xref: /linux/net/mptcp/protocol.c (revision e5e2e4300228a501b63cd4da13173371a40fea4b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/aligned_data.h>
15 #include <net/rps.h>
16 #include <net/sock.h>
17 #include <net/inet_common.h>
18 #include <net/inet_hashtables.h>
19 #include <net/protocol.h>
20 #include <net/tcp_states.h>
21 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
22 #include <net/transp_v6.h>
23 #endif
24 #include <net/mptcp.h>
25 #include <net/hotdata.h>
26 #include <net/xfrm.h>
27 #include <asm/ioctls.h>
28 #include "protocol.h"
29 #include "mib.h"
30 
31 static unsigned int mptcp_inq_hint(const struct sock *sk);
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/mptcp.h>
35 
36 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
37 struct mptcp6_sock {
38 	struct mptcp_sock msk;
39 	struct ipv6_pinfo np;
40 };
41 #endif
42 
43 enum {
44 	MPTCP_CMSG_TS = BIT(0),
45 	MPTCP_CMSG_INQ = BIT(1),
46 };
47 
48 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
49 
50 static void __mptcp_destroy_sock(struct sock *sk);
51 static void mptcp_check_send_data_fin(struct sock *sk);
52 
53 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = {
54 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
55 };
56 static struct net_device *mptcp_napi_dev;
57 
58 /* Returns end sequence number of the receiver's advertised window */
59 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
60 {
61 	return READ_ONCE(msk->wnd_end);
62 }
63 
64 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
65 {
66 	unsigned short family = READ_ONCE(sk->sk_family);
67 
68 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
69 	if (family == AF_INET6)
70 		return &inet6_stream_ops;
71 #endif
72 	WARN_ON_ONCE(family != AF_INET);
73 	return &inet_stream_ops;
74 }
75 
76 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib)
77 {
78 	struct net *net = sock_net((struct sock *)msk);
79 
80 	if (__mptcp_check_fallback(msk))
81 		return true;
82 
83 	/* The caller possibly is not holding the msk socket lock, but
84 	 * in the fallback case only the current subflow is touching
85 	 * the OoO queue.
86 	 */
87 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue))
88 		return false;
89 
90 	spin_lock_bh(&msk->fallback_lock);
91 	if (!msk->allow_infinite_fallback) {
92 		spin_unlock_bh(&msk->fallback_lock);
93 		return false;
94 	}
95 
96 	msk->allow_subflows = false;
97 	set_bit(MPTCP_FALLBACK_DONE, &msk->flags);
98 	__MPTCP_INC_STATS(net, fb_mib);
99 	spin_unlock_bh(&msk->fallback_lock);
100 	return true;
101 }
102 
103 static int __mptcp_socket_create(struct mptcp_sock *msk)
104 {
105 	struct mptcp_subflow_context *subflow;
106 	struct sock *sk = (struct sock *)msk;
107 	struct socket *ssock;
108 	int err;
109 
110 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
111 	if (err)
112 		return err;
113 
114 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
115 	WRITE_ONCE(msk->first, ssock->sk);
116 	subflow = mptcp_subflow_ctx(ssock->sk);
117 	list_add(&subflow->node, &msk->conn_list);
118 	sock_hold(ssock->sk);
119 	subflow->request_mptcp = 1;
120 	subflow->subflow_id = msk->subflow_id++;
121 
122 	/* This is the first subflow, always with id 0 */
123 	WRITE_ONCE(subflow->local_id, 0);
124 	mptcp_sock_graft(msk->first, sk->sk_socket);
125 	iput(SOCK_INODE(ssock));
126 
127 	return 0;
128 }
129 
130 /* If the MPC handshake is not started, returns the first subflow,
131  * eventually allocating it.
132  */
133 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
134 {
135 	struct sock *sk = (struct sock *)msk;
136 	int ret;
137 
138 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
139 		return ERR_PTR(-EINVAL);
140 
141 	if (!msk->first) {
142 		ret = __mptcp_socket_create(msk);
143 		if (ret)
144 			return ERR_PTR(ret);
145 	}
146 
147 	return msk->first;
148 }
149 
150 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
151 {
152 	sk_drops_skbadd(sk, skb);
153 	__kfree_skb(skb);
154 }
155 
156 static bool __mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
157 				 struct sk_buff *from, bool *fragstolen,
158 				 int *delta)
159 {
160 	int limit = READ_ONCE(sk->sk_rcvbuf);
161 
162 	if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
163 	    MPTCP_SKB_CB(from)->offset ||
164 	    ((to->len + from->len) > (limit >> 3)) ||
165 	    !skb_try_coalesce(to, from, fragstolen, delta))
166 		return false;
167 
168 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
169 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
170 		 to->len, MPTCP_SKB_CB(from)->end_seq);
171 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
172 	return true;
173 }
174 
175 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
176 			       struct sk_buff *from)
177 {
178 	bool fragstolen;
179 	int delta;
180 
181 	if (!__mptcp_try_coalesce(sk, to, from, &fragstolen, &delta))
182 		return false;
183 
184 	/* note the fwd memory can reach a negative value after accounting
185 	 * for the delta, but the later skb free will restore a non
186 	 * negative one
187 	 */
188 	atomic_add(delta, &sk->sk_rmem_alloc);
189 	sk_mem_charge(sk, delta);
190 	kfree_skb_partial(from, fragstolen);
191 
192 	return true;
193 }
194 
195 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
196 				   struct sk_buff *from)
197 {
198 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
199 		return false;
200 
201 	return mptcp_try_coalesce((struct sock *)msk, to, from);
202 }
203 
204 /* "inspired" by tcp_rcvbuf_grow(), main difference:
205  * - mptcp does not maintain a msk-level window clamp
206  * - returns true when  the receive buffer is actually updated
207  */
208 static bool mptcp_rcvbuf_grow(struct sock *sk, u32 newval)
209 {
210 	struct mptcp_sock *msk = mptcp_sk(sk);
211 	const struct net *net = sock_net(sk);
212 	u32 rcvwin, rcvbuf, cap, oldval;
213 	u64 grow;
214 
215 	oldval = msk->rcvq_space.space;
216 	msk->rcvq_space.space = newval;
217 	if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) ||
218 	    (sk->sk_userlocks & SOCK_RCVBUF_LOCK))
219 		return false;
220 
221 	/* DRS is always one RTT late. */
222 	rcvwin = newval << 1;
223 
224 	/* slow start: allow the sender to double its rate. */
225 	grow = (u64)rcvwin * (newval - oldval);
226 	do_div(grow, oldval);
227 	rcvwin += grow << 1;
228 
229 	cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
230 
231 	rcvbuf = min_t(u32, mptcp_space_from_win(sk, rcvwin), cap);
232 	if (rcvbuf > sk->sk_rcvbuf) {
233 		WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
234 		return true;
235 	}
236 	return false;
237 }
238 
239 /* "inspired" by tcp_data_queue_ofo(), main differences:
240  * - use mptcp seqs
241  * - don't cope with sacks
242  */
243 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
244 {
245 	struct sock *sk = (struct sock *)msk;
246 	struct rb_node **p, *parent;
247 	u64 seq, end_seq, max_seq;
248 	struct sk_buff *skb1;
249 
250 	seq = MPTCP_SKB_CB(skb)->map_seq;
251 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
252 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
253 
254 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
255 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
256 	if (after64(end_seq, max_seq)) {
257 		/* out of window */
258 		mptcp_drop(sk, skb);
259 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
260 			 (unsigned long long)end_seq - (unsigned long)max_seq,
261 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
262 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
263 		return;
264 	}
265 
266 	p = &msk->out_of_order_queue.rb_node;
267 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
268 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
269 		rb_link_node(&skb->rbnode, NULL, p);
270 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
271 		msk->ooo_last_skb = skb;
272 		goto end;
273 	}
274 
275 	/* with 2 subflows, adding at end of ooo queue is quite likely
276 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
277 	 */
278 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
279 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
280 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
281 		return;
282 	}
283 
284 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
285 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
286 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
287 		parent = &msk->ooo_last_skb->rbnode;
288 		p = &parent->rb_right;
289 		goto insert;
290 	}
291 
292 	/* Find place to insert this segment. Handle overlaps on the way. */
293 	parent = NULL;
294 	while (*p) {
295 		parent = *p;
296 		skb1 = rb_to_skb(parent);
297 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
298 			p = &parent->rb_left;
299 			continue;
300 		}
301 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
302 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
303 				/* All the bits are present. Drop. */
304 				mptcp_drop(sk, skb);
305 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
306 				return;
307 			}
308 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
309 				/* partial overlap:
310 				 *     |     skb      |
311 				 *  |     skb1    |
312 				 * continue traversing
313 				 */
314 			} else {
315 				/* skb's seq == skb1's seq and skb covers skb1.
316 				 * Replace skb1 with skb.
317 				 */
318 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
319 						&msk->out_of_order_queue);
320 				mptcp_drop(sk, skb1);
321 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
322 				goto merge_right;
323 			}
324 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
325 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
326 			return;
327 		}
328 		p = &parent->rb_right;
329 	}
330 
331 insert:
332 	/* Insert segment into RB tree. */
333 	rb_link_node(&skb->rbnode, parent, p);
334 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
335 
336 merge_right:
337 	/* Remove other segments covered by skb. */
338 	while ((skb1 = skb_rb_next(skb)) != NULL) {
339 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
340 			break;
341 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
342 		mptcp_drop(sk, skb1);
343 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
344 	}
345 	/* If there is no skb after us, we are the last_skb ! */
346 	if (!skb1)
347 		msk->ooo_last_skb = skb;
348 
349 end:
350 	skb_condense(skb);
351 	skb_set_owner_r(skb, sk);
352 }
353 
354 static void mptcp_init_skb(struct sock *ssk, struct sk_buff *skb, int offset,
355 			   int copy_len)
356 {
357 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
358 	bool has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
359 
360 	/* the skb map_seq accounts for the skb offset:
361 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
362 	 * value
363 	 */
364 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
365 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
366 	MPTCP_SKB_CB(skb)->offset = offset;
367 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
368 	MPTCP_SKB_CB(skb)->cant_coalesce = 0;
369 
370 	__skb_unlink(skb, &ssk->sk_receive_queue);
371 
372 	skb_ext_reset(skb);
373 	skb_dst_drop(skb);
374 }
375 
376 static bool __mptcp_move_skb(struct sock *sk, struct sk_buff *skb)
377 {
378 	u64 copy_len = MPTCP_SKB_CB(skb)->end_seq - MPTCP_SKB_CB(skb)->map_seq;
379 	struct mptcp_sock *msk = mptcp_sk(sk);
380 	struct sk_buff *tail;
381 
382 	mptcp_borrow_fwdmem(sk, skb);
383 
384 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
385 		/* in sequence */
386 		msk->bytes_received += copy_len;
387 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
388 		tail = skb_peek_tail(&sk->sk_receive_queue);
389 		if (tail && mptcp_try_coalesce(sk, tail, skb))
390 			return true;
391 
392 		skb_set_owner_r(skb, sk);
393 		__skb_queue_tail(&sk->sk_receive_queue, skb);
394 		return true;
395 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
396 		mptcp_data_queue_ofo(msk, skb);
397 		return false;
398 	}
399 
400 	/* old data, keep it simple and drop the whole pkt, sender
401 	 * will retransmit as needed, if needed.
402 	 */
403 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
404 	mptcp_drop(sk, skb);
405 	return false;
406 }
407 
408 static void mptcp_stop_rtx_timer(struct sock *sk)
409 {
410 	sk_stop_timer(sk, &sk->mptcp_retransmit_timer);
411 	mptcp_sk(sk)->timer_ival = 0;
412 }
413 
414 static void mptcp_close_wake_up(struct sock *sk)
415 {
416 	if (sock_flag(sk, SOCK_DEAD))
417 		return;
418 
419 	sk->sk_state_change(sk);
420 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
421 	    sk->sk_state == TCP_CLOSE)
422 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
423 	else
424 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
425 }
426 
427 static void mptcp_shutdown_subflows(struct mptcp_sock *msk)
428 {
429 	struct mptcp_subflow_context *subflow;
430 
431 	mptcp_for_each_subflow(msk, subflow) {
432 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
433 		bool slow;
434 
435 		slow = lock_sock_fast(ssk);
436 		tcp_shutdown(ssk, SEND_SHUTDOWN);
437 		unlock_sock_fast(ssk, slow);
438 	}
439 }
440 
441 /* called under the msk socket lock */
442 static bool mptcp_pending_data_fin_ack(struct sock *sk)
443 {
444 	struct mptcp_sock *msk = mptcp_sk(sk);
445 
446 	return ((1 << sk->sk_state) &
447 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
448 	       msk->write_seq == READ_ONCE(msk->snd_una);
449 }
450 
451 static void mptcp_check_data_fin_ack(struct sock *sk)
452 {
453 	struct mptcp_sock *msk = mptcp_sk(sk);
454 
455 	/* Look for an acknowledged DATA_FIN */
456 	if (mptcp_pending_data_fin_ack(sk)) {
457 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
458 
459 		switch (sk->sk_state) {
460 		case TCP_FIN_WAIT1:
461 			mptcp_set_state(sk, TCP_FIN_WAIT2);
462 			break;
463 		case TCP_CLOSING:
464 		case TCP_LAST_ACK:
465 			mptcp_shutdown_subflows(msk);
466 			mptcp_set_state(sk, TCP_CLOSE);
467 			break;
468 		}
469 
470 		mptcp_close_wake_up(sk);
471 	}
472 }
473 
474 /* can be called with no lock acquired */
475 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
476 {
477 	struct mptcp_sock *msk = mptcp_sk(sk);
478 
479 	if (READ_ONCE(msk->rcv_data_fin) &&
480 	    ((1 << inet_sk_state_load(sk)) &
481 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
482 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
483 
484 		if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
485 			if (seq)
486 				*seq = rcv_data_fin_seq;
487 
488 			return true;
489 		}
490 	}
491 
492 	return false;
493 }
494 
495 static void mptcp_set_datafin_timeout(struct sock *sk)
496 {
497 	struct inet_connection_sock *icsk = inet_csk(sk);
498 	u32 retransmits;
499 
500 	retransmits = min_t(u32, icsk->icsk_retransmits,
501 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
502 
503 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
504 }
505 
506 static void __mptcp_set_timeout(struct sock *sk, long tout)
507 {
508 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
509 }
510 
511 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
512 {
513 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
514 
515 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
516 	       tcp_timeout_expires(ssk) - jiffies : 0;
517 }
518 
519 static void mptcp_set_timeout(struct sock *sk)
520 {
521 	struct mptcp_subflow_context *subflow;
522 	long tout = 0;
523 
524 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
525 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
526 	__mptcp_set_timeout(sk, tout);
527 }
528 
529 static inline bool tcp_can_send_ack(const struct sock *ssk)
530 {
531 	return !((1 << inet_sk_state_load(ssk)) &
532 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
533 }
534 
535 void __mptcp_subflow_send_ack(struct sock *ssk)
536 {
537 	if (tcp_can_send_ack(ssk))
538 		tcp_send_ack(ssk);
539 }
540 
541 static void mptcp_subflow_send_ack(struct sock *ssk)
542 {
543 	bool slow;
544 
545 	slow = lock_sock_fast(ssk);
546 	__mptcp_subflow_send_ack(ssk);
547 	unlock_sock_fast(ssk, slow);
548 }
549 
550 static void mptcp_send_ack(struct mptcp_sock *msk)
551 {
552 	struct mptcp_subflow_context *subflow;
553 
554 	mptcp_for_each_subflow(msk, subflow)
555 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
556 }
557 
558 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
559 {
560 	bool slow;
561 
562 	slow = lock_sock_fast(ssk);
563 	if (tcp_can_send_ack(ssk))
564 		tcp_cleanup_rbuf(ssk, copied);
565 	unlock_sock_fast(ssk, slow);
566 }
567 
568 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
569 {
570 	const struct inet_connection_sock *icsk = inet_csk(ssk);
571 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
572 	const struct tcp_sock *tp = tcp_sk(ssk);
573 
574 	return (ack_pending & ICSK_ACK_SCHED) &&
575 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
576 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
577 		 (rx_empty && ack_pending &
578 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
579 }
580 
581 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
582 {
583 	int old_space = READ_ONCE(msk->old_wspace);
584 	struct mptcp_subflow_context *subflow;
585 	struct sock *sk = (struct sock *)msk;
586 	int space =  __mptcp_space(sk);
587 	bool cleanup, rx_empty;
588 
589 	cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
590 	rx_empty = !sk_rmem_alloc_get(sk) && copied;
591 
592 	mptcp_for_each_subflow(msk, subflow) {
593 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
594 
595 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
596 			mptcp_subflow_cleanup_rbuf(ssk, copied);
597 	}
598 }
599 
600 static void mptcp_check_data_fin(struct sock *sk)
601 {
602 	struct mptcp_sock *msk = mptcp_sk(sk);
603 	u64 rcv_data_fin_seq;
604 
605 	/* Need to ack a DATA_FIN received from a peer while this side
606 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
607 	 * msk->rcv_data_fin was set when parsing the incoming options
608 	 * at the subflow level and the msk lock was not held, so this
609 	 * is the first opportunity to act on the DATA_FIN and change
610 	 * the msk state.
611 	 *
612 	 * If we are caught up to the sequence number of the incoming
613 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
614 	 * not caught up, do nothing and let the recv code send DATA_ACK
615 	 * when catching up.
