xref: /linux/fs/xfs/xfs_extfree_item.c (revision f3f5edc5e41e038cf66d124a4cbacf6ff0983513)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_ag.h"
15 #include "xfs_defer.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_extfree_item.h"
19 #include "xfs_log.h"
20 #include "xfs_btree.h"
21 #include "xfs_rmap.h"
22 #include "xfs_alloc.h"
23 #include "xfs_bmap.h"
24 #include "xfs_trace.h"
25 #include "xfs_error.h"
26 #include "xfs_log_priv.h"
27 #include "xfs_log_recover.h"
28 #include "xfs_rtalloc.h"
29 #include "xfs_inode.h"
30 #include "xfs_rtbitmap.h"
31 #include "xfs_rtgroup.h"
32 #include "xfs_zone_alloc.h"
33 
34 struct kmem_cache	*xfs_efi_cache;
35 struct kmem_cache	*xfs_efd_cache;
36 
37 static const struct xfs_item_ops xfs_efi_item_ops;
38 
EFI_ITEM(struct xfs_log_item * lip)39 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
40 {
41 	return container_of(lip, struct xfs_efi_log_item, efi_item);
42 }
43 
44 STATIC void
xfs_efi_item_free(struct xfs_efi_log_item * efip)45 xfs_efi_item_free(
46 	struct xfs_efi_log_item	*efip)
47 {
48 	kvfree(efip->efi_item.li_lv_shadow);
49 	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
50 		kfree(efip);
51 	else
52 		kmem_cache_free(xfs_efi_cache, efip);
53 }
54 
55 /*
56  * Freeing the efi requires that we remove it from the AIL if it has already
57  * been placed there. However, the EFI may not yet have been placed in the AIL
58  * when called by xfs_efi_release() from EFD processing due to the ordering of
59  * committed vs unpin operations in bulk insert operations. Hence the reference
60  * count to ensure only the last caller frees the EFI.
61  */
62 STATIC void
xfs_efi_release(struct xfs_efi_log_item * efip)63 xfs_efi_release(
64 	struct xfs_efi_log_item	*efip)
65 {
66 	ASSERT(atomic_read(&efip->efi_refcount) > 0);
67 	if (!atomic_dec_and_test(&efip->efi_refcount))
68 		return;
69 
70 	xfs_trans_ail_delete(&efip->efi_item, 0);
71 	xfs_efi_item_free(efip);
72 }
73 
74 STATIC void
xfs_efi_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)75 xfs_efi_item_size(
76 	struct xfs_log_item	*lip,
77 	int			*nvecs,
78 	int			*nbytes)
79 {
80 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
81 
82 	*nvecs += 1;
83 	*nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents);
84 }
85 
xfs_efi_log_space(unsigned int nr)86 unsigned int xfs_efi_log_space(unsigned int nr)
87 {
88 	return xlog_item_space(1, xfs_efi_log_format_sizeof(nr));
89 }
90 
91 /*
92  * This is called to fill in the vector of log iovecs for the
93  * given efi log item. We use only 1 iovec, and we point that
94  * at the efi_log_format structure embedded in the efi item.
95  * It is at this point that we assert that all of the extent
96  * slots in the efi item have been filled.
97  */
98 STATIC void
xfs_efi_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)99 xfs_efi_item_format(
100 	struct xfs_log_item	*lip,
101 	struct xfs_log_vec	*lv)
102 {
103 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
104 	struct xfs_log_iovec	*vecp = NULL;
105 
106 	ASSERT(atomic_read(&efip->efi_next_extent) ==
107 				efip->efi_format.efi_nextents);
108 	ASSERT(lip->li_type == XFS_LI_EFI || lip->li_type == XFS_LI_EFI_RT);
109 
110 	efip->efi_format.efi_type = lip->li_type;
111 	efip->efi_format.efi_size = 1;
112 
113 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, &efip->efi_format,
114 			xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents));
115 }
116 
117 /*
118  * The unpin operation is the last place an EFI is manipulated in the log. It is
119  * either inserted in the AIL or aborted in the event of a log I/O error. In
120  * either case, the EFI transaction has been successfully committed to make it
121  * this far. Therefore, we expect whoever committed the EFI to either construct
122  * and commit the EFD or drop the EFD's reference in the event of error. Simply
123  * drop the log's EFI reference now that the log is done with it.
124  */
125 STATIC void
xfs_efi_item_unpin(struct xfs_log_item * lip,int remove)126 xfs_efi_item_unpin(
127 	struct xfs_log_item	*lip,
128 	int			remove)
129 {
130 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
131 	xfs_efi_release(efip);
132 }
133 
134 /*
135  * The EFI has been either committed or aborted if the transaction has been
136  * cancelled. If the transaction was cancelled, an EFD isn't going to be
137  * constructed and thus we free the EFI here directly.
138  */
139 STATIC void
xfs_efi_item_release(struct xfs_log_item * lip)140 xfs_efi_item_release(
141 	struct xfs_log_item	*lip)
142 {
143 	xfs_efi_release(EFI_ITEM(lip));
144 }
145 
146 /*
147  * Allocate and initialize an efi item with the given number of extents.
