1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_bmap_btree.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_space.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_iomap.h"
25 #include "xfs_trace.h"
26 #include "xfs_quota.h"
27 #include "xfs_rtgroup.h"
28 #include "xfs_dquot_item.h"
29 #include "xfs_dquot.h"
30 #include "xfs_reflink.h"
31 #include "xfs_health.h"
32 #include "xfs_rtbitmap.h"
33 #include "xfs_icache.h"
34 #include "xfs_zone_alloc.h"
35
36 #define XFS_ALLOC_ALIGN(mp, off) \
37 (((off) >> mp->m_allocsize_log) << mp->m_allocsize_log)
38
39 static int
xfs_alert_fsblock_zero(xfs_inode_t * ip,xfs_bmbt_irec_t * imap)40 xfs_alert_fsblock_zero(
41 xfs_inode_t *ip,
42 xfs_bmbt_irec_t *imap)
43 {
44 xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO,
45 "Access to block zero in inode %llu "
46 "start_block: %llx start_off: %llx "
47 "blkcnt: %llx extent-state: %x",
48 (unsigned long long)ip->i_ino,
49 (unsigned long long)imap->br_startblock,
50 (unsigned long long)imap->br_startoff,
51 (unsigned long long)imap->br_blockcount,
52 imap->br_state);
53 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
54 return -EFSCORRUPTED;
55 }
56
57 u64
xfs_iomap_inode_sequence(struct xfs_inode * ip,u16 iomap_flags)58 xfs_iomap_inode_sequence(
59 struct xfs_inode *ip,
60 u16 iomap_flags)
61 {
62 u64 cookie = 0;
63
64 if (iomap_flags & IOMAP_F_XATTR)
65 return READ_ONCE(ip->i_af.if_seq);
66 if ((iomap_flags & IOMAP_F_SHARED) && ip->i_cowfp)
67 cookie = (u64)READ_ONCE(ip->i_cowfp->if_seq) << 32;
68 return cookie | READ_ONCE(ip->i_df.if_seq);
69 }
70
71 /*
72 * Check that the iomap passed to us is still valid for the given offset and
73 * length.
74 */
75 static bool
xfs_iomap_valid(struct inode * inode,const struct iomap * iomap)76 xfs_iomap_valid(
77 struct inode *inode,
78 const struct iomap *iomap)
79 {
80 struct xfs_inode *ip = XFS_I(inode);
81
82 if (iomap->type == IOMAP_HOLE)
83 return true;
84
85 if (iomap->validity_cookie !=
86 xfs_iomap_inode_sequence(ip, iomap->flags)) {
87 trace_xfs_iomap_invalid(ip, iomap);
88 return false;
89 }
90
91 XFS_ERRORTAG_DELAY(ip->i_mount, XFS_ERRTAG_WRITE_DELAY_MS);
92 return true;
93 }
94
95 const struct iomap_write_ops xfs_iomap_write_ops = {
96 .iomap_valid = xfs_iomap_valid,
97 };
98
99 int
xfs_bmbt_to_iomap(struct xfs_inode * ip,struct iomap * iomap,struct xfs_bmbt_irec * imap,unsigned int mapping_flags,u16 iomap_flags,u64 sequence_cookie)100 xfs_bmbt_to_iomap(
101 struct xfs_inode *ip,
102 struct iomap *iomap,
103 struct xfs_bmbt_irec *imap,
104 unsigned int mapping_flags,
105 u16 iomap_flags,
106 u64 sequence_cookie)
107 {
108 struct xfs_mount *mp = ip->i_mount;
109 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
110
111 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) {
112 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
113 return xfs_alert_fsblock_zero(ip, imap);
114 }
115
116 if (imap->br_startblock == HOLESTARTBLOCK) {
117 iomap->addr = IOMAP_NULL_ADDR;
118 iomap->type = IOMAP_HOLE;
119 } else if (imap->br_startblock == DELAYSTARTBLOCK ||
120 isnullstartblock(imap->br_startblock)) {
121 iomap->addr = IOMAP_NULL_ADDR;
122 iomap->type = IOMAP_DELALLOC;
123 } else {
124 xfs_daddr_t daddr = xfs_fsb_to_db(ip, imap->br_startblock);
125
126 iomap->addr = BBTOB(daddr);
127 if (mapping_flags & IOMAP_DAX)
128 iomap->addr += target->bt_dax_part_off;
129
130 if (imap->br_state == XFS_EXT_UNWRITTEN)
131 iomap->type = IOMAP_UNWRITTEN;
132 else
133 iomap->type = IOMAP_MAPPED;
134
135 /*
136 * Mark iomaps starting at the first sector of a RTG as merge
137 * boundary so that each I/O completions is contained to a
138 * single RTG.