616 	 */
617 
618 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
619 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
620 		WRITE_ONCE(msk->rcv_data_fin, 0);
621 
622 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
623 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
624 
625 		switch (sk->sk_state) {
626 		case TCP_ESTABLISHED:
627 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
628 			break;
629 		case TCP_FIN_WAIT1:
630 			mptcp_set_state(sk, TCP_CLOSING);
631 			break;
632 		case TCP_FIN_WAIT2:
633 			mptcp_shutdown_subflows(msk);
634 			mptcp_set_state(sk, TCP_CLOSE);
635 			break;
636 		default:
637 			/* Other states not expected */
638 			WARN_ON_ONCE(1);
639 			break;
640 		}
641 
642 		if (!__mptcp_check_fallback(msk))
643 			mptcp_send_ack(msk);
644 		mptcp_close_wake_up(sk);
645 	}
646 }
647 
648 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
649 {
650 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) {
651 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
652 		mptcp_subflow_reset(ssk);
653 	}
654 }
655 
656 static void __mptcp_add_backlog(struct sock *sk,
657 				struct mptcp_subflow_context *subflow,
658 				struct sk_buff *skb)
659 {
660 	struct mptcp_sock *msk = mptcp_sk(sk);
661 	struct sk_buff *tail = NULL;
662 	struct sock *ssk = skb->sk;
663 	bool fragstolen;
664 	int delta;
665 
666 	if (unlikely(sk->sk_state == TCP_CLOSE)) {
667 		kfree_skb_reason(skb, SKB_DROP_REASON_SOCKET_CLOSE);
668 		return;
669 	}
670 
671 	/* Try to coalesce with the last skb in our backlog */
672 	if (!list_empty(&msk->backlog_list))
673 		tail = list_last_entry(&msk->backlog_list, struct sk_buff, list);
674 
675 	if (tail && MPTCP_SKB_CB(skb)->map_seq == MPTCP_SKB_CB(tail)->end_seq &&
676 	    ssk == tail->sk &&
677 	    __mptcp_try_coalesce(sk, tail, skb, &fragstolen, &delta)) {
678 		skb->truesize -= delta;
679 		kfree_skb_partial(skb, fragstolen);
680 		__mptcp_subflow_lend_fwdmem(subflow, delta);
681 		goto account;
682 	}
683 
684 	list_add_tail(&skb->list, &msk->backlog_list);
685 	mptcp_subflow_lend_fwdmem(subflow, skb);
686 	delta = skb->truesize;
687 
688 account:
689 	WRITE_ONCE(msk->backlog_len, msk->backlog_len + delta);
690 
691 	/* Possibly not accept()ed yet, keep track of memory not CG
692 	 * accounted, mptcp_graft_subflows() will handle it.
693 	 */
694 	if (!mem_cgroup_from_sk(ssk))
695 		msk->backlog_unaccounted += delta;
696 }
697 
698 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
699 					   struct sock *ssk, bool own_msk)
700 {
701 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
702 	struct sock *sk = (struct sock *)msk;
703 	bool more_data_avail;
704 	struct tcp_sock *tp;
705 	bool ret = false;
706 
707 	pr_debug("msk=%p ssk=%p\n", msk, ssk);
708 	tp = tcp_sk(ssk);
709 	do {
710 		u32 map_remaining, offset;
711 		u32 seq = tp->copied_seq;
712 		struct sk_buff *skb;
713 		bool fin;
714 
715 		/* try to move as much data as available */
716 		map_remaining = subflow->map_data_len -
717 				mptcp_subflow_get_map_offset(subflow);
718 
719 		skb = skb_peek(&ssk->sk_receive_queue);
720 		if (unlikely(!skb))
721 			break;
722 
723 		if (__mptcp_check_fallback(msk)) {
724 			/* Under fallback skbs have no MPTCP extension and TCP could
725 			 * collapse them between the dummy map creation and the
726 			 * current dequeue. Be sure to adjust the map size.
727 			 */
728 			map_remaining = skb->len;
729 			subflow->map_data_len = skb->len;
730 		}
731 
732 		offset = seq - TCP_SKB_CB(skb)->seq;
733 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
734 		if (fin)
735 			seq++;
736 
737 		if (offset < skb->len) {
738 			size_t len = skb->len - offset;
739 
740 			mptcp_init_skb(ssk, skb, offset, len);
741 
742 			if (own_msk && sk_rmem_alloc_get(sk) < sk->sk_rcvbuf) {
743 				mptcp_subflow_lend_fwdmem(subflow, skb);
744 				ret |= __mptcp_move_skb(sk, skb);
745 			} else {
746 				__mptcp_add_backlog(sk, subflow, skb);
747 			}
748 			seq += len;
749 
750 			if (unlikely(map_remaining < len)) {
751 				DEBUG_NET_WARN_ON_ONCE(1);
752 				mptcp_dss_corruption(msk, ssk);
753 			}
754 		} else {
755 			if (unlikely(!fin)) {
756 				DEBUG_NET_WARN_ON_ONCE(1);
757 				mptcp_dss_corruption(msk, ssk);
758 			}
759 
760 			sk_eat_skb(ssk, skb);
761 		}
762 
763 		WRITE_ONCE(tp->copied_seq, seq);
764 		more_data_avail = mptcp_subflow_data_available(ssk);
765 
766 	} while (more_data_avail);
767 
768 	if (ret)
769 		msk->last_data_recv = tcp_jiffies32;
770 	return ret;
771 }
772 
773 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
774 {
775 	struct sock *sk = (struct sock *)msk;
776 	struct sk_buff *skb, *tail;
777 	bool moved = false;
778 	struct rb_node *p;
779 	u64 end_seq;
780 
781 	p = rb_first(&msk->out_of_order_queue);
782 	pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
783 	while (p) {
784 		skb = rb_to_skb(p);
785 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
786 			break;
787 
788 		p = rb_next(p);
789 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
790 
791 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
792 				      msk->ack_seq))) {
793 			mptcp_drop(sk, skb);
794 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
795 			continue;
796 		}
797 
798 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
799 		tail = skb_peek_tail(&sk->sk_receive_queue);
800 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
801 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
802 
803 			/* skip overlapping data, if any */
804 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
805 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
806 				 delta);
807 			MPTCP_SKB_CB(skb)->offset += delta;
808 			MPTCP_SKB_CB(skb)->map_seq += delta;
809 			__skb_queue_tail(&sk->sk_receive_queue, skb);
810 		}
811 		msk->bytes_received += end_seq - msk->ack_seq;
812 		WRITE_ONCE(msk->ack_seq, end_seq);
813 		moved = true;
814 	}
815 	return moved;
816 }
817 
818 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
819 {
820 	int ssk_state;
821 	int err;
822 
823 	/* only propagate errors on fallen-back sockets or
824 	 * on MPC connect
825 	 */
826 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
827 		return false;
828 
829 	err = sock_error(ssk);
830 	if (!err)
831 		return false;
832 
833 	/* We need to propagate only transition to CLOSE state.
834 	 * Orphaned socket will see such state change via
835 	 * subflow_sched_work_if_closed() and that path will properly
836 	 * destroy the msk as needed.
837 	 */
838 	ssk_state = inet_sk_state_load(ssk);
839 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
840 		mptcp_set_state(sk, ssk_state);
841 	WRITE_ONCE(sk->sk_err, -err);
842 
843 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
844 	smp_wmb();
845 	sk_error_report(sk);
846 	return true;
847 }
848 
849 void __mptcp_error_report(struct sock *sk)
850 {
851 	struct mptcp_subflow_context *subflow;
852 	struct mptcp_sock *msk = mptcp_sk(sk);
853 
854 	mptcp_for_each_subflow(msk, subflow)
855 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
856 			break;
857 }
858 
859 /* In most cases we will be able to lock the mptcp socket.  If its already
860  * owned, we need to defer to the work queue to avoid ABBA deadlock.
861  */
862 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
863 {
864 	struct sock *sk = (struct sock *)msk;
865 	bool moved;
866 
867 	moved = __mptcp_move_skbs_from_subflow(msk, ssk, true);
868 	__mptcp_ofo_queue(msk);
869 	if (unlikely(ssk->sk_err))
870 		__mptcp_subflow_error_report(sk, ssk);
871 
872 	/* If the moves have caught up with the DATA_FIN sequence number
873 	 * it's time to ack the DATA_FIN and change socket state, but
874 	 * this is not a good place to change state. Let the workqueue
875 	 * do it.
876 	 */
877 	if (mptcp_pending_data_fin(sk, NULL))
878 		mptcp_schedule_work(sk);
879 	return moved;
880 }
881 
882 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
883 {
884 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
885 	struct mptcp_sock *msk = mptcp_sk(sk);
886 
887 	/* The peer can send data while we are shutting down this
888 	 * subflow at subflow destruction time, but we must avoid enqueuing
889 	 * more data to the msk receive queue
890 	 */
891 	if (unlikely(subflow->closing))
892 		return;
893 
894 	mptcp_data_lock(sk);
895 	if (!sock_owned_by_user(sk)) {
896 		/* Wake-up the reader only for in-sequence data */
897 		if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
898 			sk->sk_data_ready(sk);
899 	} else {
900 		__mptcp_move_skbs_from_subflow(msk, ssk, false);
901 	}
902 	mptcp_data_unlock(sk);
903 }
904 
905 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
906 {
907 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
908 	msk->allow_infinite_fallback = false;
909 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
910 }
911 
912 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
913 {
914 	struct sock *sk = (struct sock *)msk;
915 
916 	if (sk->sk_state != TCP_ESTABLISHED)
917 		return false;
918 
919 	spin_lock_bh(&msk->fallback_lock);
920 	if (!msk->allow_subflows) {
921 		spin_unlock_bh(&msk->fallback_lock);
922 		return false;
923 	}
924 	mptcp_subflow_joined(msk, ssk);
925 	spin_unlock_bh(&msk->fallback_lock);
926 
927 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
928 	mptcp_sockopt_sync_locked(msk, ssk);
929 	mptcp_stop_tout_timer(sk);
930 	__mptcp_propagate_sndbuf(sk, ssk);
931 	return true;
932 }
933 
934 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
935 {
936 	struct mptcp_subflow_context *tmp, *subflow;
937 	struct mptcp_sock *msk = mptcp_sk(sk);
938 
939 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
940 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
941 		bool slow = lock_sock_fast(ssk);
942 
943 		list_move_tail(&subflow->node, &msk->conn_list);
944 		if (!__mptcp_finish_join(msk, ssk))
945 			mptcp_subflow_reset(ssk);
946 		unlock_sock_fast(ssk, slow);
947 	}
948 }
949 
950 static bool mptcp_rtx_timer_pending(struct sock *sk)
951 {
952 	return timer_pending(&sk->mptcp_retransmit_timer);
953 }
954 
955 static void mptcp_reset_rtx_timer(struct sock *sk)
956 {
957 	unsigned long tout;
958 
959 	/* prevent rescheduling on close */
960 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
961 		return;
962 
963 	tout = mptcp_sk(sk)->timer_ival;
964 	sk_reset_timer(sk, &sk->mptcp_retransmit_timer, jiffies + tout);
965 }
966 
967 bool mptcp_schedule_work(struct sock *sk)
968 {
969 	if (inet_sk_state_load(sk) == TCP_CLOSE)
970 		return false;
971 
972 	/* Get a reference on this socket, mptcp_worker() will release it.
973 	 * As mptcp_worker() might complete before us, we can not avoid
974 	 * a sock_hold()/sock_put() if schedule_work() returns false.
975 	 */
976 	sock_hold(sk);
977 
978 	if (schedule_work(&mptcp_sk(sk)->work))
979 		return true;
980 
981 	sock_put(sk);
982 	return false;
983 }
984 
985 static bool mptcp_skb_can_collapse_to(u64 write_seq,
986 				      const struct sk_buff *skb,
987 				      const struct mptcp_ext *mpext)
988 {
989 	if (!tcp_skb_can_collapse_to(skb))
990 		return false;
991 
992 	/* can collapse only if MPTCP level sequence is in order and this
993 	 * mapping has not been xmitted yet
994 	 */
995 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
996 	       !mpext->frozen;
997 }
998 
999 /* we can append data to the given data frag if:
1000  * - there is space available in the backing page_frag
1001  * - the data frag tail matches the current page_frag free offset
1002  * - the data frag end sequence number matches the current write seq
1003  */
1004 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
1005 				       const struct page_frag *pfrag,
1006 				       const struct mptcp_data_frag *df)
1007 {
1008 	return df && pfrag->page == df->page &&
1009 		pfrag->size - pfrag->offset > 0 &&
1010 		pfrag->offset == (df->offset + df->data_len) &&
1011 		df->data_seq + df->data_len == msk->write_seq;
1012 }
1013 
1014 static void dfrag_uncharge(struct sock *sk, int len)
1015 {
1016 	sk_mem_uncharge(sk, len);
1017 	sk_wmem_queued_add(sk, -len);
1018 }
1019 
1020 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1021 {
1022 	int len = dfrag->data_len + dfrag->overhead;
1023 
1024 	list_del(&dfrag->list);
1025 	dfrag_uncharge(sk, len);
1026 	put_page(dfrag->page);
1027 }
1028 
1029 /* called under both the msk socket lock and the data lock */
1030 static void __mptcp_clean_una(struct sock *sk)
1031 {
1032 	struct mptcp_sock *msk = mptcp_sk(sk);
1033 	struct mptcp_data_frag *dtmp, *dfrag;
1034 	u64 snd_una;
1035 
1036 	snd_una = msk->snd_una;
1037 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1038 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1039 			break;
1040 
1041 		if (unlikely(dfrag == msk->first_pending)) {
1042 			/* in recovery mode can see ack after the current snd head */
1043 			if (WARN_ON_ONCE(!msk->recovery))
1044 				break;
1045 
1046 			msk->first_pending = mptcp_send_next(sk);
1047 		}
1048 
1049 		dfrag_clear(sk, dfrag);
1050 	}
1051 
1052 	dfrag = mptcp_rtx_head(sk);
1053 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1054 		u64 delta = snd_una - dfrag->data_seq;
1055 
1056 		/* prevent wrap around in recovery mode */
1057 		if (unlikely(delta > dfrag->already_sent)) {
1058 			if (WARN_ON_ONCE(!msk->recovery))
1059 				goto out;
1060 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1061 				goto out;
1062 			dfrag->already_sent += delta - dfrag->already_sent;
1063 		}
1064 
1065 		dfrag->data_seq += delta;
1066 		dfrag->offset += delta;
1067 		dfrag->data_len -= delta;
1068 		dfrag->already_sent -= delta;
1069 
1070 		dfrag_uncharge(sk, delta);
1071 	}
1072 
1073 	/* all retransmitted data acked, recovery completed */
1074 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1075 		msk->recovery = false;
1076 
1077 out:
1078 	if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
1079 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1080 			mptcp_stop_rtx_timer(sk);
1081 	} else {
1082 		mptcp_reset_rtx_timer(sk);
1083 	}
1084 
1085 	if (mptcp_pending_data_fin_ack(sk))
1086 		mptcp_schedule_work(sk);
1087 }
1088 
1089 static void __mptcp_clean_una_wakeup(struct sock *sk)
1090 {
1091 	lockdep_assert_held_once(&sk->sk_lock.slock);
1092 
1093 	__mptcp_clean_una(sk);
1094 	mptcp_write_space(sk);
1095 }
1096 
1097 static void mptcp_clean_una_wakeup(struct sock *sk)
1098 {
1099 	mptcp_data_lock(sk);
1100 	__mptcp_clean_una_wakeup(sk);
1101 	mptcp_data_unlock(sk);
1102 }
1103 
1104 static void mptcp_enter_memory_pressure(struct sock *sk)
1105 {
1106 	struct mptcp_subflow_context *subflow;
1107 	struct mptcp_sock *msk = mptcp_sk(sk);
1108 	bool first = true;
1109 
1110 	mptcp_for_each_subflow(msk, subflow) {
1111 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1112 
1113 		if (first && !ssk->sk_bypass_prot_mem) {
1114 			tcp_enter_memory_pressure(ssk);
1115 			first = false;
1116 		}
1117 
1118 		sk_stream_moderate_sndbuf(ssk);
1119 	}
1120 	__mptcp_sync_sndbuf(sk);
1121 }
1122 
1123 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1124  * data
1125  */
1126 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1127 {
1128 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1129 					pfrag, sk->sk_allocation)))
1130 		return true;
1131 
1132 	mptcp_enter_memory_pressure(sk);
1133 	return false;
1134 }
1135 
1136 static struct mptcp_data_frag *
1137 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1138 		      int orig_offset)
1139 {
1140 	int offset = ALIGN(orig_offset, sizeof(long));
1141 	struct mptcp_data_frag *dfrag;
1142 
1143 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1144 	dfrag->data_len = 0;
1145 	dfrag->data_seq = msk->write_seq;
1146 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1147 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1148 	dfrag->already_sent = 0;
1149 	dfrag->page = pfrag->page;
1150 
1151 	return dfrag;
1152 }
1153 
1154 struct mptcp_sendmsg_info {
1155 	int mss_now;
1156 	int size_goal;
1157 	u16 limit;
1158 	u16 sent;
1159 	unsigned int flags;
1160 	bool data_lock_held;
1161 };
1162 
1163 static size_t mptcp_check_allowed_size(const struct mptcp_sock *msk,
1164 				       struct sock *ssk, u64 data_seq,
1165 				       size_t avail_size)
1166 {
1167 	u64 window_end = mptcp_wnd_end(msk);
1168 	u64 mptcp_snd_wnd;
1169 
1170 	if (__mptcp_check_fallback(msk))
1171 		return avail_size;
1172 
1173 	mptcp_snd_wnd = window_end - data_seq;
1174 	avail_size = min(mptcp_snd_wnd, avail_size);
1175 
1176 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1177 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1178 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1179 	}
1180 
1181 	return avail_size;
1182 }
1183 
1184 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1185 {
1186 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1187 
1188 	if (!mpext)
1189 		return false;
1190 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1191 	return true;
1192 }
1193 
1194 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1195 {
1196 	struct sk_buff *skb;
1197 
1198 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1199 	if (likely(skb)) {
1200 		if (likely(__mptcp_add_ext(skb, gfp))) {
1201 			skb_reserve(skb, MAX_TCP_HEADER);
1202 			skb->ip_summed = CHECKSUM_PARTIAL;
1203 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1204 			return skb;
1205 		}
1206 		__kfree_skb(skb);
1207 	} else {
1208 		mptcp_enter_memory_pressure(sk);
1209 	}
1210 	return NULL;
1211 }
1212 
1213 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1214 {
1215 	struct sk_buff *skb;
1216 
1217 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1218 	if (!skb)
1219 		return NULL;
1220 
1221 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1222 		tcp_skb_entail(ssk, skb);
1223 		return skb;
1224 	}
1225 	tcp_skb_tsorted_anchor_cleanup(skb);
1226 	kfree_skb(skb);
1227 	return NULL;
1228 }
1229 
1230 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1231 {
1232 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1233 
1234 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1235 }
1236 
1237 /* note: this always recompute the csum on the whole skb, even
1238  * if we just appended a single frag. More status info needed
1239  */
1240 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1241 {
1242 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1243 	__wsum csum = ~csum_unfold(mpext->csum);
1244 	int offset = skb->len - added;
1245 
1246 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1247 }
1248 
1249 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1250 				      struct sock *ssk,
1251 				      struct mptcp_ext *mpext)
1252 {
1253 	if (!mpext)
1254 		return;
1255 
1256 	mpext->infinite_map = 1;
1257 	mpext->data_len = 0;
1258 
1259 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) {
1260 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED);
1261 		mptcp_subflow_reset(ssk);
1262 		return;
1263 	}
1264 
1265 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1266 }
1267 
1268 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1269 
1270 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1271 			      struct mptcp_data_frag *dfrag,
1272 			      struct mptcp_sendmsg_info *info)
1273 {
1274 	u64 data_seq = dfrag->data_seq + info->sent;
1275 	int offset = dfrag->offset + info->sent;
1276 	struct mptcp_sock *msk = mptcp_sk(sk);
1277 	bool zero_window_probe = false;
1278 	struct mptcp_ext *mpext = NULL;
1279 	bool can_coalesce = false;
1280 	bool reuse_skb = true;
1281 	struct sk_buff *skb;
1282 	size_t copy;
1283 	int i;
1284 
1285 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1286 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1287 
1288 	if (WARN_ON_ONCE(info->sent > info->limit ||
1289 			 info->limit > dfrag->data_len))
1290 		return 0;
1291 
1292 	if (unlikely(!__tcp_can_send(ssk)))
1293 		return -EAGAIN;
1294 
1295 	/* compute send limit */
1296 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1297 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1298 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1299 	copy = info->size_goal;
1300 
1301 	skb = tcp_write_queue_tail(ssk);
1302 	if (skb && copy > skb->len) {
1303 		/* Limit the write to the size available in the
1304 		 * current skb, if any, so that we create at most a new skb.
