xref: /linux/fs/xfs/xfs_log.c (revision 353c6f43ab690b5746289c057c1701a389b12f98)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 #include "xfs_zone_alloc.h"
24 
25 struct kmem_cache	*xfs_log_ticket_cache;
26 
27 /* Local miscellaneous function prototypes */
28 STATIC struct xlog *
29 xlog_alloc_log(
30 	struct xfs_mount	*mp,
31 	struct xfs_buftarg	*log_target,
32 	xfs_daddr_t		blk_offset,
33 	int			num_bblks);
34 STATIC void
35 xlog_dealloc_log(
36 	struct xlog		*log);
37 
38 /* local state machine functions */
39 STATIC void xlog_state_done_syncing(
40 	struct xlog_in_core	*iclog);
41 STATIC void xlog_state_do_callback(
42 	struct xlog		*log);
43 STATIC int
44 xlog_state_get_iclog_space(
45 	struct xlog		*log,
46 	int			len,
47 	struct xlog_in_core	**iclog,
48 	struct xlog_ticket	*ticket,
49 	int			*logoffsetp);
50 STATIC void
51 xlog_sync(
52 	struct xlog		*log,
53 	struct xlog_in_core	*iclog,
54 	struct xlog_ticket	*ticket);
55 #if defined(DEBUG)
56 STATIC void
57 xlog_verify_iclog(
58 	struct xlog		*log,
59 	struct xlog_in_core	*iclog,
60 	int			count);
61 STATIC void
62 xlog_verify_tail_lsn(
63 	struct xlog		*log,
64 	struct xlog_in_core	*iclog);
65 #else
66 #define xlog_verify_iclog(a,b,c)
67 #define xlog_verify_tail_lsn(a,b)
68 #endif
69 
70 STATIC int
71 xlog_iclogs_empty(
72 	struct xlog		*log);
73 
74 static int
75 xfs_log_cover(struct xfs_mount *);
76 
77 /*
78  * We need to make sure the buffer pointer returned is naturally aligned for the
79  * biggest basic data type we put into it. We have already accounted for this
80  * padding when sizing the buffer.
81  *
82  * However, this padding does not get written into the log, and hence we have to
83  * track the space used by the log vectors separately to prevent log space hangs
84  * due to inaccurate accounting (i.e. a leak) of the used log space through the
85  * CIL context ticket.
86  *
87  * We also add space for the xlog_op_header that describes this region in the
88  * log. This prepends the data region we return to the caller to copy their data
89  * into, so do all the static initialisation of the ophdr now. Because the ophdr
90  * is not 8 byte aligned, we have to be careful to ensure that we align the
91  * start of the buffer such that the region we return to the call is 8 byte
92  * aligned and packed against the tail of the ophdr.
93  */
94 void *
xlog_prepare_iovec(struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp,uint type)95 xlog_prepare_iovec(
96 	struct xfs_log_vec	*lv,
97 	struct xfs_log_iovec	**vecp,
98 	uint			type)
99 {
100 	struct xfs_log_iovec	*vec = *vecp;
101 	struct xlog_op_header	*oph;
102 	uint32_t		len;
103 	void			*buf;
104 
105 	if (vec) {
106 		ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs);
107 		vec++;
108 	} else {
109 		vec = &lv->lv_iovecp[0];
110 	}
111 
112 	len = lv->lv_buf_used + sizeof(struct xlog_op_header);
113 	if (!IS_ALIGNED(len, sizeof(uint64_t))) {
114 		lv->lv_buf_used = round_up(len, sizeof(uint64_t)) -
115 					sizeof(struct xlog_op_header);
116 	}
117 
118 	vec->i_type = type;
119 	vec->i_addr = lv->lv_buf + lv->lv_buf_used;
120 
121 	oph = vec->i_addr;
122 	oph->oh_clientid = XFS_TRANSACTION;
123 	oph->oh_res2 = 0;
124 	oph->oh_flags = 0;
125 
126 	buf = vec->i_addr + sizeof(struct xlog_op_header);
127 	ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t)));
128 
129 	*vecp = vec;
130 	return buf;
131 }
132 
133 static inline void
xlog_grant_sub_space(struct xlog_grant_head * head,int64_t bytes)134 xlog_grant_sub_space(
135 	struct xlog_grant_head	*head,
136 	int64_t			bytes)
137 {
138 	atomic64_sub(bytes, &head->grant);
139 }
140 
141 static inline void
xlog_grant_add_space(struct xlog_grant_head * head,int64_t bytes)142 xlog_grant_add_space(
143 	struct xlog_grant_head	*head,
144 	int64_t			bytes)
145 {
146 	atomic64_add(bytes, &head->grant);
147 }
148 
149 static void
xlog_grant_head_init(struct xlog_grant_head * head)150 xlog_grant_head_init(
151 	struct xlog_grant_head	*head)
152 {
153 	atomic64_set(&head->grant, 0);
154 	INIT_LIST_HEAD(&head->waiters);
155 	spin_lock_init(&head->lock);
156 }
157 
158 void
xlog_grant_return_space(struct xlog * log,xfs_lsn_t old_head,xfs_lsn_t new_head)159 xlog_grant_return_space(
160 	struct xlog	*log,
161 	xfs_lsn_t	old_head,
162 	xfs_lsn_t	new_head)
163 {
164 	int64_t		diff = xlog_lsn_sub(log, new_head, old_head);
165 
166 	xlog_grant_sub_space(&log->l_reserve_head, diff);
167 	xlog_grant_sub_space(&log->l_write_head, diff);
168 }
169 
170 /*
171  * Return the space in the log between the tail and the head.  In the case where
172  * we have overrun available reservation space, return 0. The memory barrier
173  * pairs with the smp_wmb() in xlog_cil_ail_insert() to ensure that grant head
174  * vs tail space updates are seen in the correct order and hence avoid
175  * transients as space is transferred from the grant heads to the AIL on commit
176  * completion.
177  */
178 static uint64_t
xlog_grant_space_left(struct xlog * log,struct xlog_grant_head * head)179 xlog_grant_space_left(
180 	struct xlog		*log,
181 	struct xlog_grant_head	*head)
182 {
183 	int64_t			free_bytes;
184 
185 	smp_rmb();	/* paired with smp_wmb in xlog_cil_ail_insert() */
186 	free_bytes = log->l_logsize - READ_ONCE(log->l_tail_space) -
187 			atomic64_read(&head->grant);
188 	if (free_bytes > 0)
189 		return free_bytes;
190 	return 0;
191 }
192 
193 STATIC void
xlog_grant_head_wake_all(struct xlog_grant_head * head)194 xlog_grant_head_wake_all(
195 	struct xlog_grant_head	*head)
196 {
197 	struct xlog_ticket	*tic;
198 
199 	spin_lock(&head->lock);
200 	list_for_each_entry(tic, &head->waiters, t_queue)
201 		wake_up_process(tic->t_task);
202 	spin_unlock(&head->lock);
203 }
204 
205 static inline int
xlog_ticket_reservation(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic)206 xlog_ticket_reservation(
207 	struct xlog		*log,
208 	struct xlog_grant_head	*head,
209 	struct xlog_ticket	*tic)
210 {
211 	if (head == &log->l_write_head) {
212 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
213 		return tic->t_unit_res;
214 	}
215 
216 	if (tic->t_flags & XLOG_TIC_PERM_RESERV)
217 		return tic->t_unit_res * tic->t_cnt;
218 
219 	return tic->t_unit_res;
220 }
221 
222 STATIC bool
xlog_grant_head_wake(struct xlog * log,struct xlog_grant_head * head,int * free_bytes)223 xlog_grant_head_wake(
224 	struct xlog		*log,
225 	struct xlog_grant_head	*head,
226 	int			*free_bytes)
227 {
228 	struct xlog_ticket	*tic;
229 	int			need_bytes;
230 
231 	list_for_each_entry(tic, &head->waiters, t_queue) {
232 		need_bytes = xlog_ticket_reservation(log, head, tic);
233 		if (*free_bytes < need_bytes)
234 			return false;
235 
236 		*free_bytes -= need_bytes;
237 		trace_xfs_log_grant_wake_up(log, tic);
238 		wake_up_process(tic->t_task);
239 	}
240 
241 	return true;
242 }
243 
244 STATIC int
xlog_grant_head_wait(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int need_bytes)245 xlog_grant_head_wait(
246 	struct xlog		*log,
247 	struct xlog_grant_head	*head,
248 	struct xlog_ticket	*tic,
249 	int			need_bytes) __releases(&head->lock)
250 					    __acquires(&head->lock)
251 {
252 	list_add_tail(&tic->t_queue, &head->waiters);
253 
254 	do {
255 		if (xlog_is_shutdown(log))
256 			goto shutdown;
257 
258 		__set_current_state(TASK_UNINTERRUPTIBLE);
259 		spin_unlock(&head->lock);
260 
261 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
262 
263 		/* Push on the AIL to free up all the log space. */
264 		xfs_ail_push_all(log->l_ailp);
265 
266 		trace_xfs_log_grant_sleep(log, tic);
267 		schedule();
268 		trace_xfs_log_grant_wake(log, tic);
269 
270 		spin_lock(&head->lock);
271 		if (xlog_is_shutdown(log))
272 			goto shutdown;
273 	} while (xlog_grant_space_left(log, head) < need_bytes);
274 
275 	list_del_init(&tic->t_queue);
276 	return 0;
277 shutdown:
278 	list_del_init(&tic->t_queue);
279 	return -EIO;
280 }
281 
282 /*
283  * Atomically get the log space required for a log ticket.
284  *
285  * Once a ticket gets put onto head->waiters, it will only return after the
286  * needed reservation is satisfied.
287  *
288  * This function is structured so that it has a lock free fast path. This is
289  * necessary because every new transaction reservation will come through this
290  * path. Hence any lock will be globally hot if we take it unconditionally on
291  * every pass.
292  *
293  * As tickets are only ever moved on and off head->waiters under head->lock, we
294  * only need to take that lock if we are going to add the ticket to the queue
295  * and sleep. We can avoid taking the lock if the ticket was never added to
296  * head->waiters because the t_queue list head will be empty and we hold the
297  * only reference to it so it can safely be checked unlocked.
298  */
299 STATIC int
xlog_grant_head_check(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int * need_bytes)300 xlog_grant_head_check(
301 	struct xlog		*log,
302 	struct xlog_grant_head	*head,
303 	struct xlog_ticket	*tic,
304 	int			*need_bytes)
305 {
306 	int			free_bytes;
307 	int			error = 0;
308 
309 	ASSERT(!xlog_in_recovery(log));
310 
311 	/*
312 	 * If there are other waiters on the queue then give them a chance at
313 	 * logspace before us.  Wake up the first waiters, if we do not wake
314 	 * up all the waiters then go to sleep waiting for more free space,
315 	 * otherwise try to get some space for this transaction.
316 	 */
317 	*need_bytes = xlog_ticket_reservation(log, head, tic);
318 	free_bytes = xlog_grant_space_left(log, head);
319 	if (!list_empty_careful(&head->waiters)) {
320 		spin_lock(&head->lock);
321 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
322 		    free_bytes < *need_bytes) {
323 			error = xlog_grant_head_wait(log, head, tic,
324 						     *need_bytes);
325 		}
326 		spin_unlock(&head->lock);
327 	} else if (free_bytes < *need_bytes) {
328 		spin_lock(&head->lock);
329 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
330 		spin_unlock(&head->lock);
331 	}
332 
333 	return error;
334 }
335 
336 bool
xfs_log_writable(struct xfs_mount * mp)337 xfs_log_writable(
338 	struct xfs_mount	*mp)
339 {
340 	/*
341 	 * Do not write to the log on norecovery mounts, if the data or log
342 	 * devices are read-only, or if the filesystem is shutdown. Read-only
343 	 * mounts allow internal writes for log recovery and unmount purposes,
344 	 * so don't restrict that case.
345 	 */
346 	if (xfs_has_norecovery(mp))
347 		return false;
348 	if (xfs_readonly_buftarg(mp->m_ddev_targp))
349 		return false;
350 	if (xfs_readonly_buftarg(mp->m_log->l_targ))
351 		return false;
352 	if (xlog_is_shutdown(mp->m_log))
353 		return false;
354 	return true;
355 }
356 
357 /*
358  * Replenish the byte reservation required by moving the grant write head.
359  */
360 int
xfs_log_regrant(struct xfs_mount * mp,struct xlog_ticket * tic)361 xfs_log_regrant(
362 	struct xfs_mount	*mp,
363 	struct xlog_ticket	*tic)
364 {
365 	struct xlog		*log = mp->m_log;
366 	int			need_bytes;
367 	int			error = 0;
368 
369 	if (xlog_is_shutdown(log))
370 		return -EIO;
371 
372 	XFS_STATS_INC(mp, xs_try_logspace);
373 
374 	/*
375 	 * This is a new transaction on the ticket, so we need to change the
376 	 * transaction ID so that the next transaction has a different TID in
377 	 * the log. Just add one to the existing tid so that we can see chains
378 	 * of rolling transactions in the log easily.
379 	 */
380 	tic->t_tid++;
381 	tic->t_curr_res = tic->t_unit_res;
382 	if (tic->t_cnt > 0)
383 		return 0;
384 
385 	trace_xfs_log_regrant(log, tic);
386 
387 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
388 				      &need_bytes);
389 	if (error)
390 		goto out_error;
391 
392 	xlog_grant_add_space(&log->l_write_head, need_bytes);
393 	trace_xfs_log_regrant_exit(log, tic);
394 	return 0;
395 
396 out_error:
397 	/*
398 	 * If we are failing, make sure the ticket doesn't have any current
399 	 * reservations.  We don't want to add this back when the ticket/
400 	 * transaction gets cancelled.
401 	 */
402 	tic->t_curr_res = 0;
403 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
404 	return error;
405 }
406 
407 /*
408  * Reserve log space and return a ticket corresponding to the reservation.
409  *
410  * Each reservation is going to reserve extra space for a log record header.
411  * When writes happen to the on-disk log, we don't subtract the length of the
412  * log record header from any reservation.  By wasting space in each
413  * reservation, we prevent over allocation problems.
414  */
415 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticp,bool permanent)416 xfs_log_reserve(
417 	struct xfs_mount	*mp,
418 	int			unit_bytes,
419 	int			cnt,
420 	struct xlog_ticket	**ticp,
421 	bool			permanent)
422 {
423 	struct xlog		*log = mp->m_log;
424 	struct xlog_ticket	*tic;
425 	int			need_bytes;
426 	int			error = 0;
427 
428 	if (xlog_is_shutdown(log))
429 		return -EIO;
430 
431 	XFS_STATS_INC(mp, xs_try_logspace);
432 
433 	ASSERT(*ticp == NULL);
434 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent);
435 	*ticp = tic;
436 	trace_xfs_log_reserve(log, tic);
437 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
438 				      &need_bytes);
439 	if (error)
440 		goto out_error;
441 
442 	xlog_grant_add_space(&log->l_reserve_head, need_bytes);
443 	xlog_grant_add_space(&log->l_write_head, need_bytes);
444 	trace_xfs_log_reserve_exit(log, tic);
445 	return 0;
446 
447 out_error:
448 	/*
449 	 * If we are failing, make sure the ticket doesn't have any current
450 	 * reservations.  We don't want to add this back when the ticket/
451 	 * transaction gets cancelled.
452 	 */
453 	tic->t_curr_res = 0;
454 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
455 	return error;
456 }
457 
458 /*
459  * Run all the pending iclog callbacks and wake log force waiters and iclog
460  * space waiters so they can process the newly set shutdown state. We really
461  * don't care what order we process callbacks here because the log is shut down
462  * and so state cannot change on disk anymore. However, we cannot wake waiters
463  * until the callbacks have been processed because we may be in unmount and
464  * we must ensure that all AIL operations the callbacks perform have completed
465  * before we tear down the AIL.
466  *
467  * We avoid processing actively referenced iclogs so that we don't run callbacks
468  * while the iclog owner might still be preparing the iclog for IO submssion.
469  * These will be caught by xlog_state_iclog_release() and call this function
470  * again to process any callbacks that may have been added to that iclog.