139 */
140 if (XFS_IS_REALTIME_INODE(ip) && xfs_has_rtgroups(mp) &&
141 xfs_rtbno_is_group_start(mp, imap->br_startblock))
142 iomap->flags |= IOMAP_F_BOUNDARY;
143 }
144 iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff);
145 iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount);
146 if (mapping_flags & IOMAP_DAX)
147 iomap->dax_dev = target->bt_daxdev;
148 else
149 iomap->bdev = target->bt_bdev;
150 iomap->flags = iomap_flags;
151
152 if (xfs_ipincount(ip) &&
153 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
154 iomap->flags |= IOMAP_F_DIRTY;
155
156 iomap->validity_cookie = sequence_cookie;
157 return 0;
158 }
159
160 static void
xfs_hole_to_iomap(struct xfs_inode * ip,struct iomap * iomap,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb)161 xfs_hole_to_iomap(
162 struct xfs_inode *ip,
163 struct iomap *iomap,
164 xfs_fileoff_t offset_fsb,
165 xfs_fileoff_t end_fsb)
166 {
167 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
168
169 iomap->addr = IOMAP_NULL_ADDR;
170 iomap->type = IOMAP_HOLE;
171 iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb);
172 iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb);
173 iomap->bdev = target->bt_bdev;
174 iomap->dax_dev = target->bt_daxdev;
175 }
176
177 static inline xfs_fileoff_t
xfs_iomap_end_fsb(struct xfs_mount * mp,loff_t offset,loff_t count)178 xfs_iomap_end_fsb(
179 struct xfs_mount *mp,
180 loff_t offset,
181 loff_t count)
182 {
183 ASSERT(offset <= mp->m_super->s_maxbytes);
184 return min(XFS_B_TO_FSB(mp, offset + count),
185 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
186 }
187
188 static xfs_extlen_t
xfs_eof_alignment(struct xfs_inode * ip)189 xfs_eof_alignment(
190 struct xfs_inode *ip)
191 {
192 struct xfs_mount *mp = ip->i_mount;
193 xfs_extlen_t align = 0;
194
195 if (!XFS_IS_REALTIME_INODE(ip)) {
196 /*
197 * Round up the allocation request to a stripe unit
198 * (m_dalign) boundary if the file size is >= stripe unit
199 * size, and we are allocating past the allocation eof.
200 *
201 * If mounted with the "-o swalloc" option the alignment is
202 * increased from the strip unit size to the stripe width.
203 */
204 if (mp->m_swidth && xfs_has_swalloc(mp))
205 align = mp->m_swidth;
206 else if (mp->m_dalign)
207 align = mp->m_dalign;
208
209 if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align))
210 align = 0;
211 }
212
213 return align;
214 }
215
216 /*
217 * Check if last_fsb is outside the last extent, and if so grow it to the next
218 * stripe unit boundary.
219 */
220 xfs_fileoff_t
xfs_iomap_eof_align_last_fsb(struct xfs_inode * ip,xfs_fileoff_t end_fsb)221 xfs_iomap_eof_align_last_fsb(
222 struct xfs_inode *ip,
223 xfs_fileoff_t end_fsb)
224 {
225 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
226 xfs_extlen_t extsz = xfs_get_extsz_hint(ip);
227 xfs_extlen_t align = xfs_eof_alignment(ip);
228 struct xfs_bmbt_irec irec;
229 struct xfs_iext_cursor icur;
230
231 ASSERT(!xfs_need_iread_extents(ifp));
232
233 /*
234 * Always round up the allocation request to the extent hint boundary.