1305 		 * Explicitly tells TCP internals to avoid collapsing on later
1306 		 * queue management operation, to avoid breaking the ext <->
1307 		 * SSN association set here
1308 		 */
1309 		mpext = mptcp_get_ext(skb);
1310 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1311 			TCP_SKB_CB(skb)->eor = 1;
1312 			tcp_mark_push(tcp_sk(ssk), skb);
1313 			goto alloc_skb;
1314 		}
1315 
1316 		i = skb_shinfo(skb)->nr_frags;
1317 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1318 		if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1319 			tcp_mark_push(tcp_sk(ssk), skb);
1320 			goto alloc_skb;
1321 		}
1322 
1323 		copy -= skb->len;
1324 	} else {
1325 alloc_skb:
1326 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1327 		if (!skb)
1328 			return -ENOMEM;
1329 
1330 		i = skb_shinfo(skb)->nr_frags;
1331 		reuse_skb = false;
1332 		mpext = mptcp_get_ext(skb);
1333 	}
1334 
1335 	/* Zero window and all data acked? Probe. */
1336 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1337 	if (copy == 0) {
1338 		u64 snd_una = READ_ONCE(msk->snd_una);
1339 
1340 		/* No need for zero probe if there are any data pending
1341 		 * either at the msk or ssk level; skb is the current write
1342 		 * queue tail and can be empty at this point.
1343 		 */
1344 		if (snd_una != msk->snd_nxt || skb->len ||
1345 		    skb != tcp_send_head(ssk)) {
1346 			tcp_remove_empty_skb(ssk);
1347 			return 0;
1348 		}
1349 
1350 		zero_window_probe = true;
1351 		data_seq = snd_una - 1;
1352 		copy = 1;
1353 	}
1354 
1355 	copy = min_t(size_t, copy, info->limit - info->sent);
1356 	if (!sk_wmem_schedule(ssk, copy)) {
1357 		tcp_remove_empty_skb(ssk);
1358 		return -ENOMEM;
1359 	}
1360 
1361 	if (can_coalesce) {
1362 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1363 	} else {
1364 		get_page(dfrag->page);
1365 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1366 	}
1367 
1368 	skb->len += copy;
1369 	skb->data_len += copy;
1370 	skb->truesize += copy;
1371 	sk_wmem_queued_add(ssk, copy);
1372 	sk_mem_charge(ssk, copy);
1373 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1374 	TCP_SKB_CB(skb)->end_seq += copy;
1375 	tcp_skb_pcount_set(skb, 0);
1376 
1377 	/* on skb reuse we just need to update the DSS len */
1378 	if (reuse_skb) {
1379 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1380 		mpext->data_len += copy;
1381 		goto out;
1382 	}
1383 
1384 	memset(mpext, 0, sizeof(*mpext));
1385 	mpext->data_seq = data_seq;
1386 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1387 	mpext->data_len = copy;
1388 	mpext->use_map = 1;
1389 	mpext->dsn64 = 1;
1390 
1391 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1392 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1393 		 mpext->dsn64);
1394 
1395 	if (zero_window_probe) {
1396 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_WINPROBE);
1397 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1398 		mpext->frozen = 1;
1399 		if (READ_ONCE(msk->csum_enabled))
1400 			mptcp_update_data_checksum(skb, copy);
1401 		tcp_push_pending_frames(ssk);
1402 		return 0;
1403 	}
1404 out:
1405 	if (READ_ONCE(msk->csum_enabled))
1406 		mptcp_update_data_checksum(skb, copy);
1407 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1408 		mptcp_update_infinite_map(msk, ssk, mpext);
1409 	trace_mptcp_sendmsg_frag(mpext);
1410 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1411 	return copy;
1412 }
1413 
1414 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1415 					 sizeof(struct tcphdr) - \
1416 					 MAX_TCP_OPTION_SPACE - \
1417 					 sizeof(struct ipv6hdr) - \
1418 					 sizeof(struct frag_hdr))
1419 
1420 struct subflow_send_info {
1421 	struct sock *ssk;
1422 	u64 linger_time;
1423 };
1424 
1425 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1426 {
1427 	if (!subflow->stale)
1428 		return;
1429 
1430 	subflow->stale = 0;
1431 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1432 }
1433 
1434 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1435 {
1436 	if (unlikely(subflow->stale)) {
1437 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1438 
1439 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1440 			return false;
1441 
1442 		mptcp_subflow_set_active(subflow);
1443 	}
1444 	return __mptcp_subflow_active(subflow);
1445 }
1446 
1447 #define SSK_MODE_ACTIVE	0
1448 #define SSK_MODE_BACKUP	1
1449 #define SSK_MODE_MAX	2
1450 
1451 /* implement the mptcp packet scheduler;
1452  * returns the subflow that will transmit the next DSS
1453  * additionally updates the rtx timeout
1454  */
1455 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1456 {
1457 	struct subflow_send_info send_info[SSK_MODE_MAX];
1458 	struct mptcp_subflow_context *subflow;
1459 	struct sock *sk = (struct sock *)msk;
1460 	u32 pace, burst, wmem;
1461 	int i, nr_active = 0;
1462 	struct sock *ssk;
1463 	u64 linger_time;
1464 	long tout = 0;
1465 
1466 	/* pick the subflow with the lower wmem/wspace ratio */
1467 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1468 		send_info[i].ssk = NULL;
1469 		send_info[i].linger_time = -1;
1470 	}
1471 
1472 	mptcp_for_each_subflow(msk, subflow) {
1473 		bool backup = subflow->backup || subflow->request_bkup;
1474 
1475 		trace_mptcp_subflow_get_send(subflow);
1476 		ssk =  mptcp_subflow_tcp_sock(subflow);
1477 		if (!mptcp_subflow_active(subflow))
1478 			continue;
1479 
1480 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1481 		nr_active += !backup;
1482 		pace = subflow->avg_pacing_rate;
1483 		if (unlikely(!pace)) {
1484 			/* init pacing rate from socket */
1485 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1486 			pace = subflow->avg_pacing_rate;
1487 			if (!pace)
1488 				continue;
1489 		}
1490 
1491 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1492 		if (linger_time < send_info[backup].linger_time) {
1493 			send_info[backup].ssk = ssk;
1494 			send_info[backup].linger_time = linger_time;
1495 		}
1496 	}
1497 	__mptcp_set_timeout(sk, tout);
1498 
1499 	/* pick the best backup if no other subflow is active */
1500 	if (!nr_active)
1501 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1502 
1503 	/* According to the blest algorithm, to avoid HoL blocking for the
1504 	 * faster flow, we need to:
1505 	 * - estimate the faster flow linger time
1506 	 * - use the above to estimate the amount of byte transferred
1507 	 *   by the faster flow
1508 	 * - check that the amount of queued data is greater than the above,
1509 	 *   otherwise do not use the picked, slower, subflow
1510 	 * We select the subflow with the shorter estimated time to flush
1511 	 * the queued mem, which basically ensure the above. We just need
1512 	 * to check that subflow has a non empty cwin.
1513 	 */
1514 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1515 	if (!ssk || !sk_stream_memory_free(ssk))
1516 		return NULL;
1517 
1518 	burst = min(MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1519 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1520 	if (!burst)
1521 		return ssk;
1522 
1523 	subflow = mptcp_subflow_ctx(ssk);
1524 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1525 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1526 					   burst + wmem);
1527 	msk->snd_burst = burst;
1528 	return ssk;
1529 }
1530 
1531 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1532 {
1533 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1534 	release_sock(ssk);
1535 }
1536 
1537 static void mptcp_update_post_push(struct mptcp_sock *msk,
1538 				   struct mptcp_data_frag *dfrag,
1539 				   u32 sent)
1540 {
1541 	u64 snd_nxt_new = dfrag->data_seq;
1542 
1543 	dfrag->already_sent += sent;
1544 
1545 	msk->snd_burst -= sent;
1546 
1547 	snd_nxt_new += dfrag->already_sent;
1548 
1549 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1550 	 * is recovering after a failover. In that event, this re-sends
1551 	 * old segments.
1552 	 *
1553 	 * Thus compute snd_nxt_new candidate based on
1554 	 * the dfrag->data_seq that was sent and the data
1555 	 * that has been handed to the subflow for transmission
1556 	 * and skip update in case it was old dfrag.
1557 	 */
1558 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1559 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1560 		WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1561 	}
1562 }
1563 
1564 void mptcp_check_and_set_pending(struct sock *sk)
1565 {
1566 	if (mptcp_send_head(sk)) {
1567 		mptcp_data_lock(sk);
1568 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1569 		mptcp_data_unlock(sk);
1570 	}
1571 }
1572 
1573 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1574 				  struct mptcp_sendmsg_info *info)
1575 {
1576 	struct mptcp_sock *msk = mptcp_sk(sk);
1577 	struct mptcp_data_frag *dfrag;
1578 	int len, copied = 0, err = 0;
1579 
1580 	while ((dfrag = mptcp_send_head(sk))) {
1581 		info->sent = dfrag->already_sent;
1582 		info->limit = dfrag->data_len;
1583 		len = dfrag->data_len - dfrag->already_sent;
1584 		while (len > 0) {
1585 			int ret = 0;
1586 
1587 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1588 			if (ret <= 0) {
1589 				err = copied ? : ret;
1590 				goto out;
1591 			}
1592 
1593 			info->sent += ret;
1594 			copied += ret;
1595 			len -= ret;
1596 
1597 			mptcp_update_post_push(msk, dfrag, ret);
1598 		}
1599 		msk->first_pending = mptcp_send_next(sk);
1600 
1601 		if (msk->snd_burst <= 0 ||
1602 		    !sk_stream_memory_free(ssk) ||
1603 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1604 			err = copied;
1605 			goto out;
1606 		}
1607 		mptcp_set_timeout(sk);
1608 	}
1609 	err = copied;
1610 
1611 out:
1612 	if (err > 0)
1613 		msk->last_data_sent = tcp_jiffies32;
1614 	return err;
1615 }
1616 
1617 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1618 {
1619 	struct sock *prev_ssk = NULL, *ssk = NULL;
1620 	struct mptcp_sock *msk = mptcp_sk(sk);
1621 	struct mptcp_sendmsg_info info = {
1622 				.flags = flags,
1623 	};
1624 	bool copied = false;
1625 	int push_count = 1;
1626 
1627 	while (mptcp_send_head(sk) && (push_count > 0)) {
1628 		struct mptcp_subflow_context *subflow;
1629 		int ret = 0;
1630 
1631 		if (mptcp_sched_get_send(msk))
1632 			break;
1633 
1634 		push_count = 0;
1635 
1636 		mptcp_for_each_subflow(msk, subflow) {
1637 			if (READ_ONCE(subflow->scheduled)) {
1638 				mptcp_subflow_set_scheduled(subflow, false);
1639 
1640 				prev_ssk = ssk;
1641 				ssk = mptcp_subflow_tcp_sock(subflow);
1642 				if (ssk != prev_ssk) {
1643 					/* First check. If the ssk has changed since
1644 					 * the last round, release prev_ssk
1645 					 */
1646 					if (prev_ssk)
1647 						mptcp_push_release(prev_ssk, &info);
1648 
1649 					/* Need to lock the new subflow only if different
1650 					 * from the previous one, otherwise we are still
1651 					 * helding the relevant lock
1652 					 */
1653 					lock_sock(ssk);
1654 				}
1655 
1656 				push_count++;
1657 
1658 				ret = __subflow_push_pending(sk, ssk, &info);
1659 				if (ret <= 0) {
1660 					if (ret != -EAGAIN ||
1661 					    (1 << ssk->sk_state) &
1662 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1663 						push_count--;
1664 					continue;
1665 				}
1666 				copied = true;
1667 			}
1668 		}
1669 	}
1670 
1671 	/* at this point we held the socket lock for the last subflow we used */
1672 	if (ssk)
1673 		mptcp_push_release(ssk, &info);
1674 
1675 	/* Avoid scheduling the rtx timer if no data has been pushed; the timer
1676 	 * will be updated on positive acks by __mptcp_cleanup_una().
1677 	 */
1678 	if (copied) {
1679 		if (!mptcp_rtx_timer_pending(sk))
1680 			mptcp_reset_rtx_timer(sk);
1681 		mptcp_check_send_data_fin(sk);
1682 	}
1683 }
1684 
1685 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1686 {
1687 	struct mptcp_sock *msk = mptcp_sk(sk);
1688 	struct mptcp_sendmsg_info info = {
1689 		.data_lock_held = true,
1690 	};
1691 	bool keep_pushing = true;
1692 	struct sock *xmit_ssk;
1693 	int copied = 0;
1694 
1695 	info.flags = 0;
1696 	while (mptcp_send_head(sk) && keep_pushing) {
1697 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1698 		int ret = 0;
1699 
1700 		/* check for a different subflow usage only after
1701 		 * spooling the first chunk of data
1702 		 */
1703 		if (first) {
1704 			mptcp_subflow_set_scheduled(subflow, false);
1705 			ret = __subflow_push_pending(sk, ssk, &info);
1706 			first = false;
1707 			if (ret <= 0)
1708 				break;
1709 			copied += ret;
1710 			continue;
1711 		}
1712 
1713 		if (mptcp_sched_get_send(msk))
1714 			goto out;
1715 
1716 		if (READ_ONCE(subflow->scheduled)) {
1717 			mptcp_subflow_set_scheduled(subflow, false);
1718 			ret = __subflow_push_pending(sk, ssk, &info);
1719 			if (ret <= 0)
1720 				keep_pushing = false;
1721 			copied += ret;
1722 		}
1723 
1724 		mptcp_for_each_subflow(msk, subflow) {
1725 			if (READ_ONCE(subflow->scheduled)) {
1726 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1727 				if (xmit_ssk != ssk) {
1728 					mptcp_subflow_delegate(subflow,
1729 							       MPTCP_DELEGATE_SEND);
1730 					keep_pushing = false;
1731 				}
1732 			}
1733 		}
1734 	}
1735 
1736 out:
1737 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1738 	 * not going to flush it via release_sock()
1739 	 */
1740 	if (copied) {
1741 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1742 			 info.size_goal);
1743 		if (!mptcp_rtx_timer_pending(sk))
1744 			mptcp_reset_rtx_timer(sk);
1745 
1746 		if (msk->snd_data_fin_enable &&
1747 		    msk->snd_nxt + 1 == msk->write_seq)
1748 			mptcp_schedule_work(sk);
1749 	}
1750 }
1751 
1752 static int mptcp_disconnect(struct sock *sk, int flags);
1753 
1754 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1755 				  size_t len, int *copied_syn)
1756 {
1757 	unsigned int saved_flags = msg->msg_flags;
1758 	struct mptcp_sock *msk = mptcp_sk(sk);
1759 	struct sock *ssk;
1760 	int ret;
1761 
1762 	/* on flags based fastopen the mptcp is supposed to create the
1763 	 * first subflow right now. Otherwise we are in the defer_connect
1764 	 * path, and the first subflow must be already present.
1765 	 * Since the defer_connect flag is cleared after the first succsful
1766 	 * fastopen attempt, no need to check for additional subflow status.
1767 	 */
1768 	if (msg->msg_flags & MSG_FASTOPEN) {
1769 		ssk = __mptcp_nmpc_sk(msk);
1770 		if (IS_ERR(ssk))
1771 			return PTR_ERR(ssk);
1772 	}
1773 	if (!msk->first)
1774 		return -EINVAL;
1775 
1776 	ssk = msk->first;
1777 
1778 	lock_sock(ssk);
1779 	msg->msg_flags |= MSG_DONTWAIT;
1780 	msk->fastopening = 1;
1781 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1782 	msk->fastopening = 0;
1783 	msg->msg_flags = saved_flags;
1784 	release_sock(ssk);
1785 
1786 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1787 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1788 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1789 					    msg->msg_namelen, msg->msg_flags, 1);
1790 
1791 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1792 		 * case of any error, except timeout or signal
1793 		 */
1794 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1795 			*copied_syn = 0;
1796 	} else if (ret && ret != -EINPROGRESS) {
1797 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1798 		 * __inet_stream_connect() can fail, due to looking check,
1799 		 * see mptcp_disconnect().
1800 		 * Attempt it again outside the problematic scope.
1801 		 */
1802 		if (!mptcp_disconnect(sk, 0)) {
1803 			sk->sk_disconnects++;
1804 			sk->sk_socket->state = SS_UNCONNECTED;
1805 		}
1806 	}
1807 	inet_clear_bit(DEFER_CONNECT, sk);
1808 
1809 	return ret;
1810 }
1811 
1812 static int do_copy_data_nocache(struct sock *sk, int copy,
1813 				struct iov_iter *from, char *to)
1814 {
1815 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1816 		if (!copy_from_iter_full_nocache(to, copy, from))
1817 			return -EFAULT;
1818 	} else if (!copy_from_iter_full(to, copy, from)) {
1819 		return -EFAULT;
1820 	}
1821 	return 0;
1822 }
1823 
1824 /* open-code sk_stream_memory_free() plus sent limit computation to
1825  * avoid indirect calls in fast-path.
1826  * Called under the msk socket lock, so we can avoid a bunch of ONCE
1827  * annotations.
