		*ri = priv;
676 	struct xrep_find_ag_btree	*fab;
677 	xfs_agblock_t			b;
678 	bool				done;
679 	int				error = 0;
680 
681 	/* Ignore anything that isn't AG metadata. */
682 	if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
683 		return 0;
684 
685 	/* Otherwise scan each block + btree type. */
686 	for (b = 0; b < rec->rm_blockcount; b++) {
687 		done = false;
688 		for (fab = ri->btree_info; fab->buf_ops; fab++) {
689 			if (rec->rm_owner != fab->rmap_owner)
690 				continue;
691 			error = xrep_findroot_block(ri, fab,
692 					rec->rm_owner, rec->rm_startblock + b,
693 					&done);
694 			if (error)
695 				return error;
696 			if (done)
697 				break;
698 		}
699 	}
700 
701 	return 0;
702 }
703 
704 /* Find the roots of the per-AG btrees described in btree_info. */
705 int
xrep_find_ag_btree_roots(struct xfs_scrub * sc,struct xfs_buf * agf_bp,struct xrep_find_ag_btree * btree_info,struct xfs_buf * agfl_bp)706 xrep_find_ag_btree_roots(
707 	struct xfs_scrub		*sc,
708 	struct xfs_buf			*agf_bp,
709 	struct xrep_find_ag_btree	*btree_info,
710 	struct xfs_buf			*agfl_bp)
711 {
712 	struct xfs_mount		*mp = sc->mp;
713 	struct xrep_findroot		ri;
714 	struct xrep_find_ag_btree	*fab;
715 	struct xfs_btree_cur		*cur;
716 	int				error;
717 
718 	ASSERT(xfs_buf_islocked(agf_bp));
719 	ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
720 
721 	ri.sc = sc;
722 	ri.btree_info = btree_info;
723 	ri.agf = agf_bp->b_addr;
724 	ri.agfl_bp = agfl_bp;
725 	for (fab = btree_info; fab->buf_ops; fab++) {
726 		ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
727 		ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
728 		fab->root = NULLAGBLOCK;
729 		fab->height = 0;
730 	}
731 
732 	cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
733 	error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
734 	xfs_btree_del_cursor(cur, error);
735 
736 	return error;
737 }
738 
739 #ifdef CONFIG_XFS_QUOTA
740 /* Update some quota flags in the superblock. */
741 void
xrep_update_qflags(struct xfs_scrub * sc,unsigned int clear_flags,unsigned int set_flags)742 xrep_update_qflags(
743 	struct xfs_scrub	*sc,
744 	unsigned int		clear_flags,
745 	unsigned int		set_flags)
746 {
747 	struct xfs_mount	*mp = sc->mp;
748 	struct xfs_buf		*bp;
749 
750 	mutex_lock(&mp->m_quotainfo->qi_quotaofflock);
751 	if ((mp->m_qflags & clear_flags) == 0 &&
752 	    (mp->m_qflags & set_flags) == set_flags)
753 		goto no_update;
754 
755 	mp->m_qflags &= ~clear_flags;
756 	mp->m_qflags |= set_flags;
757 
758 	spin_lock(&mp->m_sb_lock);
759 	mp->m_sb.sb_qflags &= ~clear_flags;
760 	mp->m_sb.sb_qflags |= set_flags;
761 	spin_unlock(&mp->m_sb_lock);
762 
763 	/*
764 	 * Update the quota flags in the ondisk superblock without touching
765 	 * the summary counters.  We have not quiesced inode chunk allocation,
766 	 * so we cannot coordinate with updates to the icount and ifree percpu
767 	 * counters.
768 	 */
769 	bp = xfs_trans_getsb(sc->tp);
770 	xfs_sb_to_disk(bp->b_addr, &mp->m_sb);
771 	xfs_trans_buf_set_type(sc->tp, bp, XFS_BLFT_SB_BUF);
772 	xfs_trans_log_buf(sc->tp, bp, 0, sizeof(struct xfs_dsb) - 1);
773 
774 no_update:
775 	mutex_unlock(&mp->m_quotainfo->qi_quotaofflock);
776 }
777 
778 /* Force a quotacheck the next time we mount. */
779 void
xrep_force_quotacheck(struct xfs_scrub * sc,xfs_dqtype_t type)780 xrep_force_quotacheck(
781 	struct xfs_scrub	*sc,
782 	xfs_dqtype_t		type)
783 {
784 	uint			flag;
785 
786 	flag = xfs_quota_chkd_flag(type);
787 	if (!(flag & sc->mp->m_qflags))
788 		return;
789 
790 	xrep_update_qflags(sc, flag, 0);
791 }
792 
793 /*
794  * Attach dquots to this inode, or schedule quotacheck to fix them.
