1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
4 */
5
6 #define pr_fmt(fmt) "xive-kvm: " fmt
7
8 #include <linux/kernel.h>
9 #include <linux/kvm_host.h>
10 #include <linux/err.h>
11 #include <linux/gfp.h>
12 #include <linux/spinlock.h>
13 #include <linux/delay.h>
14 #include <linux/percpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/uaccess.h>
17 #include <linux/irqdomain.h>
18 #include <asm/kvm_book3s.h>
19 #include <asm/kvm_ppc.h>
20 #include <asm/hvcall.h>
21 #include <asm/xics.h>
22 #include <asm/xive.h>
23 #include <asm/xive-regs.h>
24 #include <asm/debug.h>
25 #include <asm/time.h>
26 #include <asm/opal.h>
27
28 #include <linux/debugfs.h>
29 #include <linux/seq_file.h>
30
31 #include "book3s_xive.h"
32
33 #define __x_eoi_page(xd) ((void __iomem *)((xd)->eoi_mmio))
34 #define __x_trig_page(xd) ((void __iomem *)((xd)->trig_mmio))
35
36 /* Dummy interrupt used when taking interrupts out of a queue in H_CPPR */
37 #define XICS_DUMMY 1
38
xive_vm_ack_pending(struct kvmppc_xive_vcpu * xc)39 static void xive_vm_ack_pending(struct kvmppc_xive_vcpu *xc)
40 {
41 u8 cppr;
42 u16 ack;
43
44 /*
45 * Ensure any previous store to CPPR is ordered vs.
46 * the subsequent loads from PIPR or ACK.
47 */
48 eieio();
49
50 /* Perform the acknowledge OS to register cycle. */
51 ack = be16_to_cpu(__raw_readw(xive_tima + TM_SPC_ACK_OS_REG));
52
53 /* Synchronize subsequent queue accesses */
54 mb();
55
56 /* XXX Check grouping level */
57
58 /* Anything ? */
59 if (!((ack >> 8) & TM_QW1_NSR_EO))
60 return;
61
62 /* Grab CPPR of the most favored pending interrupt */
63 cppr = ack & 0xff;
64 if (cppr < 8)
65 xc->pending |= 1 << cppr;
66
67 /* Check consistency */
68 if (cppr >= xc->hw_cppr)
69 pr_warn("KVM-XIVE: CPU %d odd ack CPPR, got %d at %d\n",
70 smp_processor_id(), cppr, xc->hw_cppr);
71
72 /*
73 * Update our image of the HW CPPR. We don't yet modify
74 * xc->cppr, this will be done as we scan for interrupts
75 * in the queues.
76 */
77 xc->hw_cppr = cppr;
78 }
79
xive_vm_esb_load(struct xive_irq_data * xd,u32 offset)80 static u8 xive_vm_esb_load(struct xive_irq_data *xd, u32 offset)
81 {
82 u64 val;
83
84 if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
85 offset |= XIVE_ESB_LD_ST_MO;
86
87 val = __raw_readq(__x_eoi_page(xd) + offset);
88 #ifdef __LITTLE_ENDIAN__
89 val >>= 64-8;
90 #endif
91 return (u8)val;
92 }
93
94
xive_vm_source_eoi(u32 hw_irq,struct xive_irq_data * xd)95 static void xive_vm_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
96 {
97 /* If the XIVE supports the new "store EOI facility, use it */
98 if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
99 __raw_writeq(0, __x_eoi_page(xd) + XIVE_ESB_STORE_EOI);
100 else if (xd->flags & XIVE_IRQ_FLAG_LSI) {
101 /*
102 * For LSIs the HW EOI cycle is used rather than PQ bits,
103 * as they are automatically re-triggred in HW when still
104 * pending.
105 */
106 __raw_readq(__x_eoi_page(xd) + XIVE_ESB_LOAD_EOI);
107 } else {
108 uint64_t eoi_val;
109
110 /*
111 * Otherwise for EOI, we use the special MMIO that does
112 * a clear of both P and Q and returns the old Q,
113 * except for LSIs where we use the "EOI cycle" special
114 * load.
115 *
116 * This allows us to then do a re-trigger if Q was set
117 * rather than synthetizing an interrupt in software
118 */
119 eoi_val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_00);
120
121 /* Re-trigger if needed */
122 if ((eoi_val & 1) && __x_trig_page(xd))
123 __raw_writeq(0, __x_trig_page(xd));
124 }
125 }
126
127 enum {
128 scan_fetch,
129 scan_poll,
130 scan_eoi,
131 };
132
xive_vm_scan_interrupts(struct kvmppc_xive_vcpu * xc,u8 pending,int scan_type)133 static u32 xive_vm_scan_interrupts(struct kvmppc_xive_vcpu *xc,
134 u8 pending, int scan_type)
135 {
136 u32 hirq = 0;
137 u8 prio = 0xff;
138
139 /* Find highest pending priority */
140 while ((xc->mfrr != 0xff || pending != 0) && hirq == 0) {
141 struct xive_q *q;
142 u32 idx, toggle;
143 __be32 *qpage;
144
145 /*
146 * If pending is 0 this will return 0xff which is what
147 * we want
148 */
149 prio = ffs(pending) - 1;
150
151 /* Don't scan past the guest cppr */
152 if (prio >= xc->cppr || prio > 7) {
153 if (xc->mfrr < xc->cppr) {
154 prio = xc->mfrr;
155 hirq = XICS_IPI;
156 }
157 break;
158 }
159
160 /* Grab queue and pointers */
161 q = &xc->queues[prio];
162 idx = q->idx;
163 toggle = q->toggle;
164
165 /*
166 * Snapshot the queue page. The test further down for EOI
167 * must use the same "copy" that was used by __xive_read_eq
168 * since qpage can be set concurrently and we don't want
169 * to miss an EOI.
170 */
171 qpage = READ_ONCE(q->qpage);
172
173 skip_ipi:
174 /*
175 * Try to fetch from the queue. Will return 0 for a
176 * non-queueing priority (ie, qpage = 0).
177 */
178 hirq = __xive_read_eq(qpage, q->msk, &idx, &toggle);
179
180 /*
181 * If this was a signal for an MFFR change done by
182 * H_IPI we skip it. Additionally, if we were fetching
183 * we EOI it now, thus re-enabling reception of a new
184 * such signal.
185 *
186 * We also need to do that if prio is 0 and we had no
187 * page for the queue. In this case, we have non-queued
188 * IPI that needs to be EOId.
189 *
190 * This is safe because if we have another pending MFRR
191 * change that wasn't observed above, the Q bit will have
192 * been set and another occurrence of the IPI will trigger.
193 */
194 if (hirq == XICS_IPI || (prio == 0 && !qpage)) {
195 if (scan_type == scan_fetch) {
196 xive_vm_source_eoi(xc->vp_ipi,
197 &xc->vp_ipi_data);
198 q->idx = idx;
199 q->toggle = toggle;
200 }
201 /* Loop back on same queue with updated idx/toggle */
202 WARN_ON(hirq && hirq != XICS_IPI);
203 if (hirq)
204 goto skip_ipi;
205 }
206
207 /* If it's the dummy interrupt, continue searching */
208 if (hirq == XICS_DUMMY)
209 goto skip_ipi;
210
211 /* Clear the pending bit if the queue is now empty */
212 if (!hirq) {
213 pending &= ~(1 << prio);
214
215 /*
216 * Check if the queue count needs adjusting due to
217 * interrupts being moved away.
218 */
219 if (atomic_read(&q->pending_count)) {
220 int p = atomic_xchg(&q->pending_count, 0);
221
222 if (p) {
223 WARN_ON(p > atomic_read(&q->count));
224 atomic_sub(p, &q->count);
225 }
226 }
227 }
228
229 /*
230 * If the most favoured prio we found pending is less
231 * favored (or equal) than a pending IPI, we return
232 * the IPI instead.
233 */
234 if (prio >= xc->mfrr && xc->mfrr < xc->cppr) {
235 prio = xc->mfrr;
236 hirq = XICS_IPI;
237 break;
238 }
239
240 /* If fetching, update queue pointers */
241 if (scan_type == scan_fetch) {
242 q->idx = idx;
243 q->toggle = toggle;
244 }
245 }
246
247 /* If we are just taking a "peek", do nothing else */
248 if (scan_type == scan_poll)
249 return hirq;
250
251 /* Update the pending bits */
252 xc->pending = pending;
253
254 /*
255 * If this is an EOI that's it, no CPPR adjustment done here,
256 * all we needed was cleanup the stale pending bits and check
257 * if there's anything left.
258 */
259 if (scan_type == scan_eoi)
260 return hirq;
261
262 /*
263 * If we found an interrupt, adjust what the guest CPPR should
264 * be as if we had just fetched that interrupt from HW.
265 *
266 * Note: This can only make xc->cppr smaller as the previous
267 * loop will only exit with hirq != 0 if prio is lower than
268 * the current xc->cppr. Thus we don't need to re-check xc->mfrr
269 * for pending IPIs.
270 */
271 if (hirq)
272 xc->cppr = prio;
273 /*
274 * If it was an IPI the HW CPPR might have been lowered too much
275 * as the HW interrupt we use for IPIs is routed to priority 0.
276 *
277 * We re-sync it here.
278 */
279 if (xc->cppr != xc->hw_cppr) {
280 xc->hw_cppr = xc->cppr;
281 __raw_writeb(xc->cppr, xive_tima + TM_QW1_OS + TM_CPPR);
282 }
283
284 return hirq;
285 }
286
xive_vm_h_xirr(struct kvm_vcpu * vcpu)287 static unsigned long xive_vm_h_xirr(struct kvm_vcpu *vcpu)
288 {
289 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
290 u8 old_cppr;
291 u32 hirq;
292
293 pr_devel("H_XIRR\n");
294
295 xc->stat_vm_h_xirr++;
296
297 /* First collect pending bits from HW */
298 xive_vm_ack_pending(xc);
299
300 pr_devel(" new pending=0x%02x hw_cppr=%d cppr=%d\n",
301 xc->pending, xc->hw_cppr, xc->cppr);
302
303 /* Grab previous CPPR and reverse map it */
304 old_cppr = xive_prio_to_guest(xc->cppr);
305
306 /* Scan for actual interrupts */
307 hirq = xive_vm_scan_interrupts(xc, xc->pending, scan_fetch);
308
309 pr_devel(" got hirq=0x%x hw_cppr=%d cppr=%d\n",
310 hirq, xc->hw_cppr, xc->cppr);
311
312 /* That should never hit */
313 if (hirq & 0xff000000)
314 pr_warn("XIVE: Weird guest interrupt number 0x%08x\n", hirq);
315
316 /*
317 * XXX We could check if the interrupt is masked here and
318 * filter it. If we chose to do so, we would need to do:
319 *
320 * if (masked) {
321 * lock();
322 * if (masked) {
323 * old_Q = true;
324 * hirq = 0;
325 * }
326 * unlock();
327 * }
328 */
329
330 /* Return interrupt and old CPPR in GPR4 */
331 kvmppc_set_gpr(vcpu, 4, hirq | (old_cppr << 24));
332
333 return H_SUCCESS;
334 }
335
xive_vm_h_ipoll(struct kvm_vcpu * vcpu,unsigned long server)336 static unsigned long xive_vm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server)
337 {
338 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
339 u8 pending = xc->pending;
340 u32 hirq;
341
342 pr_devel("H_IPOLL(server=%ld)\n", server);
343
344 xc->stat_vm_h_ipoll++;
345
346 /* Grab the target VCPU if not the current one */
347 if (xc->server_num != server) {
348 vcpu = kvmppc_xive_find_server(vcpu->kvm, server);
349 if (!vcpu)
350 return H_PARAMETER;
351 xc = vcpu->arch.xive_vcpu;
352
353 /* Scan all priorities */
354 pending = 0xff;
355 } else {
356 /* Grab pending interrupt if any */
357 __be64 qw1 = __raw_readq(xive_tima + TM_QW1_OS);
358 u8 pipr = be64_to_cpu(qw1) & 0xff;
359
360 if (pipr < 8)
361 pending |= 1 << pipr;
362 }
363
364 hirq = xive_vm_scan_interrupts(xc, pending, scan_poll);
365
366 /* Return interrupt and old CPPR in GPR4 */
367 kvmppc_set_gpr(vcpu, 4, hirq | (xc->cppr << 24));
368
369 return H_SUCCESS;
370 }
371
xive_vm_push_pending_to_hw(struct kvmppc_xive_vcpu * xc)372 static void xive_vm_push_pending_to_hw(struct kvmppc_xive_vcpu *xc)
373 {
374 u8 pending, prio;
375
376 pending = xc->pending;
377 if (xc->mfrr != 0xff) {
378 if (xc->mfrr < 8)
379 pending |= 1 << xc->mfrr;
380 else
381 pending |= 0x80;
382 }
383 if (!pending)
384 return;
385 prio = ffs(pending) - 1;
386
387 __raw_writeb(prio, xive_tima + TM_SPC_SET_OS_PENDING);
388 }
389
xive_vm_scan_for_rerouted_irqs(struct kvmppc_xive * xive,struct kvmppc_xive_vcpu * xc)390 static void xive_vm_scan_for_rerouted_irqs(struct kvmppc_xive *xive,
391 struct kvmppc_xive_vcpu *xc)
392 {
393 unsigned int prio;
394
395 /* For each priority that is now masked */
396 for (prio = xc->cppr; prio < KVMPPC_XIVE_Q_COUNT; prio++) {
397 struct xive_q *q = &xc->queues[prio];
398 struct kvmppc_xive_irq_state *state;
399 struct kvmppc_xive_src_block *sb;
400 u32 idx, toggle, entry, irq, hw_num;
401 struct xive_irq_data *xd;
402 __be32 *qpage;
403 u16 src;
404
405 idx = q->idx;
406 toggle = q->toggle;
407 qpage = READ_ONCE(q->qpage);
408 if (!qpage)
409 continue;
410
411 /* For each interrupt in the queue */
412 for (;;) {
413 entry = be32_to_cpup(qpage + idx);
414
415 /* No more ? */
416 if ((entry >> 31) == toggle)
417 break;
418 irq = entry & 0x7fffffff;
419
420 /* Skip dummies and IPIs */
421 if (irq == XICS_DUMMY || irq == XICS_IPI)
422 goto next;
423 sb = kvmppc_xive_find_source(xive, irq, &src);
424 if (!sb)
425 goto next;
426 state = &sb->irq_state[src];
427
428 /* Has it been rerouted ? */
429 if (xc->server_num == state->act_server)
430 goto next;
431
432 /*
433 * Allright, it *has* been re-routed, kill it from
434 * the queue.