471  */
472 static void
xlog_state_shutdown_callbacks(struct xlog * log)473 xlog_state_shutdown_callbacks(
474 	struct xlog		*log)
475 {
476 	struct xlog_in_core	*iclog;
477 	LIST_HEAD(cb_list);
478 
479 	iclog = log->l_iclog;
480 	do {
481 		if (atomic_read(&iclog->ic_refcnt)) {
482 			/* Reference holder will re-run iclog callbacks. */
483 			continue;
484 		}
485 		list_splice_init(&iclog->ic_callbacks, &cb_list);
486 		spin_unlock(&log->l_icloglock);
487 
488 		xlog_cil_process_committed(&cb_list);
489 
490 		spin_lock(&log->l_icloglock);
491 		wake_up_all(&iclog->ic_write_wait);
492 		wake_up_all(&iclog->ic_force_wait);
493 	} while ((iclog = iclog->ic_next) != log->l_iclog);
494 
495 	wake_up_all(&log->l_flush_wait);
496 }
497 
498 /*
499  * Flush iclog to disk if this is the last reference to the given iclog and the
500  * it is in the WANT_SYNC state.
501  *
502  * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
503  * log tail is updated correctly. NEED_FUA indicates that the iclog will be
504  * written to stable storage, and implies that a commit record is contained
505  * within the iclog. We need to ensure that the log tail does not move beyond
506  * the tail that the first commit record in the iclog ordered against, otherwise
507  * correct recovery of that checkpoint becomes dependent on future operations
508  * performed on this iclog.
509  *
510  * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
511  * current tail into iclog. Once the iclog tail is set, future operations must
512  * not modify it, otherwise they potentially violate ordering constraints for
513  * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
514  * the iclog will get zeroed on activation of the iclog after sync, so we
515  * always capture the tail lsn on the iclog on the first NEED_FUA release
516  * regardless of the number of active reference counts on this iclog.
517  */
518 int
xlog_state_release_iclog(struct xlog * log,struct xlog_in_core * iclog,struct xlog_ticket * ticket)519 xlog_state_release_iclog(
520 	struct xlog		*log,
521 	struct xlog_in_core	*iclog,
522 	struct xlog_ticket	*ticket)
523 {
524 	bool			last_ref;
525 
526 	lockdep_assert_held(&log->l_icloglock);
527 
528 	trace_xlog_iclog_release(iclog, _RET_IP_);
529 	/*
530 	 * Grabbing the current log tail needs to be atomic w.r.t. the writing
531 	 * of the tail LSN into the iclog so we guarantee that the log tail does
532 	 * not move between the first time we know that the iclog needs to be
533 	 * made stable and when we eventually submit it.
534 	 */
535 	if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
536 	     (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
537 	    !iclog->ic_header->h_tail_lsn) {
538 		iclog->ic_header->h_tail_lsn =
539 				cpu_to_be64(atomic64_read(&log->l_tail_lsn));
540 	}
541 
542 	last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
543 
544 	if (xlog_is_shutdown(log)) {
545 		/*
546 		 * If there are no more references to this iclog, process the
547 		 * pending iclog callbacks that were waiting on the release of
548 		 * this iclog.
549 		 */
550 		if (last_ref)
551 			xlog_state_shutdown_callbacks(log);
552 		return -EIO;
553 	}
554 
555 	if (!last_ref)
556 		return 0;
557 
558 	if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
559 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
560 		return 0;
561 	}
562 
563 	iclog->ic_state = XLOG_STATE_SYNCING;
564 	xlog_verify_tail_lsn(log, iclog);
565 	trace_xlog_iclog_syncing(iclog, _RET_IP_);
566 
567 	spin_unlock(&log->l_icloglock);
568 	xlog_sync(log, iclog, ticket);
569 	spin_lock(&log->l_icloglock);
570 	return 0;
571 }
572 
573 /*
574  * Mount a log filesystem
575  *
576  * mp		- ubiquitous xfs mount point structure
577  * log_target	- buftarg of on-disk log device
578  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
579  * num_bblocks	- Number of BBSIZE blocks in on-disk log
580  *
581  * Return error or zero.
582  */
583 int
xfs_log_mount(xfs_mount_t * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)584 xfs_log_mount(
585 	xfs_mount_t		*mp,
586 	struct xfs_buftarg	*log_target,
587 	xfs_daddr_t		blk_offset,
588 	int			num_bblks)
589 {
590 	struct xlog		*log;
591 	int			error = 0;
592 	int			min_logfsbs;
593 
594 	if (!xfs_has_norecovery(mp)) {
595 		xfs_notice(mp, "Mounting V%d Filesystem %pU",
596 			   XFS_SB_VERSION_NUM(&mp->m_sb),
597 			   &mp->m_sb.sb_uuid);
598 	} else {
599 		xfs_notice(mp,
600 "Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.",
601 			   XFS_SB_VERSION_NUM(&mp->m_sb),
602 			   &mp->m_sb.sb_uuid);
603 		ASSERT(xfs_is_readonly(mp));
604 	}
605 
606 	log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
607 	if (IS_ERR(log)) {
608 		error = PTR_ERR(log);
609 		goto out;
610 	}
611 	mp->m_log = log;
612 
613 	/*
614 	 * Now that we have set up the log and it's internal geometry
615 	 * parameters, we can validate the given log space and drop a critical
616 	 * message via syslog if the log size is too small. A log that is too
617 	 * small can lead to unexpected situations in transaction log space
618 	 * reservation stage. The superblock verifier has already validated all
619 	 * the other log geometry constraints, so we don't have to check those
620 	 * here.
621 	 *
622 	 * Note: For v4 filesystems, we can't just reject the mount if the
623 	 * validation fails.  This would mean that people would have to
624 	 * downgrade their kernel just to remedy the situation as there is no
625 	 * way to grow the log (short of black magic surgery with xfs_db).
626 	 *
627 	 * We can, however, reject mounts for V5 format filesystems, as the
628 	 * mkfs binary being used to make the filesystem should never create a
629 	 * filesystem with a log that is too small.
630 	 */
631 	min_logfsbs = xfs_log_calc_minimum_size(mp);
632 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
633 		xfs_warn(mp,
634 		"Log size %d blocks too small, minimum size is %d blocks",
635 			 mp->m_sb.sb_logblocks, min_logfsbs);
636 
637 		/*
638 		 * Log check errors are always fatal on v5; or whenever bad
639 		 * metadata leads to a crash.
640 		 */
641 		if (xfs_has_crc(mp)) {
642 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
643 			ASSERT(0);
644 			error = -EINVAL;
645 			goto out_free_log;
646 		}
647 		xfs_crit(mp, "Log size out of supported range.");
648 		xfs_crit(mp,
649 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
650 	}
651 
652 	/*
653 	 * Initialize the AIL now we have a log.
654 	 */
655 	error = xfs_trans_ail_init(mp);
656 	if (error) {
657 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
658 		goto out_free_log;
659 	}
660 	log->l_ailp = mp->m_ail;
661 
662 	/*
663 	 * skip log recovery on a norecovery mount.  pretend it all
664 	 * just worked.
665 	 */
666 	if (!xfs_has_norecovery(mp)) {
667 		error = xlog_recover(log);
668 		if (error) {
669 			xfs_warn(mp, "log mount/recovery failed: error %d",
670 				error);
671 			xlog_recover_cancel(log);
672 			goto out_destroy_ail;
673 		}
674 	}
675 
676 	error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
677 			       "log");
678 	if (error)
679 		goto out_destroy_ail;
680 
681 	/* Normal transactions can now occur */
682 	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
683 
684 	/*
685 	 * Now the log has been fully initialised and we know were our
686 	 * space grant counters are, we can initialise the permanent ticket
687 	 * needed for delayed logging to work.
688 	 */
689 	xlog_cil_init_post_recovery(log);
690 
691 	return 0;
692 
693 out_destroy_ail:
694 	xfs_trans_ail_destroy(mp);
695 out_free_log:
696 	xlog_dealloc_log(log);
697 out:
698 	return error;
699 }
700 
701 /*
702  * Finish the recovery of the file system.  This is separate from the
703  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
704  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
705  * here.
706  *
707  * If we finish recovery successfully, start the background log work. If we are
708  * not doing recovery, then we have a RO filesystem and we don't need to start
709  * it.
710  */
711 int
xfs_log_mount_finish(struct xfs_mount * mp)712 xfs_log_mount_finish(
713 	struct xfs_mount	*mp)
714 {
715 	struct xlog		*log = mp->m_log;
716 	int			error = 0;
717 
718 	if (xfs_has_norecovery(mp)) {
719 		ASSERT(xfs_is_readonly(mp));
720 		return 0;
721 	}
722 
723 	/*
724 	 * During the second phase of log recovery, we need iget and
725 	 * iput to behave like they do for an active filesystem.
726 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
727 	 * of inodes before we're done replaying log items on those
728 	 * inodes.  Turn it off immediately after recovery finishes
729 	 * so that we don't leak the quota inodes if subsequent mount
730 	 * activities fail.
731 	 *
732 	 * We let all inodes involved in redo item processing end up on
733 	 * the LRU instead of being evicted immediately so that if we do
734 	 * something to an unlinked inode, the irele won't cause
735 	 * premature truncation and freeing of the inode, which results
736 	 * in log recovery failure.  We have to evict the unreferenced
737 	 * lru inodes after clearing SB_ACTIVE because we don't
738 	 * otherwise clean up the lru if there's a subsequent failure in
739 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
740 	 * else (e.g. quotacheck) references the inodes before the
741 	 * mount failure occurs.
742 	 */
743 	mp->m_super->s_flags |= SB_ACTIVE;
744 	xfs_log_work_queue(mp);
745 	if (xlog_recovery_needed(log))
746 		error = xlog_recover_finish(log);
747 	mp->m_super->s_flags &= ~SB_ACTIVE;
748 	evict_inodes(mp->m_super);
749 
750 	/*
751 	 * Drain the buffer LRU after log recovery. This is required for v4
752 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
753 	 * but we do it unconditionally to make sure we're always in a clean
754 	 * cache state after mount.
755 	 *
756 	 * Don't push in the error case because the AIL may have pending intents
757 	 * that aren't removed until recovery is cancelled.
758 	 */
759 	if (xlog_recovery_needed(log)) {
760 		if (!error) {
761 			xfs_log_force(mp, XFS_LOG_SYNC);
762 			xfs_ail_push_all_sync(mp->m_ail);
763 		}
764 		xfs_notice(mp, "Ending recovery (logdev: %s)",
765 				mp->m_logname ? mp->m_logname : "internal");
766 	} else {
767 		xfs_info(mp, "Ending clean mount");
768 	}
769 	xfs_buftarg_drain(mp->m_ddev_targp);
770 
771 	clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
772 
773 	/* Make sure the log is dead if we're returning failure. */
774 	ASSERT(!error || xlog_is_shutdown(log));
775 
776 	return error;
777 }
778 
779 /*
780  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
781  * the log.
782  */
783 void
xfs_log_mount_cancel(struct xfs_mount * mp)784 xfs_log_mount_cancel(
785 	struct xfs_mount	*mp)
786 {
787 	xlog_recover_cancel(mp->m_log);
788 	xfs_log_unmount(mp);
789 }
790 
791 /*
792  * Flush out the iclog to disk ensuring that device caches are flushed and
793  * the iclog hits stable storage before any completion waiters are woken.
794  */
795 static inline int
xlog_force_iclog(struct xlog_in_core * iclog)796 xlog_force_iclog(
797 	struct xlog_in_core	*iclog)
798 {
799 	atomic_inc(&iclog->ic_refcnt);
800 	iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
801 	if (iclog->ic_state == XLOG_STATE_ACTIVE)
802 		xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
803 	return xlog_state_release_iclog(iclog->ic_log, iclog, NULL);
804 }
805 
806 /*
807  * Cycle all the iclogbuf locks to make sure all log IO completion
808  * is done before we tear down these buffers.
809  */
810 static void
xlog_wait_iclog_completion(struct xlog * log)811 xlog_wait_iclog_completion(struct xlog *log)
812 {
813 	int		i;
814 	struct xlog_in_core	*iclog = log->l_iclog;
815 
816 	for (i = 0; i < log->l_iclog_bufs; i++) {
817 		down(&iclog->ic_sema);
818 		up(&iclog->ic_sema);
819 		iclog = iclog->ic_next;
820 	}
821 }
822 
823 /*
824  * Wait for the iclog and all prior iclogs to be written disk as required by the
825  * log force state machine. Waiting on ic_force_wait ensures iclog completions
826  * have been ordered and callbacks run before we are woken here, hence
827  * guaranteeing that all the iclogs up to this one are on stable storage.
828  */
829 int
xlog_wait_on_iclog(struct xlog_in_core * iclog)830 xlog_wait_on_iclog(
831 	struct xlog_in_core	*iclog)
832 		__releases(iclog->ic_log->l_icloglock)
833 {
834 	struct xlog		*log = iclog->ic_log;
835 
836 	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
837 	if (!xlog_is_shutdown(log) &&
838 	    iclog->ic_state != XLOG_STATE_ACTIVE &&
839 	    iclog->ic_state != XLOG_STATE_DIRTY) {
840 		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
841 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
842 	} else {
843 		spin_unlock(&log->l_icloglock);
844 	}
845 
846 	if (xlog_is_shutdown(log))
847 		return -EIO;
848 	return 0;
849 }
850 
851 /*
852  * Write out an unmount record using the ticket provided. We have to account for
853  * the data space used in the unmount ticket as this write is not done from a
854  * transaction context that has already done the accounting for us.
855  */
856 static int
xlog_write_unmount_record(struct xlog * log,struct xlog_ticket * ticket)857 xlog_write_unmount_record(
858 	struct xlog		*log,
859 	struct xlog_ticket	*ticket)
860 {
861 	struct  {
862 		struct xlog_op_header ophdr;
863 		struct xfs_unmount_log_format ulf;
864 	} unmount_rec = {
865 		.ophdr = {
866 			.oh_clientid = XFS_LOG,
867 			.oh_tid = cpu_to_be32(ticket->t_tid),
868 			.oh_flags = XLOG_UNMOUNT_TRANS,
869 		},
870 		.ulf = {
871 			.magic = XLOG_UNMOUNT_TYPE,
872 		},
873 	};
874 	struct xfs_log_iovec reg = {
875 		.i_addr = &unmount_rec,
876 		.i_len = sizeof(unmount_rec),
877 		.i_type = XLOG_REG_TYPE_UNMOUNT,
878 	};
879 	struct xfs_log_vec vec = {
880 		.lv_niovecs = 1,
881 		.lv_iovecp = &reg,
882 	};
883 	LIST_HEAD(lv_chain);
884 	list_add(&vec.lv_list, &lv_chain);
885 
886 	BUILD_BUG_ON((sizeof(struct xlog_op_header) +
887 		      sizeof(struct xfs_unmount_log_format)) !=
888 							sizeof(unmount_rec));
889 
890 	/* account for space used by record data */
891 	ticket->t_curr_res -= sizeof(unmount_rec);
892 
893 	return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len);
894 }
895 
896 /*
897  * Mark the filesystem clean by writing an unmount record to the head of the
898  * log.
899  */
900 static void
xlog_unmount_write(struct xlog * log)901 xlog_unmount_write(
902 	struct xlog		*log)
903 {
904 	struct xfs_mount	*mp = log->l_mp;
905 	struct xlog_in_core	*iclog;
906 	struct xlog_ticket	*tic = NULL;
907 	int			error;
908 
909 	error = xfs_log_reserve(mp, 600, 1, &tic, 0);
910 	if (error)
911 		goto out_err;
912 
913 	error = xlog_write_unmount_record(log, tic);
914 	/*
915 	 * At this point, we're umounting anyway, so there's no point in
916 	 * transitioning log state to shutdown. Just continue...
917 	 */
918 out_err:
919 	if (error)
920 		xfs_alert(mp, "%s: unmount record failed", __func__);
921 
922 	spin_lock(&log->l_icloglock);
923 	iclog = log->l_iclog;
924 	error = xlog_force_iclog(iclog);
925 	xlog_wait_on_iclog(iclog);
926 
927 	if (tic) {
928 		trace_xfs_log_umount_write(log, tic);
929 		xfs_log_ticket_ungrant(log, tic);
930 	}
931 }
932 
933 static void
xfs_log_unmount_verify_iclog(struct xlog * log)934 xfs_log_unmount_verify_iclog(
935 	struct xlog		*log)
936 {
937 	struct xlog_in_core	*iclog = log->l_iclog;
938 
939 	do {
940 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
941 		ASSERT(iclog->ic_offset == 0);
942 	} while ((iclog = iclog->ic_next) != log->l_iclog);
943 }
944 
945 /*
946  * Unmount record used to have a string "Unmount filesystem--" in the
947  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
948  * We just write the magic number now since that particular field isn't
949  * currently architecture converted and "Unmount" is a bit foo.
950  * As far as I know, there weren't any dependencies on the old behaviour.