1828  */
1829 static u32 mptcp_send_limit(const struct sock *sk)
1830 {
1831 	const struct mptcp_sock *msk = mptcp_sk(sk);
1832 	u32 limit, not_sent;
1833 
1834 	if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1835 		return 0;
1836 
1837 	limit = mptcp_notsent_lowat(sk);
1838 	if (limit == UINT_MAX)
1839 		return UINT_MAX;
1840 
1841 	not_sent = msk->write_seq - msk->snd_nxt;
1842 	if (not_sent >= limit)
1843 		return 0;
1844 
1845 	return limit - not_sent;
1846 }
1847 
1848 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk)
1849 {
1850 	struct mptcp_subflow_context *subflow;
1851 
1852 	if (!rfs_is_needed())
1853 		return;
1854 
1855 	mptcp_for_each_subflow(msk, subflow) {
1856 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1857 
1858 		sock_rps_record_flow(ssk);
1859 	}
1860 }
1861 
1862 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1863 {
1864 	struct mptcp_sock *msk = mptcp_sk(sk);
1865 	struct page_frag *pfrag;
1866 	size_t copied = 0;
1867 	int ret = 0;
1868 	long timeo;
1869 
1870 	/* silently ignore everything else */
1871 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1872 
1873 	lock_sock(sk);
1874 
1875 	mptcp_rps_record_subflows(msk);
1876 
1877 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1878 		     msg->msg_flags & MSG_FASTOPEN)) {
1879 		int copied_syn = 0;
1880 
1881 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1882 		copied += copied_syn;
1883 		if (ret == -EINPROGRESS && copied_syn > 0)
1884 			goto out;
1885 		else if (ret)
1886 			goto do_error;
1887 	}
1888 
1889 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1890 
1891 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1892 		ret = sk_stream_wait_connect(sk, &timeo);
1893 		if (ret)
1894 			goto do_error;
1895 	}
1896 
1897 	ret = -EPIPE;
1898 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1899 		goto do_error;
1900 
1901 	pfrag = sk_page_frag(sk);
1902 
1903 	while (msg_data_left(msg)) {
1904 		int total_ts, frag_truesize = 0;
1905 		struct mptcp_data_frag *dfrag;
1906 		bool dfrag_collapsed;
1907 		size_t psize, offset;
1908 		u32 copy_limit;
1909 
1910 		/* ensure fitting the notsent_lowat() constraint */
1911 		copy_limit = mptcp_send_limit(sk);
1912 		if (!copy_limit)
1913 			goto wait_for_memory;
1914 
1915 		/* reuse tail pfrag, if possible, or carve a new one from the
1916 		 * page allocator
1917 		 */
1918 		dfrag = mptcp_pending_tail(sk);
1919 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1920 		if (!dfrag_collapsed) {
1921 			if (!mptcp_page_frag_refill(sk, pfrag))
1922 				goto wait_for_memory;
1923 
1924 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1925 			frag_truesize = dfrag->overhead;
1926 		}
1927 
1928 		/* we do not bound vs wspace, to allow a single packet.
1929 		 * memory accounting will prevent execessive memory usage
1930 		 * anyway
1931 		 */
1932 		offset = dfrag->offset + dfrag->data_len;
1933 		psize = pfrag->size - offset;
1934 		psize = min_t(size_t, psize, msg_data_left(msg));
1935 		psize = min_t(size_t, psize, copy_limit);
1936 		total_ts = psize + frag_truesize;
1937 
1938 		if (!sk_wmem_schedule(sk, total_ts))
1939 			goto wait_for_memory;
1940 
1941 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1942 					   page_address(dfrag->page) + offset);
1943 		if (ret)
1944 			goto do_error;
1945 
1946 		/* data successfully copied into the write queue */
1947 		sk_forward_alloc_add(sk, -total_ts);
1948 		copied += psize;
1949 		dfrag->data_len += psize;
1950 		frag_truesize += psize;
1951 		pfrag->offset += frag_truesize;
1952 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1953 
1954 		/* charge data on mptcp pending queue to the msk socket
1955 		 * Note: we charge such data both to sk and ssk
1956 		 */
1957 		sk_wmem_queued_add(sk, frag_truesize);
1958 		if (!dfrag_collapsed) {
1959 			get_page(dfrag->page);
1960 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1961 			if (!msk->first_pending)
1962 				msk->first_pending = dfrag;
1963 		}
1964 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1965 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1966 			 !dfrag_collapsed);
1967 
1968 		continue;
1969 
1970 wait_for_memory:
1971 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1972 		__mptcp_push_pending(sk, msg->msg_flags);
1973 		ret = sk_stream_wait_memory(sk, &timeo);
1974 		if (ret)
1975 			goto do_error;
1976 	}
1977 
1978 	if (copied)
1979 		__mptcp_push_pending(sk, msg->msg_flags);
1980 
1981 out:
1982 	release_sock(sk);
1983 	return copied;
1984 
1985 do_error:
1986 	if (copied)
1987 		goto out;
1988 
1989 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1990 	goto out;
1991 }
1992 
1993 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1994 
1995 static void mptcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1996 {
1997 	/* avoid the indirect call, we know the destructor is sock_rfree */
1998 	skb->destructor = NULL;
1999 	skb->sk = NULL;
2000 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
2001 	sk_mem_uncharge(sk, skb->truesize);
2002 	__skb_unlink(skb, &sk->sk_receive_queue);
2003 	skb_attempt_defer_free(skb);
2004 }
2005 
2006 static int __mptcp_recvmsg_mskq(struct sock *sk, struct msghdr *msg,
2007 				size_t len, int flags, int copied_total,
2008 				struct scm_timestamping_internal *tss,
2009 				int *cmsg_flags)
2010 {
2011 	struct mptcp_sock *msk = mptcp_sk(sk);
2012 	struct sk_buff *skb, *tmp;
2013 	int total_data_len = 0;
2014 	int copied = 0;
2015 
2016 	skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
2017 		u32 delta, offset = MPTCP_SKB_CB(skb)->offset;
2018 		u32 data_len = skb->len - offset;
2019 		u32 count;
2020 		int err;
2021 
2022 		if (flags & MSG_PEEK) {
2023 			/* skip already peeked skbs */
2024 			if (total_data_len + data_len <= copied_total) {
2025 				total_data_len += data_len;
2026 				continue;
2027 			}
2028 
2029 			/* skip the already peeked data in the current skb */
2030 			delta = copied_total - total_data_len;
2031 			offset += delta;
2032 			data_len -= delta;
2033 		}
2034 
2035 		count = min_t(size_t, len - copied, data_len);
2036 		if (!(flags & MSG_TRUNC)) {
2037 			err = skb_copy_datagram_msg(skb, offset, msg, count);
2038 			if (unlikely(err < 0)) {
2039 				if (!copied)
2040 					return err;
2041 				break;
2042 			}
2043 		}
2044 
2045 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
2046 			tcp_update_recv_tstamps(skb, tss);
2047 			*cmsg_flags |= MPTCP_CMSG_TS;
2048 		}
2049 
2050 		copied += count;
2051 
2052 		if (!(flags & MSG_PEEK)) {
2053 			msk->bytes_consumed += count;
2054 			if (count < data_len) {
2055 				MPTCP_SKB_CB(skb)->offset += count;
2056 				MPTCP_SKB_CB(skb)->map_seq += count;
2057 				break;
2058 			}
2059 
2060 			mptcp_eat_recv_skb(sk, skb);
2061 		}
2062 
2063 		if (copied >= len)
2064 			break;
2065 	}
2066 
2067 	mptcp_rcv_space_adjust(msk, copied);
2068 	return copied;
2069 }
2070 
2071 static void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
2072 {
2073 	const struct tcp_sock *tp = tcp_sk(ssk);
2074 
2075 	msk->rcvspace_init = 1;
2076 	msk->rcvq_space.copied = 0;
2077 	msk->rcvq_space.rtt_us = 0;
2078 
2079 	/* initial rcv_space offering made to peer */
2080 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
2081 				      TCP_INIT_CWND * tp->advmss);
2082 	if (msk->rcvq_space.space == 0)
2083 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
2084 }
2085 
2086 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
2087  *
2088  * Only difference: Use highest rtt estimate of the subflows in use.
2089  */
2090 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
2091 {
2092 	struct mptcp_subflow_context *subflow;
2093 	struct sock *sk = (struct sock *)msk;
2094 	u8 scaling_ratio = U8_MAX;
2095 	u32 time, advmss = 1;
2096 	u64 rtt_us, mstamp;
2097 
2098 	msk_owned_by_me(msk);
2099 
2100 	if (copied <= 0)
2101 		return;
2102 
2103 	if (!msk->rcvspace_init)
2104 		mptcp_rcv_space_init(msk, msk->first);
2105 
2106 	msk->rcvq_space.copied += copied;
2107 
2108 	mstamp = mptcp_stamp();
2109 	time = tcp_stamp_us_delta(mstamp, READ_ONCE(msk->rcvq_space.time));
2110 
2111 	rtt_us = msk->rcvq_space.rtt_us;
2112 	if (rtt_us && time < (rtt_us >> 3))
2113 		return;
2114 
2115 	rtt_us = 0;
2116 	mptcp_for_each_subflow(msk, subflow) {
2117 		const struct tcp_sock *tp;
2118 		u64 sf_rtt_us;
2119 		u32 sf_advmss;
2120 
2121 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
2122 
2123 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
2124 		sf_advmss = READ_ONCE(tp->advmss);
2125 
2126 		rtt_us = max(sf_rtt_us, rtt_us);
2127 		advmss = max(sf_advmss, advmss);
2128 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2129 	}
2130 
2131 	msk->rcvq_space.rtt_us = rtt_us;
2132 	msk->scaling_ratio = scaling_ratio;
2133 	if (time < (rtt_us >> 3) || rtt_us == 0)
2134 		return;
2135 
2136 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2137 		goto new_measure;
2138 
2139 	trace_mptcp_rcvbuf_grow(sk, time);
2140 	if (mptcp_rcvbuf_grow(sk, msk->rcvq_space.copied)) {
2141 		/* Make subflows follow along.  If we do not do this, we
2142 		 * get drops at subflow level if skbs can't be moved to
2143 		 * the mptcp rx queue fast enough (announced rcv_win can
2144 		 * exceed ssk->sk_rcvbuf).
2145 		 */
2146 		mptcp_for_each_subflow(msk, subflow) {
2147 			struct sock *ssk;
2148 			bool slow;
2149 
2150 			ssk = mptcp_subflow_tcp_sock(subflow);
2151 			slow = lock_sock_fast(ssk);
2152 			/* subflows can be added before tcp_init_transfer() */
2153 			if (tcp_sk(ssk)->rcvq_space.space)
2154 				tcp_rcvbuf_grow(ssk, msk->rcvq_space.copied);
2155 			unlock_sock_fast(ssk, slow);
2156 		}
2157 	}
2158 
2159 new_measure:
2160 	msk->rcvq_space.copied = 0;
2161 	msk->rcvq_space.time = mstamp;
2162 }
2163 
2164 static bool __mptcp_move_skbs(struct sock *sk, struct list_head *skbs, u32 *delta)
2165 {
2166 	struct sk_buff *skb = list_first_entry(skbs, struct sk_buff, list);
2167 	struct mptcp_sock *msk = mptcp_sk(sk);
2168 	bool moved = false;
2169 
2170 	*delta = 0;
2171 	while (1) {
2172 		/* If the msk recvbuf is full stop, don't drop */
2173 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2174 			break;
2175 
2176 		prefetch(skb->next);
2177 		list_del(&skb->list);
2178 		*delta += skb->truesize;
2179 
2180 		moved |= __mptcp_move_skb(sk, skb);
2181 		if (list_empty(skbs))
2182 			break;
2183 
2184 		skb = list_first_entry(skbs, struct sk_buff, list);
2185 	}
2186 
2187 	__mptcp_ofo_queue(msk);
2188 	if (moved)
2189 		mptcp_check_data_fin((struct sock *)msk);
2190 	return moved;
2191 }
2192 
2193 static bool mptcp_can_spool_backlog(struct sock *sk, struct list_head *skbs)
2194 {
2195 	struct mptcp_sock *msk = mptcp_sk(sk);
2196 
2197 	/* After CG initialization, subflows should never add skb before
2198 	 * gaining the CG themself.
2199 	 */
2200 	DEBUG_NET_WARN_ON_ONCE(msk->backlog_unaccounted && sk->sk_socket &&
2201 			       mem_cgroup_from_sk(sk));
2202 
2203 	/* Don't spool the backlog if the rcvbuf is full. */
2204 	if (list_empty(&msk->backlog_list) ||
2205 	    sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2206 		return false;
2207 
2208 	INIT_LIST_HEAD(skbs);
2209 	list_splice_init(&msk->backlog_list, skbs);
2210 	return true;
2211 }
2212 
2213 static void mptcp_backlog_spooled(struct sock *sk, u32 moved,
2214 				  struct list_head *skbs)
2215 {
2216 	struct mptcp_sock *msk = mptcp_sk(sk);
2217 
2218 	WRITE_ONCE(msk->backlog_len, msk->backlog_len - moved);
2219 	list_splice(skbs, &msk->backlog_list);
2220 }
2221 
2222 static bool mptcp_move_skbs(struct sock *sk)
2223 {
2224 	struct list_head skbs;
2225 	bool enqueued = false;
2226 	u32 moved;
2227 
2228 	mptcp_data_lock(sk);
2229 	while (mptcp_can_spool_backlog(sk, &skbs)) {
2230 		mptcp_data_unlock(sk);
2231 		enqueued |= __mptcp_move_skbs(sk, &skbs, &moved);
2232 
2233 		mptcp_data_lock(sk);
2234 		mptcp_backlog_spooled(sk, moved, &skbs);
2235 	}
2236 	mptcp_data_unlock(sk);
2237 	return enqueued;
2238 }
2239 
2240 static unsigned int mptcp_inq_hint(const struct sock *sk)
2241 {
2242 	const struct mptcp_sock *msk = mptcp_sk(sk);
2243 	const struct sk_buff *skb;
2244 
2245 	skb = skb_peek(&sk->sk_receive_queue);
2246 	if (skb) {
2247 		u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2248 
2249 		if (hint_val >= INT_MAX)
2250 			return INT_MAX;
2251 
2252 		return (unsigned int)hint_val;
2253 	}
2254 
2255 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2256 		return 1;
2257 
2258 	return 0;
2259 }
2260 
2261 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2262 			 int flags, int *addr_len)
2263 {
2264 	struct mptcp_sock *msk = mptcp_sk(sk);
2265 	struct scm_timestamping_internal tss;
2266 	int copied = 0, cmsg_flags = 0;
2267 	int target;
2268 	long timeo;
2269 
2270 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2271 	if (unlikely(flags & MSG_ERRQUEUE))
2272 		return inet_recv_error(sk, msg, len, addr_len);
2273 
2274 	lock_sock(sk);
2275 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2276 		copied = -ENOTCONN;
2277 		goto out_err;
2278 	}
2279 
2280 	mptcp_rps_record_subflows(msk);
2281 
2282 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2283 
2284 	len = min_t(size_t, len, INT_MAX);
2285 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2286 
2287 	if (unlikely(msk->recvmsg_inq))
2288 		cmsg_flags = MPTCP_CMSG_INQ;
2289 
2290 	while (copied < len) {
2291 		int err, bytes_read;
2292 
2293 		bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags,
2294 						  copied, &tss, &cmsg_flags);
2295 		if (unlikely(bytes_read < 0)) {
2296 			if (!copied)
2297 				copied = bytes_read;
2298 			goto out_err;
2299 		}
2300 
2301 		copied += bytes_read;
2302 
2303 		if (!list_empty(&msk->backlog_list) && mptcp_move_skbs(sk))
2304 			continue;
2305 
2306 		/* only the MPTCP socket status is relevant here. The exit
2307 		 * conditions mirror closely tcp_recvmsg()
2308 		 */
2309 		if (copied >= target)
2310 			break;
2311 
2312 		if (copied) {
2313 			if (sk->sk_err ||
2314 			    sk->sk_state == TCP_CLOSE ||
2315 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2316 			    !timeo ||
2317 			    signal_pending(current))
2318 				break;
2319 		} else {
2320 			if (sk->sk_err) {
2321 				copied = sock_error(sk);
2322 				break;
2323 			}
2324 
2325 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2326 				break;
2327 
2328 			if (sk->sk_state == TCP_CLOSE) {
2329 				copied = -ENOTCONN;
2330 				break;
2331 			}
2332 
2333 			if (!timeo) {
2334 				copied = -EAGAIN;
2335 				break;
2336 			}
2337 
2338 			if (signal_pending(current)) {
2339 				copied = sock_intr_errno(timeo);
2340 				break;
2341 			}
2342 		}
2343 
2344 		pr_debug("block timeout %ld\n", timeo);
2345 		mptcp_cleanup_rbuf(msk, copied);
2346 		err = sk_wait_data(sk, &timeo, NULL);
2347 		if (err < 0) {
2348 			err = copied ? : err;
2349 			goto out_err;
2350 		}
2351 	}
2352 
2353 	mptcp_cleanup_rbuf(msk, copied);
2354 
2355 out_err:
2356 	if (cmsg_flags && copied >= 0) {
2357 		if (cmsg_flags & MPTCP_CMSG_TS)
2358 			tcp_recv_timestamp(msg, sk, &tss);
2359 
2360 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2361 			unsigned int inq = mptcp_inq_hint(sk);
2362 
2363 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2364 		}
2365 	}
2366 
2367 	pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2368 		 msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2369 
2370 	release_sock(sk);
2371 	return copied;
2372 }
2373 
2374 static void mptcp_retransmit_timer(struct timer_list *t)
2375 {
2376 	struct sock *sk = timer_container_of(sk, t, mptcp_retransmit_timer);
2377 	struct mptcp_sock *msk = mptcp_sk(sk);
2378 
2379 	bh_lock_sock(sk);
2380 	if (!sock_owned_by_user(sk)) {
2381 		/* we need a process context to retransmit */
2382 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2383 			mptcp_schedule_work(sk);
2384 	} else {
2385 		/* delegate our work to tcp_release_cb() */
2386 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2387 	}
2388 	bh_unlock_sock(sk);
2389 	sock_put(sk);
2390 }
2391 
2392 static void mptcp_tout_timer(struct timer_list *t)
2393 {
2394 	struct inet_connection_sock *icsk =
2395 		timer_container_of(icsk, t, mptcp_tout_timer);
2396 	struct sock *sk = &icsk->icsk_inet.sk;
2397 
2398 	mptcp_schedule_work(sk);
2399 	sock_put(sk);
2400 }
2401 
2402 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2403  * level.
2404  *
2405  * A backup subflow is returned only if that is the only kind available.