795  *
796  * This function ensures that the appropriate dquots are attached to an inode.
797  * We cannot allow the dquot code to allocate an on-disk dquot block here
798  * because we're already in transaction context.  The on-disk dquot should
799  * already exist anyway.  If the quota code signals corruption or missing quota
800  * information, schedule quotacheck, which will repair corruptions in the quota
801  * metadata.
802  */
803 int
xrep_ino_dqattach(struct xfs_scrub * sc)804 xrep_ino_dqattach(
805 	struct xfs_scrub	*sc)
806 {
807 	int			error;
808 
809 	ASSERT(sc->tp != NULL);
810 	ASSERT(sc->ip != NULL);
811 
812 	error = xfs_qm_dqattach(sc->ip);
813 	switch (error) {
814 	case -EFSBADCRC:
815 	case -EFSCORRUPTED:
816 	case -ENOENT:
817 		xfs_err_ratelimited(sc->mp,
818 "inode %llu repair encountered quota error %d, quotacheck forced.",
819 				(unsigned long long)sc->ip->i_ino, error);
820 		if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
821 			xrep_force_quotacheck(sc, XFS_DQTYPE_USER);
822 		if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
823 			xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP);
824 		if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
825 			xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ);
826 		fallthrough;
827 	case -ESRCH:
828 		error = 0;
829 		break;
830 	default:
831 		break;
832 	}
833 
834 	return error;
835 }
836 #endif /* CONFIG_XFS_QUOTA */
837 
838 /*
839  * Ensure that the inode being repaired is ready to handle a certain number of
840  * extents, or return EFSCORRUPTED.  Caller must hold the ILOCK of the inode
841  * being repaired and have joined it to the scrub transaction.
842  */
843 int
xrep_ino_ensure_extent_count(struct xfs_scrub * sc,int whichfork,xfs_extnum_t nextents)844 xrep_ino_ensure_extent_count(
845 	struct xfs_scrub	*sc,
846 	int			whichfork,
847 	xfs_extnum_t		nextents)
848 {
849 	xfs_extnum_t		max_extents;
850 	bool			inode_has_nrext64;
851 
852 	inode_has_nrext64 = xfs_inode_has_large_extent_counts(sc->ip);
853 	max_extents = xfs_iext_max_nextents(inode_has_nrext64, whichfork);
854 	if (nextents <= max_extents)
855 		return 0;
856 	if (inode_has_nrext64)
857 		return -EFSCORRUPTED;
858 	if (!xfs_has_large_extent_counts(sc->mp))
859 		return -EFSCORRUPTED;
860 
861 	max_extents = xfs_iext_max_nextents(true, whichfork);
862 	if (nextents > max_extents)
863 		return -EFSCORRUPTED;
864 
865 	sc->ip->i_diflags2 |= XFS_DIFLAG2_NREXT64;
866 	xfs_trans_log_inode(sc->tp, sc->ip, XFS_ILOG_CORE);
867 	return 0;
868 }
869 
870 /*
871  * Initialize all the btree cursors for an AG repair except for the btree that
872  * we're rebuilding.
873  */
874 void
xrep_ag_btcur_init(struct xfs_scrub * sc,struct xchk_ag * sa)875 xrep_ag_btcur_init(
876 	struct xfs_scrub	*sc,
877 	struct xchk_ag		*sa)
878 {
879 	struct xfs_mount	*mp = sc->mp;
880 
881 	/* Set up a bnobt cursor for cross-referencing. */
882 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_BNOBT &&
883 	    sc->sm->sm_type != XFS_SCRUB_TYPE_CNTBT) {
884 		sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp,
885 				sc->sa.pag);
886 		sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp,
887 				sc->sa.pag);
888 	}
889 
890 	/* Set up a inobt cursor for cross-referencing. */
891 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_INOBT &&
892 	    sc->sm->sm_type != XFS_SCRUB_TYPE_FINOBT) {
893 		sa->ino_cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp,
894 				sa->agi_bp);
895 		if (xfs_has_finobt(mp))
896 			sa->fino_cur = xfs_finobt_init_cursor(sc->sa.pag,
897 					sc->tp, sa->agi_bp);
898 	}
899 
900 	/* Set up a rmapbt cursor for cross-referencing. */
901 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_RMAPBT &&
902 	    xfs_has_rmapbt(mp))
903 		sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp,
904 				sc->sa.pag);
905 
906 	/* Set up a refcountbt cursor for cross-referencing. */
907 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_REFCNTBT &&
908 	    xfs_has_reflink(mp))
909 		sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
910 				sa->agf_bp, sc->sa.pag);
911 }
912 
913 /*
914  * Reinitialize the in-core AG state after a repair by rereading the AGF
915  * buffer.  We had better get the same AGF buffer as the one that's attached
916  * to the scrub context.