951  */
952 static void
xfs_log_unmount_write(struct xfs_mount * mp)953 xfs_log_unmount_write(
954 	struct xfs_mount	*mp)
955 {
956 	struct xlog		*log = mp->m_log;
957 
958 	if (!xfs_log_writable(mp))
959 		return;
960 
961 	xfs_log_force(mp, XFS_LOG_SYNC);
962 
963 	if (xlog_is_shutdown(log))
964 		return;
965 
966 	/*
967 	 * If we think the summary counters are bad, avoid writing the unmount
968 	 * record to force log recovery at next mount, after which the summary
969 	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
970 	 * more details.
971 	 */
972 	if (xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS) ||
973 	    XFS_TEST_ERROR(mp, XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
974 		xfs_alert(mp, "%s: will fix summary counters at next mount",
975 				__func__);
976 		return;
977 	}
978 
979 	xfs_log_unmount_verify_iclog(log);
980 	xlog_unmount_write(log);
981 }
982 
983 /*
984  * Empty the log for unmount/freeze.
985  *
986  * To do this, we first need to shut down the background log work so it is not
987  * trying to cover the log as we clean up. We then need to unpin all objects in
988  * the log so we can then flush them out. Once they have completed their IO and
989  * run the callbacks removing themselves from the AIL, we can cover the log.
990  */
991 int
xfs_log_quiesce(struct xfs_mount * mp)992 xfs_log_quiesce(
993 	struct xfs_mount	*mp)
994 {
995 	/*
996 	 * Clear log incompat features since we're quiescing the log.  Report
997 	 * failures, though it's not fatal to have a higher log feature
998 	 * protection level than the log contents actually require.
999 	 */
1000 	if (xfs_clear_incompat_log_features(mp)) {
1001 		int error;
1002 
1003 		error = xfs_sync_sb(mp, false);
1004 		if (error)
1005 			xfs_warn(mp,
1006 	"Failed to clear log incompat features on quiesce");
1007 	}
1008 
1009 	cancel_delayed_work_sync(&mp->m_log->l_work);
1010 	xfs_log_force(mp, XFS_LOG_SYNC);
1011 
1012 	/*
1013 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1014 	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1015 	 * xfs_buf_iowait() cannot be used because it was pushed with the
1016 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1017 	 * the IO to complete.
1018 	 */
1019 	xfs_ail_push_all_sync(mp->m_ail);
1020 	xfs_buftarg_wait(mp->m_ddev_targp);
1021 	xfs_buf_lock(mp->m_sb_bp);
1022 	xfs_buf_unlock(mp->m_sb_bp);
1023 
1024 	return xfs_log_cover(mp);
1025 }
1026 
1027 void
xfs_log_clean(struct xfs_mount * mp)1028 xfs_log_clean(
1029 	struct xfs_mount	*mp)
1030 {
1031 	xfs_log_quiesce(mp);
1032 	xfs_log_unmount_write(mp);
1033 }
1034 
1035 /*
1036  * Shut down and release the AIL and Log.
1037  *
1038  * During unmount, we need to ensure we flush all the dirty metadata objects
1039  * from the AIL so that the log is empty before we write the unmount record to
1040  * the log. Once this is done, we can tear down the AIL and the log.
1041  */
1042 void
xfs_log_unmount(struct xfs_mount * mp)1043 xfs_log_unmount(
1044 	struct xfs_mount	*mp)
1045 {
1046 	xfs_log_clean(mp);
1047 
1048 	/*
1049 	 * If shutdown has come from iclog IO context, the log
1050 	 * cleaning will have been skipped and so we need to wait
1051 	 * for the iclog to complete shutdown processing before we
1052 	 * tear anything down.
1053 	 */
1054 	xlog_wait_iclog_completion(mp->m_log);
1055 
1056 	xfs_buftarg_drain(mp->m_ddev_targp);
1057 
1058 	xfs_trans_ail_destroy(mp);
1059 
1060 	xfs_sysfs_del(&mp->m_log->l_kobj);
1061 
1062 	xlog_dealloc_log(mp->m_log);
1063 }
1064 
1065 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,const struct xfs_item_ops * ops)1066 xfs_log_item_init(
1067 	struct xfs_mount	*mp,
1068 	struct xfs_log_item	*item,
1069 	int			type,
1070 	const struct xfs_item_ops *ops)
1071 {
1072 	item->li_log = mp->m_log;
1073 	item->li_ailp = mp->m_ail;
1074 	item->li_type = type;
1075 	item->li_ops = ops;
1076 	item->li_lv = NULL;
1077 
1078 	INIT_LIST_HEAD(&item->li_ail);
1079 	INIT_LIST_HEAD(&item->li_cil);
1080 	INIT_LIST_HEAD(&item->li_bio_list);
1081 	INIT_LIST_HEAD(&item->li_trans);
1082 }
1083 
1084 /*
1085  * Wake up processes waiting for log space after we have moved the log tail.
1086  */
1087 void
xfs_log_space_wake(struct xfs_mount * mp)1088 xfs_log_space_wake(
1089 	struct xfs_mount	*mp)
1090 {
1091 	struct xlog		*log = mp->m_log;
1092 	int			free_bytes;
1093 
1094 	if (xlog_is_shutdown(log))
1095 		return;
1096 
1097 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1098 		ASSERT(!xlog_in_recovery(log));
1099 
1100 		spin_lock(&log->l_write_head.lock);
1101 		free_bytes = xlog_grant_space_left(log, &log->l_write_head);
1102 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1103 		spin_unlock(&log->l_write_head.lock);
1104 	}
1105 
1106 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1107 		ASSERT(!xlog_in_recovery(log));
1108 
1109 		spin_lock(&log->l_reserve_head.lock);
1110 		free_bytes = xlog_grant_space_left(log, &log->l_reserve_head);
1111 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1112 		spin_unlock(&log->l_reserve_head.lock);
1113 	}
1114 }
1115 
1116 /*
1117  * Determine if we have a transaction that has gone to disk that needs to be
1118  * covered. To begin the transition to the idle state firstly the log needs to
1119  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1120  * we start attempting to cover the log.
1121  *
1122  * Only if we are then in a state where covering is needed, the caller is
1123  * informed that dummy transactions are required to move the log into the idle
1124  * state.
1125  *
1126  * If there are any items in the AIl or CIL, then we do not want to attempt to
1127  * cover the log as we may be in a situation where there isn't log space
1128  * available to run a dummy transaction and this can lead to deadlocks when the
1129  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1130  * there's no point in running a dummy transaction at this point because we
1131  * can't start trying to idle the log until both the CIL and AIL are empty.
1132  */
1133 static bool
xfs_log_need_covered(struct xfs_mount * mp)1134 xfs_log_need_covered(
1135 	struct xfs_mount	*mp)
1136 {
1137 	struct xlog		*log = mp->m_log;
1138 	bool			needed = false;
1139 
1140 	if (!xlog_cil_empty(log))
1141 		return false;
1142 
1143 	spin_lock(&log->l_icloglock);
1144 	switch (log->l_covered_state) {
1145 	case XLOG_STATE_COVER_DONE:
1146 	case XLOG_STATE_COVER_DONE2:
1147 	case XLOG_STATE_COVER_IDLE:
1148 		break;
1149 	case XLOG_STATE_COVER_NEED:
1150 	case XLOG_STATE_COVER_NEED2:
1151 		if (xfs_ail_min_lsn(log->l_ailp))
1152 			break;
1153 		if (!xlog_iclogs_empty(log))
1154 			break;
1155 
1156 		needed = true;
1157 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1158 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1159 		else
1160 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1161 		break;
1162 	default:
1163 		needed = true;
1164 		break;
1165 	}
1166 	spin_unlock(&log->l_icloglock);
1167 	return needed;
1168 }
1169 
1170 /*
1171  * Explicitly cover the log. This is similar to background log covering but
1172  * intended for usage in quiesce codepaths. The caller is responsible to ensure
1173  * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1174  * must all be empty.
1175  */
1176 static int
xfs_log_cover(struct xfs_mount * mp)1177 xfs_log_cover(
1178 	struct xfs_mount	*mp)
1179 {
1180 	int			error = 0;
1181 	bool			need_covered;
1182 
1183 	if (!xlog_is_shutdown(mp->m_log)) {
1184 		ASSERT(xlog_cil_empty(mp->m_log));
1185 		ASSERT(xlog_iclogs_empty(mp->m_log));
1186 		ASSERT(!xfs_ail_min_lsn(mp->m_log->l_ailp));
1187 	}
1188 
1189 	if (!xfs_log_writable(mp))
1190 		return 0;
1191 
1192 	/*
1193 	 * xfs_log_need_covered() is not idempotent because it progresses the
1194 	 * state machine if the log requires covering. Therefore, we must call
1195 	 * this function once and use the result until we've issued an sb sync.
1196 	 * Do so first to make that abundantly clear.
1197 	 *
1198 	 * Fall into the covering sequence if the log needs covering or the
1199 	 * mount has lazy superblock accounting to sync to disk. The sb sync
1200 	 * used for covering accumulates the in-core counters, so covering
1201 	 * handles this for us.
1202 	 */
1203 	need_covered = xfs_log_need_covered(mp);
1204 	if (!need_covered && !xfs_has_lazysbcount(mp))
1205 		return 0;
1206 
1207 	/*
1208 	 * To cover the log, commit the superblock twice (at most) in
1209 	 * independent checkpoints. The first serves as a reference for the
1210 	 * tail pointer. The sync transaction and AIL push empties the AIL and
1211 	 * updates the in-core tail to the LSN of the first checkpoint. The
1212 	 * second commit updates the on-disk tail with the in-core LSN,
1213 	 * covering the log. Push the AIL one more time to leave it empty, as
1214 	 * we found it.
1215 	 */
1216 	do {
1217 		error = xfs_sync_sb(mp, true);
1218 		if (error)
1219 			break;
1220 		xfs_ail_push_all_sync(mp->m_ail);
1221 	} while (xfs_log_need_covered(mp));
1222 
1223 	return error;
1224 }
1225 
1226 static void
xlog_ioend_work(struct work_struct * work)1227 xlog_ioend_work(
1228 	struct work_struct	*work)
1229 {
1230 	struct xlog_in_core     *iclog =
1231 		container_of(work, struct xlog_in_core, ic_end_io_work);
1232 	struct xlog		*log = iclog->ic_log;
1233 	int			error;
1234 
1235 	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1236 #ifdef DEBUG
1237 	/* treat writes with injected CRC errors as failed */
1238 	if (iclog->ic_fail_crc)
1239 		error = -EIO;
1240 #endif
1241 
1242 	/*
1243 	 * Race to shutdown the filesystem if we see an error.
1244 	 */
1245 	if (error || XFS_TEST_ERROR(log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1246 		xfs_alert(log->l_mp, "log I/O error %d", error);
1247 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1248 	}
1249 
1250 	xlog_state_done_syncing(iclog);
1251 	bio_uninit(&iclog->ic_bio);
1252 
1253 	/*
1254 	 * Drop the lock to signal that we are done. Nothing references the
1255 	 * iclog after this, so an unmount waiting on this lock can now tear it
1256 	 * down safely. As such, it is unsafe to reference the iclog after the
1257 	 * unlock as we could race with it being freed.
1258 	 */
1259 	up(&iclog->ic_sema);
1260 }
1261 
1262 /*
1263  * Return size of each in-core log record buffer.
1264  *
1265  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1266  *
1267  * If the filesystem blocksize is too large, we may need to choose a
1268  * larger size since the directory code currently logs entire blocks.
1269  */
1270 STATIC void
xlog_get_iclog_buffer_size(struct xfs_mount * mp,struct xlog * log)1271 xlog_get_iclog_buffer_size(
1272 	struct xfs_mount	*mp,
1273 	struct xlog		*log)
1274 {
1275 	if (mp->m_logbufs <= 0)
1276 		mp->m_logbufs = XLOG_MAX_ICLOGS;
1277 	if (mp->m_logbsize <= 0)
1278 		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1279 
1280 	log->l_iclog_bufs = mp->m_logbufs;
1281 	log->l_iclog_size = mp->m_logbsize;
1282 
1283 	/*
1284 	 * Combined size of the log record headers.  The first 32k cycles
1285 	 * are stored directly in the xlog_rec_header, the rest in the
1286 	 * variable number of xlog_rec_ext_headers at its end.
1287 	 */
1288 	log->l_iclog_hsize = struct_size(log->l_iclog->ic_header, h_ext,
1289 		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE) - 1);
1290 }
1291 
1292 void
xfs_log_work_queue(struct xfs_mount * mp)1293 xfs_log_work_queue(
1294 	struct xfs_mount        *mp)
1295 {
1296 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1297 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1298 }
1299 
1300 /*
1301  * Clear the log incompat flags if we have the opportunity.
1302  *
1303  * This only happens if we're about to log the second dummy transaction as part
1304  * of covering the log.
1305  */
1306 static inline void
xlog_clear_incompat(struct xlog * log)1307 xlog_clear_incompat(
1308 	struct xlog		*log)
1309 {
1310 	struct xfs_mount	*mp = log->l_mp;
1311 
1312 	if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1313 				XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1314 		return;
1315 
1316 	if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1317 		return;
1318 
1319 	xfs_clear_incompat_log_features(mp);
1320 }
1321 
1322 /*
1323  * Every sync period we need to unpin all items in the AIL and push them to
1324  * disk. If there is nothing dirty, then we might need to cover the log to
1325  * indicate that the filesystem is idle.
1326  */
1327 static void
xfs_log_worker(struct work_struct * work)1328 xfs_log_worker(
1329 	struct work_struct	*work)
1330 {
1331 	struct xlog		*log = container_of(to_delayed_work(work),
1332 						struct xlog, l_work);
1333 	struct xfs_mount	*mp = log->l_mp;
1334 
1335 	/* dgc: errors ignored - not fatal and nowhere to report them */
1336 	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1337 		/*
1338 		 * Dump a transaction into the log that contains no real change.
1339 		 * This is needed to stamp the current tail LSN into the log
1340 		 * during the covering operation.
1341 		 *
1342 		 * We cannot use an inode here for this - that will push dirty
1343 		 * state back up into the VFS and then periodic inode flushing
1344 		 * will prevent log covering from making progress. Hence we
1345 		 * synchronously log the superblock instead to ensure the
1346 		 * superblock is immediately unpinned and can be written back.
1347 		 */
1348 		xlog_clear_incompat(log);
1349 		xfs_sync_sb(mp, true);
1350 	} else
1351 		xfs_log_force(mp, 0);
1352 
1353 	/* start pushing all the metadata that is currently dirty */
1354 	xfs_ail_push_all(mp->m_ail);
1355 
1356 	/* queue us up again */
1357 	xfs_log_work_queue(mp);
1358 }
1359 
1360 /*
1361  * This routine initializes some of the log structure for a given mount point.
1362  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1363  * some other stuff may be filled in too.