235 */
236 if (extsz) {
237 if (align)
238 align = roundup_64(align, extsz);
239 else
240 align = extsz;
241 }
242
243 if (align) {
244 xfs_fileoff_t aligned_end_fsb = roundup_64(end_fsb, align);
245
246 xfs_iext_last(ifp, &icur);
247 if (!xfs_iext_get_extent(ifp, &icur, &irec) ||
248 aligned_end_fsb >= irec.br_startoff + irec.br_blockcount)
249 return aligned_end_fsb;
250 }
251
252 return end_fsb;
253 }
254
255 int
xfs_iomap_write_direct(struct xfs_inode * ip,xfs_fileoff_t offset_fsb,xfs_fileoff_t count_fsb,unsigned int flags,struct xfs_bmbt_irec * imap,u64 * seq)256 xfs_iomap_write_direct(
257 struct xfs_inode *ip,
258 xfs_fileoff_t offset_fsb,
259 xfs_fileoff_t count_fsb,
260 unsigned int flags,
261 struct xfs_bmbt_irec *imap,
262 u64 *seq)
263 {
264 struct xfs_mount *mp = ip->i_mount;
265 struct xfs_trans *tp;
266 xfs_filblks_t resaligned;
267 int nimaps;
268 unsigned int dblocks, rblocks;
269 bool force = false;
270 int error;
271 int bmapi_flags = XFS_BMAPI_PREALLOC;
272 int nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT;
273
274 ASSERT(count_fsb > 0);
275
276 resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb,
277 xfs_get_extsz_hint(ip));
278 if (unlikely(XFS_IS_REALTIME_INODE(ip))) {
279 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
280 rblocks = resaligned;
281 } else {
282 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
283 rblocks = 0;
284 }
285
286 error = xfs_qm_dqattach(ip);
287 if (error)
288 return error;
289
290 /*
291 * For DAX, we do not allocate unwritten extents, but instead we zero
292 * the block before we commit the transaction. Ideally we'd like to do
293 * this outside the transaction context, but if we commit and then crash
294 * we may not have zeroed the blocks and this will be exposed on
295 * recovery of the allocation. Hence we must zero before commit.
296 *
297 * Further, if we are mapping unwritten extents here, we need to zero
298 * and convert them to written so that we don't need an unwritten extent
299 * callback for DAX. This also means that we need to be able to dip into
300 * the reserve block pool for bmbt block allocation if there is no space
301 * left but we need to do unwritten extent conversion.
302 */
303 if (flags & IOMAP_DAX) {
304 bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO;
305 if (imap->br_state == XFS_EXT_UNWRITTEN) {
306 force = true;
307 nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT;
308 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
309 }
310 }
311
312 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks,
313 rblocks, force, &tp);
314 if (error)
315 return error;
316
317 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, nr_exts);
318 if (error)
319 goto out_trans_cancel;
320
321 /*
322 * From this point onwards we overwrite the imap pointer that the
323 * caller gave to us.
324 */
325 nimaps = 1;
326 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0,
327 imap, &nimaps);
328 if (error)
329 goto out_trans_cancel;
330
331 /*
332 * Complete the transaction
333 */
334 error = xfs_trans_commit(tp);
335 if (error)
336 goto out_unlock;
337
338 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) {
339 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
340 error = xfs_alert_fsblock_zero(ip, imap);
341 }
342
343 out_unlock:
344 *seq = xfs_iomap_inode_sequence(ip, 0);