148  */
149 STATIC struct xfs_efi_log_item *
xfs_efi_init(struct xfs_mount * mp,unsigned short item_type,uint nextents)150 xfs_efi_init(
151 	struct xfs_mount	*mp,
152 	unsigned short		item_type,
153 	uint			nextents)
154 {
155 	struct xfs_efi_log_item	*efip;
156 
157 	ASSERT(item_type == XFS_LI_EFI || item_type == XFS_LI_EFI_RT);
158 	ASSERT(nextents > 0);
159 
160 	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
161 		efip = kzalloc(xfs_efi_log_item_sizeof(nextents),
162 				GFP_KERNEL | __GFP_NOFAIL);
163 	} else {
164 		efip = kmem_cache_zalloc(xfs_efi_cache,
165 					 GFP_KERNEL | __GFP_NOFAIL);
166 	}
167 
168 	xfs_log_item_init(mp, &efip->efi_item, item_type, &xfs_efi_item_ops);
169 	efip->efi_format.efi_nextents = nextents;
170 	efip->efi_format.efi_id = (uintptr_t)(void *)efip;
171 	atomic_set(&efip->efi_next_extent, 0);
172 	atomic_set(&efip->efi_refcount, 2);
173 
174 	return efip;
175 }
176 
177 /*
178  * Copy an EFI format buffer from the given buf, and into the destination
179  * EFI format structure.
180  * The given buffer can be in 32 bit or 64 bit form (which has different padding),
181  * one of which will be the native format for this kernel.
182  * It will handle the conversion of formats if necessary.
183  */
184 STATIC int
xfs_efi_copy_format(struct kvec * buf,struct xfs_efi_log_format * dst_efi_fmt)185 xfs_efi_copy_format(
186 	struct kvec			*buf,
187 	struct xfs_efi_log_format	*dst_efi_fmt)
188 {
189 	struct xfs_efi_log_format	*src_efi_fmt = buf->iov_base;
190 	uint				len, len32, len64, i;
191 
192 	len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents);
193 	len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents);
194 	len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents);
195 
196 	if (buf->iov_len == len) {
197 		memcpy(dst_efi_fmt, src_efi_fmt,
198 		       offsetof(struct xfs_efi_log_format, efi_extents));
199 		for (i = 0; i < src_efi_fmt->efi_nextents; i++)
200 			memcpy(&dst_efi_fmt->efi_extents[i],
201 			       &src_efi_fmt->efi_extents[i],
202 			       sizeof(struct xfs_extent));
203 		return 0;
204 	} else if (buf->iov_len == len32) {
205 		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->iov_base;
206 
207 		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
208 		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
209 		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
210 		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
211 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
212 			dst_efi_fmt->efi_extents[i].ext_start =
213 				src_efi_fmt_32->efi_extents[i].ext_start;
214 			dst_efi_fmt->efi_extents[i].ext_len =
215 				src_efi_fmt_32->efi_extents[i].ext_len;
216 		}
217 		return 0;
218 	} else if (buf->iov_len == len64) {
219 		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->iov_base;
220 
221 		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
222 		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
223 		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
224 		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
225 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
226 			dst_efi_fmt->efi_extents[i].ext_start =
227 				src_efi_fmt_64->efi_extents[i].ext_start;
228 			dst_efi_fmt->efi_extents[i].ext_len =
229 				src_efi_fmt_64->efi_extents[i].ext_len;
230 		}
231 		return 0;
232 	}
233 	XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->iov_base,
234 			buf->iov_len);
235 	return -EFSCORRUPTED;
236 }
237 
EFD_ITEM(struct xfs_log_item * lip)238 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
239 {
240 	return container_of(lip, struct xfs_efd_log_item, efd_item);
241 }
242 
243 STATIC void
xfs_efd_item_free(struct xfs_efd_log_item * efdp)244 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
245 {
246 	kvfree(efdp->efd_item.li_lv_shadow);
247 	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
248 		kfree(efdp);
249 	else
250 		kmem_cache_free(xfs_efd_cache, efdp);
251 }
252 
253 STATIC void
xfs_efd_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)254 xfs_efd_item_size(
255 	struct xfs_log_item	*lip,
256 	int			*nvecs,
257 	int			*nbytes)
258 {
259 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
260 
261 	*nvecs += 1;
262 	*nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents);
263 }
264 
xfs_efd_log_space(unsigned int nr)265 unsigned int xfs_efd_log_space(unsigned int nr)
266 {
267 	return xlog_item_space(1, xfs_efd_log_format_sizeof(nr));
268 }
269 
270 /*
271  * This is called to fill in the vector of log iovecs for the
272  * given efd log item. We use only 1 iovec, and we point that
273  * at the efd_log_format structure embedded in the efd item.
274  * It is at this point that we assert that all of the extent
275  * slots in the efd item have been filled.
276  */
277 STATIC void
xfs_efd_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)278 xfs_efd_item_format(
279 	struct xfs_log_item	*lip,
280 	struct xfs_log_vec	*lv)
281 {
282 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
283 	struct xfs_log_iovec	*vecp = NULL;
284 
285 	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
286 	ASSERT(lip->li_type == XFS_LI_EFD || lip->li_type == XFS_LI_EFD_RT);
287 
288 	efdp->efd_format.efd_type = lip->li_type;
289 	efdp->efd_format.efd_size = 1;
290 
291 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, &efdp->efd_format,
292 			xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents));
293 }
294 
295 /*
296  * The EFD is either committed or aborted if the transaction is cancelled. If
297  * the transaction is cancelled, drop our reference to the EFI and free the EFD.