435 */
436 qpage[idx] = cpu_to_be32((entry & 0x80000000) | XICS_DUMMY);
437
438 /* Find the HW interrupt */
439 kvmppc_xive_select_irq(state, &hw_num, &xd);
440
441 /* If it's not an LSI, set PQ to 11 the EOI will force a resend */
442 if (!(xd->flags & XIVE_IRQ_FLAG_LSI))
443 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
444
445 /* EOI the source */
446 xive_vm_source_eoi(hw_num, xd);
447
448 next:
449 idx = (idx + 1) & q->msk;
450 if (idx == 0)
451 toggle ^= 1;
452 }
453 }
454 }
455
xive_vm_h_cppr(struct kvm_vcpu * vcpu,unsigned long cppr)456 static int xive_vm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
457 {
458 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
459 struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
460 u8 old_cppr;
461
462 pr_devel("H_CPPR(cppr=%ld)\n", cppr);
463
464 xc->stat_vm_h_cppr++;
465
466 /* Map CPPR */
467 cppr = xive_prio_from_guest(cppr);
468
469 /* Remember old and update SW state */
470 old_cppr = xc->cppr;
471 xc->cppr = cppr;
472
473 /*
474 * Order the above update of xc->cppr with the subsequent
475 * read of xc->mfrr inside push_pending_to_hw()
476 */
477 smp_mb();
478
479 if (cppr > old_cppr) {
480 /*
481 * We are masking less, we need to look for pending things
482 * to deliver and set VP pending bits accordingly to trigger
483 * a new interrupt otherwise we might miss MFRR changes for
484 * which we have optimized out sending an IPI signal.
485 */
486 xive_vm_push_pending_to_hw(xc);
487 } else {
488 /*
489 * We are masking more, we need to check the queue for any
490 * interrupt that has been routed to another CPU, take
491 * it out (replace it with the dummy) and retrigger it.
492 *
493 * This is necessary since those interrupts may otherwise
494 * never be processed, at least not until this CPU restores
495 * its CPPR.
496 *
497 * This is in theory racy vs. HW adding new interrupts to
498 * the queue. In practice this works because the interesting
499 * cases are when the guest has done a set_xive() to move the
500 * interrupt away, which flushes the xive, followed by the
501 * target CPU doing a H_CPPR. So any new interrupt coming into
502 * the queue must still be routed to us and isn't a source
503 * of concern.
504 */
505 xive_vm_scan_for_rerouted_irqs(xive, xc);
506 }
507
508 /* Apply new CPPR */
509 xc->hw_cppr = cppr;
510 __raw_writeb(cppr, xive_tima + TM_QW1_OS + TM_CPPR);
511
512 return H_SUCCESS;
513 }
514
xive_vm_h_eoi(struct kvm_vcpu * vcpu,unsigned long xirr)515 static int xive_vm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr)
516 {
517 struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
518 struct kvmppc_xive_src_block *sb;
519 struct kvmppc_xive_irq_state *state;
520 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
521 struct xive_irq_data *xd;
522 u8 new_cppr = xirr >> 24;
523 u32 irq = xirr & 0x00ffffff, hw_num;
524 u16 src;
525 int rc = 0;
526
527 pr_devel("H_EOI(xirr=%08lx)\n", xirr);
528
529 xc->stat_vm_h_eoi++;
530
531 xc->cppr = xive_prio_from_guest(new_cppr);
532
533 /*
534 * IPIs are synthesized from MFRR and thus don't need
535 * any special EOI handling. The underlying interrupt
536 * used to signal MFRR changes is EOId when fetched from
537 * the queue.
538 */
539 if (irq == XICS_IPI || irq == 0) {
540 /*
541 * This barrier orders the setting of xc->cppr vs.
542 * subsequent test of xc->mfrr done inside
543 * scan_interrupts and push_pending_to_hw
544 */
545 smp_mb();
546 goto bail;
547 }
548
549 /* Find interrupt source */
550 sb = kvmppc_xive_find_source(xive, irq, &src);
551 if (!sb) {
552 pr_devel(" source not found !\n");
553 rc = H_PARAMETER;
554 /* Same as above */
555 smp_mb();
556 goto bail;
557 }
558 state = &sb->irq_state[src];
559 kvmppc_xive_select_irq(state, &hw_num, &xd);
560
561 state->in_eoi = true;
562
563 /*
564 * This barrier orders both setting of in_eoi above vs,
565 * subsequent test of guest_priority, and the setting
566 * of xc->cppr vs. subsequent test of xc->mfrr done inside
567 * scan_interrupts and push_pending_to_hw
568 */
569 smp_mb();
570
571 again:
572 if (state->guest_priority == MASKED) {
573 arch_spin_lock(&sb->lock);
574 if (state->guest_priority != MASKED) {
575 arch_spin_unlock(&sb->lock);
576 goto again;
577 }
578 pr_devel(" EOI on saved P...\n");
579
580 /* Clear old_p, that will cause unmask to perform an EOI */
581 state->old_p = false;
582
583 arch_spin_unlock(&sb->lock);
584 } else {
585 pr_devel(" EOI on source...\n");
586
587 /* Perform EOI on the source */
588 xive_vm_source_eoi(hw_num, xd);
589
590 /* If it's an emulated LSI, check level and resend */
591 if (state->lsi && state->asserted)
592 __raw_writeq(0, __x_trig_page(xd));
593
594 }
595
596 /*
597 * This barrier orders the above guest_priority check
598 * and spin_lock/unlock with clearing in_eoi below.
599 *
600 * It also has to be a full mb() as it must ensure
601 * the MMIOs done in source_eoi() are completed before
602 * state->in_eoi is visible.
603 */
604 mb();
605 state->in_eoi = false;
606 bail:
607
608 /* Re-evaluate pending IRQs and update HW */
609 xive_vm_scan_interrupts(xc, xc->pending, scan_eoi);
610 xive_vm_push_pending_to_hw(xc);
611 pr_devel(" after scan pending=%02x\n", xc->pending);
612
613 /* Apply new CPPR */
614 xc->hw_cppr = xc->cppr;
615 __raw_writeb(xc->cppr, xive_tima + TM_QW1_OS + TM_CPPR);
616
617 return rc;
618 }
619
xive_vm_h_ipi(struct kvm_vcpu * vcpu,unsigned long server,unsigned long mfrr)620 static int xive_vm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
621 unsigned long mfrr)
622 {
623 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
624
625 pr_devel("H_IPI(server=%08lx,mfrr=%ld)\n", server, mfrr);
626
627 xc->stat_vm_h_ipi++;
628
629 /* Find target */
630 vcpu = kvmppc_xive_find_server(vcpu->kvm, server);
631 if (!vcpu)
632 return H_PARAMETER;
633 xc = vcpu->arch.xive_vcpu;
634
635 /* Locklessly write over MFRR */
636 xc->mfrr = mfrr;
637
638 /*
639 * The load of xc->cppr below and the subsequent MMIO store
640 * to the IPI must happen after the above mfrr update is
641 * globally visible so that:
642 *
643 * - Synchronize with another CPU doing an H_EOI or a H_CPPR
644 * updating xc->cppr then reading xc->mfrr.
645 *
646 * - The target of the IPI sees the xc->mfrr update
647 */
648 mb();
649
650 /* Shoot the IPI if most favored than target cppr */
651 if (mfrr < xc->cppr)
652 __raw_writeq(0, __x_trig_page(&xc->vp_ipi_data));
653
654 return H_SUCCESS;
655 }
656
657 /*
658 * We leave a gap of a couple of interrupts in the queue to
659 * account for the IPI and additional safety guard.
660 */
661 #define XIVE_Q_GAP 2
662
kvmppc_xive_vcpu_has_save_restore(struct kvm_vcpu * vcpu)663 static bool kvmppc_xive_vcpu_has_save_restore(struct kvm_vcpu *vcpu)
664 {
665 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
666
667 /* Check enablement at VP level */
668 return xc->vp_cam & TM_QW1W2_HO;
669 }
670
kvmppc_xive_check_save_restore(struct kvm_vcpu * vcpu)671 bool kvmppc_xive_check_save_restore(struct kvm_vcpu *vcpu)
672 {
673 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
674 struct kvmppc_xive *xive = xc->xive;
675
676 if (xive->flags & KVMPPC_XIVE_FLAG_SAVE_RESTORE)
677 return kvmppc_xive_vcpu_has_save_restore(vcpu);
678
679 return true;
680 }
681
682 /*
683 * Push a vcpu's context to the XIVE on guest entry.
684 * This assumes we are in virtual mode (MMU on)
685 */
kvmppc_xive_push_vcpu(struct kvm_vcpu * vcpu)686 void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu)
687 {
688 void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
689 u64 pq;
690
691 /*
692 * Nothing to do if the platform doesn't have a XIVE
693 * or this vCPU doesn't have its own XIVE context
694 * (e.g. because it's not using an in-kernel interrupt controller).
695 */
696 if (!tima || !vcpu->arch.xive_cam_word)
697 return;
698
699 eieio();
700 if (!kvmppc_xive_vcpu_has_save_restore(vcpu))
701 __raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS);
702 __raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2);
703 vcpu->arch.xive_pushed = 1;
704 eieio();
705
706 /*
707 * We clear the irq_pending flag. There is a small chance of a
708 * race vs. the escalation interrupt happening on another
709 * processor setting it again, but the only consequence is to
710 * cause a spurious wakeup on the next H_CEDE, which is not an
711 * issue.
712 */
713 vcpu->arch.irq_pending = 0;
714
715 /*
716 * In single escalation mode, if the escalation interrupt is
717 * on, we mask it.
718 */
719 if (vcpu->arch.xive_esc_on) {
720 pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
721 XIVE_ESB_SET_PQ_01));
722 mb();
723
724 /*
725 * We have a possible subtle race here: The escalation
726 * interrupt might have fired and be on its way to the
727 * host queue while we mask it, and if we unmask it
728 * early enough (re-cede right away), there is a
729 * theoretical possibility that it fires again, thus
730 * landing in the target queue more than once which is
731 * a big no-no.
732 *
733 * Fortunately, solving this is rather easy. If the
734 * above load setting PQ to 01 returns a previous
735 * value where P is set, then we know the escalation
736 * interrupt is somewhere on its way to the host. In
737 * that case we simply don't clear the xive_esc_on
738 * flag below. It will be eventually cleared by the
739 * handler for the escalation interrupt.
740 *
741 * Then, when doing a cede, we check that flag again
742 * before re-enabling the escalation interrupt, and if
743 * set, we abort the cede.
744 */
745 if (!(pq & XIVE_ESB_VAL_P))
746 /* Now P is 0, we can clear the flag */
747 vcpu->arch.xive_esc_on = 0;
748 }
749 }
750 EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu);
751
752 /*
753 * Pull a vcpu's context from the XIVE on guest exit.