2406  */
2407 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2408 {
2409 	struct sock *backup = NULL, *pick = NULL;
2410 	struct mptcp_subflow_context *subflow;
2411 	int min_stale_count = INT_MAX;
2412 
2413 	mptcp_for_each_subflow(msk, subflow) {
2414 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2415 
2416 		if (!__mptcp_subflow_active(subflow))
2417 			continue;
2418 
2419 		/* still data outstanding at TCP level? skip this */
2420 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2421 			mptcp_pm_subflow_chk_stale(msk, ssk);
2422 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2423 			continue;
2424 		}
2425 
2426 		if (subflow->backup || subflow->request_bkup) {
2427 			if (!backup)
2428 				backup = ssk;
2429 			continue;
2430 		}
2431 
2432 		if (!pick)
2433 			pick = ssk;
2434 	}
2435 
2436 	if (pick)
2437 		return pick;
2438 
2439 	/* use backup only if there are no progresses anywhere */
2440 	return min_stale_count > 1 ? backup : NULL;
2441 }
2442 
2443 bool __mptcp_retransmit_pending_data(struct sock *sk)
2444 {
2445 	struct mptcp_data_frag *cur, *rtx_head;
2446 	struct mptcp_sock *msk = mptcp_sk(sk);
2447 
2448 	if (__mptcp_check_fallback(msk))
2449 		return false;
2450 
2451 	/* the closing socket has some data untransmitted and/or unacked:
2452 	 * some data in the mptcp rtx queue has not really xmitted yet.
2453 	 * keep it simple and re-inject the whole mptcp level rtx queue
2454 	 */
2455 	mptcp_data_lock(sk);
2456 	__mptcp_clean_una_wakeup(sk);
2457 	rtx_head = mptcp_rtx_head(sk);
2458 	if (!rtx_head) {
2459 		mptcp_data_unlock(sk);
2460 		return false;
2461 	}
2462 
2463 	msk->recovery_snd_nxt = msk->snd_nxt;
2464 	msk->recovery = true;
2465 	mptcp_data_unlock(sk);
2466 
2467 	msk->first_pending = rtx_head;
2468 	msk->snd_burst = 0;
2469 
2470 	/* be sure to clear the "sent status" on all re-injected fragments */
2471 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2472 		if (!cur->already_sent)
2473 			break;
2474 		cur->already_sent = 0;
2475 	}
2476 
2477 	return true;
2478 }
2479 
2480 /* flags for __mptcp_close_ssk() */
2481 #define MPTCP_CF_PUSH		BIT(1)
2482 
2483 /* be sure to send a reset only if the caller asked for it, also
2484  * clean completely the subflow status when the subflow reaches
2485  * TCP_CLOSE state
2486  */
2487 static void __mptcp_subflow_disconnect(struct sock *ssk,
2488 				       struct mptcp_subflow_context *subflow,
2489 				       bool fastclosing)
2490 {
2491 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2492 	    fastclosing) {
2493 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2494 		 * disconnect should never fail
2495 		 */
2496 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2497 		mptcp_subflow_ctx_reset(subflow);
2498 	} else {
2499 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2500 	}
2501 }
2502 
2503 /* subflow sockets can be either outgoing (connect) or incoming
2504  * (accept).
2505  *
2506  * Outgoing subflows use in-kernel sockets.
2507  * Incoming subflows do not have their own 'struct socket' allocated,
2508  * so we need to use tcp_close() after detaching them from the mptcp
2509  * parent socket.
2510  */
2511 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2512 			      struct mptcp_subflow_context *subflow,
2513 			      unsigned int flags)
2514 {
2515 	struct mptcp_sock *msk = mptcp_sk(sk);
2516 	bool dispose_it, need_push = false;
2517 	int fwd_remaining;
2518 
2519 	/* Do not pass RX data to the msk, even if the subflow socket is not
2520 	 * going to be freed (i.e. even for the first subflow on graceful
2521 	 * subflow close.
2522 	 */
2523 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2524 	subflow->closing = 1;
2525 
2526 	/* Borrow the fwd allocated page left-over; fwd memory for the subflow
2527 	 * could be negative at this point, but will be reach zero soon - when
2528 	 * the data allocated using such fragment will be freed.
2529 	 */
2530 	if (subflow->lent_mem_frag) {
2531 		fwd_remaining = PAGE_SIZE - subflow->lent_mem_frag;
2532 		sk_forward_alloc_add(sk, fwd_remaining);
2533 		sk_forward_alloc_add(ssk, -fwd_remaining);
2534 		subflow->lent_mem_frag = 0;
2535 	}
2536 
2537 	/* If the first subflow moved to a close state before accept, e.g. due
2538 	 * to an incoming reset or listener shutdown, the subflow socket is
2539 	 * already deleted by inet_child_forget() and the mptcp socket can't
2540 	 * survive too.
2541 	 */
2542 	if (msk->in_accept_queue && msk->first == ssk &&
2543 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2544 		/* ensure later check in mptcp_worker() will dispose the msk */
2545 		sock_set_flag(sk, SOCK_DEAD);
2546 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2547 		mptcp_subflow_drop_ctx(ssk);
2548 		goto out_release;
2549 	}
2550 
2551 	dispose_it = msk->free_first || ssk != msk->first;
2552 	if (dispose_it)
2553 		list_del(&subflow->node);
2554 
2555 	if (subflow->send_fastclose && ssk->sk_state != TCP_CLOSE)
2556 		tcp_set_state(ssk, TCP_CLOSE);
2557 
2558 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2559 	if (!dispose_it) {
2560 		__mptcp_subflow_disconnect(ssk, subflow, msk->fastclosing);
2561 		release_sock(ssk);
2562 
2563 		goto out;
2564 	}
2565 
2566 	subflow->disposable = 1;
2567 
2568 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2569 	 * the ssk has been already destroyed, we just need to release the
2570 	 * reference owned by msk;
2571 	 */
2572 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2573 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2574 		kfree_rcu(subflow, rcu);
2575 	} else {
2576 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2577 		__tcp_close(ssk, 0);
2578 
2579 		/* close acquired an extra ref */
2580 		__sock_put(ssk);
2581 	}
2582 
2583 out_release:
2584 	__mptcp_subflow_error_report(sk, ssk);
2585 	release_sock(ssk);
2586 
2587 	sock_put(ssk);
2588 
2589 	if (ssk == msk->first)
2590 		WRITE_ONCE(msk->first, NULL);
2591 
2592 out:
2593 	__mptcp_sync_sndbuf(sk);
2594 	if (need_push)
2595 		__mptcp_push_pending(sk, 0);
2596 
2597 	/* Catch every 'all subflows closed' scenario, including peers silently
2598 	 * closing them, e.g. due to timeout.
2599 	 * For established sockets, allow an additional timeout before closing,
2600 	 * as the protocol can still create more subflows.
2601 	 */
2602 	if (list_is_singular(&msk->conn_list) && msk->first &&
2603 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2604 		if (sk->sk_state != TCP_ESTABLISHED ||
2605 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2606 			mptcp_set_state(sk, TCP_CLOSE);
2607 			mptcp_close_wake_up(sk);
2608 		} else {
2609 			mptcp_start_tout_timer(sk);
2610 		}
2611 	}
2612 }
2613 
2614 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2615 		     struct mptcp_subflow_context *subflow)
2616 {
2617 	struct mptcp_sock *msk = mptcp_sk(sk);
2618 	struct sk_buff *skb;
2619 
2620 	/* The first subflow can already be closed or disconnected */
2621 	if (subflow->close_event_done || READ_ONCE(subflow->local_id) < 0)
2622 		return;
2623 
2624 	subflow->close_event_done = true;
2625 
2626 	if (sk->sk_state == TCP_ESTABLISHED)
2627 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2628 
2629 	/* Remove any reference from the backlog to this ssk; backlog skbs consume
2630 	 * space in the msk receive queue, no need to touch sk->sk_rmem_alloc
2631 	 */
2632 	list_for_each_entry(skb, &msk->backlog_list, list) {
2633 		if (skb->sk != ssk)
2634 			continue;
2635 
2636 		atomic_sub(skb->truesize, &skb->sk->sk_rmem_alloc);
2637 		skb->sk = NULL;
2638 	}
2639 
2640 	/* subflow aborted before reaching the fully_established status
2641 	 * attempt the creation of the next subflow
2642 	 */
2643 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2644 
2645 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2646 }
2647 
2648 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2649 {
2650 	return 0;
2651 }
2652 
2653 static void __mptcp_close_subflow(struct sock *sk)
2654 {
2655 	struct mptcp_subflow_context *subflow, *tmp;
2656 	struct mptcp_sock *msk = mptcp_sk(sk);
2657 
2658 	might_sleep();
2659 
2660 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2661 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2662 		int ssk_state = inet_sk_state_load(ssk);
2663 
2664 		if (ssk_state != TCP_CLOSE &&
2665 		    (ssk_state != TCP_CLOSE_WAIT ||
2666 		     inet_sk_state_load(sk) != TCP_ESTABLISHED ||
2667 		     __mptcp_check_fallback(msk)))
2668 			continue;
2669 
2670 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2671 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2672 			continue;
2673 
2674 		mptcp_close_ssk(sk, ssk, subflow);
2675 	}
2676 
2677 }
2678 
2679 static bool mptcp_close_tout_expired(const struct sock *sk)
2680 {
2681 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2682 	    sk->sk_state == TCP_CLOSE)
2683 		return false;
2684 
2685 	return time_after32(tcp_jiffies32,
2686 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2687 }
2688 
2689 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2690 {
2691 	struct mptcp_subflow_context *subflow, *tmp;
2692 	struct sock *sk = (struct sock *)msk;
2693 
2694 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2695 		return;
2696 
2697 	mptcp_token_destroy(msk);
2698 
2699 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2700 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2701 		bool slow;
2702 
2703 		slow = lock_sock_fast(tcp_sk);
2704 		if (tcp_sk->sk_state != TCP_CLOSE) {
2705 			mptcp_send_active_reset_reason(tcp_sk);
2706 			tcp_set_state(tcp_sk, TCP_CLOSE);
2707 		}
2708 		unlock_sock_fast(tcp_sk, slow);
2709 	}
2710 
2711 	/* Mirror the tcp_reset() error propagation */
2712 	switch (sk->sk_state) {
2713 	case TCP_SYN_SENT:
2714 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2715 		break;
2716 	case TCP_CLOSE_WAIT:
2717 		WRITE_ONCE(sk->sk_err, EPIPE);
2718 		break;
2719 	case TCP_CLOSE:
2720 		return;
2721 	default:
2722 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2723 	}
2724 
2725 	mptcp_set_state(sk, TCP_CLOSE);
2726 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2727 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2728 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2729 
2730 	/* the calling mptcp_worker will properly destroy the socket */
2731 	if (sock_flag(sk, SOCK_DEAD))
2732 		return;
2733 
2734 	sk->sk_state_change(sk);
2735 	sk_error_report(sk);
2736 }
2737 
2738 static void __mptcp_retrans(struct sock *sk)
2739 {
2740 	struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2741 	struct mptcp_sock *msk = mptcp_sk(sk);
2742 	struct mptcp_subflow_context *subflow;
2743 	struct mptcp_data_frag *dfrag;
2744 	struct sock *ssk;
2745 	int ret, err;
2746 	u16 len = 0;
2747 
2748 	mptcp_clean_una_wakeup(sk);
2749 
2750 	/* first check ssk: need to kick "stale" logic */
2751 	err = mptcp_sched_get_retrans(msk);
2752 	dfrag = mptcp_rtx_head(sk);
2753 	if (!dfrag) {
2754 		if (mptcp_data_fin_enabled(msk)) {
2755 			struct inet_connection_sock *icsk = inet_csk(sk);
2756 
2757 			WRITE_ONCE(icsk->icsk_retransmits,
2758 				   icsk->icsk_retransmits + 1);
2759 			mptcp_set_datafin_timeout(sk);
2760 			mptcp_send_ack(msk);
2761 
2762 			goto reset_timer;
2763 		}
2764 
2765 		if (!mptcp_send_head(sk))
2766 			goto clear_scheduled;
2767 
2768 		goto reset_timer;
2769 	}
2770 
2771 	if (err)
2772 		goto reset_timer;
2773 
2774 	mptcp_for_each_subflow(msk, subflow) {
2775 		if (READ_ONCE(subflow->scheduled)) {
2776 			u16 copied = 0;
2777 
2778 			mptcp_subflow_set_scheduled(subflow, false);
2779 
2780 			ssk = mptcp_subflow_tcp_sock(subflow);
2781 
2782 			lock_sock(ssk);
2783 
2784 			/* limit retransmission to the bytes already sent on some subflows */
2785 			info.sent = 0;
2786 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2787 								    dfrag->already_sent;
2788 
2789 			/*
2790 			 * make the whole retrans decision, xmit, disallow
2791 			 * fallback atomic, note that we can't retrans even
2792 			 * when an infinite fallback is in progress, i.e. new
2793 			 * subflows are disallowed.
2794 			 */
2795 			spin_lock_bh(&msk->fallback_lock);
2796 			if (__mptcp_check_fallback(msk) ||
2797 			    !msk->allow_subflows) {
2798 				spin_unlock_bh(&msk->fallback_lock);
2799 				release_sock(ssk);
2800 				goto clear_scheduled;
2801 			}
2802 
2803 			while (info.sent < info.limit) {
2804 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2805 				if (ret <= 0)
2806 					break;
2807 
2808 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2809 				copied += ret;
2810 				info.sent += ret;
2811 			}
2812 			if (copied) {
2813 				len = max(copied, len);
2814 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2815 					 info.size_goal);
2816 				msk->allow_infinite_fallback = false;
2817 			}
2818 			spin_unlock_bh(&msk->fallback_lock);
2819 
2820 			release_sock(ssk);
2821 		}
2822 	}
2823 
2824 	msk->bytes_retrans += len;
2825 	dfrag->already_sent = max(dfrag->already_sent, len);
2826 
2827 reset_timer:
2828 	mptcp_check_and_set_pending(sk);
2829 
2830 	if (!mptcp_rtx_timer_pending(sk))
2831 		mptcp_reset_rtx_timer(sk);
2832 
2833 clear_scheduled:
2834 	/* If no rtx data was available or in case of fallback, there
2835 	 * could be left-over scheduled subflows; clear them all
2836 	 * or later xmit could use bad ones
2837 	 */
2838 	mptcp_for_each_subflow(msk, subflow)
2839 		if (READ_ONCE(subflow->scheduled))
2840 			mptcp_subflow_set_scheduled(subflow, false);
2841 }
2842 
2843 /* schedule the timeout timer for the relevant event: either close timeout
2844  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2845  */
2846 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2847 {
2848 	struct sock *sk = (struct sock *)msk;
2849 	unsigned long timeout, close_timeout;
2850 
2851 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2852 		return;
2853 
2854 	close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2855 			tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2856 
2857 	/* the close timeout takes precedence on the fail one, and here at least one of
2858 	 * them is active
2859 	 */
2860 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2861 
2862 	sk_reset_timer(sk, &inet_csk(sk)->mptcp_tout_timer, timeout);
2863 }
2864 
2865 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2866 {
2867 	struct sock *ssk = msk->first;
2868 	bool slow;
2869 
2870 	if (!ssk)
2871 		return;
2872 
2873 	pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2874 
2875 	slow = lock_sock_fast(ssk);
2876 	mptcp_subflow_reset(ssk);
2877 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2878 	unlock_sock_fast(ssk, slow);
2879 }
2880 
2881 static void mptcp_backlog_purge(struct sock *sk)
2882 {
2883 	struct mptcp_sock *msk = mptcp_sk(sk);
2884 	struct sk_buff *tmp, *skb;
2885 	LIST_HEAD(backlog);
2886 
2887 	mptcp_data_lock(sk);
2888 	list_splice_init(&msk->backlog_list, &backlog);
2889 	msk->backlog_len = 0;
2890 	mptcp_data_unlock(sk);
2891 
2892 	list_for_each_entry_safe(skb, tmp, &backlog, list) {
2893 		mptcp_borrow_fwdmem(sk, skb);
2894 		kfree_skb_reason(skb, SKB_DROP_REASON_SOCKET_CLOSE);
2895 	}
2896 	sk_mem_reclaim(sk);
2897 }
2898 
2899 static void mptcp_do_fastclose(struct sock *sk)
2900 {
2901 	struct mptcp_subflow_context *subflow, *tmp;
2902 	struct mptcp_sock *msk = mptcp_sk(sk);
2903 
2904 	mptcp_set_state(sk, TCP_CLOSE);
2905 	mptcp_backlog_purge(sk);
2906 	msk->fastclosing = 1;
2907 
2908 	/* Explicitly send the fastclose reset as need */
2909 	if (__mptcp_check_fallback(msk))
2910 		return;
2911 
2912 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2913 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2914 
2915 		lock_sock(ssk);
2916 
2917 		/* Some subflow socket states don't allow/need a reset.*/
2918 		if ((1 << ssk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
2919 			goto unlock;
2920 
2921 		subflow->send_fastclose = 1;
2922 
2923 		/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2924 		 * issue in __tcp_select_window(), see tcp_disconnect().