917  */
918 int
xrep_reinit_pagf(struct xfs_scrub * sc)919 xrep_reinit_pagf(
920 	struct xfs_scrub	*sc)
921 {
922 	struct xfs_perag	*pag = sc->sa.pag;
923 	struct xfs_buf		*bp;
924 	int			error;
925 
926 	ASSERT(pag);
927 	ASSERT(xfs_perag_initialised_agf(pag));
928 
929 	clear_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
930 	error = xfs_alloc_read_agf(pag, sc->tp, 0, &bp);
931 	if (error)
932 		return error;
933 
934 	if (bp != sc->sa.agf_bp) {
935 		ASSERT(bp == sc->sa.agf_bp);
936 		return -EFSCORRUPTED;
937 	}
938 
939 	return 0;
940 }
941 
942 /*
943  * Reinitialize the in-core AG state after a repair by rereading the AGI
944  * buffer.  We had better get the same AGI buffer as the one that's attached
945  * to the scrub context.
946  */
947 int
xrep_reinit_pagi(struct xfs_scrub * sc)948 xrep_reinit_pagi(
949 	struct xfs_scrub	*sc)
950 {
951 	struct xfs_perag	*pag = sc->sa.pag;
952 	struct xfs_buf		*bp;
953 	int			error;
954 
955 	ASSERT(pag);
956 	ASSERT(xfs_perag_initialised_agi(pag));
957 
958 	clear_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
959 	error = xfs_ialloc_read_agi(pag, sc->tp, 0, &bp);
960 	if (error)
961 		return error;
962 
963 	if (bp != sc->sa.agi_bp) {
964 		ASSERT(bp == sc->sa.agi_bp);
965 		return -EFSCORRUPTED;
966 	}
967 
968 	return 0;
969 }
970 
971 /*
972  * Given an active reference to a perag structure, load AG headers and cursors.
973  * This should only be called to scan an AG while repairing file-based metadata.
974  */
975 int
xrep_ag_init(struct xfs_scrub * sc,struct xfs_perag * pag,struct xchk_ag * sa)976 xrep_ag_init(
977 	struct xfs_scrub	*sc,
978 	struct xfs_perag	*pag,
979 	struct xchk_ag		*sa)
980 {
981 	int			error;
982 
983 	ASSERT(!sa->pag);
984 
985 	error = xfs_ialloc_read_agi(pag, sc->tp, 0, &sa->agi_bp);
986 	if (error)
987 		return error;
988 
989 	error = xfs_alloc_read_agf(pag, sc->tp, 0, &sa->agf_bp);
990 	if (error)
991 		return error;
992 
993 	/* Grab our own passive reference from the caller's ref. */
994 	sa->pag = xfs_perag_hold(pag);
995 	xrep_ag_btcur_init(sc, sa);
996 	return 0;
997 }
998 
999 #ifdef CONFIG_XFS_RT
1000 /* Initialize all the btree cursors for a RT repair. */
1001 void
xrep_rtgroup_btcur_init(struct xfs_scrub * sc,struct xchk_rt * sr)1002 xrep_rtgroup_btcur_init(
1003 	struct xfs_scrub	*sc,
1004 	struct xchk_rt		*sr)
1005 {
1006 	struct xfs_mount	*mp = sc->mp;
1007 
1008 	ASSERT(sr->rtg != NULL);
1009 
1010 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_RTRMAPBT &&
1011 	    (sr->rtlock_flags & XFS_RTGLOCK_RMAP) &&
1012 	    xfs_has_rtrmapbt(mp))
1013 		sr->rmap_cur = xfs_rtrmapbt_init_cursor(sc->tp, sr->rtg);
1014 
1015 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_RTREFCBT &&
1016 	    (sr->rtlock_flags & XFS_RTGLOCK_REFCOUNT) &&
1017 	    xfs_has_rtreflink(mp))
1018 		sr->refc_cur = xfs_rtrefcountbt_init_cursor(sc->tp, sr->rtg);
1019 }
1020 
1021 /*
1022  * Given a reference to a rtgroup structure, lock rtgroup btree inodes and
1023  * create btree cursors.  Must only be called to repair a regular rt file.