754 * This assumes we are in virtual mode (MMU on)
755 */
kvmppc_xive_pull_vcpu(struct kvm_vcpu * vcpu)756 void kvmppc_xive_pull_vcpu(struct kvm_vcpu *vcpu)
757 {
758 void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
759
760 if (!vcpu->arch.xive_pushed)
761 return;
762
763 /*
764 * Should not have been pushed if there is no tima
765 */
766 if (WARN_ON(!tima))
767 return;
768
769 eieio();
770 /* First load to pull the context, we ignore the value */
771 __raw_readl(tima + TM_SPC_PULL_OS_CTX);
772 /* Second load to recover the context state (Words 0 and 1) */
773 if (!kvmppc_xive_vcpu_has_save_restore(vcpu))
774 vcpu->arch.xive_saved_state.w01 = __raw_readq(tima + TM_QW1_OS);
775
776 /* Fixup some of the state for the next load */
777 vcpu->arch.xive_saved_state.lsmfb = 0;
778 vcpu->arch.xive_saved_state.ack = 0xff;
779 vcpu->arch.xive_pushed = 0;
780 eieio();
781 }
782 EXPORT_SYMBOL_GPL(kvmppc_xive_pull_vcpu);
783
kvmppc_xive_rearm_escalation(struct kvm_vcpu * vcpu)784 bool kvmppc_xive_rearm_escalation(struct kvm_vcpu *vcpu)
785 {
786 void __iomem *esc_vaddr = (void __iomem *)vcpu->arch.xive_esc_vaddr;
787 bool ret = true;
788
789 if (!esc_vaddr)
790 return ret;
791
792 /* we are using XIVE with single escalation */
793
794 if (vcpu->arch.xive_esc_on) {
795 /*
796 * If we still have a pending escalation, abort the cede,
797 * and we must set PQ to 10 rather than 00 so that we don't
798 * potentially end up with two entries for the escalation
799 * interrupt in the XIVE interrupt queue. In that case
800 * we also don't want to set xive_esc_on to 1 here in
801 * case we race with xive_esc_irq().
802 */
803 ret = false;
804 /*
805 * The escalation interrupts are special as we don't EOI them.
806 * There is no need to use the load-after-store ordering offset
807 * to set PQ to 10 as we won't use StoreEOI.
808 */
809 __raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_10);
810 } else {
811 vcpu->arch.xive_esc_on = true;
812 mb();
813 __raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_00);
814 }
815 mb();
816
817 return ret;
818 }
819 EXPORT_SYMBOL_GPL(kvmppc_xive_rearm_escalation);
820
821 /*
822 * This is a simple trigger for a generic XIVE IRQ. This must
823 * only be called for interrupts that support a trigger page
824 */
xive_irq_trigger(struct xive_irq_data * xd)825 static bool xive_irq_trigger(struct xive_irq_data *xd)
826 {
827 /* This should be only for MSIs */
828 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
829 return false;
830
831 /* Those interrupts should always have a trigger page */
832 if (WARN_ON(!xd->trig_mmio))
833 return false;
834
835 out_be64(xd->trig_mmio, 0);
836
837 return true;
838 }
839
xive_esc_irq(int irq,void * data)840 static irqreturn_t xive_esc_irq(int irq, void *data)
841 {
842 struct kvm_vcpu *vcpu = data;
843
844 vcpu->arch.irq_pending = 1;
845 smp_mb();
846 if (vcpu->arch.ceded || vcpu->arch.nested)
847 kvmppc_fast_vcpu_kick(vcpu);
848
849 /* Since we have the no-EOI flag, the interrupt is effectively
850 * disabled now. Clearing xive_esc_on means we won't bother
851 * doing so on the next entry.
852 *
853 * This also allows the entry code to know that if a PQ combination
854 * of 10 is observed while xive_esc_on is true, it means the queue
855 * contains an unprocessed escalation interrupt. We don't make use of
856 * that knowledge today but might (see comment in book3s_hv_rmhandler.S)
857 */
858 vcpu->arch.xive_esc_on = false;
859
860 /* This orders xive_esc_on = false vs. subsequent stale_p = true */
861 smp_wmb(); /* goes with smp_mb() in cleanup_single_escalation */
862
863 return IRQ_HANDLED;
864 }
865
kvmppc_xive_attach_escalation(struct kvm_vcpu * vcpu,u8 prio,bool single_escalation)866 int kvmppc_xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio,
867 bool single_escalation)
868 {
869 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
870 struct xive_q *q = &xc->queues[prio];
871 char *name = NULL;
872 int rc;
873
874 /* Already there ? */
875 if (xc->esc_virq[prio])
876 return 0;
877
878 /* Hook up the escalation interrupt */
879 xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
880 if (!xc->esc_virq[prio]) {
881 pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
882 prio, xc->server_num);
883 return -EIO;
884 }
885
886 if (single_escalation)
887 name = kasprintf(GFP_KERNEL, "kvm-%lld-%d",
888 vcpu->kvm->arch.lpid, xc->server_num);
889 else
890 name = kasprintf(GFP_KERNEL, "kvm-%lld-%d-%d",
891 vcpu->kvm->arch.lpid, xc->server_num, prio);
892 if (!name) {
893 pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
894 prio, xc->server_num);
895 rc = -ENOMEM;
896 goto error;
897 }
898
899 pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio);
900
901 rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
902 IRQF_NO_THREAD, name, vcpu);
903 if (rc) {
904 pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
905 prio, xc->server_num);
906 goto error;
907 }
908 xc->esc_virq_names[prio] = name;
909
910 /* In single escalation mode, we grab the ESB MMIO of the
911 * interrupt and mask it. Also populate the VCPU v/raddr
912 * of the ESB page for use by asm entry/exit code. Finally
913 * set the XIVE_IRQ_FLAG_NO_EOI flag which will prevent the
914 * core code from performing an EOI on the escalation
915 * interrupt, thus leaving it effectively masked after
916 * it fires once.
917 */
918 if (single_escalation) {
919 struct xive_irq_data *xd = irq_get_chip_data(xc->esc_virq[prio]);
920
921 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
922 vcpu->arch.xive_esc_raddr = xd->eoi_page;
923 vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio;
924 xd->flags |= XIVE_IRQ_FLAG_NO_EOI;
925 }
926
927 return 0;
928 error:
929 irq_dispose_mapping(xc->esc_virq[prio]);
930 xc->esc_virq[prio] = 0;
931 kfree(name);
932 return rc;
933 }
934
xive_provision_queue(struct kvm_vcpu * vcpu,u8 prio)935 static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
936 {
937 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
938 struct kvmppc_xive *xive = xc->xive;
939 struct xive_q *q = &xc->queues[prio];
940 void *qpage;
941 int rc;
942
943 if (WARN_ON(q->qpage))
944 return 0;
945
946 /* Allocate the queue and retrieve infos on current node for now */
947 qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
948 if (!qpage) {
949 pr_err("Failed to allocate queue %d for VCPU %d\n",
950 prio, xc->server_num);
951 return -ENOMEM;
952 }
953 memset(qpage, 0, 1 << xive->q_order);
954
955 /*
956 * Reconfigure the queue. This will set q->qpage only once the
957 * queue is fully configured. This is a requirement for prio 0
958 * as we will stop doing EOIs for every IPI as soon as we observe
959 * qpage being non-NULL, and instead will only EOI when we receive
960 * corresponding queue 0 entries
961 */
962 rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
963 xive->q_order, true);
964 if (rc)
965 pr_err("Failed to configure queue %d for VCPU %d\n",
966 prio, xc->server_num);
967 return rc;
968 }
969
970 /* Called with xive->lock held */
xive_check_provisioning(struct kvm * kvm,u8 prio)971 static int xive_check_provisioning(struct kvm *kvm, u8 prio)
972 {
973 struct kvmppc_xive *xive = kvm->arch.xive;
974 struct kvm_vcpu *vcpu;
975 unsigned long i;
976 int rc;
977
978 lockdep_assert_held(&xive->lock);
979
980 /* Already provisioned ? */
981 if (xive->qmap & (1 << prio))
982 return 0;
983
984 pr_devel("Provisioning prio... %d\n", prio);
985
986 /* Provision each VCPU and enable escalations if needed */
987 kvm_for_each_vcpu(i, vcpu, kvm) {
988 if (!vcpu->arch.xive_vcpu)
989 continue;
990 rc = xive_provision_queue(vcpu, prio);
991 if (rc == 0 && !kvmppc_xive_has_single_escalation(xive))
992 kvmppc_xive_attach_escalation(vcpu, prio,
993 kvmppc_xive_has_single_escalation(xive));
994 if (rc)
995 return rc;
996 }
997
998 /* Order previous stores and mark it as provisioned */
999 mb();
1000 xive->qmap |= (1 << prio);
1001 return 0;
1002 }
1003
xive_inc_q_pending(struct kvm * kvm,u32 server,u8 prio)1004 static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
1005 {
1006 struct kvm_vcpu *vcpu;
1007 struct kvmppc_xive_vcpu *xc;
1008 struct xive_q *q;
1009
1010 /* Locate target server */
1011 vcpu = kvmppc_xive_find_server(kvm, server);
1012 if (!vcpu) {
1013 pr_warn("%s: Can't find server %d\n", __func__, server);
1014 return;
1015 }
1016 xc = vcpu->arch.xive_vcpu;
1017 if (WARN_ON(!xc))
1018 return;
1019
1020 q = &xc->queues[prio];
1021 atomic_inc(&q->pending_count);
1022 }
1023
xive_try_pick_queue(struct kvm_vcpu * vcpu,u8 prio)1024 static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
1025 {
1026 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1027 struct xive_q *q;
1028 u32 max;
1029
1030 if (WARN_ON(!xc))
1031 return -ENXIO;
1032 if (!xc->valid)
1033 return -ENXIO;
1034
1035 q = &xc->queues[prio];
1036 if (WARN_ON(!q->qpage))
1037 return -ENXIO;
1038
1039 /* Calculate max number of interrupts in that queue. */
1040 max = (q->msk + 1) - XIVE_Q_GAP;
1041 return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
1042 }
1043
kvmppc_xive_select_target(struct kvm * kvm,u32 * server,u8 prio)1044 int kvmppc_xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
1045 {
1046 struct kvm_vcpu *vcpu;
1047 unsigned long i;
1048 int rc;
1049
1050 /* Locate target server */
1051 vcpu = kvmppc_xive_find_server(kvm, *server);
1052 if (!vcpu) {
1053 pr_devel("Can't find server %d\n", *server);
1054 return -EINVAL;
1055 }
1056
1057 pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
1058
1059 /* Try pick it */
1060 rc = xive_try_pick_queue(vcpu, prio);
1061 if (rc == 0)
1062 return rc;
1063
1064 pr_devel(" .. failed, looking up candidate...\n");
1065
1066 /* Failed, pick another VCPU */
1067 kvm_for_each_vcpu(i, vcpu, kvm) {
1068 if (!vcpu->arch.xive_vcpu)
1069 continue;
1070 rc = xive_try_pick_queue(vcpu, prio);
1071 if (rc == 0) {
1072 *server = vcpu->arch.xive_vcpu->server_num;
1073 pr_devel(" found on 0x%x/%d\n", *server, prio);
1074 return rc;
1075 }
1076 }
1077 pr_devel(" no available target !\n");
1078
1079 /* No available target ! */
1080 return -EBUSY;
1081 }
1082
xive_lock_and_mask(struct kvmppc_xive * xive,struct kvmppc_xive_src_block * sb,struct kvmppc_xive_irq_state * state)1083 static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
1084 struct kvmppc_xive_src_block *sb,
1085 struct kvmppc_xive_irq_state *state)
1086 {
1087 struct xive_irq_data *xd;
1088 u32 hw_num;
1089 u8 old_prio;
1090 u64 val;
1091
1092 /*
1093 * Take the lock, set masked, try again if racing
1094 * with H_EOI
1095 */
1096 for (;;) {
1097 arch_spin_lock(&sb->lock);
1098 old_prio = state->guest_priority;
1099 state->guest_priority = MASKED;
1100 mb();
1101 if (!state->in_eoi)
1102 break;
1103 state->guest_priority = old_prio;
1104 arch_spin_unlock(&sb->lock);
1105 }
1106
1107 /* No change ? Bail */
1108 if (old_prio == MASKED)
1109 return old_prio;
1110
1111 /* Get the right irq */
1112 kvmppc_xive_select_irq(state, &hw_num, &xd);
1113
1114 /* Set PQ to 10, return old P and old Q and remember them */
1115 val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
1116 state->old_p = !!(val & 2);
1117 state->old_q = !!(val & 1);
1118
1119 /*
1120 * Synchronize hardware to sensure the queues are updated when
1121 * masking
1122 */
1123 xive_native_sync_source(hw_num);
1124
1125 return old_prio;
1126 }
1127
xive_lock_for_unmask(struct kvmppc_xive_src_block * sb,struct kvmppc_xive_irq_state * state)1128 static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
1129 struct kvmppc_xive_irq_state *state)
1130 {
1131 /*
1132 * Take the lock try again if racing with H_EOI
1133 */
1134 for (;;) {
1135 arch_spin_lock(&sb->lock);
1136 if (!state->in_eoi)
1137 break;
1138 arch_spin_unlock(&sb->lock);
1139 }
1140 }
1141
xive_finish_unmask(struct kvmppc_xive * xive,struct kvmppc_xive_src_block * sb,struct kvmppc_xive_irq_state * state,u8 prio)1142 static void xive_finish_unmask(struct kvmppc_xive *xive,
1143 struct kvmppc_xive_src_block *sb,
1144 struct kvmppc_xive_irq_state *state,
1145 u8 prio)
1146 {
1147 struct xive_irq_data *xd;
1148 u32 hw_num;
1149
1150 /* If we aren't changing a thing, move on */
1151 if (state->guest_priority != MASKED)
1152 goto bail;
1153
1154 /* Get the right irq */
1155 kvmppc_xive_select_irq(state, &hw_num, &xd);
1156
1157 /* Old Q set, set PQ to 11 */
1158 if (state->old_q)
1159 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
1160
1161 /*
1162 * If not old P, then perform an "effective" EOI,
1163 * on the source. This will handle the cases where
1164 * FW EOI is needed.