345 xfs_iunlock(ip, XFS_ILOCK_EXCL);
346 return error;
347
348 out_trans_cancel:
349 xfs_trans_cancel(tp);
350 goto out_unlock;
351 }
352
353 STATIC bool
xfs_quota_need_throttle(struct xfs_inode * ip,xfs_dqtype_t type,xfs_fsblock_t alloc_blocks)354 xfs_quota_need_throttle(
355 struct xfs_inode *ip,
356 xfs_dqtype_t type,
357 xfs_fsblock_t alloc_blocks)
358 {
359 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
360 struct xfs_dquot_res *res;
361 struct xfs_dquot_pre *pre;
362
363 if (!dq || !xfs_this_quota_on(ip->i_mount, type))
364 return false;
365
366 if (XFS_IS_REALTIME_INODE(ip)) {
367 res = &dq->q_rtb;
368 pre = &dq->q_rtb_prealloc;
369 } else {
370 res = &dq->q_blk;
371 pre = &dq->q_blk_prealloc;
372 }
373
374 /* no hi watermark, no throttle */
375 if (!pre->q_prealloc_hi_wmark)
376 return false;
377
378 /* under the lo watermark, no throttle */
379 if (res->reserved + alloc_blocks < pre->q_prealloc_lo_wmark)
380 return false;
381
382 return true;
383 }
384
385 STATIC void
xfs_quota_calc_throttle(struct xfs_inode * ip,xfs_dqtype_t type,xfs_fsblock_t * qblocks,int * qshift,int64_t * qfreesp)386 xfs_quota_calc_throttle(
387 struct xfs_inode *ip,
388 xfs_dqtype_t type,
389 xfs_fsblock_t *qblocks,
390 int *qshift,
391 int64_t *qfreesp)
392 {
393 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
394 struct xfs_dquot_res *res;
395 struct xfs_dquot_pre *pre;
396 int64_t freesp;
397 int shift = 0;
398
399 if (!dq) {
400 res = NULL;
401 pre = NULL;
402 } else if (XFS_IS_REALTIME_INODE(ip)) {
403 res = &dq->q_rtb;
404 pre = &dq->q_rtb_prealloc;
405 } else {
406 res = &dq->q_blk;
407 pre = &dq->q_blk_prealloc;
408 }
409
410 /* no dq, or over hi wmark, squash the prealloc completely */
411 if (!res || res->reserved >= pre->q_prealloc_hi_wmark) {
412 *qblocks = 0;
413 *qfreesp = 0;
414 return;
415 }
416
417 freesp = pre->q_prealloc_hi_wmark - res->reserved;
418 if (freesp < pre->q_low_space[XFS_QLOWSP_5_PCNT]) {
419 shift = 2;
420 if (freesp < pre->q_low_space[XFS_QLOWSP_3_PCNT])
421 shift += 2;
422 if (freesp < pre->q_low_space[XFS_QLOWSP_1_PCNT])
423 shift += 2;
424 }
425
426 if (freesp < *qfreesp)
427 *qfreesp = freesp;
428
429 /* only overwrite the throttle values if we are more aggressive */
430 if ((freesp >> shift) < (*qblocks >> *qshift)) {
431 *qblocks = freesp;
432 *qshift = shift;
433 }
434 }
435
436 static int64_t
xfs_iomap_freesp(struct xfs_mount * mp,unsigned int idx,uint64_t low_space[XFS_LOWSP_MAX],int * shift)437 xfs_iomap_freesp(
438 struct xfs_mount *mp,
439 unsigned int idx,
440 uint64_t low_space[XFS_LOWSP_MAX],
441 int *shift)
442 {
443 int64_t freesp;
444
445 freesp = xfs_estimate_freecounter(mp, idx);
446 if (freesp < low_space[XFS_LOWSP_5_PCNT]) {
447 *shift = 2;
448 if (freesp < low_space[XFS_LOWSP_4_PCNT])
449 (*shift)++;
450 if (freesp < low_space[XFS_LOWSP_3_PCNT])
451 (*shift)++;
452 if (freesp < low_space[XFS_LOWSP_2_PCNT])
453 (*shift)++;
454 if (freesp < low_space[XFS_LOWSP_1_PCNT])
455 (*shift)++;
456 }
457 return freesp;
458 }
459
460 /*
461 * If we don't have a user specified preallocation size, dynamically increase
462 * the preallocation size as the size of the file grows. Cap the maximum size
463 * at a single extent or less if the filesystem is near full. The closer the
464 * filesystem is to being full, the smaller the maximum preallocation.