1024  */
1025 int
xrep_rtgroup_init(struct xfs_scrub * sc,struct xfs_rtgroup * rtg,struct xchk_rt * sr,unsigned int rtglock_flags)1026 xrep_rtgroup_init(
1027 	struct xfs_scrub	*sc,
1028 	struct xfs_rtgroup	*rtg,
1029 	struct xchk_rt		*sr,
1030 	unsigned int		rtglock_flags)
1031 {
1032 	ASSERT(sr->rtg == NULL);
1033 
1034 	xfs_rtgroup_lock(rtg, rtglock_flags);
1035 	sr->rtlock_flags = rtglock_flags;
1036 
1037 	/* Grab our own passive reference from the caller's ref. */
1038 	sr->rtg = xfs_rtgroup_hold(rtg);
1039 	xrep_rtgroup_btcur_init(sc, sr);
1040 	return 0;
1041 }
1042 
1043 /* Ensure that all rt blocks in the given range are not marked free. */
1044 int
xrep_require_rtext_inuse(struct xfs_scrub * sc,xfs_rgblock_t rgbno,xfs_filblks_t len)1045 xrep_require_rtext_inuse(
1046 	struct xfs_scrub	*sc,
1047 	xfs_rgblock_t		rgbno,
1048 	xfs_filblks_t		len)
1049 {
1050 	struct xfs_mount	*mp = sc->mp;
1051 	xfs_rtxnum_t		startrtx;
1052 	xfs_rtxnum_t		endrtx;
1053 	bool			is_free = false;
1054 	int			error = 0;
1055 
1056 	if (xfs_has_zoned(mp)) {
1057 		if (!xfs_zone_rgbno_is_valid(sc->sr.rtg, rgbno + len - 1))
1058 			return -EFSCORRUPTED;
1059 		return 0;
1060 	}
1061 
1062 	startrtx = xfs_rgbno_to_rtx(mp, rgbno);
1063 	endrtx = xfs_rgbno_to_rtx(mp, rgbno + len - 1);
1064 
1065 	error = xfs_rtalloc_extent_is_free(sc->sr.rtg, sc->tp, startrtx,
1066 			endrtx - startrtx + 1, &is_free);
1067 	if (error)
1068 		return error;
1069 	if (is_free)
1070 		return -EFSCORRUPTED;
1071 
1072 	return 0;
1073 }
1074 #endif /* CONFIG_XFS_RT */
1075 
1076 /* Reinitialize the per-AG block reservation for the AG we just fixed. */
1077 int
xrep_reset_perag_resv(struct xfs_scrub * sc)1078 xrep_reset_perag_resv(
1079 	struct xfs_scrub	*sc)
1080 {
1081 	int			error;
1082 
1083 	if (!(sc->flags & XREP_RESET_PERAG_RESV))
1084 		return 0;
1085 
1086 	ASSERT(sc->sa.pag != NULL);
1087 	ASSERT(sc->ops->type == ST_PERAG);
1088 	ASSERT(sc->tp);
1089 
1090 	sc->flags &= ~XREP_RESET_PERAG_RESV;
1091 	xfs_ag_resv_free(sc->sa.pag);
1092 	error = xfs_ag_resv_init(sc->sa.pag, sc->tp);
1093 	if (error == -ENOSPC) {
1094 		xfs_err(sc->mp,
1095 "Insufficient free space to reset per-AG reservation for AG %u after repair.",
1096 				pag_agno(sc->sa.pag));
1097 		error = 0;
1098 	}
1099 
1100 	return error;
1101 }
1102 
1103 /* Decide if we are going to call the repair function for a scrub type. */
1104 bool
xrep_will_attempt(struct xfs_scrub * sc)1105 xrep_will_attempt(
1106 	struct xfs_scrub	*sc)
1107 {
1108 	/* Userspace asked us to rebuild the structure regardless. */
1109 	if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_FORCE_REBUILD)
1110 		return true;
1111 
1112 	/* Let debug users force us into the repair routines. */
1113 	if (XFS_TEST_ERROR(false, sc->mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR))
1114 		return true;
1115 
1116 	/* Metadata is corrupt or failed cross-referencing. */
1117 	if (xchk_needs_repair(sc->sm))
1118 		return true;
1119 
1120 	return false;
1121 }
1122 
1123 /* Try to fix some part of a metadata inode by calling another scrubber. */
1124 STATIC int
xrep_metadata_inode_subtype(struct xfs_scrub * sc,unsigned int scrub_type)1125 xrep_metadata_inode_subtype(
1126 	struct xfs_scrub	*sc,
1127 	unsigned int		scrub_type)
1128 {
1129 	struct xfs_scrub_subord	*sub;
1130 	int			error;
1131 
1132 	/*
1133 	 * Let's see if the inode needs repair.  Use a subordinate scrub context
1134 	 * to call the scrub and repair functions so that we can hang on to the
1135 	 * resources that we already acquired instead of using the standard
1136 	 * setup/teardown routines.