1165 */
1166 if (!state->old_p)
1167 xive_vm_source_eoi(hw_num, xd);
1168
1169 /* Synchronize ordering and mark unmasked */
1170 mb();
1171 bail:
1172 state->guest_priority = prio;
1173 }
1174
1175 /*
1176 * Target an interrupt to a given server/prio, this will fallback
1177 * to another server if necessary and perform the HW targetting
1178 * updates as needed
1179 *
1180 * NOTE: Must be called with the state lock held
1181 */
xive_target_interrupt(struct kvm * kvm,struct kvmppc_xive_irq_state * state,u32 server,u8 prio)1182 static int xive_target_interrupt(struct kvm *kvm,
1183 struct kvmppc_xive_irq_state *state,
1184 u32 server, u8 prio)
1185 {
1186 struct kvmppc_xive *xive = kvm->arch.xive;
1187 u32 hw_num;
1188 int rc;
1189
1190 /*
1191 * This will return a tentative server and actual
1192 * priority. The count for that new target will have
1193 * already been incremented.
1194 */
1195 rc = kvmppc_xive_select_target(kvm, &server, prio);
1196
1197 /*
1198 * We failed to find a target ? Not much we can do
1199 * at least until we support the GIQ.
1200 */
1201 if (rc)
1202 return rc;
1203
1204 /*
1205 * Increment the old queue pending count if there
1206 * was one so that the old queue count gets adjusted later
1207 * when observed to be empty.
1208 */
1209 if (state->act_priority != MASKED)
1210 xive_inc_q_pending(kvm,
1211 state->act_server,
1212 state->act_priority);
1213 /*
1214 * Update state and HW
1215 */
1216 state->act_priority = prio;
1217 state->act_server = server;
1218
1219 /* Get the right irq */
1220 kvmppc_xive_select_irq(state, &hw_num, NULL);
1221
1222 return xive_native_configure_irq(hw_num,
1223 kvmppc_xive_vp(xive, server),
1224 prio, state->number);
1225 }
1226
1227 /*
1228 * Targetting rules: In order to avoid losing track of
1229 * pending interrupts across mask and unmask, which would
1230 * allow queue overflows, we implement the following rules:
1231 *
1232 * - Unless it was never enabled (or we run out of capacity)
1233 * an interrupt is always targetted at a valid server/queue
1234 * pair even when "masked" by the guest. This pair tends to
1235 * be the last one used but it can be changed under some
1236 * circumstances. That allows us to separate targetting
1237 * from masking, we only handle accounting during (re)targetting,
1238 * this also allows us to let an interrupt drain into its target
1239 * queue after masking, avoiding complex schemes to remove
1240 * interrupts out of remote processor queues.
1241 *
1242 * - When masking, we set PQ to 10 and save the previous value
1243 * of P and Q.
1244 *
1245 * - When unmasking, if saved Q was set, we set PQ to 11
1246 * otherwise we leave PQ to the HW state which will be either
1247 * 10 if nothing happened or 11 if the interrupt fired while
1248 * masked. Effectively we are OR'ing the previous Q into the
1249 * HW Q.
1250 *
1251 * Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
1252 * which will unmask the interrupt and shoot a new one if Q was
1253 * set.
1254 *
1255 * Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
1256 * effectively meaning an H_EOI from the guest is still expected
1257 * for that interrupt).
1258 *
1259 * - If H_EOI occurs while masked, we clear the saved P.
1260 *
1261 * - When changing target, we account on the new target and
1262 * increment a separate "pending" counter on the old one.
1263 * This pending counter will be used to decrement the old
1264 * target's count when its queue has been observed empty.
1265 */
1266
kvmppc_xive_set_xive(struct kvm * kvm,u32 irq,u32 server,u32 priority)1267 int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
1268 u32 priority)
1269 {
1270 struct kvmppc_xive *xive = kvm->arch.xive;
1271 struct kvmppc_xive_src_block *sb;
1272 struct kvmppc_xive_irq_state *state;
1273 u8 new_act_prio;
1274 int rc = 0;
1275 u16 idx;
1276
1277 if (!xive)
1278 return -ENODEV;
1279
1280 pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
1281 irq, server, priority);
1282
1283 /* First, check provisioning of queues */
1284 if (priority != MASKED) {
1285 mutex_lock(&xive->lock);
1286 rc = xive_check_provisioning(xive->kvm,
1287 xive_prio_from_guest(priority));
1288 mutex_unlock(&xive->lock);
1289 }
1290 if (rc) {
1291 pr_devel(" provisioning failure %d !\n", rc);
1292 return rc;
1293 }
1294
1295 sb = kvmppc_xive_find_source(xive, irq, &idx);
1296 if (!sb)
1297 return -EINVAL;
1298 state = &sb->irq_state[idx];
1299
1300 /*
1301 * We first handle masking/unmasking since the locking
1302 * might need to be retried due to EOIs, we'll handle
1303 * targetting changes later. These functions will return
1304 * with the SB lock held.
1305 *
1306 * xive_lock_and_mask() will also set state->guest_priority
1307 * but won't otherwise change other fields of the state.
1308 *
1309 * xive_lock_for_unmask will not actually unmask, this will
1310 * be done later by xive_finish_unmask() once the targetting
1311 * has been done, so we don't try to unmask an interrupt
1312 * that hasn't yet been targetted.
1313 */
1314 if (priority == MASKED)
1315 xive_lock_and_mask(xive, sb, state);
1316 else
1317 xive_lock_for_unmask(sb, state);
1318
1319
1320 /*
1321 * Then we handle targetting.
1322 *
1323 * First calculate a new "actual priority"
1324 */
1325 new_act_prio = state->act_priority;
1326 if (priority != MASKED)
1327 new_act_prio = xive_prio_from_guest(priority);
1328
1329 pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
1330 new_act_prio, state->act_server, state->act_priority);
1331
1332 /*
1333 * Then check if we actually need to change anything,
1334 *
1335 * The condition for re-targetting the interrupt is that
1336 * we have a valid new priority (new_act_prio is not 0xff)
1337 * and either the server or the priority changed.
1338 *
1339 * Note: If act_priority was ff and the new priority is
1340 * also ff, we don't do anything and leave the interrupt
1341 * untargetted. An attempt of doing an int_on on an
1342 * untargetted interrupt will fail. If that is a problem
1343 * we could initialize interrupts with valid default
1344 */
1345
1346 if (new_act_prio != MASKED &&
1347 (state->act_server != server ||
1348 state->act_priority != new_act_prio))
1349 rc = xive_target_interrupt(kvm, state, server, new_act_prio);
1350
1351 /*
1352 * Perform the final unmasking of the interrupt source
1353 * if necessary
1354 */
1355 if (priority != MASKED)
1356 xive_finish_unmask(xive, sb, state, priority);
1357
1358 /*
1359 * Finally Update saved_priority to match. Only int_on/off
1360 * set this field to a different value.
1361 */
1362 state->saved_priority = priority;
1363
1364 arch_spin_unlock(&sb->lock);
1365 return rc;
1366 }
1367
kvmppc_xive_get_xive(struct kvm * kvm,u32 irq,u32 * server,u32 * priority)1368 int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
1369 u32 *priority)
1370 {
1371 struct kvmppc_xive *xive = kvm->arch.xive;
1372 struct kvmppc_xive_src_block *sb;
1373 struct kvmppc_xive_irq_state *state;
1374 u16 idx;
1375
1376 if (!xive)
1377 return -ENODEV;
1378
1379 sb = kvmppc_xive_find_source(xive, irq, &idx);
1380 if (!sb)
1381 return -EINVAL;
1382 state = &sb->irq_state[idx];
1383 arch_spin_lock(&sb->lock);
1384 *server = state->act_server;
1385 *priority = state->guest_priority;
1386 arch_spin_unlock(&sb->lock);
1387
1388 return 0;
1389 }
1390
kvmppc_xive_int_on(struct kvm * kvm,u32 irq)1391 int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
1392 {
1393 struct kvmppc_xive *xive = kvm->arch.xive;
1394 struct kvmppc_xive_src_block *sb;
1395 struct kvmppc_xive_irq_state *state;
1396 u16 idx;
1397
1398 if (!xive)
1399 return -ENODEV;
1400
1401 sb = kvmppc_xive_find_source(xive, irq, &idx);
1402 if (!sb)
1403 return -EINVAL;
1404 state = &sb->irq_state[idx];
1405
1406 pr_devel("int_on(irq=0x%x)\n", irq);
1407
1408 /*
1409 * Check if interrupt was not targetted
1410 */
1411 if (state->act_priority == MASKED) {
1412 pr_devel("int_on on untargetted interrupt\n");
1413 return -EINVAL;
1414 }
1415
1416 /* If saved_priority is 0xff, do nothing */
1417 if (state->saved_priority == MASKED)
1418 return 0;
1419
1420 /*
1421 * Lock and unmask it.
1422 */
1423 xive_lock_for_unmask(sb, state);
1424 xive_finish_unmask(xive, sb, state, state->saved_priority);
1425 arch_spin_unlock(&sb->lock);
1426
1427 return 0;
1428 }
1429
kvmppc_xive_int_off(struct kvm * kvm,u32 irq)1430 int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
1431 {
1432 struct kvmppc_xive *xive = kvm->arch.xive;
1433 struct kvmppc_xive_src_block *sb;
1434 struct kvmppc_xive_irq_state *state;
1435 u16 idx;
1436
1437 if (!xive)
1438 return -ENODEV;
1439
1440 sb = kvmppc_xive_find_source(xive, irq, &idx);
1441 if (!sb)
1442 return -EINVAL;
1443 state = &sb->irq_state[idx];
1444
1445 pr_devel("int_off(irq=0x%x)\n", irq);
1446
1447 /*
1448 * Lock and mask
1449 */
1450 state->saved_priority = xive_lock_and_mask(xive, sb, state);
1451 arch_spin_unlock(&sb->lock);
1452
1453 return 0;
1454 }
1455
xive_restore_pending_irq(struct kvmppc_xive * xive,u32 irq)1456 static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
1457 {
1458 struct kvmppc_xive_src_block *sb;
1459 struct kvmppc_xive_irq_state *state;
1460 u16 idx;
1461
1462 sb = kvmppc_xive_find_source(xive, irq, &idx);
1463 if (!sb)
1464 return false;
1465 state = &sb->irq_state[idx];
1466 if (!state->valid)
1467 return false;
1468
1469 /*
1470 * Trigger the IPI. This assumes we never restore a pass-through
1471 * interrupt which should be safe enough
1472 */
1473 xive_irq_trigger(&state->ipi_data);
1474
1475 return true;
1476 }
1477
kvmppc_xive_get_icp(struct kvm_vcpu * vcpu)1478 u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
1479 {
1480 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1481
1482 if (!xc)
1483 return 0;
1484
1485 /* Return the per-cpu state for state saving/migration */
1486 return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
1487 (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT |
1488 (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT;
1489 }
1490
kvmppc_xive_set_icp(struct kvm_vcpu * vcpu,u64 icpval)1491 int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
1492 {
1493 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1494 struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
1495 u8 cppr, mfrr;
1496 u32 xisr;
1497
1498 if (!xc || !xive)
1499 return -ENOENT;
1500
1501 /* Grab individual state fields. We don't use pending_pri */
1502 cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
1503 xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
1504 KVM_REG_PPC_ICP_XISR_MASK;
1505 mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
1506
1507 pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
1508 xc->server_num, cppr, mfrr, xisr);
1509
1510 /*
1511 * We can't update the state of a "pushed" VCPU, but that
1512 * shouldn't happen because the vcpu->mutex makes running a
1513 * vcpu mutually exclusive with doing one_reg get/set on it.
1514 */
1515 if (WARN_ON(vcpu->arch.xive_pushed))
1516 return -EIO;
1517
1518 /* Update VCPU HW saved state */
1519 vcpu->arch.xive_saved_state.cppr = cppr;
1520 xc->hw_cppr = xc->cppr = cppr;
1521
1522 /*
1523 * Update MFRR state. If it's not 0xff, we mark the VCPU as
1524 * having a pending MFRR change, which will re-evaluate the
1525 * target. The VCPU will thus potentially get a spurious
1526 * interrupt but that's not a big deal.
1527 */
1528 xc->mfrr = mfrr;
1529 if (mfrr < cppr)
1530 xive_irq_trigger(&xc->vp_ipi_data);
1531
1532 /*
1533 * Now saved XIRR is "interesting". It means there's something in
1534 * the legacy "1 element" queue... for an IPI we simply ignore it,
1535 * as the MFRR restore will handle that. For anything else we need
1536 * to force a resend of the source.