1364  */
1365 STATIC struct xlog *
xlog_alloc_log(struct xfs_mount * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)1366 xlog_alloc_log(
1367 	struct xfs_mount	*mp,
1368 	struct xfs_buftarg	*log_target,
1369 	xfs_daddr_t		blk_offset,
1370 	int			num_bblks)
1371 {
1372 	struct xlog		*log;
1373 	struct xlog_in_core	**iclogp;
1374 	struct xlog_in_core	*iclog, *prev_iclog = NULL;
1375 	int			i;
1376 	int			error = -ENOMEM;
1377 	uint			log2_size = 0;
1378 
1379 	log = kzalloc(sizeof(struct xlog), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1380 	if (!log) {
1381 		xfs_warn(mp, "Log allocation failed: No memory!");
1382 		goto out;
1383 	}
1384 
1385 	log->l_mp	   = mp;
1386 	log->l_targ	   = log_target;
1387 	log->l_logsize     = BBTOB(num_bblks);
1388 	log->l_logBBstart  = blk_offset;
1389 	log->l_logBBsize   = num_bblks;
1390 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1391 	set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1392 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1393 	INIT_LIST_HEAD(&log->r_dfops);
1394 
1395 	log->l_prev_block  = -1;
1396 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1397 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1398 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1399 
1400 	if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1401 		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1402 	else
1403 		log->l_iclog_roundoff = BBSIZE;
1404 
1405 	xlog_grant_head_init(&log->l_reserve_head);
1406 	xlog_grant_head_init(&log->l_write_head);
1407 
1408 	error = -EFSCORRUPTED;
1409 	if (xfs_has_sector(mp)) {
1410 	        log2_size = mp->m_sb.sb_logsectlog;
1411 		if (log2_size < BBSHIFT) {
1412 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1413 				log2_size, BBSHIFT);
1414 			goto out_free_log;
1415 		}
1416 
1417 	        log2_size -= BBSHIFT;
1418 		if (log2_size > mp->m_sectbb_log) {
1419 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1420 				log2_size, mp->m_sectbb_log);
1421 			goto out_free_log;
1422 		}
1423 
1424 		/* for larger sector sizes, must have v2 or external log */
1425 		if (log2_size && log->l_logBBstart > 0 &&
1426 			    !xfs_has_logv2(mp)) {
1427 			xfs_warn(mp,
1428 		"log sector size (0x%x) invalid for configuration.",
1429 				log2_size);
1430 			goto out_free_log;
1431 		}
1432 	}
1433 	log->l_sectBBsize = 1 << log2_size;
1434 
1435 	xlog_get_iclog_buffer_size(mp, log);
1436 
1437 	spin_lock_init(&log->l_icloglock);
1438 	init_waitqueue_head(&log->l_flush_wait);
1439 
1440 	iclogp = &log->l_iclog;
1441 	ASSERT(log->l_iclog_size >= 4096);
1442 	for (i = 0; i < log->l_iclog_bufs; i++) {
1443 		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1444 				sizeof(struct bio_vec);
1445 
1446 		iclog = kzalloc(sizeof(*iclog) + bvec_size,
1447 				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1448 		if (!iclog)
1449 			goto out_free_iclog;
1450 
1451 		*iclogp = iclog;
1452 		iclog->ic_prev = prev_iclog;
1453 		prev_iclog = iclog;
1454 
1455 		iclog->ic_header = kvzalloc(log->l_iclog_size,
1456 				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1457 		if (!iclog->ic_header)
1458 			goto out_free_iclog;
1459 		iclog->ic_header->h_magicno =
1460 			cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1461 		iclog->ic_header->h_version = cpu_to_be32(
1462 			xfs_has_logv2(log->l_mp) ? 2 : 1);
1463 		iclog->ic_header->h_size = cpu_to_be32(log->l_iclog_size);
1464 		iclog->ic_header->h_fmt = cpu_to_be32(XLOG_FMT);
1465 		memcpy(&iclog->ic_header->h_fs_uuid, &mp->m_sb.sb_uuid,
1466 			sizeof(iclog->ic_header->h_fs_uuid));
1467 
1468 		iclog->ic_datap = (void *)iclog->ic_header + log->l_iclog_hsize;
1469 		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1470 		iclog->ic_state = XLOG_STATE_ACTIVE;
1471 		iclog->ic_log = log;
1472 		atomic_set(&iclog->ic_refcnt, 0);
1473 		INIT_LIST_HEAD(&iclog->ic_callbacks);
1474 
1475 		init_waitqueue_head(&iclog->ic_force_wait);
1476 		init_waitqueue_head(&iclog->ic_write_wait);
1477 		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1478 		sema_init(&iclog->ic_sema, 1);
1479 
1480 		iclogp = &iclog->ic_next;
1481 	}
1482 	*iclogp = log->l_iclog;			/* complete ring */
1483 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1484 
1485 	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1486 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_PERCPU),
1487 			0, mp->m_super->s_id);
1488 	if (!log->l_ioend_workqueue)
1489 		goto out_free_iclog;
1490 
1491 	error = xlog_cil_init(log);
1492 	if (error)
1493 		goto out_destroy_workqueue;
1494 	return log;
1495 
1496 out_destroy_workqueue:
1497 	destroy_workqueue(log->l_ioend_workqueue);
1498 out_free_iclog:
1499 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1500 		prev_iclog = iclog->ic_next;
1501 		kvfree(iclog->ic_header);
1502 		kfree(iclog);
1503 		if (prev_iclog == log->l_iclog)
1504 			break;
1505 	}
1506 out_free_log:
1507 	kfree(log);
1508 out:
1509 	return ERR_PTR(error);
1510 }	/* xlog_alloc_log */
1511 
1512 /*
1513  * Stamp cycle number in every block
1514  */
1515 STATIC void
xlog_pack_data(struct xlog * log,struct xlog_in_core * iclog,int roundoff)1516 xlog_pack_data(
1517 	struct xlog		*log,
1518 	struct xlog_in_core	*iclog,
1519 	int			roundoff)
1520 {
1521 	struct xlog_rec_header	*rhead = iclog->ic_header;
1522 	__be32			cycle_lsn = CYCLE_LSN_DISK(rhead->h_lsn);
1523 	char			*dp = iclog->ic_datap;
1524 	int			i;
1525 
1526 	for (i = 0; i < BTOBB(iclog->ic_offset + roundoff); i++) {
1527 		*xlog_cycle_data(rhead, i) = *(__be32 *)dp;
1528 		*(__be32 *)dp = cycle_lsn;
1529 		dp += BBSIZE;
1530 	}
1531 
1532 	for (i = 0; i < (log->l_iclog_hsize >> BBSHIFT) - 1; i++)
1533 		rhead->h_ext[i].xh_cycle = cycle_lsn;
1534 }
1535 
1536 /*
1537  * Calculate the checksum for a log buffer.
1538  *
1539  * This is a little more complicated than it should be because the various
1540  * headers and the actual data are non-contiguous.
1541  */
1542 __le32
xlog_cksum(struct xlog * log,struct xlog_rec_header * rhead,char * dp,unsigned int hdrsize,unsigned int size)1543 xlog_cksum(
1544 	struct xlog		*log,
1545 	struct xlog_rec_header	*rhead,
1546 	char			*dp,
1547 	unsigned int		hdrsize,
1548 	unsigned int		size)
1549 {
1550 	uint32_t		crc;
1551 
1552 	/* first generate the crc for the record header ... */
1553 	crc = xfs_start_cksum_update((char *)rhead, hdrsize,
1554 			      offsetof(struct xlog_rec_header, h_crc));
1555 
1556 	/* ... then for additional cycle data for v2 logs ... */
1557 	if (xfs_has_logv2(log->l_mp)) {
1558 		int		xheads, i;
1559 
1560 		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE) - 1;
1561 		for (i = 0; i < xheads; i++)
1562 			crc = crc32c(crc, &rhead->h_ext[i], XLOG_REC_EXT_SIZE);
1563 	}
1564 
1565 	/* ... and finally for the payload */
1566 	crc = crc32c(crc, dp, size);
1567 
1568 	return xfs_end_cksum(crc);
1569 }
1570 
1571 static void
xlog_bio_end_io(struct bio * bio)1572 xlog_bio_end_io(
1573 	struct bio		*bio)
1574 {
1575 	struct xlog_in_core	*iclog = bio->bi_private;
1576 
1577 	queue_work(iclog->ic_log->l_ioend_workqueue,
1578 		   &iclog->ic_end_io_work);
1579 }
1580 
1581 STATIC void
xlog_write_iclog(struct xlog * log,struct xlog_in_core * iclog,uint64_t bno,unsigned int count)1582 xlog_write_iclog(
1583 	struct xlog		*log,
1584 	struct xlog_in_core	*iclog,
1585 	uint64_t		bno,
1586 	unsigned int		count)
1587 {
1588 	ASSERT(bno < log->l_logBBsize);
1589 	trace_xlog_iclog_write(iclog, _RET_IP_);
1590 
1591 	/*
1592 	 * We lock the iclogbufs here so that we can serialise against I/O
1593 	 * completion during unmount.  We might be processing a shutdown
1594 	 * triggered during unmount, and that can occur asynchronously to the
1595 	 * unmount thread, and hence we need to ensure that completes before
1596 	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1597 	 * across the log IO to archieve that.
1598 	 */
1599 	down(&iclog->ic_sema);
1600 	if (xlog_is_shutdown(log)) {
1601 		/*
1602 		 * It would seem logical to return EIO here, but we rely on
1603 		 * the log state machine to propagate I/O errors instead of
1604 		 * doing it here.  We kick of the state machine and unlock
1605 		 * the buffer manually, the code needs to be kept in sync
1606 		 * with the I/O completion path.
1607 		 */
1608 		goto sync;
1609 	}
1610 
1611 	/*
1612 	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1613 	 * IOs coming immediately after this one. This prevents the block layer
1614 	 * writeback throttle from throttling log writes behind background
1615 	 * metadata writeback and causing priority inversions.
1616 	 */
1617 	bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1618 		 howmany(count, PAGE_SIZE),
1619 		 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1620 	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1621 	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1622 	iclog->ic_bio.bi_private = iclog;
1623 
1624 	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1625 		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1626 		/*
1627 		 * For external log devices, we also need to flush the data
1628 		 * device cache first to ensure all metadata writeback covered
1629 		 * by the LSN in this iclog is on stable storage. This is slow,
1630 		 * but it *must* complete before we issue the external log IO.
1631 		 *
1632 		 * If the flush fails, we cannot conclude that past metadata
1633 		 * writeback from the log succeeded.  Repeating the flush is
1634 		 * not possible, hence we must shut down with log IO error to
1635 		 * avoid shutdown re-entering this path and erroring out again.
1636 		 */
1637 		if (log->l_targ != log->l_mp->m_ddev_targp &&
1638 		    blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev))
1639 			goto shutdown;
1640 	}
1641 	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1642 		iclog->ic_bio.bi_opf |= REQ_FUA;
1643 
1644 	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1645 
1646 	if (is_vmalloc_addr(iclog->ic_header)) {
1647 		if (!bio_add_vmalloc(&iclog->ic_bio, iclog->ic_header, count))
1648 			goto shutdown;
1649 	} else {
1650 		bio_add_virt_nofail(&iclog->ic_bio, iclog->ic_header, count);
1651 	}
1652 
1653 	/*
1654 	 * If this log buffer would straddle the end of the log we will have
1655 	 * to split it up into two bios, so that we can continue at the start.
1656 	 */
1657 	if (bno + BTOBB(count) > log->l_logBBsize) {
1658 		struct bio *split;
1659 
1660 		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1661 				  GFP_NOIO, &fs_bio_set);
1662 		bio_chain(split, &iclog->ic_bio);
1663 		submit_bio(split);
1664 
1665 		/* restart at logical offset zero for the remainder */
1666 		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1667 	}
1668 
1669 	submit_bio(&iclog->ic_bio);
1670 	return;
1671 shutdown:
1672 	xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1673 sync:
1674 	xlog_state_done_syncing(iclog);
1675 	up(&iclog->ic_sema);
1676 }
1677 
1678 /*
1679  * We need to bump cycle number for the part of the iclog that is
1680  * written to the start of the log. Watch out for the header magic
1681  * number case, though.
1682  */
1683 static void
xlog_split_iclog(struct xlog * log,void * data,uint64_t bno,unsigned int count)1684 xlog_split_iclog(
1685 	struct xlog		*log,
1686 	void			*data,
1687 	uint64_t		bno,
1688 	unsigned int		count)
1689 {
1690 	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1691 	unsigned int		i;
1692 
1693 	for (i = split_offset; i < count; i += BBSIZE) {
1694 		uint32_t cycle = get_unaligned_be32(data + i);
1695 
1696 		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1697 			cycle++;
1698 		put_unaligned_be32(cycle, data + i);
1699 	}
1700 }
1701 
1702 static int
xlog_calc_iclog_size(struct xlog * log,struct xlog_in_core * iclog,uint32_t * roundoff)1703 xlog_calc_iclog_size(
1704 	struct xlog		*log,
1705 	struct xlog_in_core	*iclog,
1706 	uint32_t		*roundoff)
1707 {
1708 	uint32_t		count_init, count;
1709 
1710 	/* Add for LR header */
1711 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1712 	count = roundup(count_init, log->l_iclog_roundoff);
1713 
1714 	*roundoff = count - count_init;
1715 
1716 	ASSERT(count >= count_init);
1717 	ASSERT(*roundoff < log->l_iclog_roundoff);
1718 	return count;
1719 }
1720 
1721 /*
1722  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1723  * fashion.  Previously, we should have moved the current iclog
1724  * ptr in the log to point to the next available iclog.  This allows further
1725  * write to continue while this code syncs out an iclog ready to go.
1726  * Before an in-core log can be written out, the data section must be scanned
1727  * to save away the 1st word of each BBSIZE block into the header.  We replace
1728  * it with the current cycle count.  Each BBSIZE block is tagged with the
1729  * cycle count because there in an implicit assumption that drives will
1730  * guarantee that entire 512 byte blocks get written at once.  In other words,
1731  * we can't have part of a 512 byte block written and part not written.  By
1732  * tagging each block, we will know which blocks are valid when recovering
1733  * after an unclean shutdown.
1734  *
1735  * This routine is single threaded on the iclog.  No other thread can be in
1736  * this routine with the same iclog.  Changing contents of iclog can there-
1737  * fore be done without grabbing the state machine lock.  Updating the global
1738  * log will require grabbing the lock though.
1739  *
1740  * The entire log manager uses a logical block numbering scheme.  Only
1741  * xlog_write_iclog knows about the fact that the log may not start with
1742  * block zero on a given device.
1743  */
1744 STATIC void
xlog_sync(struct xlog * log,struct xlog_in_core * iclog,struct xlog_ticket * ticket)1745 xlog_sync(
1746 	struct xlog		*log,
1747 	struct xlog_in_core	*iclog,
1748 	struct xlog_ticket	*ticket)
1749 {
1750 	unsigned int		count;		/* byte count of bwrite */
1751 	unsigned int		roundoff;       /* roundoff to BB or stripe */
1752 	uint64_t		bno;
1753 	unsigned int		size;
1754 
1755 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1756 	trace_xlog_iclog_sync(iclog, _RET_IP_);
1757 
1758 	count = xlog_calc_iclog_size(log, iclog, &roundoff);
1759 
1760 	/*
1761 	 * If we have a ticket, account for the roundoff via the ticket
1762 	 * reservation to avoid touching the hot grant heads needlessly.
1763 	 * Otherwise, we have to move grant heads directly.
1764 	 */
1765 	if (ticket) {
1766 		ticket->t_curr_res -= roundoff;
1767 	} else {
1768 		xlog_grant_add_space(&log->l_reserve_head, roundoff);
1769 		xlog_grant_add_space(&log->l_write_head, roundoff);
1770 	}
1771 
1772 	/* put cycle number in every block */
1773 	xlog_pack_data(log, iclog, roundoff);
1774 
1775 	/* real byte length */
1776 	size = iclog->ic_offset;
1777 	if (xfs_has_logv2(log->l_mp))
1778 		size += roundoff;
1779 	iclog->ic_header->h_len = cpu_to_be32(size);
1780 
1781 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1782 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1783 
1784 	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header->h_lsn));
1785 
1786 	/* Do we need to split this write into 2 parts? */
1787 	if (bno + BTOBB(count) > log->l_logBBsize)
1788 		xlog_split_iclog(log, iclog->ic_header, bno, count);
1789 
1790 	/* calculcate the checksum */
1791 	iclog->ic_header->h_crc = xlog_cksum(log, iclog->ic_header,
1792 			iclog->ic_datap, XLOG_REC_SIZE, size);
1793 	/*
1794 	 * Intentionally corrupt the log record CRC based on the error injection
1795 	 * frequency, if defined. This facilitates testing log recovery in the
1796 	 * event of torn writes. Hence, set the IOABORT state to abort the log
1797 	 * write on I/O completion and shutdown the fs. The subsequent mount
1798 	 * detects the bad CRC and attempts to recover.
1799 	 */
1800 #ifdef DEBUG
1801 	if (XFS_TEST_ERROR(log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1802 		iclog->ic_header->h_crc &= cpu_to_le32(0xAAAAAAAA);
1803 		iclog->ic_fail_crc = true;
1804 		xfs_warn(log->l_mp,
1805 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1806 			 be64_to_cpu(iclog->ic_header->h_lsn));
1807 	}
1808 #endif
1809 	xlog_verify_iclog(log, iclog, count);
1810 	xlog_write_iclog(log, iclog, bno, count);
1811 }
1812 
1813 /*
1814  * Deallocate a log structure
1815  */
1816 STATIC void
xlog_dealloc_log(struct xlog * log)1817 xlog_dealloc_log(
1818 	struct xlog		*log)
1819 {
1820 	struct xlog_in_core	*iclog, *next_iclog;
1821 	int			i;
1822 
1823 	/*
1824 	 * Destroy the CIL after waiting for iclog IO completion because an
1825 	 * iclog EIO error will try to shut down the log, which accesses the
1826 	 * CIL to wake up the waiters.