1137 	 */
1138 	sub = xchk_scrub_create_subord(sc, scrub_type);
1139 	error = sub->sc.ops->scrub(&sub->sc);
1140 	if (error)
1141 		goto out;
1142 	if (!xrep_will_attempt(&sub->sc))
1143 		goto out;
1144 
1145 	/*
1146 	 * Repair some part of the inode.  This will potentially join the inode
1147 	 * to the transaction.
1148 	 */
1149 	error = sub->sc.ops->repair(&sub->sc);
1150 	if (error)
1151 		goto out;
1152 
1153 	/*
1154 	 * Finish all deferred intent items and then roll the transaction so
1155 	 * that the inode will not be joined to the transaction when we exit
1156 	 * the function.
1157 	 */
1158 	error = xfs_defer_finish(&sub->sc.tp);
1159 	if (error)
1160 		goto out;
1161 	error = xfs_trans_roll(&sub->sc.tp);
1162 	if (error)
1163 		goto out;
1164 
1165 	/*
1166 	 * Clear the corruption flags and re-check the metadata that we just
1167 	 * repaired.
1168 	 */
1169 	sub->sc.sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
1170 	error = sub->sc.ops->scrub(&sub->sc);
1171 	if (error)
1172 		goto out;
1173 
1174 	/* If corruption persists, the repair has failed. */
1175 	if (xchk_needs_repair(sub->sc.sm)) {
1176 		error = -EFSCORRUPTED;
1177 		goto out;
1178 	}
1179 out:
1180 	xchk_scrub_free_subord(sub);
1181 	return error;
1182 }
1183 
1184 /*
1185  * Repair the ondisk forks of a metadata inode.  The caller must ensure that
1186  * sc->ip points to the metadata inode and the ILOCK is held on that inode.
1187  * The inode must not be joined to the transaction before the call, and will
1188  * not be afterwards.
1189  */
1190 int
xrep_metadata_inode_forks(struct xfs_scrub * sc)1191 xrep_metadata_inode_forks(
1192 	struct xfs_scrub	*sc)
1193 {
1194 	bool			dirty = false;
1195 	int			error;
1196 
1197 	/* Repair the inode record and the data fork. */
1198 	error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE);
1199 	if (error)
1200 		return error;
1201 
1202 	error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD);
1203 	if (error)
1204 		return error;
1205 
1206 	/*
1207 	 * Metadata files can only have extended attributes on metadir
1208 	 * filesystems, either for parent pointers or for actual xattr data.
1209 	 * For a non-metadir filesystem, make sure the attr fork looks ok
1210 	 * before we delete it.
1211 	 */
1212 	if (xfs_inode_hasattr(sc->ip)) {
1213 		error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTA);
1214 		if (error)
1215 			return error;
1216 	}
1217 
1218 	/* Clear the reflink flag since metadata never shares. */
1219 	if (xfs_is_reflink_inode(sc->ip)) {
1220 		dirty = true;
1221 		xfs_trans_ijoin(sc->tp, sc->ip, 0);
1222 		error = xfs_reflink_clear_inode_flag(sc->ip, &sc->tp);
1223 		if (error)
1224 			return error;
1225 	}
1226 
1227 	/*
1228 	 * Metadata files on non-metadir filesystems cannot have attr forks,
1229 	 * so clear them now.