1537 * However the source may not have been setup yet. If that's the
1538 * case, we keep that info and increment a counter in the xive to
1539 * tell subsequent xive_set_source() to go look.
1540 */
1541 if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
1542 xc->delayed_irq = xisr;
1543 xive->delayed_irqs++;
1544 pr_devel(" xisr restore delayed\n");
1545 }
1546
1547 return 0;
1548 }
1549
kvmppc_xive_set_mapped(struct kvm * kvm,unsigned long guest_irq,unsigned long host_irq)1550 int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
1551 unsigned long host_irq)
1552 {
1553 struct kvmppc_xive *xive = kvm->arch.xive;
1554 struct kvmppc_xive_src_block *sb;
1555 struct kvmppc_xive_irq_state *state;
1556 struct irq_data *host_data =
1557 irq_domain_get_irq_data(irq_get_default_domain(), host_irq);
1558 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
1559 u16 idx;
1560 u8 prio;
1561 int rc;
1562
1563 if (!xive)
1564 return -ENODEV;
1565
1566 pr_debug("%s: GIRQ 0x%lx host IRQ %ld XIVE HW IRQ 0x%x\n",
1567 __func__, guest_irq, host_irq, hw_irq);
1568
1569 sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
1570 if (!sb)
1571 return -EINVAL;
1572 state = &sb->irq_state[idx];
1573
1574 /*
1575 * Mark the passed-through interrupt as going to a VCPU,
1576 * this will prevent further EOIs and similar operations
1577 * from the XIVE code. It will also mask the interrupt
1578 * to either PQ=10 or 11 state, the latter if the interrupt
1579 * is pending. This will allow us to unmask or retrigger it
1580 * after routing it to the guest with a simple EOI.
1581 *
1582 * The "state" argument is a "token", all it needs is to be
1583 * non-NULL to switch to passed-through or NULL for the
1584 * other way around. We may not yet have an actual VCPU
1585 * target here and we don't really care.
1586 */
1587 rc = irq_set_vcpu_affinity(host_irq, state);
1588 if (rc) {
1589 pr_err("Failed to set VCPU affinity for host IRQ %ld\n", host_irq);
1590 return rc;
1591 }
1592
1593 /*
1594 * Mask and read state of IPI. We need to know if its P bit
1595 * is set as that means it's potentially already using a
1596 * queue entry in the target
1597 */
1598 prio = xive_lock_and_mask(xive, sb, state);
1599 pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
1600 state->old_p, state->old_q);
1601
1602 /* Turn the IPI hard off */
1603 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
1604
1605 /*
1606 * Reset ESB guest mapping. Needed when ESB pages are exposed
1607 * to the guest in XIVE native mode
1608 */
1609 if (xive->ops && xive->ops->reset_mapped)
1610 xive->ops->reset_mapped(kvm, guest_irq);
1611
1612 /* Grab info about irq */
1613 state->pt_number = hw_irq;
1614 state->pt_data = irq_data_get_irq_chip_data(host_data);
1615
1616 /*
1617 * Configure the IRQ to match the existing configuration of
1618 * the IPI if it was already targetted. Otherwise this will
1619 * mask the interrupt in a lossy way (act_priority is 0xff)
1620 * which is fine for a never started interrupt.
1621 */
1622 xive_native_configure_irq(hw_irq,
1623 kvmppc_xive_vp(xive, state->act_server),
1624 state->act_priority, state->number);
1625
1626 /*
1627 * We do an EOI to enable the interrupt (and retrigger if needed)
1628 * if the guest has the interrupt unmasked and the P bit was *not*
1629 * set in the IPI. If it was set, we know a slot may still be in
1630 * use in the target queue thus we have to wait for a guest
1631 * originated EOI
1632 */
1633 if (prio != MASKED && !state->old_p)
1634 xive_vm_source_eoi(hw_irq, state->pt_data);
1635
1636 /* Clear old_p/old_q as they are no longer relevant */
1637 state->old_p = state->old_q = false;
1638
1639 /* Restore guest prio (unlocks EOI) */
1640 mb();
1641 state->guest_priority = prio;
1642 arch_spin_unlock(&sb->lock);
1643
1644 return 0;
1645 }
1646 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
1647
kvmppc_xive_clr_mapped(struct kvm * kvm,unsigned long guest_irq,unsigned long host_irq)1648 int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
1649 unsigned long host_irq)
1650 {
1651 struct kvmppc_xive *xive = kvm->arch.xive;
1652 struct kvmppc_xive_src_block *sb;
1653 struct kvmppc_xive_irq_state *state;
1654 u16 idx;
1655 u8 prio;
1656 int rc;
1657
1658 if (!xive)
1659 return -ENODEV;
1660
1661 pr_debug("%s: GIRQ 0x%lx host IRQ %ld\n", __func__, guest_irq, host_irq);
1662
1663 sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
1664 if (!sb)
1665 return -EINVAL;
1666 state = &sb->irq_state[idx];
1667
1668 /*
1669 * Mask and read state of IRQ. We need to know if its P bit
1670 * is set as that means it's potentially already using a
1671 * queue entry in the target
1672 */
1673 prio = xive_lock_and_mask(xive, sb, state);
1674 pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
1675 state->old_p, state->old_q);
1676
1677 /*
1678 * If old_p is set, the interrupt is pending, we switch it to
1679 * PQ=11. This will force a resend in the host so the interrupt
1680 * isn't lost to whatever host driver may pick it up
1681 */
1682 if (state->old_p)
1683 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
1684
1685 /* Release the passed-through interrupt to the host */
1686 rc = irq_set_vcpu_affinity(host_irq, NULL);
1687 if (rc) {
1688 pr_err("Failed to clr VCPU affinity for host IRQ %ld\n", host_irq);
1689 return rc;
1690 }
1691
1692 /* Forget about the IRQ */
1693 state->pt_number = 0;
1694 state->pt_data = NULL;
1695
1696 /*
1697 * Reset ESB guest mapping. Needed when ESB pages are exposed
1698 * to the guest in XIVE native mode
1699 */
1700 if (xive->ops && xive->ops->reset_mapped) {
1701 xive->ops->reset_mapped(kvm, guest_irq);
1702 }
1703
1704 /* Reconfigure the IPI */
1705 xive_native_configure_irq(state->ipi_number,
1706 kvmppc_xive_vp(xive, state->act_server),
1707 state->act_priority, state->number);
1708
1709 /*
1710 * If old_p is set (we have a queue entry potentially
1711 * occupied) or the interrupt is masked, we set the IPI
1712 * to PQ=10 state. Otherwise we just re-enable it (PQ=00).
1713 */
1714 if (prio == MASKED || state->old_p)
1715 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
1716 else
1717 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
1718
1719 /* Restore guest prio (unlocks EOI) */
1720 mb();
1721 state->guest_priority = prio;
1722 arch_spin_unlock(&sb->lock);
1723
1724 return 0;
1725 }
1726 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
1727
kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu * vcpu)1728 void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
1729 {
1730 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1731 struct kvm *kvm = vcpu->kvm;
1732 struct kvmppc_xive *xive = kvm->arch.xive;
1733 int i, j;
1734
1735 for (i = 0; i <= xive->max_sbid; i++) {
1736 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1737
1738 if (!sb)
1739 continue;
1740 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
1741 struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
1742
1743 if (!state->valid)
1744 continue;
1745 if (state->act_priority == MASKED)
1746 continue;
1747 if (state->act_server != xc->server_num)
1748 continue;
1749
1750 /* Clean it up */
1751 arch_spin_lock(&sb->lock);
1752 state->act_priority = MASKED;
1753 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
1754 xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
1755 if (state->pt_number) {
1756 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
1757 xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
1758 }
1759 arch_spin_unlock(&sb->lock);
1760 }
1761 }
1762
1763 /* Disable vcpu's escalation interrupt */
1764 if (vcpu->arch.xive_esc_on) {
1765 __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
1766 XIVE_ESB_SET_PQ_01));
1767 vcpu->arch.xive_esc_on = false;
1768 }
1769
1770 /*
1771 * Clear pointers to escalation interrupt ESB.
1772 * This is safe because the vcpu->mutex is held, preventing
1773 * any other CPU from concurrently executing a KVM_RUN ioctl.
1774 */
1775 vcpu->arch.xive_esc_vaddr = 0;
1776 vcpu->arch.xive_esc_raddr = 0;
1777 }
1778
1779 /*
1780 * In single escalation mode, the escalation interrupt is marked so
1781 * that EOI doesn't re-enable it, but just sets the stale_p flag to
1782 * indicate that the P bit has already been dealt with. However, the
1783 * assembly code that enters the guest sets PQ to 00 without clearing
1784 * stale_p (because it has no easy way to address it). Hence we have
1785 * to adjust stale_p before shutting down the interrupt.
1786 */
xive_cleanup_single_escalation(struct kvm_vcpu * vcpu,int irq)1787 void xive_cleanup_single_escalation(struct kvm_vcpu *vcpu, int irq)
1788 {
1789 struct xive_irq_data *xd = irq_get_chip_data(irq);
1790
1791 /*
1792 * This slightly odd sequence gives the right result
1793 * (i.e. stale_p set if xive_esc_on is false) even if
1794 * we race with xive_esc_irq() and xive_irq_eoi().
1795 */
1796 xd->stale_p = false;
1797 smp_mb(); /* paired with smb_wmb in xive_esc_irq */
1798 if (!vcpu->arch.xive_esc_on)
1799 xd->stale_p = true;
1800 }
1801
kvmppc_xive_cleanup_vcpu(struct kvm_vcpu * vcpu)1802 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
1803 {
1804 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1805 struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
1806 int i;
1807
1808 if (!kvmppc_xics_enabled(vcpu))
1809 return;
1810
1811 if (!xc)
1812 return;
1813
1814 pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
1815
1816 /* Ensure no interrupt is still routed to that VP */
1817 xc->valid = false;
1818 kvmppc_xive_disable_vcpu_interrupts(vcpu);
1819
1820 /* Mask the VP IPI */
1821 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
1822
1823 /* Free escalations */
1824 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1825 if (xc->esc_virq[i]) {
1826 if (kvmppc_xive_has_single_escalation(xc->xive))
1827 xive_cleanup_single_escalation(vcpu, xc->esc_virq[i]);
1828 free_irq(xc->esc_virq[i], vcpu);
1829 irq_dispose_mapping(xc->esc_virq[i]);
1830 kfree(xc->esc_virq_names[i]);
1831 }
1832 }
1833
1834 /* Disable the VP */
1835 xive_native_disable_vp(xc->vp_id);
1836
1837 /* Clear the cam word so guest entry won't try to push context */
1838 vcpu->arch.xive_cam_word = 0;
1839
1840 /* Free the queues */
1841 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1842 struct xive_q *q = &xc->queues[i];
1843
1844 xive_native_disable_queue(xc->vp_id, q, i);
1845 if (q->qpage) {
1846 free_pages((unsigned long)q->qpage,
1847 xive->q_page_order);
1848 q->qpage = NULL;
1849 }
1850 }
1851
1852 /* Free the IPI */
1853 if (xc->vp_ipi) {
1854 xive_cleanup_irq_data(&xc->vp_ipi_data);
1855 xive_native_free_irq(xc->vp_ipi);
1856 }
1857 /* Free the VP */
1858 kfree(xc);
1859
1860 /* Cleanup the vcpu */
1861 vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT;
1862 vcpu->arch.xive_vcpu = NULL;
1863 }
1864
kvmppc_xive_vcpu_id_valid(struct kvmppc_xive * xive,u32 cpu)1865 static bool kvmppc_xive_vcpu_id_valid(struct kvmppc_xive *xive, u32 cpu)
1866 {
1867 /* We have a block of xive->nr_servers VPs. We just need to check
1868 * packed vCPU ids are below that.