1827 	 */
1828 	xlog_cil_destroy(log);
1829 
1830 	iclog = log->l_iclog;
1831 	for (i = 0; i < log->l_iclog_bufs; i++) {
1832 		next_iclog = iclog->ic_next;
1833 		kvfree(iclog->ic_header);
1834 		kfree(iclog);
1835 		iclog = next_iclog;
1836 	}
1837 
1838 	log->l_mp->m_log = NULL;
1839 	destroy_workqueue(log->l_ioend_workqueue);
1840 	kfree(log);
1841 }
1842 
1843 /*
1844  * Update counters atomically now that memcpy is done.
1845  */
1846 static inline void
xlog_state_finish_copy(struct xlog * log,struct xlog_in_core * iclog,int record_cnt,int copy_bytes)1847 xlog_state_finish_copy(
1848 	struct xlog		*log,
1849 	struct xlog_in_core	*iclog,
1850 	int			record_cnt,
1851 	int			copy_bytes)
1852 {
1853 	lockdep_assert_held(&log->l_icloglock);
1854 
1855 	be32_add_cpu(&iclog->ic_header->h_num_logops, record_cnt);
1856 	iclog->ic_offset += copy_bytes;
1857 }
1858 
1859 /*
1860  * print out info relating to regions written which consume
1861  * the reservation
1862  */
1863 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)1864 xlog_print_tic_res(
1865 	struct xfs_mount	*mp,
1866 	struct xlog_ticket	*ticket)
1867 {
1868 	xfs_warn(mp, "ticket reservation summary:");
1869 	xfs_warn(mp, "  unit res    = %d bytes", ticket->t_unit_res);
1870 	xfs_warn(mp, "  current res = %d bytes", ticket->t_curr_res);
1871 	xfs_warn(mp, "  original count  = %d", ticket->t_ocnt);
1872 	xfs_warn(mp, "  remaining count = %d", ticket->t_cnt);
1873 }
1874 
1875 /*
1876  * Print a summary of the transaction.
1877  */
1878 void
xlog_print_trans(struct xfs_trans * tp)1879 xlog_print_trans(
1880 	struct xfs_trans	*tp)
1881 {
1882 	struct xfs_mount	*mp = tp->t_mountp;
1883 	struct xfs_log_item	*lip;
1884 
1885 	/* dump core transaction and ticket info */
1886 	xfs_warn(mp, "transaction summary:");
1887 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
1888 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
1889 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
1890 
1891 	xlog_print_tic_res(mp, tp->t_ticket);
1892 
1893 	/* dump each log item */
1894 	list_for_each_entry(lip, &tp->t_items, li_trans) {
1895 		struct xfs_log_vec	*lv = lip->li_lv;
1896 		struct xfs_log_iovec	*vec;
1897 		int			i;
1898 
1899 		xfs_warn(mp, "log item: ");
1900 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
1901 		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
1902 		if (!lv)
1903 			continue;
1904 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
1905 		xfs_warn(mp, "  alloc_size = %d", lv->lv_alloc_size);
1906 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
1907 		xfs_warn(mp, "  buf used= %d", lv->lv_buf_used);
1908 
1909 		/* dump each iovec for the log item */
1910 		vec = lv->lv_iovecp;
1911 		for (i = 0; i < lv->lv_niovecs; i++) {
1912 			int dumplen = min(vec->i_len, 32);
1913 
1914 			xfs_warn(mp, "  iovec[%d]", i);
1915 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
1916 			xfs_warn(mp, "    len	= %d", vec->i_len);
1917 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
1918 			xfs_hex_dump(vec->i_addr, dumplen);
1919 
1920 			vec++;
1921 		}
1922 	}
1923 }
1924 
1925 static inline void
xlog_write_iovec(struct xlog_in_core * iclog,uint32_t * log_offset,void * data,uint32_t write_len,int * bytes_left,uint32_t * record_cnt,uint32_t * data_cnt)1926 xlog_write_iovec(
1927 	struct xlog_in_core	*iclog,
1928 	uint32_t		*log_offset,
1929 	void			*data,
1930 	uint32_t		write_len,
1931 	int			*bytes_left,
1932 	uint32_t		*record_cnt,
1933 	uint32_t		*data_cnt)
1934 {
1935 	ASSERT(*log_offset < iclog->ic_log->l_iclog_size);
1936 	ASSERT(*log_offset % sizeof(int32_t) == 0);
1937 	ASSERT(write_len % sizeof(int32_t) == 0);
1938 
1939 	memcpy(iclog->ic_datap + *log_offset, data, write_len);
1940 	*log_offset += write_len;
1941 	*bytes_left -= write_len;
1942 	(*record_cnt)++;
1943 	*data_cnt += write_len;
1944 }
1945 
1946 /*
1947  * Write log vectors into a single iclog which is guaranteed by the caller
1948  * to have enough space to write the entire log vector into.
1949  */
1950 static void
xlog_write_full(struct xfs_log_vec * lv,struct xlog_ticket * ticket,struct xlog_in_core * iclog,uint32_t * log_offset,uint32_t * len,uint32_t * record_cnt,uint32_t * data_cnt)1951 xlog_write_full(
1952 	struct xfs_log_vec	*lv,
1953 	struct xlog_ticket	*ticket,
1954 	struct xlog_in_core	*iclog,
1955 	uint32_t		*log_offset,
1956 	uint32_t		*len,
1957 	uint32_t		*record_cnt,
1958 	uint32_t		*data_cnt)
1959 {
1960 	int			index;
1961 
1962 	ASSERT(*log_offset + *len <= iclog->ic_size ||
1963 		iclog->ic_state == XLOG_STATE_WANT_SYNC);
1964 
1965 	/*
1966 	 * Ordered log vectors have no regions to write so this
1967 	 * loop will naturally skip them.
1968 	 */
1969 	for (index = 0; index < lv->lv_niovecs; index++) {
1970 		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
1971 		struct xlog_op_header	*ophdr = reg->i_addr;
1972 
1973 		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1974 		xlog_write_iovec(iclog, log_offset, reg->i_addr,
1975 				reg->i_len, len, record_cnt, data_cnt);
1976 	}
1977 }
1978 
1979 static int
xlog_write_get_more_iclog_space(struct xlog_ticket * ticket,struct xlog_in_core ** iclogp,uint32_t * log_offset,uint32_t len,uint32_t * record_cnt,uint32_t * data_cnt)1980 xlog_write_get_more_iclog_space(
1981 	struct xlog_ticket	*ticket,
1982 	struct xlog_in_core	**iclogp,
1983 	uint32_t		*log_offset,
1984 	uint32_t		len,
1985 	uint32_t		*record_cnt,
1986 	uint32_t		*data_cnt)
1987 {
1988 	struct xlog_in_core	*iclog = *iclogp;
1989 	struct xlog		*log = iclog->ic_log;
1990 	int			error;
1991 
1992 	spin_lock(&log->l_icloglock);
1993 	ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC);
1994 	xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1995 	error = xlog_state_release_iclog(log, iclog, ticket);
1996 	spin_unlock(&log->l_icloglock);
1997 	if (error)
1998 		return error;
1999 
2000 	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2001 					log_offset);
2002 	if (error)
2003 		return error;
2004 	*record_cnt = 0;
2005 	*data_cnt = 0;
2006 	*iclogp = iclog;
2007 	return 0;
2008 }
2009 
2010 /*
2011  * Write log vectors into a single iclog which is smaller than the current chain
2012  * length. We write until we cannot fit a full record into the remaining space
2013  * and then stop. We return the log vector that is to be written that cannot
2014  * wholly fit in the iclog.
2015  */
2016 static int
xlog_write_partial(struct xfs_log_vec * lv,struct xlog_ticket * ticket,struct xlog_in_core ** iclogp,uint32_t * log_offset,uint32_t * len,uint32_t * record_cnt,uint32_t * data_cnt)2017 xlog_write_partial(
2018 	struct xfs_log_vec	*lv,
2019 	struct xlog_ticket	*ticket,
2020 	struct xlog_in_core	**iclogp,
2021 	uint32_t		*log_offset,
2022 	uint32_t		*len,
2023 	uint32_t		*record_cnt,
2024 	uint32_t		*data_cnt)
2025 {
2026 	struct xlog_in_core	*iclog = *iclogp;
2027 	struct xlog_op_header	*ophdr;
2028 	int			index = 0;
2029 	uint32_t		rlen;
2030 	int			error;
2031 
2032 	/* walk the logvec, copying until we run out of space in the iclog */
2033 	for (index = 0; index < lv->lv_niovecs; index++) {
2034 		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2035 		uint32_t		reg_offset = 0;
2036 
2037 		/*
2038 		 * The first region of a continuation must have a non-zero
2039 		 * length otherwise log recovery will just skip over it and
2040 		 * start recovering from the next opheader it finds. Because we
2041 		 * mark the next opheader as a continuation, recovery will then
2042 		 * incorrectly add the continuation to the previous region and
2043 		 * that breaks stuff.
2044 		 *
2045 		 * Hence if there isn't space for region data after the
2046 		 * opheader, then we need to start afresh with a new iclog.
2047 		 */
2048 		if (iclog->ic_size - *log_offset <=
2049 					sizeof(struct xlog_op_header)) {
2050 			error = xlog_write_get_more_iclog_space(ticket,
2051 					&iclog, log_offset, *len, record_cnt,
2052 					data_cnt);
2053 			if (error)
2054 				return error;
2055 		}
2056 
2057 		ophdr = reg->i_addr;
2058 		rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset);
2059 
2060 		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2061 		ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header));
2062 		if (rlen != reg->i_len)
2063 			ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2064 
2065 		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2066 				rlen, len, record_cnt, data_cnt);
2067 
2068 		/* If we wrote the whole region, move to the next. */
2069 		if (rlen == reg->i_len)
2070 			continue;
2071 
2072 		/*
2073 		 * We now have a partially written iovec, but it can span
2074 		 * multiple iclogs so we loop here. First we release the iclog
2075 		 * we currently have, then we get a new iclog and add a new
2076 		 * opheader. Then we continue copying from where we were until
2077 		 * we either complete the iovec or fill the iclog. If we
2078 		 * complete the iovec, then we increment the index and go right
2079 		 * back to the top of the outer loop. if we fill the iclog, we
2080 		 * run the inner loop again.
2081 		 *
2082 		 * This is complicated by the tail of a region using all the
2083 		 * space in an iclog and hence requiring us to release the iclog
2084 		 * and get a new one before returning to the outer loop. We must
2085 		 * always guarantee that we exit this inner loop with at least
2086 		 * space for log transaction opheaders left in the current
2087 		 * iclog, hence we cannot just terminate the loop at the end
2088 		 * of the of the continuation. So we loop while there is no
2089 		 * space left in the current iclog, and check for the end of the
2090 		 * continuation after getting a new iclog.
2091 		 */
2092 		do {
2093 			/*
2094 			 * Ensure we include the continuation opheader in the
2095 			 * space we need in the new iclog by adding that size
2096 			 * to the length we require. This continuation opheader
2097 			 * needs to be accounted to the ticket as the space it
2098 			 * consumes hasn't been accounted to the lv we are
2099 			 * writing.
2100 			 */
2101 			error = xlog_write_get_more_iclog_space(ticket,
2102 					&iclog, log_offset,
2103 					*len + sizeof(struct xlog_op_header),
2104 					record_cnt, data_cnt);
2105 			if (error)
2106 				return error;
2107 
2108 			ophdr = iclog->ic_datap + *log_offset;
2109 			ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2110 			ophdr->oh_clientid = XFS_TRANSACTION;
2111 			ophdr->oh_res2 = 0;
2112 			ophdr->oh_flags = XLOG_WAS_CONT_TRANS;
2113 
2114 			ticket->t_curr_res -= sizeof(struct xlog_op_header);
2115 			*log_offset += sizeof(struct xlog_op_header);
2116 			*data_cnt += sizeof(struct xlog_op_header);
2117 
2118 			/*
2119 			 * If rlen fits in the iclog, then end the region
2120 			 * continuation. Otherwise we're going around again.
2121 			 */
2122 			reg_offset += rlen;
2123 			rlen = reg->i_len - reg_offset;
2124 			if (rlen <= iclog->ic_size - *log_offset)
2125 				ophdr->oh_flags |= XLOG_END_TRANS;
2126 			else
2127 				ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2128 
2129 			rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset);
2130 			ophdr->oh_len = cpu_to_be32(rlen);
2131 
2132 			xlog_write_iovec(iclog, log_offset,
2133 					reg->i_addr + reg_offset,
2134 					rlen, len, record_cnt, data_cnt);
2135 
2136 		} while (ophdr->oh_flags & XLOG_CONTINUE_TRANS);
2137 	}
2138 
2139 	/*
2140 	 * No more iovecs remain in this logvec so return the next log vec to
2141 	 * the caller so it can go back to fast path copying.
2142 	 */
2143 	*iclogp = iclog;
2144 	return 0;
2145 }
2146 
2147 /*
2148  * Write some region out to in-core log
2149  *
2150  * This will be called when writing externally provided regions or when
2151  * writing out a commit record for a given transaction.
2152  *
2153  * General algorithm:
2154  *	1. Find total length of this write.  This may include adding to the
2155  *		lengths passed in.
2156  *	2. Check whether we violate the tickets reservation.
2157  *	3. While writing to this iclog
2158  *	    A. Reserve as much space in this iclog as can get
2159  *	    B. If this is first write, save away start lsn
2160  *	    C. While writing this region:
2161  *		1. If first write of transaction, write start record
2162  *		2. Write log operation header (header per region)
2163  *		3. Find out if we can fit entire region into this iclog
2164  *		4. Potentially, verify destination memcpy ptr
2165  *		5. Memcpy (partial) region
2166  *		6. If partial copy, release iclog; otherwise, continue
2167  *			copying more regions into current iclog
2168  *	4. Mark want sync bit (in simulation mode)
2169  *	5. Release iclog for potential flush to on-disk log.
2170  *
2171  * ERRORS:
2172  * 1.	Panic if reservation is overrun.  This should never happen since
2173  *	reservation amounts are generated internal to the filesystem.
2174  * NOTES:
2175  * 1. Tickets are single threaded data structures.
2176  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2177  *	syncing routine.  When a single log_write region needs to span
2178  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2179  *	on all log operation writes which don't contain the end of the
2180  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2181  *	operation which contains the end of the continued log_write region.
2182  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2183  *	we don't really know exactly how much space will be used.  As a result,
2184  *	we don't update ic_offset until the end when we know exactly how many
2185  *	bytes have been written out.
2186  */
2187 int
xlog_write(struct xlog * log,struct xfs_cil_ctx * ctx,struct list_head * lv_chain,struct xlog_ticket * ticket,uint32_t len)2188 xlog_write(
2189 	struct xlog		*log,
2190 	struct xfs_cil_ctx	*ctx,
2191 	struct list_head	*lv_chain,
2192 	struct xlog_ticket	*ticket,
2193 	uint32_t		len)
2194 
2195 {
2196 	struct xlog_in_core	*iclog = NULL;
2197 	struct xfs_log_vec	*lv;
2198 	uint32_t		record_cnt = 0;
2199 	uint32_t		data_cnt = 0;
2200 	int			error = 0;
2201 	int			log_offset;
2202 
2203 	if (ticket->t_curr_res < 0) {
2204 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2205 		     "ctx ticket reservation ran out. Need to up reservation");
2206 		xlog_print_tic_res(log->l_mp, ticket);
2207 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2208 	}
2209 
2210 	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2211 					   &log_offset);
2212 	if (error)
2213 		return error;
2214 
2215 	ASSERT(log_offset <= iclog->ic_size - 1);
2216 
2217 	/*
2218 	 * If we have a context pointer, pass it the first iclog we are
2219 	 * writing to so it can record state needed for iclog write
2220 	 * ordering.
2221 	 */
2222 	if (ctx)
2223 		xlog_cil_set_ctx_write_state(ctx, iclog);
2224 
2225 	list_for_each_entry(lv, lv_chain, lv_list) {
2226 		/*
2227 		 * If the entire log vec does not fit in the iclog, punt it to
2228 		 * the partial copy loop which can handle this case.
2229 		 */
2230 		if (lv->lv_niovecs &&
2231 		    lv->lv_bytes > iclog->ic_size - log_offset) {
2232 			error = xlog_write_partial(lv, ticket, &iclog,
2233 					&log_offset, &len, &record_cnt,
2234 					&data_cnt);
2235 			if (error) {
2236 				/*
2237 				 * We have no iclog to release, so just return
2238 				 * the error immediately.