298  */
299 STATIC void
xfs_efd_item_release(struct xfs_log_item * lip)300 xfs_efd_item_release(
301 	struct xfs_log_item	*lip)
302 {
303 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
304 
305 	xfs_efi_release(efdp->efd_efip);
306 	xfs_efd_item_free(efdp);
307 }
308 
309 static struct xfs_log_item *
xfs_efd_item_intent(struct xfs_log_item * lip)310 xfs_efd_item_intent(
311 	struct xfs_log_item	*lip)
312 {
313 	return &EFD_ITEM(lip)->efd_efip->efi_item;
314 }
315 
316 static const struct xfs_item_ops xfs_efd_item_ops = {
317 	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED |
318 			  XFS_ITEM_INTENT_DONE,
319 	.iop_size	= xfs_efd_item_size,
320 	.iop_format	= xfs_efd_item_format,
321 	.iop_release	= xfs_efd_item_release,
322 	.iop_intent	= xfs_efd_item_intent,
323 };
324 
xefi_entry(const struct list_head * e)325 static inline struct xfs_extent_free_item *xefi_entry(const struct list_head *e)
326 {
327 	return list_entry(e, struct xfs_extent_free_item, xefi_list);
328 }
329 
330 static inline bool
xfs_efi_item_isrt(const struct xfs_log_item * lip)331 xfs_efi_item_isrt(const struct xfs_log_item *lip)
332 {
333 	ASSERT(lip->li_type == XFS_LI_EFI || lip->li_type == XFS_LI_EFI_RT);
334 
335 	return lip->li_type == XFS_LI_EFI_RT;
336 }
337 
338 /*
339  * Fill the EFD with all extents from the EFI when we need to roll the
340  * transaction and continue with a new EFI.
341  *
342  * This simply copies all the extents in the EFI to the EFD rather than make
343  * assumptions about which extents in the EFI have already been processed. We
344  * currently keep the xefi list in the same order as the EFI extent list, but
345  * that may not always be the case. Copying everything avoids leaving a landmine
346  * were we fail to cancel all the extents in an EFI if the xefi list is
347  * processed in a different order to the extents in the EFI.
348  */
349 static void
xfs_efd_from_efi(struct xfs_efd_log_item * efdp)350 xfs_efd_from_efi(
351 	struct xfs_efd_log_item	*efdp)
352 {
353 	struct xfs_efi_log_item *efip = efdp->efd_efip;
354 	uint                    i;
355 
356 	ASSERT(efip->efi_format.efi_nextents > 0);
357 	ASSERT(efdp->efd_next_extent < efip->efi_format.efi_nextents);
358 
359 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
360 	       efdp->efd_format.efd_extents[i] =
361 		       efip->efi_format.efi_extents[i];
362 	}
363 	efdp->efd_next_extent = efip->efi_format.efi_nextents;
364 }
365 
366 static void
xfs_efd_add_extent(struct xfs_efd_log_item * efdp,struct xfs_extent_free_item * xefi)367 xfs_efd_add_extent(
368 	struct xfs_efd_log_item		*efdp,
369 	struct xfs_extent_free_item	*xefi)
370 {
371 	struct xfs_extent		*extp;
372 
373 	ASSERT(efdp->efd_next_extent < efdp->efd_format.efd_nextents);
374 
375 	extp = &efdp->efd_format.efd_extents[efdp->efd_next_extent];
376 	extp->ext_start = xefi->xefi_startblock;
377 	extp->ext_len = xefi->xefi_blockcount;
378 
379 	efdp->efd_next_extent++;
380 }
381 
382 /* Sort bmap items by AG. */
383 static int
xfs_extent_free_diff_items(void * priv,const struct list_head * a,const struct list_head * b)384 xfs_extent_free_diff_items(
385 	void				*priv,
386 	const struct list_head		*a,
387 	const struct list_head		*b)
388 {
389 	struct xfs_extent_free_item	*ra = xefi_entry(a);
390 	struct xfs_extent_free_item	*rb = xefi_entry(b);
391 
392 	return ra->xefi_group->xg_gno - rb->xefi_group->xg_gno;
393 }
394 
395 /* Log a free extent to the intent item. */
396 STATIC void
xfs_extent_free_log_item(struct xfs_trans * tp,struct xfs_efi_log_item * efip,struct xfs_extent_free_item * xefi)397 xfs_extent_free_log_item(
398 	struct xfs_trans		*tp,
399 	struct xfs_efi_log_item		*efip,
400 	struct xfs_extent_free_item	*xefi)
401 {
402 	uint				next_extent;
403 	struct xfs_extent		*extp;
404 
405 	/*
406 	 * atomic_inc_return gives us the value after the increment;
407 	 * we want to use it as an array index so we need to subtract 1 from
408 	 * it.