1869 */
1870 return kvmppc_pack_vcpu_id(xive->kvm, cpu) < xive->nr_servers;
1871 }
1872
kvmppc_xive_compute_vp_id(struct kvmppc_xive * xive,u32 cpu,u32 * vp)1873 int kvmppc_xive_compute_vp_id(struct kvmppc_xive *xive, u32 cpu, u32 *vp)
1874 {
1875 u32 vp_id;
1876
1877 if (!kvmppc_xive_vcpu_id_valid(xive, cpu)) {
1878 pr_devel("Out of bounds !\n");
1879 return -EINVAL;
1880 }
1881
1882 if (xive->vp_base == XIVE_INVALID_VP) {
1883 xive->vp_base = xive_native_alloc_vp_block(xive->nr_servers);
1884 pr_devel("VP_Base=%x nr_servers=%d\n", xive->vp_base, xive->nr_servers);
1885
1886 if (xive->vp_base == XIVE_INVALID_VP)
1887 return -ENOSPC;
1888 }
1889
1890 vp_id = kvmppc_xive_vp(xive, cpu);
1891 if (kvmppc_xive_vp_in_use(xive->kvm, vp_id)) {
1892 pr_devel("Duplicate !\n");
1893 return -EEXIST;
1894 }
1895
1896 *vp = vp_id;
1897
1898 return 0;
1899 }
1900
kvmppc_xive_connect_vcpu(struct kvm_device * dev,struct kvm_vcpu * vcpu,u32 cpu)1901 int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
1902 struct kvm_vcpu *vcpu, u32 cpu)
1903 {
1904 struct kvmppc_xive *xive = dev->private;
1905 struct kvmppc_xive_vcpu *xc;
1906 int i, r = -EBUSY;
1907 u32 vp_id;
1908
1909 pr_devel("connect_vcpu(cpu=%d)\n", cpu);
1910
1911 if (dev->ops != &kvm_xive_ops) {
1912 pr_devel("Wrong ops !\n");
1913 return -EPERM;
1914 }
1915 if (xive->kvm != vcpu->kvm)
1916 return -EPERM;
1917 if (vcpu->arch.irq_type != KVMPPC_IRQ_DEFAULT)
1918 return -EBUSY;
1919
1920 /* We need to synchronize with queue provisioning */
1921 mutex_lock(&xive->lock);
1922
1923 r = kvmppc_xive_compute_vp_id(xive, cpu, &vp_id);
1924 if (r)
1925 goto bail;
1926
1927 xc = kzalloc(sizeof(*xc), GFP_KERNEL);
1928 if (!xc) {
1929 r = -ENOMEM;
1930 goto bail;
1931 }
1932
1933 vcpu->arch.xive_vcpu = xc;
1934 xc->xive = xive;
1935 xc->vcpu = vcpu;
1936 xc->server_num = cpu;
1937 xc->vp_id = vp_id;
1938 xc->mfrr = 0xff;
1939 xc->valid = true;
1940
1941 r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
1942 if (r)
1943 goto bail;
1944
1945 if (!kvmppc_xive_check_save_restore(vcpu)) {
1946 pr_err("inconsistent save-restore setup for VCPU %d\n", cpu);
1947 r = -EIO;
1948 goto bail;
1949 }
1950
1951 /* Configure VCPU fields for use by assembly push/pull */
1952 vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
1953 vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
1954
1955 /* Allocate IPI */
1956 xc->vp_ipi = xive_native_alloc_irq();
1957 if (!xc->vp_ipi) {
1958 pr_err("Failed to allocate xive irq for VCPU IPI\n");
1959 r = -EIO;
1960 goto bail;
1961 }
1962 pr_devel(" IPI=0x%x\n", xc->vp_ipi);
1963
1964 r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
1965 if (r)
1966 goto bail;
1967
1968 /*
1969 * Enable the VP first as the single escalation mode will
1970 * affect escalation interrupts numbering
1971 */
1972 r = xive_native_enable_vp(xc->vp_id, kvmppc_xive_has_single_escalation(xive));
1973 if (r) {
1974 pr_err("Failed to enable VP in OPAL, err %d\n", r);
1975 goto bail;
1976 }
1977
1978 /*
1979 * Initialize queues. Initially we set them all for no queueing
1980 * and we enable escalation for queue 0 only which we'll use for
1981 * our mfrr change notifications. If the VCPU is hot-plugged, we
1982 * do handle provisioning however based on the existing "map"
1983 * of enabled queues.
1984 */
1985 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1986 struct xive_q *q = &xc->queues[i];
1987
1988 /* Single escalation, no queue 7 */
1989 if (i == 7 && kvmppc_xive_has_single_escalation(xive))
1990 break;
1991
1992 /* Is queue already enabled ? Provision it */
1993 if (xive->qmap & (1 << i)) {
1994 r = xive_provision_queue(vcpu, i);
1995 if (r == 0 && !kvmppc_xive_has_single_escalation(xive))
1996 kvmppc_xive_attach_escalation(
1997 vcpu, i, kvmppc_xive_has_single_escalation(xive));
1998 if (r)
1999 goto bail;
2000 } else {
2001 r = xive_native_configure_queue(xc->vp_id,
2002 q, i, NULL, 0, true);
2003 if (r) {
2004 pr_err("Failed to configure queue %d for VCPU %d\n",
2005 i, cpu);
2006 goto bail;
2007 }
2008 }
2009 }
2010
2011 /* If not done above, attach priority 0 escalation */
2012 r = kvmppc_xive_attach_escalation(vcpu, 0, kvmppc_xive_has_single_escalation(xive));
2013 if (r)
2014 goto bail;
2015
2016 /* Route the IPI */
2017 r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
2018 if (!r)
2019 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
2020
2021 bail:
2022 mutex_unlock(&xive->lock);
2023 if (r) {
2024 kvmppc_xive_cleanup_vcpu(vcpu);
2025 return r;
2026 }
2027
2028 vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
2029 return 0;
2030 }
2031
2032 /*
2033 * Scanning of queues before/after migration save
2034 */
xive_pre_save_set_queued(struct kvmppc_xive * xive,u32 irq)2035 static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
2036 {
2037 struct kvmppc_xive_src_block *sb;
2038 struct kvmppc_xive_irq_state *state;
2039 u16 idx;
2040
2041 sb = kvmppc_xive_find_source(xive, irq, &idx);
2042 if (!sb)
2043 return;
2044
2045 state = &sb->irq_state[idx];
2046
2047 /* Some sanity checking */
2048 if (!state->valid) {
2049 pr_err("invalid irq 0x%x in cpu queue!\n", irq);
2050 return;
2051 }
2052
2053 /*
2054 * If the interrupt is in a queue it should have P set.
2055 * We warn so that gets reported. A backtrace isn't useful
2056 * so no need to use a WARN_ON.
2057 */
2058 if (!state->saved_p)
2059 pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
2060
2061 /* Set flag */
2062 state->in_queue = true;
2063 }
2064
xive_pre_save_mask_irq(struct kvmppc_xive * xive,struct kvmppc_xive_src_block * sb,u32 irq)2065 static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
2066 struct kvmppc_xive_src_block *sb,
2067 u32 irq)
2068 {
2069 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
2070
2071 if (!state->valid)
2072 return;
2073
2074 /* Mask and save state, this will also sync HW queues */
2075 state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
2076
2077 /* Transfer P and Q */
2078 state->saved_p = state->old_p;
2079 state->saved_q = state->old_q;
2080
2081 /* Unlock */
2082 arch_spin_unlock(&sb->lock);
2083 }
2084
xive_pre_save_unmask_irq(struct kvmppc_xive * xive,struct kvmppc_xive_src_block * sb,u32 irq)2085 static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
2086 struct kvmppc_xive_src_block *sb,
2087 u32 irq)
2088 {
2089 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
2090
2091 if (!state->valid)
2092 return;
2093
2094 /*
2095 * Lock / exclude EOI (not technically necessary if the
2096 * guest isn't running concurrently. If this becomes a
2097 * performance issue we can probably remove the lock.
2098 */
2099 xive_lock_for_unmask(sb, state);
2100
2101 /* Restore mask/prio if it wasn't masked */
2102 if (state->saved_scan_prio != MASKED)
2103 xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
2104
2105 /* Unlock */
2106 arch_spin_unlock(&sb->lock);
2107 }
2108
xive_pre_save_queue(struct kvmppc_xive * xive,struct xive_q * q)2109 static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
2110 {
2111 u32 idx = q->idx;
2112 u32 toggle = q->toggle;
2113 u32 irq;
2114
2115 do {
2116 irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
2117 if (irq > XICS_IPI)
2118 xive_pre_save_set_queued(xive, irq);
2119 } while(irq);
2120 }
2121
xive_pre_save_scan(struct kvmppc_xive * xive)2122 static void xive_pre_save_scan(struct kvmppc_xive *xive)
2123 {
2124 struct kvm_vcpu *vcpu = NULL;
2125 unsigned long i;
2126 int j;
2127
2128 /*
2129 * See comment in xive_get_source() about how this
2130 * work. Collect a stable state for all interrupts
2131 */
2132 for (i = 0; i <= xive->max_sbid; i++) {
2133 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
2134 if (!sb)
2135 continue;
2136 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
2137 xive_pre_save_mask_irq(xive, sb, j);
2138 }
2139
2140 /* Then scan the queues and update the "in_queue" flag */
2141 kvm_for_each_vcpu(i, vcpu, xive->kvm) {
2142 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2143 if (!xc)
2144 continue;
2145 for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
2146 if (xc->queues[j].qpage)
2147 xive_pre_save_queue(xive, &xc->queues[j]);
2148 }
2149 }
2150
2151 /* Finally restore interrupt states */
2152 for (i = 0; i <= xive->max_sbid; i++) {
2153 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
2154 if (!sb)
2155 continue;
2156 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
2157 xive_pre_save_unmask_irq(xive, sb, j);
2158 }
2159 }
2160
xive_post_save_scan(struct kvmppc_xive * xive)2161 static void xive_post_save_scan(struct kvmppc_xive *xive)
2162 {
2163 u32 i, j;
2164
2165 /* Clear all the in_queue flags */
2166 for (i = 0; i <= xive->max_sbid; i++) {
2167 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
2168 if (!sb)
2169 continue;
2170 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
2171 sb->irq_state[j].in_queue = false;
2172 }
2173
2174 /* Next get_source() will do a new scan */
2175 xive->saved_src_count = 0;
2176 }
2177
2178 /*
2179 * This returns the source configuration and state to user space.
2180 */
xive_get_source(struct kvmppc_xive * xive,long irq,u64 addr)2181 static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
2182 {
2183 struct kvmppc_xive_src_block *sb;
2184 struct kvmppc_xive_irq_state *state;
2185 u64 __user *ubufp = (u64 __user *) addr;
2186 u64 val, prio;
2187 u16 idx;
2188
2189 sb = kvmppc_xive_find_source(xive, irq, &idx);
2190 if (!sb)
2191 return -ENOENT;
2192
2193 state = &sb->irq_state[idx];
2194
2195 if (!state->valid)
2196 return -ENOENT;
2197
2198 pr_devel("get_source(%ld)...\n", irq);
2199
2200 /*
2201 * So to properly save the state into something that looks like a
2202 * XICS migration stream we cannot treat interrupts individually.
2203 *
2204 * We need, instead, mask them all (& save their previous PQ state)
2205 * to get a stable state in the HW, then sync them to ensure that
2206 * any interrupt that had already fired hits its queue, and finally
2207 * scan all the queues to collect which interrupts are still present
2208 * in the queues, so we can set the "pending" flag on them and
2209 * they can be resent on restore.
2210 *
2211 * So we do it all when the "first" interrupt gets saved, all the
2212 * state is collected at that point, the rest of xive_get_source()
2213 * will merely collect and convert that state to the expected
2214 * userspace bit mask.