2925 		 */
2926 		inet_csk(ssk)->icsk_ack.rcv_mss = TCP_MIN_MSS;
2927 
2928 		tcp_send_active_reset(ssk, ssk->sk_allocation,
2929 				      SK_RST_REASON_TCP_ABORT_ON_CLOSE);
2930 unlock:
2931 		release_sock(ssk);
2932 	}
2933 }
2934 
2935 static void mptcp_worker(struct work_struct *work)
2936 {
2937 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2938 	struct sock *sk = (struct sock *)msk;
2939 	unsigned long fail_tout;
2940 	int state;
2941 
2942 	lock_sock(sk);
2943 	state = sk->sk_state;
2944 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2945 		goto unlock;
2946 
2947 	mptcp_check_fastclose(msk);
2948 
2949 	mptcp_pm_worker(msk);
2950 
2951 	mptcp_check_send_data_fin(sk);
2952 	mptcp_check_data_fin_ack(sk);
2953 	mptcp_check_data_fin(sk);
2954 
2955 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2956 		__mptcp_close_subflow(sk);
2957 
2958 	if (mptcp_close_tout_expired(sk)) {
2959 		struct mptcp_subflow_context *subflow, *tmp;
2960 
2961 		mptcp_do_fastclose(sk);
2962 		mptcp_for_each_subflow_safe(msk, subflow, tmp)
2963 			__mptcp_close_ssk(sk, subflow->tcp_sock, subflow, 0);
2964 		mptcp_close_wake_up(sk);
2965 	}
2966 
2967 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2968 		__mptcp_destroy_sock(sk);
2969 		goto unlock;
2970 	}
2971 
2972 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2973 		__mptcp_retrans(sk);
2974 
2975 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2976 	if (fail_tout && time_after(jiffies, fail_tout))
2977 		mptcp_mp_fail_no_response(msk);
2978 
2979 unlock:
2980 	release_sock(sk);
2981 	sock_put(sk);
2982 }
2983 
2984 static void __mptcp_init_sock(struct sock *sk)
2985 {
2986 	struct mptcp_sock *msk = mptcp_sk(sk);
2987 
2988 	INIT_LIST_HEAD(&msk->conn_list);
2989 	INIT_LIST_HEAD(&msk->join_list);
2990 	INIT_LIST_HEAD(&msk->rtx_queue);
2991 	INIT_LIST_HEAD(&msk->backlog_list);
2992 	INIT_WORK(&msk->work, mptcp_worker);
2993 	msk->out_of_order_queue = RB_ROOT;
2994 	msk->first_pending = NULL;
2995 	msk->timer_ival = TCP_RTO_MIN;
2996 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2997 	msk->backlog_len = 0;
2998 
2999 	WRITE_ONCE(msk->first, NULL);
3000 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
3001 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3002 	msk->allow_infinite_fallback = true;
3003 	msk->allow_subflows = true;
3004 	msk->recovery = false;
3005 	msk->subflow_id = 1;
3006 	msk->last_data_sent = tcp_jiffies32;
3007 	msk->last_data_recv = tcp_jiffies32;
3008 	msk->last_ack_recv = tcp_jiffies32;
3009 
3010 	mptcp_pm_data_init(msk);
3011 	spin_lock_init(&msk->fallback_lock);
3012 
3013 	/* re-use the csk retrans timer for MPTCP-level retrans */
3014 	timer_setup(&sk->mptcp_retransmit_timer, mptcp_retransmit_timer, 0);
3015 	timer_setup(&msk->sk.mptcp_tout_timer, mptcp_tout_timer, 0);
3016 }
3017 
3018 static void mptcp_ca_reset(struct sock *sk)
3019 {
3020 	struct inet_connection_sock *icsk = inet_csk(sk);
3021 
3022 	tcp_assign_congestion_control(sk);
3023 	strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
3024 		sizeof(mptcp_sk(sk)->ca_name));
3025 
3026 	/* no need to keep a reference to the ops, the name will suffice */
3027 	tcp_cleanup_congestion_control(sk);
3028 	icsk->icsk_ca_ops = NULL;
3029 }
3030 
3031 static int mptcp_init_sock(struct sock *sk)
3032 {
3033 	struct net *net = sock_net(sk);
3034 	int ret;
3035 
3036 	__mptcp_init_sock(sk);
3037 
3038 	if (!mptcp_is_enabled(net))
3039 		return -ENOPROTOOPT;
3040 
3041 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
3042 		return -ENOMEM;
3043 
3044 	rcu_read_lock();
3045 	ret = mptcp_init_sched(mptcp_sk(sk),
3046 			       mptcp_sched_find(mptcp_get_scheduler(net)));
3047 	rcu_read_unlock();
3048 	if (ret)
3049 		return ret;
3050 
3051 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
3052 
3053 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
3054 	 * propagate the correct value
3055 	 */
3056 	mptcp_ca_reset(sk);
3057 
3058 	sk_sockets_allocated_inc(sk);
3059 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
3060 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
3061 	sk->sk_write_space = sk_stream_write_space;
3062 
3063 	return 0;
3064 }
3065 
3066 static void __mptcp_clear_xmit(struct sock *sk)
3067 {
3068 	struct mptcp_sock *msk = mptcp_sk(sk);
3069 	struct mptcp_data_frag *dtmp, *dfrag;
3070 
3071 	msk->first_pending = NULL;
3072 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
3073 		dfrag_clear(sk, dfrag);
3074 }
3075 
3076 void mptcp_cancel_work(struct sock *sk)
3077 {
3078 	struct mptcp_sock *msk = mptcp_sk(sk);
3079 
3080 	if (cancel_work_sync(&msk->work))
3081 		__sock_put(sk);
3082 }
3083 
3084 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
3085 {
3086 	lock_sock(ssk);
3087 
3088 	switch (ssk->sk_state) {
3089 	case TCP_LISTEN:
3090 		if (!(how & RCV_SHUTDOWN))
3091 			break;
3092 		fallthrough;
3093 	case TCP_SYN_SENT:
3094 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
3095 		break;
3096 	default:
3097 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
3098 			pr_debug("Fallback\n");
3099 			ssk->sk_shutdown |= how;
3100 			tcp_shutdown(ssk, how);
3101 
3102 			/* simulate the data_fin ack reception to let the state
3103 			 * machine move forward
3104 			 */
3105 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
3106 			mptcp_schedule_work(sk);
3107 		} else {
3108 			pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
3109 			tcp_send_ack(ssk);
3110 			if (!mptcp_rtx_timer_pending(sk))
3111 				mptcp_reset_rtx_timer(sk);
3112 		}
3113 		break;
3114 	}
3115 
3116 	release_sock(ssk);
3117 }
3118 
3119 void mptcp_set_state(struct sock *sk, int state)
3120 {
3121 	int oldstate = sk->sk_state;
3122 
3123 	switch (state) {
3124 	case TCP_ESTABLISHED:
3125 		if (oldstate != TCP_ESTABLISHED)
3126 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
3127 		break;
3128 	case TCP_CLOSE_WAIT:
3129 		/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
3130 		 * MPTCP "accepted" sockets will be created later on. So no
3131 		 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
3132 		 */
3133 		break;
3134 	default:
3135 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
3136 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
3137 	}
3138 
3139 	inet_sk_state_store(sk, state);
3140 }
3141 
3142 static const unsigned char new_state[16] = {
3143 	/* current state:     new state:      action:	*/
3144 	[0 /* (Invalid) */] = TCP_CLOSE,
3145 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3146 	[TCP_SYN_SENT]      = TCP_CLOSE,
3147 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3148 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
3149 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
3150 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
3151 	[TCP_CLOSE]         = TCP_CLOSE,
3152 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
3153 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
3154 	[TCP_LISTEN]        = TCP_CLOSE,
3155 	[TCP_CLOSING]       = TCP_CLOSING,
3156 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
3157 };
3158 
3159 static int mptcp_close_state(struct sock *sk)
3160 {
3161 	int next = (int)new_state[sk->sk_state];
3162 	int ns = next & TCP_STATE_MASK;
3163 
3164 	mptcp_set_state(sk, ns);
3165 
3166 	return next & TCP_ACTION_FIN;
3167 }
3168 
3169 static void mptcp_check_send_data_fin(struct sock *sk)
3170 {
3171 	struct mptcp_subflow_context *subflow;
3172 	struct mptcp_sock *msk = mptcp_sk(sk);
3173 
3174 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
3175 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
3176 		 msk->snd_nxt, msk->write_seq);
3177 
3178 	/* we still need to enqueue subflows or not really shutting down,
3179 	 * skip this
3180 	 */
3181 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
3182 	    mptcp_send_head(sk))
3183 		return;
3184 
3185 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3186 
3187 	mptcp_for_each_subflow(msk, subflow) {
3188 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
3189 
3190 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
3191 	}
3192 }
3193 
3194 static void __mptcp_wr_shutdown(struct sock *sk)
3195 {
3196 	struct mptcp_sock *msk = mptcp_sk(sk);
3197 
3198 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
3199 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
3200 		 !!mptcp_send_head(sk));
3201 
3202 	/* will be ignored by fallback sockets */
3203 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
3204 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
3205 
3206 	mptcp_check_send_data_fin(sk);
3207 }
3208 
3209 static void __mptcp_destroy_sock(struct sock *sk)
3210 {
3211 	struct mptcp_sock *msk = mptcp_sk(sk);
3212 
3213 	pr_debug("msk=%p\n", msk);
3214 
3215 	might_sleep();
3216 
3217 	mptcp_stop_rtx_timer(sk);
3218 	sk_stop_timer(sk, &inet_csk(sk)->mptcp_tout_timer);
3219 	msk->pm.status = 0;
3220 	mptcp_release_sched(msk);
3221 
3222 	sk->sk_prot->destroy(sk);
3223 
3224 	sk_stream_kill_queues(sk);
3225 	xfrm_sk_free_policy(sk);
3226 
3227 	sock_put(sk);
3228 }
3229 
3230 void __mptcp_unaccepted_force_close(struct sock *sk)
3231 {
3232 	sock_set_flag(sk, SOCK_DEAD);
3233 	mptcp_do_fastclose(sk);
3234 	__mptcp_destroy_sock(sk);
3235 }
3236 
3237 static __poll_t mptcp_check_readable(struct sock *sk)
3238 {
3239 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3240 }
3241 
3242 static void mptcp_check_listen_stop(struct sock *sk)
3243 {
3244 	struct sock *ssk;
3245 
3246 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3247 		return;
3248 
3249 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3250 	ssk = mptcp_sk(sk)->first;
3251 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3252 		return;
3253 
3254 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3255 	tcp_set_state(ssk, TCP_CLOSE);
3256 	mptcp_subflow_queue_clean(sk, ssk);
3257 	inet_csk_listen_stop(ssk);
3258 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3259 	release_sock(ssk);
3260 }
3261 
3262 bool __mptcp_close(struct sock *sk, long timeout)
3263 {
3264 	struct mptcp_subflow_context *subflow;
3265 	struct mptcp_sock *msk = mptcp_sk(sk);
3266 	bool do_cancel_work = false;
3267 	int subflows_alive = 0;
3268 
3269 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3270 
3271 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3272 		mptcp_check_listen_stop(sk);
3273 		mptcp_set_state(sk, TCP_CLOSE);
3274 		goto cleanup;
3275 	}
3276 
3277 	if (mptcp_data_avail(msk) || timeout < 0) {
3278 		/* If the msk has read data, or the caller explicitly ask it,
3279 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3280 		 */
3281 		mptcp_do_fastclose(sk);
3282 		timeout = 0;
3283 	} else if (mptcp_close_state(sk)) {
3284 		__mptcp_wr_shutdown(sk);
3285 	}
3286 
3287 	sk_stream_wait_close(sk, timeout);
3288 
3289 cleanup:
3290 	/* orphan all the subflows */
3291 	mptcp_for_each_subflow(msk, subflow) {
3292 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3293 		bool slow = lock_sock_fast_nested(ssk);
3294 
3295 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3296 
3297 		/* since the close timeout takes precedence on the fail one,
3298 		 * cancel the latter
3299 		 */
3300 		if (ssk == msk->first)
3301 			subflow->fail_tout = 0;
3302 
3303 		/* detach from the parent socket, but allow data_ready to
3304 		 * push incoming data into the mptcp stack, to properly ack it
3305 		 */
3306 		ssk->sk_socket = NULL;
3307 		ssk->sk_wq = NULL;
3308 		unlock_sock_fast(ssk, slow);
3309 	}
3310 	sock_orphan(sk);
3311 
3312 	/* all the subflows are closed, only timeout can change the msk
3313 	 * state, let's not keep resources busy for no reasons
3314 	 */
3315 	if (subflows_alive == 0)
3316 		mptcp_set_state(sk, TCP_CLOSE);
3317 
3318 	sock_hold(sk);
3319 	pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3320 	mptcp_pm_connection_closed(msk);
3321 
3322 	if (sk->sk_state == TCP_CLOSE) {
3323 		__mptcp_destroy_sock(sk);
3324 		do_cancel_work = true;
3325 	} else {
3326 		mptcp_start_tout_timer(sk);
3327 	}
3328 
3329 	return do_cancel_work;
3330 }
3331 
3332 static void mptcp_close(struct sock *sk, long timeout)
3333 {
3334 	bool do_cancel_work;
3335 
3336 	lock_sock(sk);
3337 
3338 	do_cancel_work = __mptcp_close(sk, timeout);
3339 	release_sock(sk);
3340 	if (do_cancel_work)
3341 		mptcp_cancel_work(sk);
3342 
3343 	sock_put(sk);
3344 }
3345 
3346 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3347 {
3348 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3349 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3350 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3351 
3352 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3353 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3354 
3355 	if (msk6 && ssk6) {
3356 		msk6->saddr = ssk6->saddr;
3357 		msk6->flow_label = ssk6->flow_label;
3358 	}
3359 #endif
3360 
3361 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3362 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3363 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3364 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3365 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3366 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3367 }
3368 
3369 static void mptcp_destroy_common(struct mptcp_sock *msk)
3370 {
3371 	struct mptcp_subflow_context *subflow, *tmp;
3372 	struct sock *sk = (struct sock *)msk;
3373 
3374 	__mptcp_clear_xmit(sk);
3375 	mptcp_backlog_purge(sk);
3376 
3377 	/* join list will be eventually flushed (with rst) at sock lock release time */
3378 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3379 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, 0);
3380 
3381 	__skb_queue_purge(&sk->sk_receive_queue);
3382 	skb_rbtree_purge(&msk->out_of_order_queue);
3383 
3384 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3385 	 * inet_sock_destruct() will dispose it
3386 	 */
3387 	mptcp_token_destroy(msk);
3388 	mptcp_pm_destroy(msk);
3389 }
3390 
3391 static int mptcp_disconnect(struct sock *sk, int flags)
3392 {
3393 	struct mptcp_sock *msk = mptcp_sk(sk);
3394 
3395 	/* We are on the fastopen error path. We can't call straight into the
3396 	 * subflows cleanup code due to lock nesting (we are already under
3397 	 * msk->firstsocket lock).
3398 	 */
3399 	if (msk->fastopening)
3400 		return -EBUSY;
3401 
3402 	mptcp_check_listen_stop(sk);
3403 	mptcp_set_state(sk, TCP_CLOSE);
3404 
3405 	mptcp_stop_rtx_timer(sk);
3406 	mptcp_stop_tout_timer(sk);
3407 
3408 	mptcp_pm_connection_closed(msk);
3409 
3410 	/* msk->subflow is still intact, the following will not free the first
3411 	 * subflow
3412 	 */
3413 	mptcp_do_fastclose(sk);
3414 	mptcp_destroy_common(msk);
3415 
3416 	/* The first subflow is already in TCP_CLOSE status, the following
3417 	 * can't overlap with a fallback anymore
3418 	 */
3419 	spin_lock_bh(&msk->fallback_lock);
3420 	msk->allow_subflows = true;
3421 	msk->allow_infinite_fallback = true;
3422 	WRITE_ONCE(msk->flags, 0);
3423 	spin_unlock_bh(&msk->fallback_lock);
3424 
3425 	msk->cb_flags = 0;
3426 	msk->recovery = false;
3427 	WRITE_ONCE(msk->can_ack, false);
3428 	WRITE_ONCE(msk->fully_established, false);
3429 	WRITE_ONCE(msk->rcv_data_fin, false);
3430 	WRITE_ONCE(msk->snd_data_fin_enable, false);
3431 	WRITE_ONCE(msk->rcv_fastclose, false);
3432 	WRITE_ONCE(msk->use_64bit_ack, false);
3433 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3434 	mptcp_pm_data_reset(msk);
3435 	mptcp_ca_reset(sk);
3436 	msk->bytes_consumed = 0;
3437 	msk->bytes_acked = 0;
3438 	msk->bytes_received = 0;
3439 	msk->bytes_sent = 0;
3440 	msk->bytes_retrans = 0;
3441 	msk->rcvspace_init = 0;
3442 	msk->fastclosing = 0;
3443 
3444 	/* for fallback's sake */
3445 	WRITE_ONCE(msk->ack_seq, 0);
3446 
3447 	WRITE_ONCE(sk->sk_shutdown, 0);
3448 	sk_error_report(sk);
3449 	return 0;
3450 }
3451 
3452 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3453 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3454 {
3455 	struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk);
3456 
3457 	return &msk6->np;
3458 }
3459 
3460 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3461 {
3462 	const struct ipv6_pinfo *np = inet6_sk(sk);
3463 	struct ipv6_txoptions *opt;
3464 	struct ipv6_pinfo *newnp;
3465 
3466 	newnp = inet6_sk(newsk);
3467 
3468 	rcu_read_lock();
3469 	opt = rcu_dereference(np->opt);
3470 	if (opt) {
3471 		opt = ipv6_dup_options(newsk, opt);
3472 		if (!opt)
3473 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3474 	}
3475 	RCU_INIT_POINTER(newnp->opt, opt);
3476 	rcu_read_unlock();
3477 }
3478 #endif
3479 
3480 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3481 {
3482 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3483 	const struct inet_sock *inet = inet_sk(sk);
3484 	struct inet_sock *newinet;
3485 
3486 	newinet = inet_sk(newsk);
3487 
3488 	rcu_read_lock();
3489 	inet_opt = rcu_dereference(inet->inet_opt);
3490 	if (inet_opt) {
3491 		newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3492 				      inet_opt->opt.optlen, GFP_ATOMIC);
3493 		if (!newopt)
3494 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3495 	}
3496 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3497 	rcu_read_unlock();
3498 }
3499 
3500 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3501 				 const struct mptcp_options_received *mp_opt,
3502 				 struct sock *ssk,
3503 				 struct request_sock *req)
3504 {
3505 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3506 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3507 	struct mptcp_subflow_context *subflow;
3508 	struct mptcp_sock *msk;
3509 
3510 	if (!nsk)
3511 		return NULL;
3512 
3513 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3514 	if (nsk->sk_family == AF_INET6)
3515 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3516 #endif
3517 
3518 	__mptcp_init_sock(nsk);
3519 
3520 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3521 	if (nsk->sk_family == AF_INET6)
3522 		mptcp_copy_ip6_options(nsk, sk);
3523 	else
3524 #endif
3525 		mptcp_copy_ip_options(nsk, sk);
3526 
3527 	msk = mptcp_sk(nsk);
3528 	WRITE_ONCE(msk->local_key, subflow_req->local_key);
3529 	WRITE_ONCE(msk->token, subflow_req->token);
3530 	msk->in_accept_queue = 1;
3531 	WRITE_ONCE(msk->fully_established, false);
3532 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3533 		WRITE_ONCE(msk->csum_enabled, true);
3534 
3535 	WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3536 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3537 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3538 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3539 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3540 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3541 
3542 	/* passive msk is created after the first/MPC subflow */
3543 	msk->subflow_id = 2;
3544 
3545 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3546 	security_inet_csk_clone(nsk, req);
3547 
3548 	/* this can't race with mptcp_close(), as the msk is
3549 	 * not yet exposted to user-space
3550 	 */
3551 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3552 
3553 	/* The msk maintain a ref to each subflow in the connections list */
3554 	WRITE_ONCE(msk->first, ssk);
3555 	subflow = mptcp_subflow_ctx(ssk);
3556 	list_add(&subflow->node, &msk->conn_list);
3557 	sock_hold(ssk);
3558 
3559 	/* new mpc subflow takes ownership of the newly
3560 	 * created mptcp socket
3561 	 */
3562 	mptcp_token_accept(subflow_req, msk);
3563 
3564 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3565 	 * uses the correct data
3566 	 */
3567 	mptcp_copy_inaddrs(nsk, ssk);
3568 	__mptcp_propagate_sndbuf(nsk, ssk);
3569 
3570 	mptcp_rcv_space_init(msk, ssk);
3571 	msk->rcvq_space.time = mptcp_stamp();
3572 
3573 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3574 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3575 	bh_unlock_sock(nsk);
3576 
3577 	/* note: the newly allocated socket refcount is 2 now */
3578 	return nsk;
3579 }
3580 
3581 static void mptcp_destroy(struct sock *sk)
3582 {
3583 	struct mptcp_sock *msk = mptcp_sk(sk);
3584 
3585 	/* allow the following to close even the initial subflow */
3586 	msk->free_first = 1;
3587 	mptcp_destroy_common(msk);
3588 	sk_sockets_allocated_dec(sk);
3589 }
3590 
3591 void __mptcp_data_acked(struct sock *sk)
3592 {
3593 	if (!sock_owned_by_user(sk))
3594 		__mptcp_clean_una(sk);
3595 	else
3596 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3597 }
3598 
3599 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3600 {
3601 	if (!sock_owned_by_user(sk))
3602 		__mptcp_subflow_push_pending(sk, ssk, false);
3603 	else
3604 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3605 }
3606 
3607 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3608 				      BIT(MPTCP_RETRANSMIT) | \
3609 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3610 
3611 /* processes deferred events and flush wmem */
3612 static void mptcp_release_cb(struct sock *sk)
3613 	__must_hold(&sk->sk_lock.slock)
3614 {
3615 	struct mptcp_sock *msk = mptcp_sk(sk);
3616 
3617 	for (;;) {
3618 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3619 		struct list_head join_list, skbs;
3620 		bool spool_bl;
3621 		u32 moved;
3622 
3623 		spool_bl = mptcp_can_spool_backlog(sk, &skbs);
3624 		if (!flags && !spool_bl)
3625 			break;
3626 
3627 		INIT_LIST_HEAD(&join_list);
3628 		list_splice_init(&msk->join_list, &join_list);
3629 
3630 		/* the following actions acquire the subflow socket lock
3631 		 *
3632 		 * 1) can't be invoked in atomic scope
3633 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3634 		 *    datapath acquires the msk socket spinlock while helding
3635 		 *    the subflow socket lock
3636 		 */
3637 		msk->cb_flags &= ~flags;
3638 		spin_unlock_bh(&sk->sk_lock.slock);
3639 
3640 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3641 			__mptcp_flush_join_list(sk, &join_list);
3642 		if (flags & BIT(MPTCP_PUSH_PENDING))
3643 			__mptcp_push_pending(sk, 0);
3644 		if (flags & BIT(MPTCP_RETRANSMIT))
3645 			__mptcp_retrans(sk);
3646 		if (spool_bl && __mptcp_move_skbs(sk, &skbs, &moved)) {
3647 			/* notify ack seq update */
3648 			mptcp_cleanup_rbuf(msk, 0);
3649 			sk->sk_data_ready(sk);
3650 		}
3651 
3652 		cond_resched();
3653 		spin_lock_bh(&sk->sk_lock.slock);
3654 		if (spool_bl)
3655 			mptcp_backlog_spooled(sk, moved, &skbs);
3656 	}
3657 
3658 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3659 		__mptcp_clean_una_wakeup(sk);
3660 	if (unlikely(msk->cb_flags)) {
3661 		/* be sure to sync the msk state before taking actions
3662 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3663 		 * On sk release avoid actions depending on the first subflow
3664 		 */
3665 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3666 			__mptcp_sync_state(sk, msk->pending_state);
3667 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3668 			__mptcp_error_report(sk);
3669 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3670 			__mptcp_sync_sndbuf(sk);
3671 	}
3672 }
3673 
3674 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3675  * TCP can't schedule delack timer before the subflow is fully established.