409 	 */
410 	next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
411 	ASSERT(next_extent < efip->efi_format.efi_nextents);
412 	extp = &efip->efi_format.efi_extents[next_extent];
413 	extp->ext_start = xefi->xefi_startblock;
414 	extp->ext_len = xefi->xefi_blockcount;
415 }
416 
417 static struct xfs_log_item *
__xfs_extent_free_create_intent(struct xfs_trans * tp,struct list_head * items,unsigned int count,bool sort,unsigned short item_type)418 __xfs_extent_free_create_intent(
419 	struct xfs_trans		*tp,
420 	struct list_head		*items,
421 	unsigned int			count,
422 	bool				sort,
423 	unsigned short			item_type)
424 {
425 	struct xfs_mount		*mp = tp->t_mountp;
426 	struct xfs_efi_log_item		*efip;
427 	struct xfs_extent_free_item	*xefi;
428 
429 	ASSERT(count > 0);
430 
431 	efip = xfs_efi_init(mp, item_type, count);
432 	if (sort)
433 		list_sort(mp, items, xfs_extent_free_diff_items);
434 	list_for_each_entry(xefi, items, xefi_list)
435 		xfs_extent_free_log_item(tp, efip, xefi);
436 	return &efip->efi_item;
437 }
438 
439 static struct xfs_log_item *
xfs_extent_free_create_intent(struct xfs_trans * tp,struct list_head * items,unsigned int count,bool sort)440 xfs_extent_free_create_intent(
441 	struct xfs_trans		*tp,
442 	struct list_head		*items,
443 	unsigned int			count,
444 	bool				sort)
445 {
446 	return __xfs_extent_free_create_intent(tp, items, count, sort,
447 			XFS_LI_EFI);
448 }
449 
450 static inline unsigned short
xfs_efd_type_from_efi(const struct xfs_efi_log_item * efip)451 xfs_efd_type_from_efi(const struct xfs_efi_log_item *efip)
452 {
453 	return xfs_efi_item_isrt(&efip->efi_item) ?  XFS_LI_EFD_RT : XFS_LI_EFD;
454 }
455 
456 /* Get an EFD so we can process all the free extents. */
457 static struct xfs_log_item *
xfs_extent_free_create_done(struct xfs_trans * tp,struct xfs_log_item * intent,unsigned int count)458 xfs_extent_free_create_done(
459 	struct xfs_trans		*tp,
460 	struct xfs_log_item		*intent,
461 	unsigned int			count)
462 {
463 	struct xfs_efi_log_item		*efip = EFI_ITEM(intent);
464 	struct xfs_efd_log_item		*efdp;
465 
466 	ASSERT(count > 0);
467 
468 	if (count > XFS_EFD_MAX_FAST_EXTENTS) {
469 		efdp = kzalloc(xfs_efd_log_item_sizeof(count),
470 				GFP_KERNEL | __GFP_NOFAIL);
471 	} else {
472 		efdp = kmem_cache_zalloc(xfs_efd_cache,
473 					GFP_KERNEL | __GFP_NOFAIL);
474 	}
475 
476 	xfs_log_item_init(tp->t_mountp, &efdp->efd_item,
477 			xfs_efd_type_from_efi(efip), &xfs_efd_item_ops);
478 	efdp->efd_efip = efip;
479 	efdp->efd_format.efd_nextents = count;
480 	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
481 
482 	return &efdp->efd_item;
483 }
484 
485 static inline const struct xfs_defer_op_type *
xefi_ops(struct xfs_extent_free_item * xefi)486 xefi_ops(
487 	struct xfs_extent_free_item	*xefi)
488 {
489 	if (xfs_efi_is_realtime(xefi))
490 		return &xfs_rtextent_free_defer_type;
491 	if (xefi->xefi_agresv == XFS_AG_RESV_AGFL)
492 		return &xfs_agfl_free_defer_type;
493 	return &xfs_extent_free_defer_type;
494 }
495 
496 /* Add this deferred EFI to the transaction. */
497 void
xfs_extent_free_defer_add(struct xfs_trans * tp,struct xfs_extent_free_item * xefi,struct xfs_defer_pending ** dfpp)498 xfs_extent_free_defer_add(
499 	struct xfs_trans		*tp,
500 	struct xfs_extent_free_item	*xefi,
501 	struct xfs_defer_pending	**dfpp)
502 {
503 	struct xfs_mount		*mp = tp->t_mountp;
504 
505 	xefi->xefi_group = xfs_group_intent_get(mp, xefi->xefi_startblock,
506 			xfs_efi_is_realtime(xefi) ? XG_TYPE_RTG : XG_TYPE_AG);
507 
508 	trace_xfs_extent_free_defer(mp, xefi);
509 	*dfpp = xfs_defer_add(tp, &xefi->xefi_list, xefi_ops(xefi));
510 }
511 
512 /* Cancel a free extent. */
513 STATIC void
xfs_extent_free_cancel_item(struct list_head * item)514 xfs_extent_free_cancel_item(
515 	struct list_head		*item)
516 {
517 	struct xfs_extent_free_item	*xefi = xefi_entry(item);
518 
519 	xfs_group_intent_put(xefi->xefi_group);
520 	kmem_cache_free(xfs_extfree_item_cache, xefi);
521 }
522 
523 /* Process a free extent. */
524 STATIC int
xfs_extent_free_finish_item(struct xfs_trans * tp,struct xfs_log_item * done,struct list_head * item,struct xfs_btree_cur ** state)525 xfs_extent_free_finish_item(
526 	struct xfs_trans		*tp,
527 	struct xfs_log_item		*done,
528 	struct list_head		*item,
529 	struct xfs_btree_cur		**state)
530 {
531 	struct xfs_owner_info		oinfo = { };
532 	struct xfs_extent_free_item	*xefi = xefi_entry(item);
533 	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
534 	struct xfs_mount		*mp = tp->t_mountp;
535 	xfs_agblock_t			agbno;
536 	int				error = 0;
537 
538 	agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
539 
540 	oinfo.oi_owner = xefi->xefi_owner;
541 	if (xefi->xefi_flags & XFS_EFI_ATTR_FORK)
542 		oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK;
543 	if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK)
544 		oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK;
545 
546 	trace_xfs_extent_free_deferred(mp, xefi);
547 
548 	/*
549 	 * If we need a new transaction to make progress, the caller will log a
550 	 * new EFI with the current contents. It will also log an EFD to cancel
551 	 * the existing EFI, and so we need to copy all the unprocessed extents
552 	 * in this EFI to the EFD so this works correctly.