2215 */
2216 if (xive->saved_src_count == 0)
2217 xive_pre_save_scan(xive);
2218 xive->saved_src_count++;
2219
2220 /* Convert saved state into something compatible with xics */
2221 val = state->act_server;
2222 prio = state->saved_scan_prio;
2223
2224 if (prio == MASKED) {
2225 val |= KVM_XICS_MASKED;
2226 prio = state->saved_priority;
2227 }
2228 val |= prio << KVM_XICS_PRIORITY_SHIFT;
2229 if (state->lsi) {
2230 val |= KVM_XICS_LEVEL_SENSITIVE;
2231 if (state->saved_p)
2232 val |= KVM_XICS_PENDING;
2233 } else {
2234 if (state->saved_p)
2235 val |= KVM_XICS_PRESENTED;
2236
2237 if (state->saved_q)
2238 val |= KVM_XICS_QUEUED;
2239
2240 /*
2241 * We mark it pending (which will attempt a re-delivery)
2242 * if we are in a queue *or* we were masked and had
2243 * Q set which is equivalent to the XICS "masked pending"
2244 * state
2245 */
2246 if (state->in_queue || (prio == MASKED && state->saved_q))
2247 val |= KVM_XICS_PENDING;
2248 }
2249
2250 /*
2251 * If that was the last interrupt saved, reset the
2252 * in_queue flags
2253 */
2254 if (xive->saved_src_count == xive->src_count)
2255 xive_post_save_scan(xive);
2256
2257 /* Copy the result to userspace */
2258 if (put_user(val, ubufp))
2259 return -EFAULT;
2260
2261 return 0;
2262 }
2263
kvmppc_xive_create_src_block(struct kvmppc_xive * xive,int irq)2264 struct kvmppc_xive_src_block *kvmppc_xive_create_src_block(
2265 struct kvmppc_xive *xive, int irq)
2266 {
2267 struct kvmppc_xive_src_block *sb;
2268 int i, bid;
2269
2270 bid = irq >> KVMPPC_XICS_ICS_SHIFT;
2271
2272 mutex_lock(&xive->lock);
2273
2274 /* block already exists - somebody else got here first */
2275 if (xive->src_blocks[bid])
2276 goto out;
2277
2278 /* Create the ICS */
2279 sb = kzalloc(sizeof(*sb), GFP_KERNEL);
2280 if (!sb)
2281 goto out;
2282
2283 sb->id = bid;
2284
2285 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
2286 sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
2287 sb->irq_state[i].eisn = 0;
2288 sb->irq_state[i].guest_priority = MASKED;
2289 sb->irq_state[i].saved_priority = MASKED;
2290 sb->irq_state[i].act_priority = MASKED;
2291 }
2292 smp_wmb();
2293 xive->src_blocks[bid] = sb;
2294
2295 if (bid > xive->max_sbid)
2296 xive->max_sbid = bid;
2297
2298 out:
2299 mutex_unlock(&xive->lock);
2300 return xive->src_blocks[bid];
2301 }
2302
xive_check_delayed_irq(struct kvmppc_xive * xive,u32 irq)2303 static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
2304 {
2305 struct kvm *kvm = xive->kvm;
2306 struct kvm_vcpu *vcpu = NULL;
2307 unsigned long i;
2308
2309 kvm_for_each_vcpu(i, vcpu, kvm) {
2310 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2311
2312 if (!xc)
2313 continue;
2314
2315 if (xc->delayed_irq == irq) {
2316 xc->delayed_irq = 0;
2317 xive->delayed_irqs--;
2318 return true;
2319 }
2320 }
2321 return false;
2322 }
2323
xive_set_source(struct kvmppc_xive * xive,long irq,u64 addr)2324 static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
2325 {
2326 struct kvmppc_xive_src_block *sb;
2327 struct kvmppc_xive_irq_state *state;
2328 u64 __user *ubufp = (u64 __user *) addr;
2329 u16 idx;
2330 u64 val;
2331 u8 act_prio, guest_prio;
2332 u32 server;
2333 int rc = 0;
2334
2335 if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
2336 return -ENOENT;
2337
2338 pr_devel("set_source(irq=0x%lx)\n", irq);
2339
2340 /* Find the source */
2341 sb = kvmppc_xive_find_source(xive, irq, &idx);
2342 if (!sb) {
2343 pr_devel("No source, creating source block...\n");
2344 sb = kvmppc_xive_create_src_block(xive, irq);
2345 if (!sb) {
2346 pr_devel("Failed to create block...\n");
2347 return -ENOMEM;
2348 }
2349 }
2350 state = &sb->irq_state[idx];
2351
2352 /* Read user passed data */
2353 if (get_user(val, ubufp)) {
2354 pr_devel("fault getting user info !\n");
2355 return -EFAULT;
2356 }
2357
2358 server = val & KVM_XICS_DESTINATION_MASK;
2359 guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
2360
2361 pr_devel(" val=0x016%llx (server=0x%x, guest_prio=%d)\n",
2362 val, server, guest_prio);
2363
2364 /*
2365 * If the source doesn't already have an IPI, allocate
2366 * one and get the corresponding data
2367 */
2368 if (!state->ipi_number) {
2369 state->ipi_number = xive_native_alloc_irq();
2370 if (state->ipi_number == 0) {
2371 pr_devel("Failed to allocate IPI !\n");
2372 return -ENOMEM;
2373 }
2374 xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
2375 pr_devel(" src_ipi=0x%x\n", state->ipi_number);
2376 }
2377
2378 /*
2379 * We use lock_and_mask() to set us in the right masked
2380 * state. We will override that state from the saved state
2381 * further down, but this will handle the cases of interrupts
2382 * that need FW masking. We set the initial guest_priority to
2383 * 0 before calling it to ensure it actually performs the masking.
2384 */
2385 state->guest_priority = 0;
2386 xive_lock_and_mask(xive, sb, state);
2387
2388 /*
2389 * Now, we select a target if we have one. If we don't we
2390 * leave the interrupt untargetted. It means that an interrupt
2391 * can become "untargetted" across migration if it was masked
2392 * by set_xive() but there is little we can do about it.
2393 */
2394
2395 /* First convert prio and mark interrupt as untargetted */
2396 act_prio = xive_prio_from_guest(guest_prio);
2397 state->act_priority = MASKED;
2398
2399 /*
2400 * We need to drop the lock due to the mutex below. Hopefully
2401 * nothing is touching that interrupt yet since it hasn't been
2402 * advertized to a running guest yet
2403 */
2404 arch_spin_unlock(&sb->lock);
2405
2406 /* If we have a priority target the interrupt */
2407 if (act_prio != MASKED) {
2408 /* First, check provisioning of queues */
2409 mutex_lock(&xive->lock);
2410 rc = xive_check_provisioning(xive->kvm, act_prio);
2411 mutex_unlock(&xive->lock);
2412
2413 /* Target interrupt */
2414 if (rc == 0)
2415 rc = xive_target_interrupt(xive->kvm, state,
2416 server, act_prio);
2417 /*
2418 * If provisioning or targetting failed, leave it
2419 * alone and masked. It will remain disabled until
2420 * the guest re-targets it.
2421 */
2422 }
2423
2424 /*
2425 * Find out if this was a delayed irq stashed in an ICP,
2426 * in which case, treat it as pending
2427 */
2428 if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
2429 val |= KVM_XICS_PENDING;
2430 pr_devel(" Found delayed ! forcing PENDING !\n");
2431 }
2432
2433 /* Cleanup the SW state */
2434 state->old_p = false;
2435 state->old_q = false;
2436 state->lsi = false;
2437 state->asserted = false;
2438
2439 /* Restore LSI state */
2440 if (val & KVM_XICS_LEVEL_SENSITIVE) {
2441 state->lsi = true;
2442 if (val & KVM_XICS_PENDING)
2443 state->asserted = true;
2444 pr_devel(" LSI ! Asserted=%d\n", state->asserted);
2445 }
2446
2447 /*
2448 * Restore P and Q. If the interrupt was pending, we
2449 * force Q and !P, which will trigger a resend.
2450 *
2451 * That means that a guest that had both an interrupt
2452 * pending (queued) and Q set will restore with only
2453 * one instance of that interrupt instead of 2, but that
2454 * is perfectly fine as coalescing interrupts that haven't
2455 * been presented yet is always allowed.
2456 */
2457 if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING))
2458 state->old_p = true;
2459 if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
2460 state->old_q = true;
2461
2462 pr_devel(" P=%d, Q=%d\n", state->old_p, state->old_q);
2463
2464 /*
2465 * If the interrupt was unmasked, update guest priority and
2466 * perform the appropriate state transition and do a
2467 * re-trigger if necessary.
2468 */
2469 if (val & KVM_XICS_MASKED) {
2470 pr_devel(" masked, saving prio\n");
2471 state->guest_priority = MASKED;
2472 state->saved_priority = guest_prio;
2473 } else {
2474 pr_devel(" unmasked, restoring to prio %d\n", guest_prio);
2475 xive_finish_unmask(xive, sb, state, guest_prio);
2476 state->saved_priority = guest_prio;
2477 }
2478
2479 /* Increment the number of valid sources and mark this one valid */
2480 if (!state->valid)
2481 xive->src_count++;
2482 state->valid = true;
2483
2484 return 0;
2485 }
2486
kvmppc_xive_set_irq(struct kvm * kvm,int irq_source_id,u32 irq,int level,bool line_status)2487 int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
2488 bool line_status)
2489 {
2490 struct kvmppc_xive *xive = kvm->arch.xive;
2491 struct kvmppc_xive_src_block *sb;
2492 struct kvmppc_xive_irq_state *state;
2493 u16 idx;
2494
2495 if (!xive)
2496 return -ENODEV;
2497
2498 sb = kvmppc_xive_find_source(xive, irq, &idx);
2499 if (!sb)
2500 return -EINVAL;
2501
2502 /* Perform locklessly .... (we need to do some RCUisms here...) */
2503 state = &sb->irq_state[idx];
2504 if (!state->valid)
2505 return -EINVAL;
2506
2507 /* We don't allow a trigger on a passed-through interrupt */
2508 if (state->pt_number)
2509 return -EINVAL;
2510
2511 if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
2512 state->asserted = true;
2513 else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
2514 state->asserted = false;
2515 return 0;
2516 }
2517
2518 /* Trigger the IPI */
2519 xive_irq_trigger(&state->ipi_data);
2520
2521 return 0;
2522 }
2523
kvmppc_xive_set_nr_servers(struct kvmppc_xive * xive,u64 addr)2524 int kvmppc_xive_set_nr_servers(struct kvmppc_xive *xive, u64 addr)
2525 {
2526 u32 __user *ubufp = (u32 __user *) addr;
2527 u32 nr_servers;
2528 int rc = 0;
2529
2530 if (get_user(nr_servers, ubufp))
2531 return -EFAULT;
2532
2533 pr_devel("%s nr_servers=%u\n", __func__, nr_servers);
2534
2535 if (!nr_servers || nr_servers > KVM_MAX_VCPU_IDS)
2536 return -EINVAL;
2537
2538 mutex_lock(&xive->lock);
2539 if (xive->vp_base != XIVE_INVALID_VP)
2540 /* The VP block is allocated once and freed when the device
2541 * is released. Better not allow to change its size since its
2542 * used by connect_vcpu to validate vCPU ids are valid (eg,
2543 * setting it back to a higher value could allow connect_vcpu
2544 * to come up with a VP id that goes beyond the VP block, which
2545 * is likely to cause a crash in OPAL).
2546 */
2547 rc = -EBUSY;
2548 else if (nr_servers > KVM_MAX_VCPUS)
2549 /* We don't need more servers. Higher vCPU ids get packed
2550 * down below KVM_MAX_VCPUS by kvmppc_pack_vcpu_id().
2551 */
2552 xive->nr_servers = KVM_MAX_VCPUS;
2553 else
2554 xive->nr_servers = nr_servers;
2555
2556 mutex_unlock(&xive->lock);
2557
2558 return rc;
2559 }
2560
xive_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2561 static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2562 {
2563 struct kvmppc_xive *xive = dev->private;
2564
2565 /* We honor the existing XICS ioctl */
2566 switch (attr->group) {
2567 case KVM_DEV_XICS_GRP_SOURCES:
2568 return xive_set_source(xive, attr->attr, attr->addr);
2569 case KVM_DEV_XICS_GRP_CTRL:
2570 switch (attr->attr) {
2571 case KVM_DEV_XICS_NR_SERVERS:
2572 return kvmppc_xive_set_nr_servers(xive, attr->addr);
2573 }
2574 }
2575 return -ENXIO;
2576 }
2577
xive_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2578 static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2579 {
2580 struct kvmppc_xive *xive = dev->private;
2581
2582 /* We honor the existing XICS ioctl */
2583 switch (attr->group) {
2584 case KVM_DEV_XICS_GRP_SOURCES:
2585 return xive_get_source(xive, attr->attr, attr->addr);
2586 }
2587 return -ENXIO;
2588 }
2589
xive_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2590 static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2591 {
2592 /* We honor the same limits as XICS, at least for now */
2593 switch (attr->group) {
2594 case KVM_DEV_XICS_GRP_SOURCES:
2595 if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
2596 attr->attr < KVMPPC_XICS_NR_IRQS)
2597 return 0;
2598 break;
2599 case KVM_DEV_XICS_GRP_CTRL:
2600 switch (attr->attr) {
2601 case KVM_DEV_XICS_NR_SERVERS:
2602 return 0;
2603 }
2604 }
2605 return -ENXIO;
2606 }
2607
kvmppc_xive_cleanup_irq(u32 hw_num,struct xive_irq_data * xd)2608 static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
2609 {
2610 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
2611 xive_native_configure_irq(hw_num, 0, MASKED, 0);
2612 }
2613
kvmppc_xive_free_sources(struct kvmppc_xive_src_block * sb)2614 void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
2615 {
2616 int i;
2617
2618 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
2619 struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
2620
2621 if (!state->valid)
2622 continue;
2623
2624 kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
2625 xive_cleanup_irq_data(&state->ipi_data);
2626 xive_native_free_irq(state->ipi_number);
2627
2628 /* Pass-through, cleanup too but keep IRQ hw data */
2629 if (state->pt_number)
2630 kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
2631
2632 state->valid = false;
2633 }
2634 }
2635
2636 /*
2637 * Called when device fd is closed. kvm->lock is held.
2638 */
kvmppc_xive_release(struct kvm_device * dev)2639 static void kvmppc_xive_release(struct kvm_device *dev)
2640 {
2641 struct kvmppc_xive *xive = dev->private;
2642 struct kvm *kvm = xive->kvm;
2643 struct kvm_vcpu *vcpu;
2644 unsigned long i;
2645
2646 pr_devel("Releasing xive device\n");
2647
2648 /*
2649 * Since this is the device release function, we know that
2650 * userspace does not have any open fd referring to the
2651 * device. Therefore there can not be any of the device
2652 * attribute set/get functions being executed concurrently,
2653 * and similarly, the connect_vcpu and set/clr_mapped
2654 * functions also cannot be being executed.
2655 */
2656
2657 debugfs_remove(xive->dentry);
2658
2659 /*
2660 * We should clean up the vCPU interrupt presenters first.