2239 				 */
2240 				return error;
2241 			}
2242 		} else {
2243 			xlog_write_full(lv, ticket, iclog, &log_offset,
2244 					 &len, &record_cnt, &data_cnt);
2245 		}
2246 	}
2247 	ASSERT(len == 0);
2248 
2249 	/*
2250 	 * We've already been guaranteed that the last writes will fit inside
2251 	 * the current iclog, and hence it will already have the space used by
2252 	 * those writes accounted to it. Hence we do not need to update the
2253 	 * iclog with the number of bytes written here.
2254 	 */
2255 	spin_lock(&log->l_icloglock);
2256 	xlog_state_finish_copy(log, iclog, record_cnt, 0);
2257 	error = xlog_state_release_iclog(log, iclog, ticket);
2258 	spin_unlock(&log->l_icloglock);
2259 
2260 	return error;
2261 }
2262 
2263 static void
xlog_state_activate_iclog(struct xlog_in_core * iclog,int * iclogs_changed)2264 xlog_state_activate_iclog(
2265 	struct xlog_in_core	*iclog,
2266 	int			*iclogs_changed)
2267 {
2268 	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2269 	trace_xlog_iclog_activate(iclog, _RET_IP_);
2270 
2271 	/*
2272 	 * If the number of ops in this iclog indicate it just contains the
2273 	 * dummy transaction, we can change state into IDLE (the second time
2274 	 * around). Otherwise we should change the state into NEED a dummy.
2275 	 * We don't need to cover the dummy.
2276 	 */
2277 	if (*iclogs_changed == 0 &&
2278 	    iclog->ic_header->h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2279 		*iclogs_changed = 1;
2280 	} else {
2281 		/*
2282 		 * We have two dirty iclogs so start over.  This could also be
2283 		 * num of ops indicating this is not the dummy going out.
2284 		 */
2285 		*iclogs_changed = 2;
2286 	}
2287 
2288 	iclog->ic_state	= XLOG_STATE_ACTIVE;
2289 	iclog->ic_offset = 0;
2290 	iclog->ic_header->h_num_logops = 0;
2291 	memset(iclog->ic_header->h_cycle_data, 0,
2292 		sizeof(iclog->ic_header->h_cycle_data));
2293 	iclog->ic_header->h_lsn = 0;
2294 	iclog->ic_header->h_tail_lsn = 0;
2295 }
2296 
2297 /*
2298  * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2299  * ACTIVE after iclog I/O has completed.
2300  */
2301 static void
xlog_state_activate_iclogs(struct xlog * log,int * iclogs_changed)2302 xlog_state_activate_iclogs(
2303 	struct xlog		*log,
2304 	int			*iclogs_changed)
2305 {
2306 	struct xlog_in_core	*iclog = log->l_iclog;
2307 
2308 	do {
2309 		if (iclog->ic_state == XLOG_STATE_DIRTY)
2310 			xlog_state_activate_iclog(iclog, iclogs_changed);
2311 		/*
2312 		 * The ordering of marking iclogs ACTIVE must be maintained, so
2313 		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2314 		 */
2315 		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2316 			break;
2317 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2318 }
2319 
2320 static int
xlog_covered_state(int prev_state,int iclogs_changed)2321 xlog_covered_state(
2322 	int			prev_state,
2323 	int			iclogs_changed)
2324 {
2325 	/*
2326 	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2327 	 * wrote the first covering record (DONE). We go to IDLE if we just
2328 	 * wrote the second covering record (DONE2) and remain in IDLE until a
2329 	 * non-covering write occurs.
2330 	 */
2331 	switch (prev_state) {
2332 	case XLOG_STATE_COVER_IDLE:
2333 		if (iclogs_changed == 1)
2334 			return XLOG_STATE_COVER_IDLE;
2335 		fallthrough;
2336 	case XLOG_STATE_COVER_NEED:
2337 	case XLOG_STATE_COVER_NEED2:
2338 		break;
2339 	case XLOG_STATE_COVER_DONE:
2340 		if (iclogs_changed == 1)
2341 			return XLOG_STATE_COVER_NEED2;
2342 		break;
2343 	case XLOG_STATE_COVER_DONE2:
2344 		if (iclogs_changed == 1)
2345 			return XLOG_STATE_COVER_IDLE;
2346 		break;
2347 	default:
2348 		ASSERT(0);
2349 	}
2350 
2351 	return XLOG_STATE_COVER_NEED;
2352 }
2353 
2354 STATIC void
xlog_state_clean_iclog(struct xlog * log,struct xlog_in_core * dirty_iclog)2355 xlog_state_clean_iclog(
2356 	struct xlog		*log,
2357 	struct xlog_in_core	*dirty_iclog)
2358 {
2359 	int			iclogs_changed = 0;
2360 
2361 	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2362 
2363 	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2364 
2365 	xlog_state_activate_iclogs(log, &iclogs_changed);
2366 	wake_up_all(&dirty_iclog->ic_force_wait);
2367 
2368 	if (iclogs_changed) {
2369 		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2370 				iclogs_changed);
2371 	}
2372 }
2373 
2374 STATIC xfs_lsn_t
xlog_get_lowest_lsn(struct xlog * log)2375 xlog_get_lowest_lsn(
2376 	struct xlog		*log)
2377 {
2378 	struct xlog_in_core	*iclog = log->l_iclog;
2379 	xfs_lsn_t		lowest_lsn = 0, lsn;
2380 
2381 	do {
2382 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2383 		    iclog->ic_state == XLOG_STATE_DIRTY)
2384 			continue;
2385 
2386 		lsn = be64_to_cpu(iclog->ic_header->h_lsn);
2387 		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2388 			lowest_lsn = lsn;
2389 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2390 
2391 	return lowest_lsn;
2392 }
2393 
2394 /*
2395  * Return true if we need to stop processing, false to continue to the next
2396  * iclog. The caller will need to run callbacks if the iclog is returned in the
2397  * XLOG_STATE_CALLBACK state.
2398  */
2399 static bool
xlog_state_iodone_process_iclog(struct xlog * log,struct xlog_in_core * iclog)2400 xlog_state_iodone_process_iclog(
2401 	struct xlog		*log,
2402 	struct xlog_in_core	*iclog)
2403 {
2404 	xfs_lsn_t		lowest_lsn;
2405 	xfs_lsn_t		header_lsn;
2406 
2407 	switch (iclog->ic_state) {
2408 	case XLOG_STATE_ACTIVE:
2409 	case XLOG_STATE_DIRTY:
2410 		/*
2411 		 * Skip all iclogs in the ACTIVE & DIRTY states:
2412 		 */
2413 		return false;
2414 	case XLOG_STATE_DONE_SYNC:
2415 		/*
2416 		 * Now that we have an iclog that is in the DONE_SYNC state, do
2417 		 * one more check here to see if we have chased our tail around.
2418 		 * If this is not the lowest lsn iclog, then we will leave it
2419 		 * for another completion to process.
2420 		 */
2421 		header_lsn = be64_to_cpu(iclog->ic_header->h_lsn);
2422 		lowest_lsn = xlog_get_lowest_lsn(log);
2423 		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2424 			return false;
2425 		/*
2426 		 * If there are no callbacks on this iclog, we can mark it clean
2427 		 * immediately and return. Otherwise we need to run the
2428 		 * callbacks.
2429 		 */
2430 		if (list_empty(&iclog->ic_callbacks)) {
2431 			xlog_state_clean_iclog(log, iclog);
2432 			return false;
2433 		}
2434 		trace_xlog_iclog_callback(iclog, _RET_IP_);
2435 		iclog->ic_state = XLOG_STATE_CALLBACK;
2436 		return false;
2437 	default:
2438 		/*
2439 		 * Can only perform callbacks in order.  Since this iclog is not
2440 		 * in the DONE_SYNC state, we skip the rest and just try to
2441 		 * clean up.
2442 		 */
2443 		return true;
2444 	}
2445 }
2446 
2447 /*
2448  * Loop over all the iclogs, running attached callbacks on them. Return true if
2449  * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2450  * to handle transient shutdown state here at all because
2451  * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2452  * cleanup of the callbacks.
2453  */
2454 static bool
xlog_state_do_iclog_callbacks(struct xlog * log)2455 xlog_state_do_iclog_callbacks(
2456 	struct xlog		*log)
2457 		__releases(&log->l_icloglock)
2458 		__acquires(&log->l_icloglock)
2459 {
2460 	struct xlog_in_core	*first_iclog = log->l_iclog;
2461 	struct xlog_in_core	*iclog = first_iclog;
2462 	bool			ran_callback = false;
2463 
2464 	do {
2465 		LIST_HEAD(cb_list);
2466 
2467 		if (xlog_state_iodone_process_iclog(log, iclog))
2468 			break;
2469 		if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2470 			iclog = iclog->ic_next;
2471 			continue;
2472 		}
2473 		list_splice_init(&iclog->ic_callbacks, &cb_list);
2474 		spin_unlock(&log->l_icloglock);
2475 
2476 		trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2477 		xlog_cil_process_committed(&cb_list);
2478 		trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2479 		ran_callback = true;
2480 
2481 		spin_lock(&log->l_icloglock);
2482 		xlog_state_clean_iclog(log, iclog);
2483 		iclog = iclog->ic_next;
2484 	} while (iclog != first_iclog);
2485 
2486 	return ran_callback;
2487 }
2488 
2489 
2490 /*
2491  * Loop running iclog completion callbacks until there are no more iclogs in a
2492  * state that can run callbacks.
2493  */
2494 STATIC void
xlog_state_do_callback(struct xlog * log)2495 xlog_state_do_callback(
2496 	struct xlog		*log)
2497 {
2498 	int			flushcnt = 0;
2499 	int			repeats = 0;
2500 
2501 	spin_lock(&log->l_icloglock);
2502 	while (xlog_state_do_iclog_callbacks(log)) {
2503 		if (xlog_is_shutdown(log))
2504 			break;
2505 
2506 		if (++repeats > 5000) {
2507 			flushcnt += repeats;
2508 			repeats = 0;
2509 			xfs_warn(log->l_mp,
2510 				"%s: possible infinite loop (%d iterations)",
2511 				__func__, flushcnt);
2512 		}
2513 	}
2514 
2515 	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2516 		wake_up_all(&log->l_flush_wait);
2517 
2518 	spin_unlock(&log->l_icloglock);
2519 }
2520 
2521 
2522 /*
2523  * Finish transitioning this iclog to the dirty state.
2524  *
2525  * Callbacks could take time, so they are done outside the scope of the
2526  * global state machine log lock.
2527  */
2528 STATIC void
xlog_state_done_syncing(struct xlog_in_core * iclog)2529 xlog_state_done_syncing(
2530 	struct xlog_in_core	*iclog)
2531 {
2532 	struct xlog		*log = iclog->ic_log;
2533 
2534 	spin_lock(&log->l_icloglock);
2535 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2536 	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2537 
2538 	/*
2539 	 * If we got an error, either on the first buffer, or in the case of
2540 	 * split log writes, on the second, we shut down the file system and
2541 	 * no iclogs should ever be attempted to be written to disk again.
2542 	 */
2543 	if (!xlog_is_shutdown(log)) {
2544 		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2545 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2546 	}
2547 
2548 	/*
2549 	 * Someone could be sleeping prior to writing out the next
2550 	 * iclog buffer, we wake them all, one will get to do the
2551 	 * I/O, the others get to wait for the result.
2552 	 */
2553 	wake_up_all(&iclog->ic_write_wait);
2554 	spin_unlock(&log->l_icloglock);
2555 	xlog_state_do_callback(log);
2556 }
2557 
2558 /*
2559  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2560  * sleep.  We wait on the flush queue on the head iclog as that should be
2561  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2562  * we will wait here and all new writes will sleep until a sync completes.
2563  *
2564  * The in-core logs are used in a circular fashion. They are not used
2565  * out-of-order even when an iclog past the head is free.
2566  *
2567  * return:
2568  *	* log_offset where xlog_write() can start writing into the in-core
2569  *		log's data space.
2570  *	* in-core log pointer to which xlog_write() should write.
2571  *	* boolean indicating this is a continued write to an in-core log.
2572  *		If this is the last write, then the in-core log's offset field
2573  *		needs to be incremented, depending on the amount of data which
2574  *		is copied.
2575  */
2576 STATIC int
xlog_state_get_iclog_space(struct xlog * log,int len,struct xlog_in_core ** iclogp,struct xlog_ticket * ticket,int * logoffsetp)2577 xlog_state_get_iclog_space(
2578 	struct xlog		*log,
2579 	int			len,
2580 	struct xlog_in_core	**iclogp,
2581 	struct xlog_ticket	*ticket,
2582 	int			*logoffsetp)
2583 {
2584 	int			log_offset;
2585 	struct xlog_rec_header	*head;
2586 	struct xlog_in_core	*iclog;
2587 
2588 restart:
2589 	spin_lock(&log->l_icloglock);
2590 	if (xlog_is_shutdown(log)) {
2591 		spin_unlock(&log->l_icloglock);
2592 		return -EIO;
2593 	}
2594 
2595 	iclog = log->l_iclog;
2596 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2597 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2598 
2599 		/* Wait for log writes to have flushed */
2600 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2601 		goto restart;
2602 	}
2603 
2604 	head = iclog->ic_header;
2605 
2606 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2607 	log_offset = iclog->ic_offset;
2608 
2609 	trace_xlog_iclog_get_space(iclog, _RET_IP_);
2610 
2611 	/* On the 1st write to an iclog, figure out lsn.  This works
2612 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2613 	 * committing to.  If the offset is set, that's how many blocks
2614 	 * must be written.
2615 	 */
2616 	if (log_offset == 0) {
2617 		ticket->t_curr_res -= log->l_iclog_hsize;
2618 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2619 		head->h_lsn = cpu_to_be64(
2620 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2621 		ASSERT(log->l_curr_block >= 0);
2622 	}
2623 
2624 	/* If there is enough room to write everything, then do it.  Otherwise,
2625 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2626 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2627 	 * until you know exactly how many bytes get copied.  Therefore, wait
2628 	 * until later to update ic_offset.
2629 	 *
2630 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header's
2631 	 * can fit into remaining data section.
2632 	 */
2633 	if (iclog->ic_size - iclog->ic_offset <
2634 	    2 * sizeof(struct xlog_op_header)) {
2635 		int		error = 0;
2636 
2637 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2638 
2639 		/*
2640 		 * If we are the only one writing to this iclog, sync it to
2641 		 * disk.  We need to do an atomic compare and decrement here to
2642 		 * avoid racing with concurrent atomic_dec_and_lock() calls in
2643 		 * xlog_state_release_iclog() when there is more than one
2644 		 * reference to the iclog.
2645 		 */
2646 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2647 			error = xlog_state_release_iclog(log, iclog, ticket);
2648 		spin_unlock(&log->l_icloglock);
2649 		if (error)
2650 			return error;
2651 		goto restart;
2652 	}
2653 
2654 	/* Do we have enough room to write the full amount in the remainder
2655 	 * of this iclog?  Or must we continue a write on the next iclog and
2656 	 * mark this iclog as completely taken?  In the case where we switch
2657 	 * iclogs (to mark it taken), this particular iclog will release/sync
2658 	 * to disk in xlog_write().
2659 	 */
2660 	if (len <= iclog->ic_size - iclog->ic_offset)
2661 		iclog->ic_offset += len;
2662 	else
2663 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2664 	*iclogp = iclog;
2665 
2666 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2667 	spin_unlock(&log->l_icloglock);
2668 
2669 	*logoffsetp = log_offset;
2670 	return 0;
2671 }
2672 
2673 /*
2674  * The first cnt-1 times a ticket goes through here we don't need to move the
2675  * grant write head because the permanent reservation has reserved cnt times the
2676  * unit amount.  Release part of current permanent unit reservation and reset
2677  * current reservation to be one units worth.  Also move grant reservation head
2678  * forward.
2679  */
2680 void
xfs_log_ticket_regrant(struct xlog * log,struct xlog_ticket * ticket)2681 xfs_log_ticket_regrant(
2682 	struct xlog		*log,
2683 	struct xlog_ticket	*ticket)
2684 {
2685 	trace_xfs_log_ticket_regrant(log, ticket);
2686 
2687 	if (ticket->t_cnt > 0)
2688 		ticket->t_cnt--;
2689 
2690 	xlog_grant_sub_space(&log->l_reserve_head, ticket->t_curr_res);
2691 	xlog_grant_sub_space(&log->l_write_head, ticket->t_curr_res);
2692 	ticket->t_curr_res = ticket->t_unit_res;
2693 
2694 	trace_xfs_log_ticket_regrant_sub(log, ticket);
2695 
2696 	/* just return if we still have some of the pre-reserved space */
2697 	if (!ticket->t_cnt) {
2698 		xlog_grant_add_space(&log->l_reserve_head, ticket->t_unit_res);
2699 		trace_xfs_log_ticket_regrant_exit(log, ticket);
2700 	}
2701 
2702 	xfs_log_ticket_put(ticket);
2703 }
2704 
2705 /*
2706  * Give back the space left from a reservation.