553 	 */
554 	if (!(xefi->xefi_flags & XFS_EFI_CANCELLED))
555 		error = __xfs_free_extent(tp, to_perag(xefi->xefi_group), agbno,
556 				xefi->xefi_blockcount, &oinfo, xefi->xefi_agresv,
557 				xefi->xefi_flags & XFS_EFI_SKIP_DISCARD);
558 	if (error == -EAGAIN) {
559 		xfs_efd_from_efi(efdp);
560 		return error;
561 	}
562 
563 	xfs_efd_add_extent(efdp, xefi);
564 	xfs_extent_free_cancel_item(item);
565 	return error;
566 }
567 
568 /* Abort all pending EFIs. */
569 STATIC void
xfs_extent_free_abort_intent(struct xfs_log_item * intent)570 xfs_extent_free_abort_intent(
571 	struct xfs_log_item		*intent)
572 {
573 	xfs_efi_release(EFI_ITEM(intent));
574 }
575 
576 /*
577  * AGFL blocks are accounted differently in the reserve pools and are not
578  * inserted into the busy extent list.
579  */
580 STATIC int
xfs_agfl_free_finish_item(struct xfs_trans * tp,struct xfs_log_item * done,struct list_head * item,struct xfs_btree_cur ** state)581 xfs_agfl_free_finish_item(
582 	struct xfs_trans		*tp,
583 	struct xfs_log_item		*done,
584 	struct list_head		*item,
585 	struct xfs_btree_cur		**state)
586 {
587 	struct xfs_owner_info		oinfo = { };
588 	struct xfs_mount		*mp = tp->t_mountp;
589 	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
590 	struct xfs_extent_free_item	*xefi = xefi_entry(item);
591 	struct xfs_buf			*agbp;
592 	int				error;
593 	xfs_agblock_t			agbno;
594 
595 	ASSERT(xefi->xefi_blockcount == 1);
596 	agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
597 	oinfo.oi_owner = xefi->xefi_owner;
598 
599 	trace_xfs_agfl_free_deferred(mp, xefi);
600 
601 	error = xfs_alloc_read_agf(to_perag(xefi->xefi_group), tp, 0, &agbp);
602 	if (!error)
603 		error = xfs_free_ag_extent(tp, agbp, agbno, 1, &oinfo,
604 				XFS_AG_RESV_AGFL);
605 
606 	xfs_efd_add_extent(efdp, xefi);
607 	xfs_extent_free_cancel_item(&xefi->xefi_list);
608 	return error;
609 }
610 
611 /* Is this recovered EFI ok? */
612 static inline bool
xfs_efi_validate_ext(struct xfs_mount * mp,bool isrt,struct xfs_extent * extp)613 xfs_efi_validate_ext(
614 	struct xfs_mount		*mp,
615 	bool				isrt,
616 	struct xfs_extent		*extp)
617 {
618 	if (isrt)
619 		return xfs_verify_rtbext(mp, extp->ext_start, extp->ext_len);
620 
621 	return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
622 }
623 
624 static inline void
xfs_efi_recover_work(struct xfs_mount * mp,struct xfs_defer_pending * dfp,bool isrt,struct xfs_extent * extp)625 xfs_efi_recover_work(
626 	struct xfs_mount		*mp,
627 	struct xfs_defer_pending	*dfp,
628 	bool				isrt,
629 	struct xfs_extent		*extp)
630 {
631 	struct xfs_extent_free_item	*xefi;
632 
633 	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
634 			       GFP_KERNEL | __GFP_NOFAIL);
635 	xefi->xefi_startblock = extp->ext_start;
636 	xefi->xefi_blockcount = extp->ext_len;
637 	xefi->xefi_agresv = XFS_AG_RESV_NONE;
638 	xefi->xefi_owner = XFS_RMAP_OWN_UNKNOWN;
639 	xefi->xefi_group = xfs_group_intent_get(mp, extp->ext_start,
640 			isrt ? XG_TYPE_RTG : XG_TYPE_AG);
641 	if (isrt)
642 		xefi->xefi_flags |= XFS_EFI_REALTIME;
643 
644 	xfs_defer_add_item(dfp, &xefi->xefi_list);
645 }
646 
647 /*
648  * Process an extent free intent item that was recovered from
649  * the log.  We need to free the extents that it describes.