465 */
466 STATIC xfs_fsblock_t
xfs_iomap_prealloc_size(struct xfs_inode * ip,int whichfork,loff_t offset,loff_t count,struct xfs_iext_cursor * icur)467 xfs_iomap_prealloc_size(
468 struct xfs_inode *ip,
469 int whichfork,
470 loff_t offset,
471 loff_t count,
472 struct xfs_iext_cursor *icur)
473 {
474 struct xfs_iext_cursor ncur = *icur;
475 struct xfs_bmbt_irec prev, got;
476 struct xfs_mount *mp = ip->i_mount;
477 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
478 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
479 int64_t freesp;
480 xfs_fsblock_t qblocks;
481 xfs_fsblock_t alloc_blocks = 0;
482 xfs_extlen_t plen;
483 int shift = 0;
484 int qshift = 0;
485
486 /*
487 * As an exception we don't do any preallocation at all if the file is
488 * smaller than the minimum preallocation and we are using the default
489 * dynamic preallocation scheme, as it is likely this is the only write
490 * to the file that is going to be done.
491 */
492 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks))
493 return 0;
494
495 /*
496 * Use the minimum preallocation size for small files or if we are
497 * writing right after a hole.
498 */
499 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) ||
500 !xfs_iext_prev_extent(ifp, &ncur, &prev) ||
501 prev.br_startoff + prev.br_blockcount < offset_fsb)
502 return mp->m_allocsize_blocks;
503
504 /*
505 * Take the size of the preceding data extents as the basis for the
506 * preallocation size. Note that we don't care if the previous extents
507 * are written or not.
508 */
509 plen = prev.br_blockcount;
510 while (xfs_iext_prev_extent(ifp, &ncur, &got)) {
511 if (plen > XFS_MAX_BMBT_EXTLEN / 2 ||
512 isnullstartblock(got.br_startblock) ||
513 got.br_startoff + got.br_blockcount != prev.br_startoff ||
514 got.br_startblock + got.br_blockcount != prev.br_startblock)
515 break;
516 plen += got.br_blockcount;
517 prev = got;
518 }
519
520 /*
521 * If the size of the extents is greater than half the maximum extent
522 * length, then use the current offset as the basis. This ensures that
523 * for large files the preallocation size always extends to
524 * XFS_BMBT_MAX_EXTLEN rather than falling short due to things like stripe
525 * unit/width alignment of real extents.
526 */
527 alloc_blocks = plen * 2;
528 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
529 alloc_blocks = XFS_B_TO_FSB(mp, offset);
530 qblocks = alloc_blocks;
531
532 /*
533 * XFS_BMBT_MAX_EXTLEN is not a power of two value but we round the prealloc
534 * down to the nearest power of two value after throttling. To prevent
535 * the round down from unconditionally reducing the maximum supported
536 * prealloc size, we round up first, apply appropriate throttling, round
537 * down and cap the value to XFS_BMBT_MAX_EXTLEN.
538 */
539 alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(XFS_MAX_BMBT_EXTLEN),
540 alloc_blocks);
541
542 if (unlikely(XFS_IS_REALTIME_INODE(ip)))
543 freesp = xfs_rtbxlen_to_blen(mp,
544 xfs_iomap_freesp(mp, XC_FREE_RTEXTENTS,
545 mp->m_low_rtexts, &shift));
546 else
547 freesp = xfs_iomap_freesp(mp, XC_FREE_BLOCKS, mp->m_low_space,
548 &shift);
549
550 /*
551 * Check each quota to cap the prealloc size, provide a shift value to
552 * throttle with and adjust amount of available space.
553 */
554 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks))
555 xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift,
556 &freesp);
557 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks))
558 xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift,
559 &freesp);
560 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks))
561 xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift,
562 &freesp);
563
564 /*
565 * The final prealloc size is set to the minimum of free space available
566 * in each of the quotas and the overall filesystem.
567 *
568 * The shift throttle value is set to the maximum value as determined by
569 * the global low free space values and per-quota low free space values.
570 */
571 alloc_blocks = min(alloc_blocks, qblocks);
572 shift = max(shift, qshift);
573
574 if (shift)
575 alloc_blocks >>= shift;
576 /*
577 * rounddown_pow_of_two() returns an undefined result if we pass in
578 * alloc_blocks = 0.
579 */
580 if (alloc_blocks)
581 alloc_blocks = rounddown_pow_of_two(alloc_blocks);
582 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
583 alloc_blocks = XFS_MAX_BMBT_EXTLEN;
584
585 /*
586 * If we are still trying to allocate more space than is
587 * available, squash the prealloc hard. This can happen if we
588 * have a large file on a small filesystem and the above
589 * lowspace thresholds are smaller than XFS_BMBT_MAX_EXTLEN.