3676  * MPTCP uses the delack timer to do 3rd ack retransmissions
3677  */
3678 static void schedule_3rdack_retransmission(struct sock *ssk)
3679 {
3680 	struct inet_connection_sock *icsk = inet_csk(ssk);
3681 	struct tcp_sock *tp = tcp_sk(ssk);
3682 	unsigned long timeout;
3683 
3684 	if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3685 		return;
3686 
3687 	/* reschedule with a timeout above RTT, as we must look only for drop */
3688 	if (tp->srtt_us)
3689 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3690 	else
3691 		timeout = TCP_TIMEOUT_INIT;
3692 	timeout += jiffies;
3693 
3694 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3695 	smp_store_release(&icsk->icsk_ack.pending,
3696 			  icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3697 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3698 }
3699 
3700 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3701 {
3702 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3703 	struct sock *sk = subflow->conn;
3704 
3705 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3706 		mptcp_data_lock(sk);
3707 		if (!sock_owned_by_user(sk))
3708 			__mptcp_subflow_push_pending(sk, ssk, true);
3709 		else
3710 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3711 		mptcp_data_unlock(sk);
3712 	}
3713 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3714 		mptcp_data_lock(sk);
3715 		if (!sock_owned_by_user(sk))
3716 			__mptcp_sync_sndbuf(sk);
3717 		else
3718 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3719 		mptcp_data_unlock(sk);
3720 	}
3721 	if (status & BIT(MPTCP_DELEGATE_ACK))
3722 		schedule_3rdack_retransmission(ssk);
3723 }
3724 
3725 static int mptcp_hash(struct sock *sk)
3726 {
3727 	/* should never be called,
3728 	 * we hash the TCP subflows not the MPTCP socket
3729 	 */
3730 	WARN_ON_ONCE(1);
3731 	return 0;
3732 }
3733 
3734 static void mptcp_unhash(struct sock *sk)
3735 {
3736 	/* called from sk_common_release(), but nothing to do here */
3737 }
3738 
3739 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3740 {
3741 	struct mptcp_sock *msk = mptcp_sk(sk);
3742 
3743 	pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3744 	if (WARN_ON_ONCE(!msk->first))
3745 		return -EINVAL;
3746 
3747 	return inet_csk_get_port(msk->first, snum);
3748 }
3749 
3750 void mptcp_finish_connect(struct sock *ssk)
3751 {
3752 	struct mptcp_subflow_context *subflow;
3753 	struct mptcp_sock *msk;
3754 	struct sock *sk;
3755 
3756 	subflow = mptcp_subflow_ctx(ssk);
3757 	sk = subflow->conn;
3758 	msk = mptcp_sk(sk);
3759 
3760 	pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3761 
3762 	subflow->map_seq = subflow->iasn;
3763 	subflow->map_subflow_seq = 1;
3764 
3765 	/* the socket is not connected yet, no msk/subflow ops can access/race
3766 	 * accessing the field below
3767 	 */
3768 	WRITE_ONCE(msk->local_key, subflow->local_key);
3769 	WRITE_ONCE(msk->rcvq_space.time, mptcp_stamp());
3770 
3771 	mptcp_pm_new_connection(msk, ssk, 0);
3772 }
3773 
3774 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3775 {
3776 	write_lock_bh(&sk->sk_callback_lock);
3777 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3778 	sk_set_socket(sk, parent);
3779 	write_unlock_bh(&sk->sk_callback_lock);
3780 }
3781 
3782 /* Can be called without holding the msk socket lock; use the callback lock
3783  * to avoid {READ_,WRITE_}ONCE annotations on sk_socket.
3784  */
3785 static void mptcp_sock_check_graft(struct sock *sk, struct sock *ssk)
3786 {
3787 	struct socket *sock;
3788 
3789 	write_lock_bh(&sk->sk_callback_lock);
3790 	sock = sk->sk_socket;
3791 	write_unlock_bh(&sk->sk_callback_lock);
3792 	if (sock) {
3793 		mptcp_sock_graft(ssk, sock);
3794 		__mptcp_inherit_cgrp_data(sk, ssk);
3795 		__mptcp_inherit_memcg(sk, ssk, GFP_ATOMIC);
3796 	}
3797 }
3798 
3799 bool mptcp_finish_join(struct sock *ssk)
3800 {
3801 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3802 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3803 	struct sock *parent = (void *)msk;
3804 	bool ret = true;
3805 
3806 	pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3807 
3808 	/* mptcp socket already closing? */
3809 	if (!mptcp_is_fully_established(parent)) {
3810 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3811 		return false;
3812 	}
3813 
3814 	/* Active subflow, already present inside the conn_list; is grafted
3815 	 * either by __mptcp_subflow_connect() or accept.
3816 	 */
3817 	if (!list_empty(&subflow->node)) {
3818 		spin_lock_bh(&msk->fallback_lock);
3819 		if (!msk->allow_subflows) {
3820 			spin_unlock_bh(&msk->fallback_lock);
3821 			return false;
3822 		}
3823 		mptcp_subflow_joined(msk, ssk);
3824 		spin_unlock_bh(&msk->fallback_lock);
3825 		mptcp_propagate_sndbuf(parent, ssk);
3826 		return true;
3827 	}
3828 
3829 	if (!mptcp_pm_allow_new_subflow(msk)) {
3830 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED);
3831 		goto err_prohibited;
3832 	}
3833 
3834 	/* If we can't acquire msk socket lock here, let the release callback
3835 	 * handle it
3836 	 */
3837 	mptcp_data_lock(parent);
3838 	if (!sock_owned_by_user(parent)) {
3839 		ret = __mptcp_finish_join(msk, ssk);
3840 		if (ret) {
3841 			sock_hold(ssk);
3842 			list_add_tail(&subflow->node, &msk->conn_list);
3843 			mptcp_sock_check_graft(parent, ssk);
3844 		}
3845 	} else {
3846 		sock_hold(ssk);
3847 		list_add_tail(&subflow->node, &msk->join_list);
3848 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3849 
3850 		/* In case of later failures, __mptcp_flush_join_list() will
3851 		 * properly orphan the ssk via mptcp_close_ssk().
3852 		 */
3853 		mptcp_sock_check_graft(parent, ssk);
3854 	}
3855 	mptcp_data_unlock(parent);
3856 
3857 	if (!ret) {
3858 err_prohibited:
3859 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3860 		return false;
3861 	}
3862 
3863 	return true;
3864 }
3865 
3866 static void mptcp_shutdown(struct sock *sk, int how)
3867 {
3868 	pr_debug("sk=%p, how=%d\n", sk, how);
3869 
3870 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3871 		__mptcp_wr_shutdown(sk);
3872 }
3873 
3874 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3875 {
3876 	const struct sock *sk = (void *)msk;
3877 	u64 delta;
3878 
3879 	if (sk->sk_state == TCP_LISTEN)
3880 		return -EINVAL;
3881 
3882 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3883 		return 0;
3884 
3885 	delta = msk->write_seq - v;
3886 	if (__mptcp_check_fallback(msk) && msk->first) {
3887 		struct tcp_sock *tp = tcp_sk(msk->first);
3888 
3889 		/* the first subflow is disconnected after close - see
3890 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3891 		 * so ignore that status, too.
3892 		 */
3893 		if (!((1 << msk->first->sk_state) &
3894 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3895 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3896 	}
3897 	if (delta > INT_MAX)
3898 		delta = INT_MAX;
3899 
3900 	return (int)delta;
3901 }
3902 
3903 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3904 {
3905 	struct mptcp_sock *msk = mptcp_sk(sk);
3906 	bool slow;
3907 
3908 	switch (cmd) {
3909 	case SIOCINQ:
3910 		if (sk->sk_state == TCP_LISTEN)
3911 			return -EINVAL;
3912 
3913 		lock_sock(sk);
3914 		if (mptcp_move_skbs(sk))
3915 			mptcp_cleanup_rbuf(msk, 0);
3916 		*karg = mptcp_inq_hint(sk);
3917 		release_sock(sk);
3918 		break;
3919 	case SIOCOUTQ:
3920 		slow = lock_sock_fast(sk);
3921 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3922 		unlock_sock_fast(sk, slow);
3923 		break;
3924 	case SIOCOUTQNSD:
3925 		slow = lock_sock_fast(sk);
3926 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3927 		unlock_sock_fast(sk, slow);
3928 		break;
3929 	default:
3930 		return -ENOIOCTLCMD;
3931 	}
3932 
3933 	return 0;
3934 }
3935 
3936 static int mptcp_connect(struct sock *sk, struct sockaddr_unsized *uaddr,
3937 			 int addr_len)
3938 {
3939 	struct mptcp_subflow_context *subflow;
3940 	struct mptcp_sock *msk = mptcp_sk(sk);
3941 	int err = -EINVAL;
3942 	struct sock *ssk;
3943 
3944 	ssk = __mptcp_nmpc_sk(msk);
3945 	if (IS_ERR(ssk))
3946 		return PTR_ERR(ssk);
3947 
3948 	mptcp_set_state(sk, TCP_SYN_SENT);
3949 	subflow = mptcp_subflow_ctx(ssk);
3950 #ifdef CONFIG_TCP_MD5SIG
3951 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3952 	 * TCP option space.
3953 	 */
3954 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3955 		mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK);
3956 #endif
3957 	if (subflow->request_mptcp) {
3958 		if (mptcp_active_should_disable(sk))
3959 			mptcp_early_fallback(msk, subflow,
3960 					     MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3961 		else if (mptcp_token_new_connect(ssk) < 0)
3962 			mptcp_early_fallback(msk, subflow,
3963 					     MPTCP_MIB_TOKENFALLBACKINIT);
3964 	}
3965 
3966 	WRITE_ONCE(msk->write_seq, subflow->idsn);
3967 	WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3968 	WRITE_ONCE(msk->snd_una, subflow->idsn);
3969 	if (likely(!__mptcp_check_fallback(msk)))
3970 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3971 
3972 	/* if reaching here via the fastopen/sendmsg path, the caller already
3973 	 * acquired the subflow socket lock, too.
3974 	 */
3975 	if (!msk->fastopening)
3976 		lock_sock(ssk);
3977 
3978 	/* the following mirrors closely a very small chunk of code from
3979 	 * __inet_stream_connect()
3980 	 */
3981 	if (ssk->sk_state != TCP_CLOSE)
3982 		goto out;
3983 
3984 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3985 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3986 		if (err)
3987 			goto out;
3988 	}
3989 
3990 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3991 	if (err < 0)
3992 		goto out;
3993 
3994 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3995 
3996 out:
3997 	if (!msk->fastopening)
3998 		release_sock(ssk);
3999 
4000 	/* on successful connect, the msk state will be moved to established by
4001 	 * subflow_finish_connect()
4002 	 */
4003 	if (unlikely(err)) {
4004 		/* avoid leaving a dangling token in an unconnected socket */
4005 		mptcp_token_destroy(msk);
4006 		mptcp_set_state(sk, TCP_CLOSE);
4007 		return err;
4008 	}
4009 
4010 	mptcp_copy_inaddrs(sk, ssk);
4011 	return 0;
4012 }
4013 
4014 static struct proto mptcp_prot = {
4015 	.name		= "MPTCP",
4016 	.owner		= THIS_MODULE,
4017 	.init		= mptcp_init_sock,
4018 	.connect	= mptcp_connect,
4019 	.disconnect	= mptcp_disconnect,
4020 	.close		= mptcp_close,
4021 	.setsockopt	= mptcp_setsockopt,
4022 	.getsockopt	= mptcp_getsockopt,
4023 	.shutdown	= mptcp_shutdown,
4024 	.destroy	= mptcp_destroy,
4025 	.sendmsg	= mptcp_sendmsg,
4026 	.ioctl		= mptcp_ioctl,
4027 	.recvmsg	= mptcp_recvmsg,
4028 	.release_cb	= mptcp_release_cb,
4029 	.hash		= mptcp_hash,
4030 	.unhash		= mptcp_unhash,
4031 	.get_port	= mptcp_get_port,
4032 	.stream_memory_free	= mptcp_stream_memory_free,
4033 	.sockets_allocated	= &mptcp_sockets_allocated,
4034 
4035 	.memory_allocated	= &net_aligned_data.tcp_memory_allocated,
4036 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
4037 
4038 	.memory_pressure	= &tcp_memory_pressure,
4039 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
4040 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
4041 	.sysctl_mem	= sysctl_tcp_mem,
4042 	.obj_size	= sizeof(struct mptcp_sock),
4043 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
4044 	.no_autobind	= true,
4045 };
4046 
4047 static int mptcp_bind(struct socket *sock, struct sockaddr_unsized *uaddr, int addr_len)
4048 {
4049 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
4050 	struct sock *ssk, *sk = sock->sk;
4051 	int err = -EINVAL;
4052 
4053 	lock_sock(sk);
4054 	ssk = __mptcp_nmpc_sk(msk);
4055 	if (IS_ERR(ssk)) {
4056 		err = PTR_ERR(ssk);
4057 		goto unlock;
4058 	}
4059 
4060 	if (sk->sk_family == AF_INET)
4061 		err = inet_bind_sk(ssk, uaddr, addr_len);
4062 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4063 	else if (sk->sk_family == AF_INET6)
4064 		err = inet6_bind_sk(ssk, uaddr, addr_len);
4065 #endif
4066 	if (!err)
4067 		mptcp_copy_inaddrs(sk, ssk);
4068 
4069 unlock:
4070 	release_sock(sk);
4071 	return err;
4072 }
4073 
4074 static int mptcp_listen(struct socket *sock, int backlog)
4075 {
4076 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
4077 	struct sock *sk = sock->sk;
4078 	struct sock *ssk;
4079 	int err;
4080 
4081 	pr_debug("msk=%p\n", msk);
4082 
4083 	lock_sock(sk);
4084 
4085 	err = -EINVAL;
4086 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
4087 		goto unlock;
4088 
4089 	ssk = __mptcp_nmpc_sk(msk);
4090 	if (IS_ERR(ssk)) {
4091 		err = PTR_ERR(ssk);
4092 		goto unlock;
4093 	}
4094 
4095 	mptcp_set_state(sk, TCP_LISTEN);
4096 	sock_set_flag(sk, SOCK_RCU_FREE);
4097 
4098 	lock_sock(ssk);
4099 	err = __inet_listen_sk(ssk, backlog);
4100 	release_sock(ssk);
4101 	mptcp_set_state(sk, inet_sk_state_load(ssk));
4102 
4103 	if (!err) {
4104 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
4105 		mptcp_copy_inaddrs(sk, ssk);
4106 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
4107 	}
4108 
4109 unlock:
4110 	release_sock(sk);
4111 	return err;
4112 }
4113 
4114 static void mptcp_graft_subflows(struct sock *sk)
4115 {
4116 	struct mptcp_subflow_context *subflow;
4117 	struct mptcp_sock *msk = mptcp_sk(sk);
4118 
4119 	if (mem_cgroup_sockets_enabled) {
4120 		LIST_HEAD(join_list);
4121 
4122 		/* Subflows joining after __inet_accept() will get the
4123 		 * mem CG properly initialized at mptcp_finish_join() time,
4124 		 * but subflows pending in join_list need explicit
4125 		 * initialization before flushing `backlog_unaccounted`
4126 		 * or MPTCP can later unexpectedly observe unaccounted memory.