650  */
651 STATIC int
xfs_extent_free_recover_work(struct xfs_defer_pending * dfp,struct list_head * capture_list)652 xfs_extent_free_recover_work(
653 	struct xfs_defer_pending	*dfp,
654 	struct list_head		*capture_list)
655 {
656 	struct xfs_trans_res		resv;
657 	struct xfs_log_item		*lip = dfp->dfp_intent;
658 	struct xfs_efi_log_item		*efip = EFI_ITEM(lip);
659 	struct xfs_mount		*mp = lip->li_log->l_mp;
660 	struct xfs_trans		*tp;
661 	int				i;
662 	int				error = 0;
663 	bool				isrt = xfs_efi_item_isrt(lip);
664 
665 	/*
666 	 * First check the validity of the extents described by the EFI.  If
667 	 * any are bad, then assume that all are bad and just toss the EFI.
668 	 * Mixing RT and non-RT extents in the same EFI item is not allowed.
669 	 */
670 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
671 		if (!xfs_efi_validate_ext(mp, isrt,
672 					&efip->efi_format.efi_extents[i])) {
673 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
674 					&efip->efi_format,
675 					sizeof(efip->efi_format));
676 			return -EFSCORRUPTED;
677 		}
678 
679 		xfs_efi_recover_work(mp, dfp, isrt,
680 				&efip->efi_format.efi_extents[i]);
681 	}
682 
683 	resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
684 	error = xfs_trans_alloc(mp, &resv, 0, 0, 0, &tp);
685 	if (error)
686 		return error;
687 
688 	error = xlog_recover_finish_intent(tp, dfp);
689 	if (error == -EFSCORRUPTED)
690 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
691 				&efip->efi_format,
692 				sizeof(efip->efi_format));
693 	if (error)
694 		goto abort_error;
695 
696 	return xfs_defer_ops_capture_and_commit(tp, capture_list);
697 
698 abort_error:
699 	xfs_trans_cancel(tp);
700 	return error;
701 }
702 
703 /* Relog an intent item to push the log tail forward. */
704 static struct xfs_log_item *
xfs_extent_free_relog_intent(struct xfs_trans * tp,struct xfs_log_item * intent,struct xfs_log_item * done_item)705 xfs_extent_free_relog_intent(
706 	struct xfs_trans		*tp,
707 	struct xfs_log_item		*intent,
708 	struct xfs_log_item		*done_item)
709 {
710 	struct xfs_efd_log_item		*efdp = EFD_ITEM(done_item);
711 	struct xfs_efi_log_item		*efip;
712 	struct xfs_extent		*extp;
713 	unsigned int			count;
714 
715 	count = EFI_ITEM(intent)->efi_format.efi_nextents;
716 	extp = EFI_ITEM(intent)->efi_format.efi_extents;
717 
718 	ASSERT(intent->li_type == XFS_LI_EFI || intent->li_type == XFS_LI_EFI_RT);
719 
720 	efdp->efd_next_extent = count;
721 	memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
722 
723 	efip = xfs_efi_init(tp->t_mountp, intent->li_type, count);
724 	memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
725 	atomic_set(&efip->efi_next_extent, count);
726 
727 	return &efip->efi_item;
728 }
729 
730 const struct xfs_defer_op_type xfs_extent_free_defer_type = {
731 	.name		= "extent_free",
732 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
733 	.create_intent	= xfs_extent_free_create_intent,
734 	.abort_intent	= xfs_extent_free_abort_intent,
735 	.create_done	= xfs_extent_free_create_done,
736 	.finish_item	= xfs_extent_free_finish_item,
737 	.cancel_item	= xfs_extent_free_cancel_item,
738 	.recover_work	= xfs_extent_free_recover_work,
739 	.relog_intent	= xfs_extent_free_relog_intent,
740 };
741 
742 /* sub-type with special handling for AGFL deferred frees */
743 const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
744 	.name		= "agfl_free",
745 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
746 	.create_intent	= xfs_extent_free_create_intent,
747 	.abort_intent	= xfs_extent_free_abort_intent,
748 	.create_done	= xfs_extent_free_create_done,
749 	.finish_item	= xfs_agfl_free_finish_item,
750 	.cancel_item	= xfs_extent_free_cancel_item,
751 	.recover_work	= xfs_extent_free_recover_work,
752 	.relog_intent	= xfs_extent_free_relog_intent,
753 };
754 
755 #ifdef CONFIG_XFS_RT
756 /* Create a realtime extent freeing */
757 static struct xfs_log_item *
xfs_rtextent_free_create_intent(struct xfs_trans * tp,struct list_head * items,unsigned int count,bool sort)758 xfs_rtextent_free_create_intent(
759 	struct xfs_trans		*tp,
760 	struct list_head		*items,
761 	unsigned int			count,
762 	bool				sort)
763 {
764 	return __xfs_extent_free_create_intent(tp, items, count, sort,
765 			XFS_LI_EFI_RT);
766 }
767 
768 /* Process a free realtime extent. */
769 STATIC int