1230 	 */
1231 	if (xfs_inode_hasattr(sc->ip) && !xfs_has_metadir(sc->mp)) {
1232 		if (!dirty) {
1233 			dirty = true;
1234 			xfs_trans_ijoin(sc->tp, sc->ip, 0);
1235 		}
1236 		error = xrep_xattr_reset_fork(sc);
1237 		if (error)
1238 			return error;
1239 	}
1240 
1241 	/*
1242 	 * If we modified the inode, roll the transaction but don't rejoin the
1243 	 * inode to the new transaction because xrep_bmap_data can do that.
1244 	 */
1245 	if (dirty) {
1246 		error = xfs_trans_roll(&sc->tp);
1247 		if (error)
1248 			return error;
1249 		dirty = false;
1250 	}
1251 
1252 	return 0;
1253 }
1254 
1255 /*
1256  * Set up an in-memory buffer cache so that we can use the xfbtree.  Allocating
1257  * a shmem file might take loks, so we cannot be in transaction context.  Park
1258  * our resources in the scrub context and let the teardown function take care
1259  * of them at the right time.
1260  */
1261 int
xrep_setup_xfbtree(struct xfs_scrub * sc,const char * descr)1262 xrep_setup_xfbtree(
1263 	struct xfs_scrub	*sc,
1264 	const char		*descr)
1265 {
1266 	ASSERT(sc->tp == NULL);
1267 
1268 	return xmbuf_alloc(sc->mp, descr, &sc->xmbtp);
1269 }
1270 
1271 /*
1272  * Create a dummy transaction for use in a live update hook function.  This
1273  * function MUST NOT be called from regular repair code because the current
1274  * process' transaction is saved via the cookie.
1275  */
1276 int
xrep_trans_alloc_hook_dummy(struct xfs_mount * mp,void ** cookiep,struct xfs_trans ** tpp)1277 xrep_trans_alloc_hook_dummy(
1278 	struct xfs_mount	*mp,
1279 	void			**cookiep,
1280 	struct xfs_trans	**tpp)
1281 {
1282 	int			error;
1283 
1284 	*cookiep = current->journal_info;
1285 	current->journal_info = NULL;
1286 
1287 	error = xfs_trans_alloc_empty(mp, tpp);
1288 	if (!error)
1289 		return 0;
1290 
1291 	current->journal_info = *cookiep;
1292 	*cookiep = NULL;
1293 	return error;
1294 }
1295 
1296 /* Cancel a dummy transaction used by a live update hook function. */
1297 void
xrep_trans_cancel_hook_dummy(void ** cookiep,struct xfs_trans * tp)1298 xrep_trans_cancel_hook_dummy(
1299 	void			**cookiep,
1300 	struct xfs_trans	*tp)
1301 {
1302 	xfs_trans_cancel(tp);
1303 	current->journal_info = *cookiep;
1304 	*cookiep = NULL;
1305 }
1306 
1307 /*
1308  * See if this buffer can pass the given ->verify_struct() function.
1309  *
1310  * If the buffer already has ops attached and they're not the ones that were
1311  * passed in, we reject the buffer.  Otherwise, we perform the structure test
1312  * (note that we do not check CRCs) and return the outcome of the test.  The
1313  * buffer ops and error state are left unchanged.
1314  */
1315 bool
xrep_buf_verify_struct(struct xfs_buf * bp,const struct xfs_buf_ops * ops)1316 xrep_buf_verify_struct(
1317 	struct xfs_buf			*bp,
1318 	const struct xfs_buf_ops	*ops)
1319 {
1320 	const struct xfs_buf_ops	*old_ops = bp->b_ops;
1321 	xfs_failaddr_t			fa;
1322 	int				old_error;
1323 
1324 	if (old_ops) {
1325 		if (old_ops != ops)
1326 			return false;
1327 	}
1328 
1329 	old_error = bp->b_error;
1330 	bp->b_ops = ops;
1331 	fa = bp->b_ops->verify_struct(bp);
1332 	bp->b_ops = old_ops;
1333 	bp->b_error = old_error;
1334 
1335 	return fa == NULL;
1336 }
1337 
1338 /* Check the sanity of a rmap record for a metadata btree inode. */
1339 int
xrep_check_ino_btree_mapping(struct xfs_scrub * sc,const struct xfs_rmap_irec * rec)1340 xrep_check_ino_btree_mapping(
1341 	struct xfs_scrub		*sc,
1342 	const struct xfs_rmap_irec	*rec)
1343 {
1344 	enum xbtree_recpacking		outcome;
1345 	int				error;
1346 
1347 	/*
1348 	 * Metadata btree inodes never have extended attributes, and all blocks
1349 	 * should have the bmbt block flag set.