2707  *
2708  * All the information we need to make a correct determination of space left
2709  * is present.  For non-permanent reservations, things are quite easy.  The
2710  * count should have been decremented to zero.  We only need to deal with the
2711  * space remaining in the current reservation part of the ticket.  If the
2712  * ticket contains a permanent reservation, there may be left over space which
2713  * needs to be released.  A count of N means that N-1 refills of the current
2714  * reservation can be done before we need to ask for more space.  The first
2715  * one goes to fill up the first current reservation.  Once we run out of
2716  * space, the count will stay at zero and the only space remaining will be
2717  * in the current reservation field.
2718  */
2719 void
xfs_log_ticket_ungrant(struct xlog * log,struct xlog_ticket * ticket)2720 xfs_log_ticket_ungrant(
2721 	struct xlog		*log,
2722 	struct xlog_ticket	*ticket)
2723 {
2724 	int			bytes;
2725 
2726 	trace_xfs_log_ticket_ungrant(log, ticket);
2727 
2728 	if (ticket->t_cnt > 0)
2729 		ticket->t_cnt--;
2730 
2731 	trace_xfs_log_ticket_ungrant_sub(log, ticket);
2732 
2733 	/*
2734 	 * If this is a permanent reservation ticket, we may be able to free
2735 	 * up more space based on the remaining count.
2736 	 */
2737 	bytes = ticket->t_curr_res;
2738 	if (ticket->t_cnt > 0) {
2739 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2740 		bytes += ticket->t_unit_res*ticket->t_cnt;
2741 	}
2742 
2743 	xlog_grant_sub_space(&log->l_reserve_head, bytes);
2744 	xlog_grant_sub_space(&log->l_write_head, bytes);
2745 
2746 	trace_xfs_log_ticket_ungrant_exit(log, ticket);
2747 
2748 	xfs_log_space_wake(log->l_mp);
2749 	xfs_log_ticket_put(ticket);
2750 }
2751 
2752 /*
2753  * This routine will mark the current iclog in the ring as WANT_SYNC and move
2754  * the current iclog pointer to the next iclog in the ring.
2755  */
2756 void
xlog_state_switch_iclogs(struct xlog * log,struct xlog_in_core * iclog,int eventual_size)2757 xlog_state_switch_iclogs(
2758 	struct xlog		*log,
2759 	struct xlog_in_core	*iclog,
2760 	int			eventual_size)
2761 {
2762 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2763 	assert_spin_locked(&log->l_icloglock);
2764 	trace_xlog_iclog_switch(iclog, _RET_IP_);
2765 
2766 	if (!eventual_size)
2767 		eventual_size = iclog->ic_offset;
2768 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
2769 	iclog->ic_header->h_prev_block = cpu_to_be32(log->l_prev_block);
2770 	log->l_prev_block = log->l_curr_block;
2771 	log->l_prev_cycle = log->l_curr_cycle;
2772 
2773 	/* roll log?: ic_offset changed later */
2774 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2775 
2776 	/* Round up to next log-sunit */
2777 	if (log->l_iclog_roundoff > BBSIZE) {
2778 		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
2779 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2780 	}
2781 
2782 	if (log->l_curr_block >= log->l_logBBsize) {
2783 		/*
2784 		 * Rewind the current block before the cycle is bumped to make
2785 		 * sure that the combined LSN never transiently moves forward
2786 		 * when the log wraps to the next cycle. This is to support the
2787 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
2788 		 * other cases should acquire l_icloglock.
2789 		 */
2790 		log->l_curr_block -= log->l_logBBsize;
2791 		ASSERT(log->l_curr_block >= 0);
2792 		smp_wmb();
2793 		log->l_curr_cycle++;
2794 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2795 			log->l_curr_cycle++;
2796 	}
2797 	ASSERT(iclog == log->l_iclog);
2798 	log->l_iclog = iclog->ic_next;
2799 }
2800 
2801 /*
2802  * Force the iclog to disk and check if the iclog has been completed before
2803  * xlog_force_iclog() returns. This can happen on synchronous (e.g.
2804  * pmem) or fast async storage because we drop the icloglock to issue the IO.
2805  * If completion has already occurred, tell the caller so that it can avoid an
2806  * unnecessary wait on the iclog.
2807  */
2808 static int
xlog_force_and_check_iclog(struct xlog_in_core * iclog,bool * completed)2809 xlog_force_and_check_iclog(
2810 	struct xlog_in_core	*iclog,
2811 	bool			*completed)
2812 {
2813 	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header->h_lsn);
2814 	int			error;
2815 
2816 	*completed = false;
2817 	error = xlog_force_iclog(iclog);
2818 	if (error)
2819 		return error;
2820 
2821 	/*
2822 	 * If the iclog has already been completed and reused the header LSN
2823 	 * will have been rewritten by completion
2824 	 */
2825 	if (be64_to_cpu(iclog->ic_header->h_lsn) != lsn)
2826 		*completed = true;
2827 	return 0;
2828 }
2829 
2830 /*
2831  * Write out all data in the in-core log as of this exact moment in time.
2832  *
2833  * Data may be written to the in-core log during this call.  However,
2834  * we don't guarantee this data will be written out.  A change from past
2835  * implementation means this routine will *not* write out zero length LRs.
2836  *
2837  * Basically, we try and perform an intelligent scan of the in-core logs.
2838  * If we determine there is no flushable data, we just return.  There is no
2839  * flushable data if:
2840  *
2841  *	1. the current iclog is active and has no data; the previous iclog
2842  *		is in the active or dirty state.
2843  *	2. the current iclog is dirty, and the previous iclog is in the
2844  *		active or dirty state.
2845  *
2846  * We may sleep if:
2847  *
2848  *	1. the current iclog is not in the active nor dirty state.
2849  *	2. the current iclog dirty, and the previous iclog is not in the
2850  *		active nor dirty state.
2851  *	3. the current iclog is active, and there is another thread writing
2852  *		to this particular iclog.
2853  *	4. a) the current iclog is active and has no other writers
2854  *	   b) when we return from flushing out this iclog, it is still
2855  *		not in the active nor dirty state.
2856  */
2857 int
xfs_log_force(struct xfs_mount * mp,uint flags)2858 xfs_log_force(
2859 	struct xfs_mount	*mp,
2860 	uint			flags)
2861 {
2862 	struct xlog		*log = mp->m_log;
2863 	struct xlog_in_core	*iclog;
2864 
2865 	XFS_STATS_INC(mp, xs_log_force);
2866 	trace_xfs_log_force(mp, 0, _RET_IP_);
2867 
2868 	xlog_cil_force(log);
2869 
2870 	spin_lock(&log->l_icloglock);
2871 	if (xlog_is_shutdown(log))
2872 		goto out_error;
2873 
2874 	iclog = log->l_iclog;
2875 	trace_xlog_iclog_force(iclog, _RET_IP_);
2876 
2877 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
2878 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
2879 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
2880 		/*
2881 		 * If the head is dirty or (active and empty), then we need to
2882 		 * look at the previous iclog.
2883 		 *
2884 		 * If the previous iclog is active or dirty we are done.  There
2885 		 * is nothing to sync out. Otherwise, we attach ourselves to the
2886 		 * previous iclog and go to sleep.
2887 		 */
2888 		iclog = iclog->ic_prev;
2889 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
2890 		if (atomic_read(&iclog->ic_refcnt) == 0) {
2891 			/* We have exclusive access to this iclog. */
2892 			bool	completed;
2893 
2894 			if (xlog_force_and_check_iclog(iclog, &completed))
2895 				goto out_error;
2896 
2897 			if (completed)
2898 				goto out_unlock;
2899 		} else {
2900 			/*
2901 			 * Someone else is still writing to this iclog, so we
2902 			 * need to ensure that when they release the iclog it
2903 			 * gets synced immediately as we may be waiting on it.
2904 			 */
2905 			xlog_state_switch_iclogs(log, iclog, 0);
2906 		}
2907 	}
2908 
2909 	/*
2910 	 * The iclog we are about to wait on may contain the checkpoint pushed
2911 	 * by the above xlog_cil_force() call, but it may not have been pushed
2912 	 * to disk yet. Like the ACTIVE case above, we need to make sure caches
2913 	 * are flushed when this iclog is written.
2914 	 */
2915 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
2916 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
2917 
2918 	if (flags & XFS_LOG_SYNC)
2919 		return xlog_wait_on_iclog(iclog);
2920 out_unlock:
2921 	spin_unlock(&log->l_icloglock);
2922 	return 0;
2923 out_error:
2924 	spin_unlock(&log->l_icloglock);
2925 	return -EIO;
2926 }
2927 
2928 /*
2929  * Force the log to a specific LSN.
2930  *
2931  * If an iclog with that lsn can be found:
2932  *	If it is in the DIRTY state, just return.
2933  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
2934  *		state and go to sleep or return.
2935  *	If it is in any other state, go to sleep or return.
2936  *
2937  * Synchronous forces are implemented with a wait queue.  All callers trying
2938  * to force a given lsn to disk must wait on the queue attached to the
2939  * specific in-core log.  When given in-core log finally completes its write
2940  * to disk, that thread will wake up all threads waiting on the queue.
2941  */
2942 static int
xlog_force_lsn(struct xlog * log,xfs_lsn_t lsn,uint flags,int * log_flushed,bool already_slept)2943 xlog_force_lsn(
2944 	struct xlog		*log,
2945 	xfs_lsn_t		lsn,
2946 	uint			flags,
2947 	int			*log_flushed,
2948 	bool			already_slept)
2949 {
2950 	struct xlog_in_core	*iclog;
2951 	bool			completed;
2952 
2953 	spin_lock(&log->l_icloglock);
2954 	if (xlog_is_shutdown(log))
2955 		goto out_error;
2956 
2957 	iclog = log->l_iclog;
2958 	while (be64_to_cpu(iclog->ic_header->h_lsn) != lsn) {
2959 		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
2960 		iclog = iclog->ic_next;
2961 		if (iclog == log->l_iclog)
2962 			goto out_unlock;
2963 	}
2964 
2965 	switch (iclog->ic_state) {
2966 	case XLOG_STATE_ACTIVE:
2967 		/*
2968 		 * We sleep here if we haven't already slept (e.g. this is the
2969 		 * first time we've looked at the correct iclog buf) and the
2970 		 * buffer before us is going to be sync'ed.  The reason for this
2971 		 * is that if we are doing sync transactions here, by waiting
2972 		 * for the previous I/O to complete, we can allow a few more
2973 		 * transactions into this iclog before we close it down.
2974 		 *
2975 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
2976 		 * refcnt so we can release the log (which drops the ref count).
2977 		 * The state switch keeps new transaction commits from using
2978 		 * this buffer.  When the current commits finish writing into
2979 		 * the buffer, the refcount will drop to zero and the buffer
2980 		 * will go out then.
2981 		 */
2982 		if (!already_slept &&
2983 		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
2984 		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
2985 			xlog_wait(&iclog->ic_prev->ic_write_wait,
2986 					&log->l_icloglock);
2987 			return -EAGAIN;
2988 		}
2989 		if (xlog_force_and_check_iclog(iclog, &completed))
2990 			goto out_error;
2991 		if (log_flushed)
2992 			*log_flushed = 1;
2993 		if (completed)
2994 			goto out_unlock;
2995 		break;
2996 	case XLOG_STATE_WANT_SYNC:
2997 		/*
2998 		 * This iclog may contain the checkpoint pushed by the
2999 		 * xlog_cil_force_seq() call, but there are other writers still
3000 		 * accessing it so it hasn't been pushed to disk yet. Like the
3001 		 * ACTIVE case above, we need to make sure caches are flushed
3002 		 * when this iclog is written.
3003 		 */
3004 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3005 		break;
3006 	default:
3007 		/*
3008 		 * The entire checkpoint was written by the CIL force and is on
3009 		 * its way to disk already. It will be stable when it
3010 		 * completes, so we don't need to manipulate caches here at all.
3011 		 * We just need to wait for completion if necessary.
3012 		 */
3013 		break;
3014 	}
3015 
3016 	if (flags & XFS_LOG_SYNC)
3017 		return xlog_wait_on_iclog(iclog);
3018 out_unlock:
3019 	spin_unlock(&log->l_icloglock);
3020 	return 0;
3021 out_error:
3022 	spin_unlock(&log->l_icloglock);
3023 	return -EIO;
3024 }
3025 
3026 /*
3027  * Force the log to a specific checkpoint sequence.
3028  *
3029  * First force the CIL so that all the required changes have been flushed to the
3030  * iclogs. If the CIL force completed it will return a commit LSN that indicates
3031  * the iclog that needs to be flushed to stable storage. If the caller needs
3032  * a synchronous log force, we will wait on the iclog with the LSN returned by
3033  * xlog_cil_force_seq() to be completed.
3034  */
3035 int
xfs_log_force_seq(struct xfs_mount * mp,xfs_csn_t seq,uint flags,int * log_flushed)3036 xfs_log_force_seq(
3037 	struct xfs_mount	*mp,
3038 	xfs_csn_t		seq,
3039 	uint			flags,
3040 	int			*log_flushed)
3041 {
3042 	struct xlog		*log = mp->m_log;
3043 	xfs_lsn_t		lsn;
3044 	int			ret;
3045 	ASSERT(seq != 0);
3046 
3047 	XFS_STATS_INC(mp, xs_log_force);
3048 	trace_xfs_log_force(mp, seq, _RET_IP_);
3049 
3050 	lsn = xlog_cil_force_seq(log, seq);
3051 	if (lsn == NULLCOMMITLSN)
3052 		return 0;
3053 
3054 	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3055 	if (ret == -EAGAIN) {
3056 		XFS_STATS_INC(mp, xs_log_force_sleep);
3057 		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3058 	}
3059 	return ret;
3060 }
3061 
3062 /*
3063  * Free a used ticket when its refcount falls to zero.
3064  */
3065 void
xfs_log_ticket_put(struct xlog_ticket * ticket)3066 xfs_log_ticket_put(
3067 	struct xlog_ticket	*ticket)
3068 {
3069 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3070 	if (atomic_dec_and_test(&ticket->t_ref))
3071 		kmem_cache_free(xfs_log_ticket_cache, ticket);
3072 }
3073 
3074 struct xlog_ticket *
xfs_log_ticket_get(struct xlog_ticket * ticket)3075 xfs_log_ticket_get(
3076 	struct xlog_ticket	*ticket)
3077 {
3078 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3079 	atomic_inc(&ticket->t_ref);
3080 	return ticket;
3081 }
3082 
3083 /*
3084  * Figure out the total log space unit (in bytes) that would be
3085  * required for a log ticket.
3086  */
3087 static int
xlog_calc_unit_res(struct xlog * log,int unit_bytes,int * niclogs)3088 xlog_calc_unit_res(
3089 	struct xlog		*log,
3090 	int			unit_bytes,
3091 	int			*niclogs)
3092 {
3093 	int			iclog_space;
3094 	uint			num_headers;
3095 
3096 	/*
3097 	 * Permanent reservations have up to 'cnt'-1 active log operations
3098 	 * in the log.  A unit in this case is the amount of space for one
3099 	 * of these log operations.  Normal reservations have a cnt of 1
3100 	 * and their unit amount is the total amount of space required.
3101 	 *
3102 	 * The following lines of code account for non-transaction data
3103 	 * which occupy space in the on-disk log.
3104 	 *
3105 	 * Normal form of a transaction is:
3106 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3107 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3108 	 *
3109 	 * We need to account for all the leadup data and trailer data
3110 	 * around the transaction data.
3111 	 * And then we need to account for the worst case in terms of using
3112 	 * more space.
3113 	 * The worst case will happen if:
3114 	 * - the placement of the transaction happens to be such that the
3115 	 *   roundoff is at its maximum
3116 	 * - the transaction data is synced before the commit record is synced
3117 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3118 	 *   Therefore the commit record is in its own Log Record.
3119 	 *   This can happen as the commit record is called with its
3120 	 *   own region to xlog_write().
3121 	 *   This then means that in the worst case, roundoff can happen for
3122 	 *   the commit-rec as well.