xfs_rtextent_free_finish_item(struct xfs_trans * tp,struct xfs_log_item * done,struct list_head * item,struct xfs_btree_cur ** state)770 xfs_rtextent_free_finish_item(
771 	struct xfs_trans		*tp,
772 	struct xfs_log_item		*done,
773 	struct list_head		*item,
774 	struct xfs_btree_cur		**state)
775 {
776 	struct xfs_mount		*mp = tp->t_mountp;
777 	struct xfs_extent_free_item	*xefi = xefi_entry(item);
778 	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
779 	struct xfs_rtgroup		**rtgp = (struct xfs_rtgroup **)state;
780 	int				error = 0;
781 
782 	trace_xfs_extent_free_deferred(mp, xefi);
783 
784 	if (xefi->xefi_flags & XFS_EFI_CANCELLED)
785 		goto done;
786 
787 	if (*rtgp != to_rtg(xefi->xefi_group)) {
788 		unsigned int		lock_flags;
789 
790 		if (xfs_has_zoned(mp))
791 			lock_flags = XFS_RTGLOCK_RMAP;
792 		else
793 			lock_flags = XFS_RTGLOCK_BITMAP;
794 
795 		*rtgp = to_rtg(xefi->xefi_group);
796 		xfs_rtgroup_lock(*rtgp, lock_flags);
797 		xfs_rtgroup_trans_join(tp, *rtgp, lock_flags);
798 	}
799 
800 	if (xfs_has_zoned(mp)) {
801 		error = xfs_zone_free_blocks(tp, *rtgp, xefi->xefi_startblock,
802 				xefi->xefi_blockcount);
803 	} else {
804 		error = xfs_rtfree_blocks(tp, *rtgp, xefi->xefi_startblock,
805 				xefi->xefi_blockcount);
806 	}
807 
808 	if (error == -EAGAIN) {
809 		xfs_efd_from_efi(efdp);
810 		return error;
811 	}
812 done:
813 	xfs_efd_add_extent(efdp, xefi);
814 	xfs_extent_free_cancel_item(item);
815 	return error;
816 }
817 
818 const struct xfs_defer_op_type xfs_rtextent_free_defer_type = {
819 	.name		= "rtextent_free",
820 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
821 	.create_intent	= xfs_rtextent_free_create_intent,
822 	.abort_intent	= xfs_extent_free_abort_intent,
823 	.create_done	= xfs_extent_free_create_done,
824 	.finish_item	= xfs_rtextent_free_finish_item,
825 	.cancel_item	= xfs_extent_free_cancel_item,
826 	.recover_work	= xfs_extent_free_recover_work,
827 	.relog_intent	= xfs_extent_free_relog_intent,
828 };
829 #else
830 const struct xfs_defer_op_type xfs_rtextent_free_defer_type = {
831 	.name		= "rtextent_free",
832 };
833 #endif /* CONFIG_XFS_RT */
834 
835 STATIC bool
xfs_efi_item_match(struct xfs_log_item * lip,uint64_t intent_id)836 xfs_efi_item_match(
837 	struct xfs_log_item	*lip,
838 	uint64_t		intent_id)
839 {
840 	return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
841 }
842 
843 static const struct xfs_item_ops xfs_efi_item_ops = {
844 	.flags		= XFS_ITEM_INTENT,
845 	.iop_size	= xfs_efi_item_size,
846 	.iop_format	= xfs_efi_item_format,
847 	.iop_unpin	= xfs_efi_item_unpin,
848 	.iop_release	= xfs_efi_item_release,
849 	.iop_match	= xfs_efi_item_match,
850 };
851 
852 /*
853  * This routine is called to create an in-core extent free intent
854  * item from the efi format structure which was logged on disk.
855  * It allocates an in-core efi, copies the extents from the format
856  * structure into it, and adds the efi to the AIL with the given
857  * LSN.
858  */
859 STATIC int
xlog_recover_efi_commit_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t lsn)860 xlog_recover_efi_commit_pass2(
861 	struct xlog			*log,
862 	struct list_head		*buffer_list,
863 	struct xlog_recover_item	*item,
864 	xfs_lsn_t			lsn)
865 {
866 	struct xfs_mount		*mp = log->l_mp;
867 	struct xfs_efi_log_item		*efip;
868 	struct xfs_efi_log_format	*efi_formatp;
869 	int				error;
870 
871 	efi_formatp = item->ri_buf[0].iov_base;
872 
873 	if (item->ri_buf[0].iov_len < xfs_efi_log_format_sizeof(0)) {
874 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
875 				item->ri_buf[0].iov_base, item->ri_buf[0].iov_len);
876 		return -EFSCORRUPTED;
877 	}
878 
879 	efip = xfs_efi_init(mp, ITEM_TYPE(item), efi_formatp->efi_nextents);
880 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
881 	if (error) {
882 		xfs_efi_item_free(efip);
883 		return error;
884 	}
885 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
886 
887 	xlog_recover_intent_item(log, &efip->efi_item, lsn,
888 			&xfs_extent_free_defer_type);
889 	return 0;
890 }
891 
892 const struct xlog_recover_item_ops xlog_efi_item_ops = {
893 	.item_type		= XFS_LI_EFI,
894 	.commit_pass2		= xlog_recover_efi_commit_pass2,
895 };
896 
897 #ifdef CONFIG_XFS_RT
898 STATIC int
xlog_recover_rtefi_commit_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t lsn)899 xlog_recover_rtefi_commit_pass2(
900 	struct xlog			*log,
901 	struct list_head		*buffer_list,