1350 	 */
1351 	if ((rec->rm_flags & XFS_RMAP_ATTR_FORK) ||
1352 	    !(rec->rm_flags & XFS_RMAP_BMBT_BLOCK))
1353 		return -EFSCORRUPTED;
1354 
1355 	/* Make sure the block is within the AG. */
1356 	if (!xfs_verify_agbext(sc->sa.pag, rec->rm_startblock,
1357 				rec->rm_blockcount))
1358 		return -EFSCORRUPTED;
1359 
1360 	/* Make sure this isn't free space. */
1361 	error = xfs_alloc_has_records(sc->sa.bno_cur, rec->rm_startblock,
1362 			rec->rm_blockcount, &outcome);
1363 	if (error)
1364 		return error;
1365 	if (outcome != XBTREE_RECPACKING_EMPTY)
1366 		return -EFSCORRUPTED;
1367 
1368 	return 0;
1369 }
1370 
1371 /*
1372  * Reset the block count of the inode being repaired, and adjust the dquot
1373  * block usage to match.  The inode must not have an xattr fork.
1374  */
1375 void
xrep_inode_set_nblocks(struct xfs_scrub * sc,int64_t new_blocks)1376 xrep_inode_set_nblocks(
1377 	struct xfs_scrub	*sc,
1378 	int64_t			new_blocks)
1379 {
1380 	int64_t			delta =
1381 		new_blocks - sc->ip->i_nblocks;
1382 
1383 	sc->ip->i_nblocks = new_blocks;
1384 
1385 	xfs_trans_log_inode(sc->tp, sc->ip, XFS_ILOG_CORE);
1386 	if (delta != 0)
1387 		xfs_trans_mod_dquot_byino(sc->tp, sc->ip, XFS_TRANS_DQ_BCOUNT,
1388 				delta);
1389 }
1390 
1391 /* Reset the block reservation for a metadata inode. */
1392 int
xrep_reset_metafile_resv(struct xfs_scrub * sc)1393 xrep_reset_metafile_resv(
1394 	struct xfs_scrub	*sc)
1395 {
1396 	struct xfs_mount	*mp = sc->mp;
1397 	int64_t			delta;
1398 	int			error;
1399 
1400 	delta = mp->m_metafile_resv_used + mp->m_metafile_resv_avail -
1401 		mp->m_metafile_resv_target;
1402 	if (delta == 0)
1403 		return 0;
1404 
1405 	/*
1406 	 * Too many blocks have been reserved, transfer some from the incore
1407 	 * reservation back to the filesystem.
1408 	 */
1409 	if (delta > 0) {
1410 		int64_t		give_back;
1411 
1412 		give_back = min_t(uint64_t, delta, mp->m_metafile_resv_avail);
1413 		if (give_back > 0) {
1414 			xfs_mod_sb_delalloc(mp, -give_back);
1415 			xfs_add_fdblocks(mp, give_back);
1416 			mp->m_metafile_resv_avail -= give_back;
1417 		}
1418 
1419 		return 0;
1420 	}
1421 
1422 	/*
1423 	 * Not enough reservation; try to take some blocks from the filesystem
1424 	 * to the metabtree reservation.
1425 	 */
1426 	delta = -delta; /* delta is negative here, so invert the sign. */
1427 	error = xfs_dec_fdblocks(mp, delta, true);
1428 	while (error == -ENOSPC) {
1429 		delta--;
1430 		if (delta == 0) {
1431 			xfs_warn(sc->mp,
1432 "Insufficient free space to reset metabtree reservation after repair.");
1433 			return 0;
1434 		}
1435 		error = xfs_dec_fdblocks(mp, delta, true);
1436 	}
1437 	if (error)
1438 		return error;
1439 
1440 	xfs_mod_sb_delalloc(mp, delta);
1441 	mp->m_metafile_resv_avail += delta;
1442 	return 0;
1443 }
1444