3123 	 *   The commit-rec is smaller than padding in this scenario and so it is
3124 	 *   not added separately.
3125 	 */
3126 
3127 	/* for trans header */
3128 	unit_bytes += sizeof(struct xlog_op_header);
3129 	unit_bytes += sizeof(struct xfs_trans_header);
3130 
3131 	/* for start-rec */
3132 	unit_bytes += sizeof(struct xlog_op_header);
3133 
3134 	/*
3135 	 * for LR headers - the space for data in an iclog is the size minus
3136 	 * the space used for the headers. If we use the iclog size, then we
3137 	 * undercalculate the number of headers required.
3138 	 *
3139 	 * Furthermore - the addition of op headers for split-recs might
3140 	 * increase the space required enough to require more log and op
3141 	 * headers, so take that into account too.
3142 	 *
3143 	 * IMPORTANT: This reservation makes the assumption that if this
3144 	 * transaction is the first in an iclog and hence has the LR headers
3145 	 * accounted to it, then the remaining space in the iclog is
3146 	 * exclusively for this transaction.  i.e. if the transaction is larger
3147 	 * than the iclog, it will be the only thing in that iclog.
3148 	 * Fundamentally, this means we must pass the entire log vector to
3149 	 * xlog_write to guarantee this.
3150 	 */
3151 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3152 	num_headers = howmany(unit_bytes, iclog_space);
3153 
3154 	/* for split-recs - ophdrs added when data split over LRs */
3155 	unit_bytes += sizeof(struct xlog_op_header) * num_headers;
3156 
3157 	/* add extra header reservations if we overrun */
3158 	while (!num_headers ||
3159 	       howmany(unit_bytes, iclog_space) > num_headers) {
3160 		unit_bytes += sizeof(struct xlog_op_header);
3161 		num_headers++;
3162 	}
3163 	unit_bytes += log->l_iclog_hsize * num_headers;
3164 
3165 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3166 	unit_bytes += log->l_iclog_hsize;
3167 
3168 	/* roundoff padding for transaction data and one for commit record */
3169 	unit_bytes += 2 * log->l_iclog_roundoff;
3170 
3171 	if (niclogs)
3172 		*niclogs = num_headers;
3173 	return unit_bytes;
3174 }
3175 
3176 int
xfs_log_calc_unit_res(struct xfs_mount * mp,int unit_bytes)3177 xfs_log_calc_unit_res(
3178 	struct xfs_mount	*mp,
3179 	int			unit_bytes)
3180 {
3181 	return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL);
3182 }
3183 
3184 /*
3185  * Allocate and initialise a new log ticket.
3186  */
3187 struct xlog_ticket *
xlog_ticket_alloc(struct xlog * log,int unit_bytes,int cnt,bool permanent)3188 xlog_ticket_alloc(
3189 	struct xlog		*log,
3190 	int			unit_bytes,
3191 	int			cnt,
3192 	bool			permanent)
3193 {
3194 	struct xlog_ticket	*tic;
3195 	int			unit_res;
3196 
3197 	tic = kmem_cache_zalloc(xfs_log_ticket_cache,
3198 			GFP_KERNEL | __GFP_NOFAIL);
3199 
3200 	unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs);
3201 
3202 	atomic_set(&tic->t_ref, 1);
3203 	tic->t_task		= current;
3204 	INIT_LIST_HEAD(&tic->t_queue);
3205 	tic->t_unit_res		= unit_res;
3206 	tic->t_curr_res		= unit_res;
3207 	tic->t_cnt		= cnt;
3208 	tic->t_ocnt		= cnt;
3209 	tic->t_tid		= get_random_u32();
3210 	if (permanent)
3211 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3212 
3213 	return tic;
3214 }
3215 
3216 #if defined(DEBUG)
3217 static void
xlog_verify_dump_tail(struct xlog * log,struct xlog_in_core * iclog)3218 xlog_verify_dump_tail(
3219 	struct xlog		*log,
3220 	struct xlog_in_core	*iclog)
3221 {
3222 	xfs_alert(log->l_mp,
3223 "ran out of log space tail 0x%llx/0x%llx, head lsn 0x%llx, head 0x%x/0x%x, prev head 0x%x/0x%x",
3224 			iclog ? be64_to_cpu(iclog->ic_header->h_tail_lsn) : -1,
3225 			atomic64_read(&log->l_tail_lsn),
3226 			log->l_ailp->ail_head_lsn,
3227 			log->l_curr_cycle, log->l_curr_block,
3228 			log->l_prev_cycle, log->l_prev_block);
3229 	xfs_alert(log->l_mp,
3230 "write grant 0x%llx, reserve grant 0x%llx, tail_space 0x%llx, size 0x%x, iclog flags 0x%x",
3231 			atomic64_read(&log->l_write_head.grant),
3232 			atomic64_read(&log->l_reserve_head.grant),
3233 			log->l_tail_space, log->l_logsize,
3234 			iclog ? iclog->ic_flags : -1);
3235 }
3236 
3237 /* Check if the new iclog will fit in the log. */
3238 STATIC void
xlog_verify_tail_lsn(struct xlog * log,struct xlog_in_core * iclog)3239 xlog_verify_tail_lsn(
3240 	struct xlog		*log,
3241 	struct xlog_in_core	*iclog)
3242 {
3243 	xfs_lsn_t	tail_lsn = be64_to_cpu(iclog->ic_header->h_tail_lsn);
3244 	int		blocks;
3245 
3246 	if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3247 		blocks = log->l_logBBsize -
3248 				(log->l_prev_block - BLOCK_LSN(tail_lsn));
3249 		if (blocks < BTOBB(iclog->ic_offset) +
3250 					BTOBB(log->l_iclog_hsize)) {
3251 			xfs_emerg(log->l_mp,
3252 					"%s: ran out of log space", __func__);
3253 			xlog_verify_dump_tail(log, iclog);
3254 		}
3255 		return;
3256 	}
3257 
3258 	if (CYCLE_LSN(tail_lsn) + 1 != log->l_prev_cycle) {
3259 		xfs_emerg(log->l_mp, "%s: head has wrapped tail.", __func__);
3260 		xlog_verify_dump_tail(log, iclog);
3261 		return;
3262 	}
3263 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block) {
3264 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3265 		xlog_verify_dump_tail(log, iclog);
3266 		return;
3267 	}
3268 
3269 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3270 	if (blocks < BTOBB(iclog->ic_offset) + 1) {
3271 		xfs_emerg(log->l_mp, "%s: ran out of iclog space", __func__);
3272 		xlog_verify_dump_tail(log, iclog);
3273 	}
3274 }
3275 
3276 /*
3277  * Perform a number of checks on the iclog before writing to disk.
3278  *
3279  * 1. Make sure the iclogs are still circular
3280  * 2. Make sure we have a good magic number
3281  * 3. Make sure we don't have magic numbers in the data
3282  * 4. Check fields of each log operation header for:
3283  *	A. Valid client identifier
3284  *	B. tid ptr value falls in valid ptr space (user space code)
3285  *	C. Length in log record header is correct according to the
3286  *		individual operation headers within record.
3287  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3288  *	log, check the preceding blocks of the physical log to make sure all
3289  *	the cycle numbers agree with the current cycle number.
3290  */
3291 STATIC void
xlog_verify_iclog(struct xlog * log,struct xlog_in_core * iclog,int count)3292 xlog_verify_iclog(
3293 	struct xlog		*log,
3294 	struct xlog_in_core	*iclog,
3295 	int			count)
3296 {
3297 	struct xlog_rec_header	*rhead = iclog->ic_header;
3298 	struct xlog_in_core	*icptr;
3299 	void			*base_ptr, *ptr;
3300 	ptrdiff_t		field_offset;
3301 	uint8_t			clientid;
3302 	int			len, i, op_len;
3303 	int			idx;
3304 
3305 	/* check validity of iclog pointers */
3306 	spin_lock(&log->l_icloglock);
3307 	icptr = log->l_iclog;
3308 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3309 		ASSERT(icptr);
3310 
3311 	if (icptr != log->l_iclog)
3312 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3313 	spin_unlock(&log->l_icloglock);
3314 
3315 	/* check log magic numbers */
3316 	if (rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3317 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3318 
3319 	base_ptr = ptr = rhead;
3320 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3321 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3322 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3323 				__func__);
3324 	}
3325 
3326 	/* check fields */
3327 	len = be32_to_cpu(rhead->h_num_logops);
3328 	base_ptr = ptr = iclog->ic_datap;
3329 	for (i = 0; i < len; i++) {
3330 		struct xlog_op_header	*ophead = ptr;
3331 		void			*p = &ophead->oh_clientid;
3332 
3333 		/* clientid is only 1 byte */
3334 		field_offset = p - base_ptr;
3335 		if (field_offset & 0x1ff) {
3336 			clientid = ophead->oh_clientid;
3337 		} else {
3338 			idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap);
3339 			clientid = xlog_get_client_id(*xlog_cycle_data(rhead, idx));
3340 		}
3341 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) {
3342 			xfs_warn(log->l_mp,
3343 				"%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx",
3344 				__func__, i, clientid, ophead,
3345 				(unsigned long)field_offset);
3346 		}
3347 
3348 		/* check length */
3349 		p = &ophead->oh_len;
3350 		field_offset = p - base_ptr;
3351 		if (field_offset & 0x1ff) {
3352 			op_len = be32_to_cpu(ophead->oh_len);
3353 		} else {
3354 			idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap);
3355 			op_len = be32_to_cpu(*xlog_cycle_data(rhead, idx));
3356 		}
3357 		ptr += sizeof(struct xlog_op_header) + op_len;
3358 	}
3359 }
3360 #endif
3361 
3362 /*
3363  * Perform a forced shutdown on the log.
3364  *
3365  * This can be called from low level log code to trigger a shutdown, or from the
3366  * high level mount shutdown code when the mount shuts down.
3367  *
3368  * Our main objectives here are to make sure that:
3369  *	a. if the shutdown was not due to a log IO error, flush the logs to
3370  *	   disk. Anything modified after this is ignored.
3371  *	b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3372  *	   parties to find out. Nothing new gets queued after this is done.
3373  *	c. Tasks sleeping on log reservations, pinned objects and
3374  *	   other resources get woken up.
3375  *	d. The mount is also marked as shut down so that log triggered shutdowns
3376  *	   still behave the same as if they called xfs_forced_shutdown().
3377  *
3378  * Return true if the shutdown cause was a log IO error and we actually shut the
3379  * log down.
3380  */
3381 bool
xlog_force_shutdown(struct xlog * log,uint32_t shutdown_flags)3382 xlog_force_shutdown(
3383 	struct xlog	*log,
3384 	uint32_t	shutdown_flags)
3385 {
3386 	bool		log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3387 
3388 	if (!log)
3389 		return false;
3390 
3391 	/*
3392 	 * Ensure that there is only ever one log shutdown being processed.
3393 	 * If we allow the log force below on a second pass after shutting
3394 	 * down the log, we risk deadlocking the CIL push as it may require
3395 	 * locks on objects the current shutdown context holds (e.g. taking
3396 	 * buffer locks to abort buffers on last unpin of buf log items).
3397 	 */
3398 	if (test_and_set_bit(XLOG_SHUTDOWN_STARTED, &log->l_opstate))
3399 		return false;
3400 
3401 	/*
3402 	 * Flush all the completed transactions to disk before marking the log
3403 	 * being shut down. We need to do this first as shutting down the log
3404 	 * before the force will prevent the log force from flushing the iclogs
3405 	 * to disk.
3406 	 *
3407 	 * When we are in recovery, there are no transactions to flush, and
3408 	 * we don't want to touch the log because we don't want to perturb the
3409 	 * current head/tail for future recovery attempts. Hence we need to
3410 	 * avoid a log force in this case.
3411 	 *
3412 	 * If we are shutting down due to a log IO error, then we must avoid
3413 	 * trying to write the log as that may just result in more IO errors and
3414 	 * an endless shutdown/force loop.
3415 	 */
3416 	if (!log_error && !xlog_in_recovery(log))
3417 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3418 
3419 	/*
3420 	 * Atomically set the shutdown state. If the shutdown state is already
3421 	 * set, there someone else is performing the shutdown and so we are done
3422 	 * here. This should never happen because we should only ever get called
3423 	 * once by the first shutdown caller.
3424 	 *
3425 	 * Much of the log state machine transitions assume that shutdown state
3426 	 * cannot change once they hold the log->l_icloglock. Hence we need to
3427 	 * hold that lock here, even though we use the atomic test_and_set_bit()
3428 	 * operation to set the shutdown state.
3429 	 */
3430 	spin_lock(&log->l_icloglock);
3431 	if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3432 		spin_unlock(&log->l_icloglock);
3433 		ASSERT(0);
3434 		return false;
3435 	}
3436 	spin_unlock(&log->l_icloglock);
3437 
3438 	/*
3439 	 * If this log shutdown also sets the mount shutdown state, issue a
3440 	 * shutdown warning message.
3441 	 */
3442 	if (!xfs_set_shutdown(log->l_mp)) {
3443 		xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3444 "Filesystem has been shut down due to log error (0x%x).",
3445 				shutdown_flags);
3446 		xfs_alert(log->l_mp,
3447 "Please unmount the filesystem and rectify the problem(s).");
3448 		if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3449 			xfs_stack_trace();
3450 	}
3451 
3452 	/*
3453 	 * We don't want anybody waiting for log reservations after this. That
3454 	 * means we have to wake up everybody queued up on reserveq as well as
3455 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3456 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3457 	 * action is protected by the grant locks.
3458 	 */
3459 	xlog_grant_head_wake_all(&log->l_reserve_head);
3460 	xlog_grant_head_wake_all(&log->l_write_head);
3461 
3462 	/*
3463 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3464 	 * as if the log writes were completed. The abort handling in the log
3465 	 * item committed callback functions will do this again under lock to
3466 	 * avoid races.
3467 	 */
3468 	spin_lock(&log->l_cilp->xc_push_lock);
3469 	wake_up_all(&log->l_cilp->xc_start_wait);
3470 	wake_up_all(&log->l_cilp->xc_commit_wait);
3471 	spin_unlock(&log->l_cilp->xc_push_lock);
3472 
3473 	spin_lock(&log->l_icloglock);
3474 	xlog_state_shutdown_callbacks(log);
3475 	spin_unlock(&log->l_icloglock);
3476 
3477 	wake_up_var(&log->l_opstate);
3478 	if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(log->l_mp))
3479 		xfs_zoned_wake_all(log->l_mp);
3480 
3481 	return log_error;
3482 }
3483 
3484 STATIC int
xlog_iclogs_empty(struct xlog * log)3485 xlog_iclogs_empty(
3486 	struct xlog		*log)
3487 {
3488 	struct xlog_in_core	*iclog = log->l_iclog;
3489 
3490 	do {
3491 		/* endianness does not matter here, zero is zero in
3492 		 * any language.
3493 		 */
3494 		if (iclog->ic_header->h_num_logops)
3495 			return 0;
3496 		iclog = iclog->ic_next;
3497 	} while (iclog != log->l_iclog);
3498 
3499 	return 1;
3500 }
3501 
3502 /*
3503  * Verify that an LSN stamped into a piece of metadata is valid. This is
3504  * intended for use in read verifiers on v5 superblocks.
3505  */
3506 bool
xfs_log_check_lsn(struct xfs_mount * mp,xfs_lsn_t lsn)3507 xfs_log_check_lsn(
3508 	struct xfs_mount	*mp,
3509 	xfs_lsn_t		lsn)
3510 {
3511 	struct xlog		*log = mp->m_log;
3512 	bool			valid;
3513 
3514 	/*
3515 	 * norecovery mode skips mount-time log processing and unconditionally
3516 	 * resets the in-core LSN. We can't validate in this mode, but
3517 	 * modifications are not allowed anyways so just return true.
3518 	 */
3519 	if (xfs_has_norecovery(mp))
3520 		return true;
3521 
3522 	/*
3523 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3524 	 * handled by recovery and thus safe to ignore here.
3525 	 */
3526 	if (lsn == NULLCOMMITLSN)
3527 		return true;
3528 
3529 	valid = xlog_valid_lsn(mp->m_log, lsn);
3530 
3531 	/* warn the user about what's gone wrong before verifier failure */
3532 	if (!valid) {
3533 		spin_lock(&log->l_icloglock);
3534 		xfs_warn(mp,
3535 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3536 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3537 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3538 			 log->l_curr_cycle, log->l_curr_block);
3539 		spin_unlock(&log->l_icloglock);
3540 	}
3541 
3542 	return valid;
3543 }
3544