902 	struct xlog_recover_item	*item,
903 	xfs_lsn_t			lsn)
904 {
905 	struct xfs_mount		*mp = log->l_mp;
906 	struct xfs_efi_log_item		*efip;
907 	struct xfs_efi_log_format	*efi_formatp;
908 	int				error;
909 
910 	efi_formatp = item->ri_buf[0].iov_base;
911 
912 	if (item->ri_buf[0].iov_len < xfs_efi_log_format_sizeof(0)) {
913 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
914 				item->ri_buf[0].iov_base, item->ri_buf[0].iov_len);
915 		return -EFSCORRUPTED;
916 	}
917 
918 	efip = xfs_efi_init(mp, ITEM_TYPE(item), efi_formatp->efi_nextents);
919 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
920 	if (error) {
921 		xfs_efi_item_free(efip);
922 		return error;
923 	}
924 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
925 
926 	xlog_recover_intent_item(log, &efip->efi_item, lsn,
927 			&xfs_rtextent_free_defer_type);
928 	return 0;
929 }
930 #else
931 STATIC int
xlog_recover_rtefi_commit_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t lsn)932 xlog_recover_rtefi_commit_pass2(
933 	struct xlog			*log,
934 	struct list_head		*buffer_list,
935 	struct xlog_recover_item	*item,
936 	xfs_lsn_t			lsn)
937 {
938 	XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
939 			item->ri_buf[0].iov_base, item->ri_buf[0].iov_len);
940 	return -EFSCORRUPTED;
941 }
942 #endif
943 
944 const struct xlog_recover_item_ops xlog_rtefi_item_ops = {
945 	.item_type		= XFS_LI_EFI_RT,
946 	.commit_pass2		= xlog_recover_rtefi_commit_pass2,
947 };
948 
949 /*
950  * This routine is called when an EFD format structure is found in a committed
951  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
952  * was still in the log. To do this it searches the AIL for the EFI with an id
953  * equal to that in the EFD format structure. If we find it we drop the EFD
954  * reference, which removes the EFI from the AIL and frees it.
955  */
956 STATIC int
xlog_recover_efd_commit_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t lsn)957 xlog_recover_efd_commit_pass2(
958 	struct xlog			*log,
959 	struct list_head		*buffer_list,
960 	struct xlog_recover_item	*item,
961 	xfs_lsn_t			lsn)
962 {
963 	struct xfs_efd_log_format	*efd_formatp;
964 	int				buflen = item->ri_buf[0].iov_len;
965 
966 	efd_formatp = item->ri_buf[0].iov_base;
967 
968 	if (buflen < sizeof(struct xfs_efd_log_format)) {
969 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
970 				efd_formatp, buflen);
971 		return -EFSCORRUPTED;
972 	}
973 
974 	if (item->ri_buf[0].iov_len != xfs_efd_log_format32_sizeof(
975 						efd_formatp->efd_nextents) &&
976 	    item->ri_buf[0].iov_len != xfs_efd_log_format64_sizeof(
977 						efd_formatp->efd_nextents)) {
978 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
979 				efd_formatp, buflen);
980 		return -EFSCORRUPTED;
981 	}
982 
983 	xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
984 	return 0;
985 }
986 
987 const struct xlog_recover_item_ops xlog_efd_item_ops = {
988 	.item_type		= XFS_LI_EFD,
989 	.commit_pass2		= xlog_recover_efd_commit_pass2,
990 };
991 
992 #ifdef CONFIG_XFS_RT
993 STATIC int
xlog_recover_rtefd_commit_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t lsn)994 xlog_recover_rtefd_commit_pass2(
995 	struct xlog			*log,
996 	struct list_head		*buffer_list,
997 	struct xlog_recover_item	*item,
998 	xfs_lsn_t			lsn)
999 {
1000 	struct xfs_efd_log_format	*efd_formatp;
1001 	int				buflen = item->ri_buf[0].iov_len;
1002 
1003 	efd_formatp = item->ri_buf[0].iov_base;
1004 
1005 	if (buflen < sizeof(struct xfs_efd_log_format)) {
1006 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
1007 				efd_formatp, buflen);
1008 		return -EFSCORRUPTED;
1009 	}
1010 
1011 	if (item->ri_buf[0].iov_len != xfs_efd_log_format32_sizeof(
1012 						efd_formatp->efd_nextents) &&
1013 	    item->ri_buf[0].iov_len != xfs_efd_log_format64_sizeof(
1014 						efd_formatp->efd_nextents)) {
1015 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
1016 				efd_formatp, buflen);
1017 		return -EFSCORRUPTED;
1018 	}
1019 
1020 	xlog_recover_release_intent(log, XFS_LI_EFI_RT,
1021 			efd_formatp->efd_efi_id);
1022 	return 0;
1023 }
1024 #else
1025 # define xlog_recover_rtefd_commit_pass2	xlog_recover_rtefi_commit_pass2
1026 #endif
1027 
1028 const struct xlog_recover_item_ops xlog_rtefd_item_ops = {
1029 	.item_type		= XFS_LI_EFD_RT,
1030 	.commit_pass2		= xlog_recover_rtefd_commit_pass2,
1031 };
1032