4127 		 */
4128 		mptcp_data_lock(sk);
4129 		list_splice_init(&msk->join_list, &join_list);
4130 		mptcp_data_unlock(sk);
4131 
4132 		__mptcp_flush_join_list(sk, &join_list);
4133 	}
4134 
4135 	mptcp_for_each_subflow(msk, subflow) {
4136 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4137 
4138 		lock_sock(ssk);
4139 
4140 		/* Set ssk->sk_socket of accept()ed flows to mptcp socket.
4141 		 * This is needed so NOSPACE flag can be set from tcp stack.
4142 		 */
4143 		if (!ssk->sk_socket)
4144 			mptcp_sock_graft(ssk, sk->sk_socket);
4145 
4146 		if (!mem_cgroup_sk_enabled(sk))
4147 			goto unlock;
4148 
4149 		__mptcp_inherit_cgrp_data(sk, ssk);
4150 		__mptcp_inherit_memcg(sk, ssk, GFP_KERNEL);
4151 
4152 unlock:
4153 		release_sock(ssk);
4154 	}
4155 
4156 	if (mem_cgroup_sk_enabled(sk)) {
4157 		gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL;
4158 		int amt;
4159 
4160 		/* Account the backlog memory; prior accept() is aware of
4161 		 * fwd and rmem only.
4162 		 */
4163 		mptcp_data_lock(sk);
4164 		amt = sk_mem_pages(sk->sk_forward_alloc +
4165 				   msk->backlog_unaccounted +
4166 				   atomic_read(&sk->sk_rmem_alloc)) -
4167 		      sk_mem_pages(sk->sk_forward_alloc +
4168 				   atomic_read(&sk->sk_rmem_alloc));
4169 		msk->backlog_unaccounted = 0;
4170 		mptcp_data_unlock(sk);
4171 
4172 		if (amt)
4173 			mem_cgroup_sk_charge(sk, amt, gfp);
4174 	}
4175 }
4176 
4177 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
4178 			       struct proto_accept_arg *arg)
4179 {
4180 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
4181 	struct sock *ssk, *newsk;
4182 
4183 	pr_debug("msk=%p\n", msk);
4184 
4185 	/* Buggy applications can call accept on socket states other then LISTEN
4186 	 * but no need to allocate the first subflow just to error out.
4187 	 */
4188 	ssk = READ_ONCE(msk->first);
4189 	if (!ssk)
4190 		return -EINVAL;
4191 
4192 	pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
4193 	newsk = inet_csk_accept(ssk, arg);
4194 	if (!newsk)
4195 		return arg->err;
4196 
4197 	pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
4198 	if (sk_is_mptcp(newsk)) {
4199 		struct mptcp_subflow_context *subflow;
4200 		struct sock *new_mptcp_sock;
4201 
4202 		subflow = mptcp_subflow_ctx(newsk);
4203 		new_mptcp_sock = subflow->conn;
4204 
4205 		/* is_mptcp should be false if subflow->conn is missing, see
4206 		 * subflow_syn_recv_sock()
4207 		 */
4208 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
4209 			tcp_sk(newsk)->is_mptcp = 0;
4210 			goto tcpfallback;
4211 		}
4212 
4213 		newsk = new_mptcp_sock;
4214 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
4215 
4216 		newsk->sk_kern_sock = arg->kern;
4217 		lock_sock(newsk);
4218 		__inet_accept(sock, newsock, newsk);
4219 
4220 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
4221 		msk = mptcp_sk(newsk);
4222 		msk->in_accept_queue = 0;
4223 
4224 		mptcp_graft_subflows(newsk);
4225 		mptcp_rps_record_subflows(msk);
4226 
4227 		/* Do late cleanup for the first subflow as necessary. Also
4228 		 * deal with bad peers not doing a complete shutdown.
4229 		 */
4230 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
4231 			if (unlikely(list_is_singular(&msk->conn_list)))
4232 				mptcp_set_state(newsk, TCP_CLOSE);
4233 			mptcp_close_ssk(newsk, msk->first,
4234 					mptcp_subflow_ctx(msk->first));
4235 		}
4236 	} else {
4237 tcpfallback:
4238 		newsk->sk_kern_sock = arg->kern;
4239 		lock_sock(newsk);
4240 		__inet_accept(sock, newsock, newsk);
4241 		/* we are being invoked after accepting a non-mp-capable
4242 		 * flow: sk is a tcp_sk, not an mptcp one.
4243 		 *
4244 		 * Hand the socket over to tcp so all further socket ops
4245 		 * bypass mptcp.
4246 		 */
4247 		WRITE_ONCE(newsock->sk->sk_socket->ops,
4248 			   mptcp_fallback_tcp_ops(newsock->sk));
4249 	}
4250 	release_sock(newsk);
4251 
4252 	return 0;
4253 }
4254 
4255 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
4256 {
4257 	struct sock *sk = (struct sock *)msk;
4258 
4259 	if (__mptcp_stream_is_writeable(sk, 1))
4260 		return EPOLLOUT | EPOLLWRNORM;
4261 
4262 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
4263 	smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
4264 	if (__mptcp_stream_is_writeable(sk, 1))
4265 		return EPOLLOUT | EPOLLWRNORM;
4266 
4267 	return 0;
4268 }
4269 
4270 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
4271 			   struct poll_table_struct *wait)
4272 {
4273 	struct sock *sk = sock->sk;
4274 	struct mptcp_sock *msk;
4275 	__poll_t mask = 0;
4276 	u8 shutdown;
4277 	int state;
4278 
4279 	msk = mptcp_sk(sk);
4280 	sock_poll_wait(file, sock, wait);
4281 
4282 	state = inet_sk_state_load(sk);
4283 	pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
4284 	if (state == TCP_LISTEN) {
4285 		struct sock *ssk = READ_ONCE(msk->first);
4286 
4287 		if (WARN_ON_ONCE(!ssk))
4288 			return 0;
4289 
4290 		return inet_csk_listen_poll(ssk);
4291 	}
4292 
4293 	shutdown = READ_ONCE(sk->sk_shutdown);
4294 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4295 		mask |= EPOLLHUP;
4296 	if (shutdown & RCV_SHUTDOWN)
4297 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4298 
4299 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4300 		mask |= mptcp_check_readable(sk);
4301 		if (shutdown & SEND_SHUTDOWN)
4302 			mask |= EPOLLOUT | EPOLLWRNORM;
4303 		else
4304 			mask |= mptcp_check_writeable(msk);
4305 	} else if (state == TCP_SYN_SENT &&
4306 		   inet_test_bit(DEFER_CONNECT, sk)) {
4307 		/* cf tcp_poll() note about TFO */
4308 		mask |= EPOLLOUT | EPOLLWRNORM;
4309 	}
4310 
4311 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4312 	smp_rmb();
4313 	if (READ_ONCE(sk->sk_err))
4314 		mask |= EPOLLERR;
4315 
4316 	return mask;
4317 }
4318 
4319 static struct sk_buff *mptcp_recv_skb(struct sock *sk, u32 *off)
4320 {
4321 	struct mptcp_sock *msk = mptcp_sk(sk);
4322 	struct sk_buff *skb;
4323 	u32 offset;
4324 
4325 	if (!list_empty(&msk->backlog_list))
4326 		mptcp_move_skbs(sk);
4327 
4328 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
4329 		offset = MPTCP_SKB_CB(skb)->offset;
4330 		if (offset < skb->len) {
4331 			*off = offset;
4332 			return skb;
4333 		}
4334 		mptcp_eat_recv_skb(sk, skb);
4335 	}
4336 	return NULL;
4337 }
4338 
4339 /*
4340  * Note:
4341  *	- It is assumed that the socket was locked by the caller.
4342  */
4343 static int __mptcp_read_sock(struct sock *sk, read_descriptor_t *desc,
4344 			     sk_read_actor_t recv_actor, bool noack)
4345 {
4346 	struct mptcp_sock *msk = mptcp_sk(sk);
4347 	struct sk_buff *skb;
4348 	int copied = 0;
4349 	u32 offset;
4350 
4351 	msk_owned_by_me(msk);
4352 
4353 	if (sk->sk_state == TCP_LISTEN)
4354 		return -ENOTCONN;
4355 	while ((skb = mptcp_recv_skb(sk, &offset)) != NULL) {
4356 		u32 data_len = skb->len - offset;
4357 		int count;
4358 		u32 size;
4359 
4360 		size = min_t(size_t, data_len, INT_MAX);
4361 		count = recv_actor(desc, skb, offset, size);
4362 		if (count <= 0) {
4363 			if (!copied)
4364 				copied = count;
4365 			break;
4366 		}
4367 
4368 		copied += count;
4369 
4370 		msk->bytes_consumed += count;
4371 		if (count < data_len) {
4372 			MPTCP_SKB_CB(skb)->offset += count;
4373 			MPTCP_SKB_CB(skb)->map_seq += count;
4374 			break;
4375 		}
4376 
4377 		mptcp_eat_recv_skb(sk, skb);
4378 	}
4379 
4380 	if (noack)
4381 		goto out;
4382 
4383 	mptcp_rcv_space_adjust(msk, copied);
4384 
4385 	if (copied > 0) {
4386 		mptcp_recv_skb(sk, &offset);
4387 		mptcp_cleanup_rbuf(msk, copied);
4388 	}
4389 out:
4390 	return copied;
4391 }
4392 
4393 static int mptcp_read_sock(struct sock *sk, read_descriptor_t *desc,
4394 			   sk_read_actor_t recv_actor)
4395 {
4396 	return __mptcp_read_sock(sk, desc, recv_actor, false);
4397 }
4398 
4399 static int __mptcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
4400 {
4401 	/* Store TCP splice context information in read_descriptor_t. */
4402 	read_descriptor_t rd_desc = {
4403 		.arg.data = tss,
4404 		.count	  = tss->len,
4405 	};
4406 
4407 	return mptcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
4408 }
4409 
4410 /**
4411  *  mptcp_splice_read - splice data from MPTCP socket to a pipe
4412  * @sock:	socket to splice from
4413  * @ppos:	position (not valid)
4414  * @pipe:	pipe to splice to
4415  * @len:	number of bytes to splice
4416  * @flags:	splice modifier flags
4417  *
4418  * Description:
4419  *    Will read pages from given socket and fill them into a pipe.
4420  *
4421  * Return:
4422  *    Amount of bytes that have been spliced.
4423  *
4424  **/
4425 static ssize_t mptcp_splice_read(struct socket *sock, loff_t *ppos,
4426 				 struct pipe_inode_info *pipe, size_t len,
4427 				 unsigned int flags)
4428 {
4429 	struct tcp_splice_state tss = {
4430 		.pipe	= pipe,
4431 		.len	= len,
4432 		.flags	= flags,
4433 	};
4434 	struct sock *sk = sock->sk;
4435 	ssize_t spliced = 0;
4436 	int ret = 0;
4437 	long timeo;
4438 
4439 	/*
4440 	 * We can't seek on a socket input
4441 	 */
4442 	if (unlikely(*ppos))
4443 		return -ESPIPE;
4444 
4445 	lock_sock(sk);
4446 
4447 	mptcp_rps_record_subflows(mptcp_sk(sk));
4448 
4449 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
4450 	while (tss.len) {
4451 		ret = __mptcp_splice_read(sk, &tss);
4452 		if (ret < 0) {
4453 			break;
4454 		} else if (!ret) {
4455 			if (spliced)
4456 				break;
4457 			if (sock_flag(sk, SOCK_DONE))
4458 				break;
4459 			if (sk->sk_err) {
4460 				ret = sock_error(sk);
4461 				break;
4462 			}
4463 			if (sk->sk_shutdown & RCV_SHUTDOWN)
4464 				break;
4465 			if (sk->sk_state == TCP_CLOSE) {
4466 				/*
4467 				 * This occurs when user tries to read
4468 				 * from never connected socket.
4469 				 */
4470 				ret = -ENOTCONN;
4471 				break;
4472 			}
4473 			if (!timeo) {
4474 				ret = -EAGAIN;
4475 				break;
4476 			}
4477 			/* if __mptcp_splice_read() got nothing while we have
4478 			 * an skb in receive queue, we do not want to loop.
4479 			 * This might happen with URG data.
4480 			 */
4481 			if (!skb_queue_empty(&sk->sk_receive_queue))
4482 				break;
4483 			ret = sk_wait_data(sk, &timeo, NULL);
4484 			if (ret < 0)
4485 				break;
4486 			if (signal_pending(current)) {
4487 				ret = sock_intr_errno(timeo);
4488 				break;
4489 			}
4490 			continue;
4491 		}
4492 		tss.len -= ret;
4493 		spliced += ret;
4494 
4495 		if (!tss.len || !timeo)
4496 			break;
4497 		release_sock(sk);
4498 		lock_sock(sk);
4499 
4500 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
4501 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
4502 		    signal_pending(current))
4503 			break;
4504 	}
4505 
4506 	release_sock(sk);
4507 
4508 	if (spliced)
4509 		return spliced;
4510 
4511 	return ret;
4512 }
4513 
4514 static const struct proto_ops mptcp_stream_ops = {
4515 	.family		   = PF_INET,
4516 	.owner		   = THIS_MODULE,
4517 	.release	   = inet_release,
4518 	.bind		   = mptcp_bind,
4519 	.connect	   = inet_stream_connect,
4520 	.socketpair	   = sock_no_socketpair,
4521 	.accept		   = mptcp_stream_accept,
4522 	.getname	   = inet_getname,
4523 	.poll		   = mptcp_poll,
4524 	.ioctl		   = inet_ioctl,
4525 	.gettstamp	   = sock_gettstamp,
4526 	.listen		   = mptcp_listen,
4527 	.shutdown	   = inet_shutdown,
4528 	.setsockopt	   = sock_common_setsockopt,
4529 	.getsockopt	   = sock_common_getsockopt,
4530 	.sendmsg	   = inet_sendmsg,
4531 	.recvmsg	   = inet_recvmsg,
4532 	.mmap		   = sock_no_mmap,
4533 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4534 	.read_sock	   = mptcp_read_sock,
4535 	.splice_read	   = mptcp_splice_read,
4536 };
4537 
4538 static struct inet_protosw mptcp_protosw = {
4539 	.type		= SOCK_STREAM,
4540 	.protocol	= IPPROTO_MPTCP,
4541 	.prot		= &mptcp_prot,
4542 	.ops		= &mptcp_stream_ops,
4543 	.flags		= INET_PROTOSW_ICSK,
4544 };
4545 
4546 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4547 {
4548 	struct mptcp_delegated_action *delegated;
4549 	struct mptcp_subflow_context *subflow;
4550 	int work_done = 0;
4551 
4552 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
4553 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4554 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4555 
4556 		bh_lock_sock_nested(ssk);
4557 		if (!sock_owned_by_user(ssk)) {
4558 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4559 		} else {
4560 			/* tcp_release_cb_override already processed
4561 			 * the action or will do at next release_sock().
4562 			 * In both case must dequeue the subflow here - on the same
4563 			 * CPU that scheduled it.
4564 			 */
4565 			smp_wmb();
4566 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4567 		}
4568 		bh_unlock_sock(ssk);
4569 		sock_put(ssk);
4570 
4571 		if (++work_done == budget)
4572 			return budget;
4573 	}
4574 
4575 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4576 	 * will not try accessing the NULL napi->dev ptr
4577 	 */
4578 	napi_complete_done(napi, 0);
4579 	return work_done;
4580 }
4581 
4582 void __init mptcp_proto_init(void)
4583 {
4584 	struct mptcp_delegated_action *delegated;
4585 	int cpu;
4586 
4587 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4588 
4589 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4590 		panic("Failed to allocate MPTCP pcpu counter\n");
4591 
4592 	mptcp_napi_dev = alloc_netdev_dummy(0);
4593 	if (!mptcp_napi_dev)
4594 		panic("Failed to allocate MPTCP dummy netdev\n");
4595 	for_each_possible_cpu(cpu) {
4596 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4597 		INIT_LIST_HEAD(&delegated->head);
4598 		netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4599 				  mptcp_napi_poll);
4600 		napi_enable(&delegated->napi);
4601 	}
4602 
4603 	mptcp_subflow_init();
4604 	mptcp_pm_init();
4605 	mptcp_sched_init();
4606 	mptcp_token_init();
4607 
4608 	if (proto_register(&mptcp_prot, 1) != 0)
4609 		panic("Failed to register MPTCP proto.\n");
4610 
4611 	inet_register_protosw(&mptcp_protosw);
4612 
4613 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4614 }
4615 
4616 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4617 static const struct proto_ops mptcp_v6_stream_ops = {
4618 	.family		   = PF_INET6,
4619 	.owner		   = THIS_MODULE,
4620 	.release	   = inet6_release,
4621 	.bind		   = mptcp_bind,
4622 	.connect	   = inet_stream_connect,
4623 	.socketpair	   = sock_no_socketpair,
4624 	.accept		   = mptcp_stream_accept,
4625 	.getname	   = inet6_getname,
4626 	.poll		   = mptcp_poll,
4627 	.ioctl		   = inet6_ioctl,
4628 	.gettstamp	   = sock_gettstamp,
4629 	.listen		   = mptcp_listen,
4630 	.shutdown	   = inet_shutdown,
4631 	.setsockopt	   = sock_common_setsockopt,
4632 	.getsockopt	   = sock_common_getsockopt,
4633 	.sendmsg	   = inet6_sendmsg,
4634 	.recvmsg	   = inet6_recvmsg,
4635 	.mmap		   = sock_no_mmap,
4636 #ifdef CONFIG_COMPAT
4637 	.compat_ioctl	   = inet6_compat_ioctl,
4638 #endif
4639 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4640 	.read_sock	   = mptcp_read_sock,
4641 	.splice_read	   = mptcp_splice_read,
4642 };
4643 
4644 static struct proto mptcp_v6_prot;
4645 
4646 static struct inet_protosw mptcp_v6_protosw = {
4647 	.type		= SOCK_STREAM,
4648 	.protocol	= IPPROTO_MPTCP,
4649 	.prot		= &mptcp_v6_prot,
4650 	.ops		= &mptcp_v6_stream_ops,
4651 	.flags		= INET_PROTOSW_ICSK,
4652 };
4653 
4654 int __init mptcp_proto_v6_init(void)
4655 {
4656 	int err;
4657 
4658 	mptcp_v6_prot = mptcp_prot;
4659 	strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4660 	mptcp_v6_prot.slab = NULL;
4661 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4662 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4663 
4664 	err = proto_register(&mptcp_v6_prot, 1);
4665 	if (err)
4666 		return err;
4667 
4668 	err = inet6_register_protosw(&mptcp_v6_protosw);
4669 	if (err)
4670 		proto_unregister(&mptcp_v6_prot);
4671 
4672 	return err;
4673 }
4674 #endif
4675