2661 */
2662 kvm_for_each_vcpu(i, vcpu, kvm) {
2663 /*
2664 * Take vcpu->mutex to ensure that no one_reg get/set ioctl
2665 * (i.e. kvmppc_xive_[gs]et_icp) can be done concurrently.
2666 * Holding the vcpu->mutex also means that the vcpu cannot
2667 * be executing the KVM_RUN ioctl, and therefore it cannot
2668 * be executing the XIVE push or pull code or accessing
2669 * the XIVE MMIO regions.
2670 */
2671 mutex_lock(&vcpu->mutex);
2672 kvmppc_xive_cleanup_vcpu(vcpu);
2673 mutex_unlock(&vcpu->mutex);
2674 }
2675
2676 /*
2677 * Now that we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type
2678 * and vcpu->arch.xive_esc_[vr]addr on each vcpu, we are safe
2679 * against xive code getting called during vcpu execution or
2680 * set/get one_reg operations.
2681 */
2682 kvm->arch.xive = NULL;
2683
2684 /* Mask and free interrupts */
2685 for (i = 0; i <= xive->max_sbid; i++) {
2686 if (xive->src_blocks[i])
2687 kvmppc_xive_free_sources(xive->src_blocks[i]);
2688 kfree(xive->src_blocks[i]);
2689 xive->src_blocks[i] = NULL;
2690 }
2691
2692 if (xive->vp_base != XIVE_INVALID_VP)
2693 xive_native_free_vp_block(xive->vp_base);
2694
2695 /*
2696 * A reference of the kvmppc_xive pointer is now kept under
2697 * the xive_devices struct of the machine for reuse. It is
2698 * freed when the VM is destroyed for now until we fix all the
2699 * execution paths.
2700 */
2701
2702 kfree(dev);
2703 }
2704
2705 /*
2706 * When the guest chooses the interrupt mode (XICS legacy or XIVE
2707 * native), the VM will switch of KVM device. The previous device will
2708 * be "released" before the new one is created.
2709 *
2710 * Until we are sure all execution paths are well protected, provide a
2711 * fail safe (transitional) method for device destruction, in which
2712 * the XIVE device pointer is recycled and not directly freed.
2713 */
kvmppc_xive_get_device(struct kvm * kvm,u32 type)2714 struct kvmppc_xive *kvmppc_xive_get_device(struct kvm *kvm, u32 type)
2715 {
2716 struct kvmppc_xive **kvm_xive_device = type == KVM_DEV_TYPE_XIVE ?
2717 &kvm->arch.xive_devices.native :
2718 &kvm->arch.xive_devices.xics_on_xive;
2719 struct kvmppc_xive *xive = *kvm_xive_device;
2720
2721 if (!xive) {
2722 xive = kzalloc(sizeof(*xive), GFP_KERNEL);
2723 *kvm_xive_device = xive;
2724 } else {
2725 memset(xive, 0, sizeof(*xive));
2726 }
2727
2728 return xive;
2729 }
2730
2731 /*
2732 * Create a XICS device with XIVE backend. kvm->lock is held.
2733 */
kvmppc_xive_create(struct kvm_device * dev,u32 type)2734 static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
2735 {
2736 struct kvmppc_xive *xive;
2737 struct kvm *kvm = dev->kvm;
2738
2739 pr_devel("Creating xive for partition\n");
2740
2741 /* Already there ? */
2742 if (kvm->arch.xive)
2743 return -EEXIST;
2744
2745 xive = kvmppc_xive_get_device(kvm, type);
2746 if (!xive)
2747 return -ENOMEM;
2748
2749 dev->private = xive;
2750 xive->dev = dev;
2751 xive->kvm = kvm;
2752 mutex_init(&xive->lock);
2753
2754 /* We use the default queue size set by the host */
2755 xive->q_order = xive_native_default_eq_shift();
2756 if (xive->q_order < PAGE_SHIFT)
2757 xive->q_page_order = 0;
2758 else
2759 xive->q_page_order = xive->q_order - PAGE_SHIFT;
2760
2761 /* VP allocation is delayed to the first call to connect_vcpu */
2762 xive->vp_base = XIVE_INVALID_VP;
2763 /* KVM_MAX_VCPUS limits the number of VMs to roughly 64 per sockets
2764 * on a POWER9 system.
2765 */
2766 xive->nr_servers = KVM_MAX_VCPUS;
2767
2768 if (xive_native_has_single_escalation())
2769 xive->flags |= KVMPPC_XIVE_FLAG_SINGLE_ESCALATION;
2770
2771 if (xive_native_has_save_restore())
2772 xive->flags |= KVMPPC_XIVE_FLAG_SAVE_RESTORE;
2773
2774 kvm->arch.xive = xive;
2775 return 0;
2776 }
2777
kvmppc_xive_xics_hcall(struct kvm_vcpu * vcpu,u32 req)2778 int kvmppc_xive_xics_hcall(struct kvm_vcpu *vcpu, u32 req)
2779 {
2780 /* The VM should have configured XICS mode before doing XICS hcalls. */
2781 if (!kvmppc_xics_enabled(vcpu))
2782 return H_TOO_HARD;
2783
2784 switch (req) {
2785 case H_XIRR:
2786 return xive_vm_h_xirr(vcpu);
2787 case H_CPPR:
2788 return xive_vm_h_cppr(vcpu, kvmppc_get_gpr(vcpu, 4));
2789 case H_EOI:
2790 return xive_vm_h_eoi(vcpu, kvmppc_get_gpr(vcpu, 4));
2791 case H_IPI:
2792 return xive_vm_h_ipi(vcpu, kvmppc_get_gpr(vcpu, 4),
2793 kvmppc_get_gpr(vcpu, 5));
2794 case H_IPOLL:
2795 return xive_vm_h_ipoll(vcpu, kvmppc_get_gpr(vcpu, 4));
2796 case H_XIRR_X:
2797 xive_vm_h_xirr(vcpu);
2798 kvmppc_set_gpr(vcpu, 5, get_tb() + kvmppc_get_tb_offset(vcpu));
2799 return H_SUCCESS;
2800 }
2801
2802 return H_UNSUPPORTED;
2803 }
2804 EXPORT_SYMBOL_GPL(kvmppc_xive_xics_hcall);
2805
kvmppc_xive_debug_show_queues(struct seq_file * m,struct kvm_vcpu * vcpu)2806 int kvmppc_xive_debug_show_queues(struct seq_file *m, struct kvm_vcpu *vcpu)
2807 {
2808 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2809 unsigned int i;
2810
2811 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
2812 struct xive_q *q = &xc->queues[i];
2813 u32 i0, i1, idx;
2814
2815 if (!q->qpage && !xc->esc_virq[i])
2816 continue;
2817
2818 if (q->qpage) {
2819 seq_printf(m, " q[%d]: ", i);
2820 idx = q->idx;
2821 i0 = be32_to_cpup(q->qpage + idx);
2822 idx = (idx + 1) & q->msk;
2823 i1 = be32_to_cpup(q->qpage + idx);
2824 seq_printf(m, "T=%d %08x %08x...\n", q->toggle,
2825 i0, i1);
2826 }
2827 if (xc->esc_virq[i]) {
2828 struct xive_irq_data *xd = irq_get_chip_data(xc->esc_virq[i]);
2829 u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
2830
2831 seq_printf(m, " ESC %d %c%c EOI @%llx",
2832 xc->esc_virq[i],
2833 (pq & XIVE_ESB_VAL_P) ? 'P' : '-',
2834 (pq & XIVE_ESB_VAL_Q) ? 'Q' : '-',
2835 xd->eoi_page);
2836 seq_puts(m, "\n");
2837 }
2838 }
2839 return 0;
2840 }
2841
kvmppc_xive_debug_show_sources(struct seq_file * m,struct kvmppc_xive_src_block * sb)2842 void kvmppc_xive_debug_show_sources(struct seq_file *m,
2843 struct kvmppc_xive_src_block *sb)
2844 {
2845 int i;
2846
2847 seq_puts(m, " LISN HW/CHIP TYPE PQ EISN CPU/PRIO\n");
2848 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
2849 struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
2850 struct xive_irq_data *xd;
2851 u64 pq;
2852 u32 hw_num;
2853
2854 if (!state->valid)
2855 continue;
2856
2857 kvmppc_xive_select_irq(state, &hw_num, &xd);
2858
2859 pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
2860
2861 seq_printf(m, "%08x %08x/%02x", state->number, hw_num,
2862 xd->src_chip);
2863 if (state->lsi)
2864 seq_printf(m, " %cLSI", state->asserted ? '^' : ' ');
2865 else
2866 seq_puts(m, " MSI");
2867
2868 seq_printf(m, " %s %c%c %08x % 4d/%d",
2869 state->ipi_number == hw_num ? "IPI" : " PT",
2870 pq & XIVE_ESB_VAL_P ? 'P' : '-',
2871 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
2872 state->eisn, state->act_server,
2873 state->act_priority);
2874
2875 seq_puts(m, "\n");
2876 }
2877 }
2878
xive_debug_show(struct seq_file * m,void * private)2879 static int xive_debug_show(struct seq_file *m, void *private)
2880 {
2881 struct kvmppc_xive *xive = m->private;
2882 struct kvm *kvm = xive->kvm;
2883 struct kvm_vcpu *vcpu;
2884 u64 t_rm_h_xirr = 0;
2885 u64 t_rm_h_ipoll = 0;
2886 u64 t_rm_h_cppr = 0;
2887 u64 t_rm_h_eoi = 0;
2888 u64 t_rm_h_ipi = 0;
2889 u64 t_vm_h_xirr = 0;
2890 u64 t_vm_h_ipoll = 0;
2891 u64 t_vm_h_cppr = 0;
2892 u64 t_vm_h_eoi = 0;
2893 u64 t_vm_h_ipi = 0;
2894 unsigned long i;
2895
2896 if (!kvm)
2897 return 0;
2898
2899 seq_puts(m, "=========\nVCPU state\n=========\n");
2900
2901 kvm_for_each_vcpu(i, vcpu, kvm) {
2902 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2903
2904 if (!xc)
2905 continue;
2906
2907 seq_printf(m, "VCPU %d: VP:%#x/%02x\n"
2908 " CPPR:%#x HWCPPR:%#x MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
2909 xc->server_num, xc->vp_id, xc->vp_chip_id,
2910 xc->cppr, xc->hw_cppr,
2911 xc->mfrr, xc->pending,
2912 xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
2913
2914 kvmppc_xive_debug_show_queues(m, vcpu);
2915
2916 t_rm_h_xirr += xc->stat_rm_h_xirr;
2917 t_rm_h_ipoll += xc->stat_rm_h_ipoll;
2918 t_rm_h_cppr += xc->stat_rm_h_cppr;
2919 t_rm_h_eoi += xc->stat_rm_h_eoi;
2920 t_rm_h_ipi += xc->stat_rm_h_ipi;
2921 t_vm_h_xirr += xc->stat_vm_h_xirr;
2922 t_vm_h_ipoll += xc->stat_vm_h_ipoll;
2923 t_vm_h_cppr += xc->stat_vm_h_cppr;
2924 t_vm_h_eoi += xc->stat_vm_h_eoi;
2925 t_vm_h_ipi += xc->stat_vm_h_ipi;
2926 }
2927
2928 seq_puts(m, "Hcalls totals\n");
2929 seq_printf(m, " H_XIRR R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
2930 seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
2931 seq_printf(m, " H_CPPR R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
2932 seq_printf(m, " H_EOI R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
2933 seq_printf(m, " H_IPI R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
2934
2935 seq_puts(m, "=========\nSources\n=========\n");
2936
2937 for (i = 0; i <= xive->max_sbid; i++) {
2938 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
2939
2940 if (sb) {
2941 arch_spin_lock(&sb->lock);
2942 kvmppc_xive_debug_show_sources(m, sb);
2943 arch_spin_unlock(&sb->lock);
2944 }
2945 }
2946
2947 return 0;
2948 }
2949
2950 DEFINE_SHOW_ATTRIBUTE(xive_debug);
2951
xive_debugfs_init(struct kvmppc_xive * xive)2952 static void xive_debugfs_init(struct kvmppc_xive *xive)
2953 {
2954 xive->dentry = debugfs_create_file("xive", S_IRUGO, xive->kvm->debugfs_dentry,
2955 xive, &xive_debug_fops);
2956
2957 pr_debug("%s: created\n", __func__);
2958 }
2959
kvmppc_xive_init(struct kvm_device * dev)2960 static void kvmppc_xive_init(struct kvm_device *dev)
2961 {
2962 struct kvmppc_xive *xive = dev->private;
2963
2964 /* Register some debug interfaces */
2965 xive_debugfs_init(xive);
2966 }
2967
2968 struct kvm_device_ops kvm_xive_ops = {
2969 .name = "kvm-xive",
2970 .create = kvmppc_xive_create,
2971 .init = kvmppc_xive_init,
2972 .release = kvmppc_xive_release,
2973 .set_attr = xive_set_attr,
2974 .get_attr = xive_get_attr,
2975 .has_attr = xive_has_attr,
2976 };
2977