590 */
591 while (alloc_blocks && alloc_blocks >= freesp)
592 alloc_blocks >>= 4;
593 if (alloc_blocks < mp->m_allocsize_blocks)
594 alloc_blocks = mp->m_allocsize_blocks;
595 trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift,
596 mp->m_allocsize_blocks);
597 return alloc_blocks;
598 }
599
600 int
xfs_iomap_write_unwritten(xfs_inode_t * ip,xfs_off_t offset,xfs_off_t count,bool update_isize)601 xfs_iomap_write_unwritten(
602 xfs_inode_t *ip,
603 xfs_off_t offset,
604 xfs_off_t count,
605 bool update_isize)
606 {
607 xfs_mount_t *mp = ip->i_mount;
608 xfs_fileoff_t offset_fsb;
609 xfs_filblks_t count_fsb;
610 xfs_filblks_t numblks_fsb;
611 int nimaps;
612 xfs_trans_t *tp;
613 xfs_bmbt_irec_t imap;
614 struct inode *inode = VFS_I(ip);
615 xfs_fsize_t i_size;
616 uint resblks;
617 int error;
618
619 trace_xfs_unwritten_convert(ip, offset, count);
620
621 offset_fsb = XFS_B_TO_FSBT(mp, offset);
622 count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
623 count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb);
624
625 /*
626 * Reserve enough blocks in this transaction for two complete extent
627 * btree splits. We may be converting the middle part of an unwritten
628 * extent and in this case we will insert two new extents in the btree
629 * each of which could cause a full split.
630 *
631 * This reservation amount will be used in the first call to
632 * xfs_bmbt_split() to select an AG with enough space to satisfy the
633 * rest of the operation.
634 */
635 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
636
637 /* Attach dquots so that bmbt splits are accounted correctly. */
638 error = xfs_qm_dqattach(ip);
639 if (error)
640 return error;
641
642 do {
643 /*
644 * Set up a transaction to convert the range of extents
645 * from unwritten to real. Do allocations in a loop until
646 * we have covered the range passed in.
647 *
648 * Note that we can't risk to recursing back into the filesystem
649 * here as we might be asked to write out the same inode that we
650 * complete here and might deadlock on the iolock.
651 */
652 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks,
653 0, true, &tp);
654 if (error)
655 return error;
656
657 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK,
658 XFS_IEXT_WRITE_UNWRITTEN_CNT);
659 if (error)
660 goto error_on_bmapi_transaction;
661
662 /*
663 * Modify the unwritten extent state of the buffer.
664 */
665 nimaps = 1;
666 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
667 XFS_BMAPI_CONVERT, resblks, &imap,
668 &nimaps);
669 if (error)
670 goto error_on_bmapi_transaction;
671
672 /*
673 * Log the updated inode size as we go. We have to be careful
674 * to only log it up to the actual write offset if it is
675 * halfway into a block.
676 */
677 i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb);
678 if (i_size > offset + count)
679 i_size = offset + count;
680 if (update_isize && i_size > i_size_read(inode))
681 i_size_write(inode, i_size);
682 i_size = xfs_new_eof(ip, i_size);
683 if (i_size) {
684 ip->i_disk_size = i_size;
685 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
686 }
687
688 error = xfs_trans_commit(tp);
689 xfs_iunlock(ip, XFS_ILOCK_EXCL);
690 if (error)
691 return error;
692
693 if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock))) {
694 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
695 return xfs_alert_fsblock_zero(ip, &imap);
696 }
697
698 if ((numblks_fsb = imap.br_blockcount) == 0) {
699 /*
700 * The numblks_fsb value should always get
701 * smaller, otherwise the loop is stuck.
702 */
703 ASSERT(imap.br_blockcount);
704 break;
705 }
706 offset_fsb += numblks_fsb;
707 count_fsb -= numblks_fsb;
708 } while (count_fsb > 0);
709
710 return 0;
711
712 error_on_bmapi_transaction:
713 xfs_trans_cancel(tp);
714 xfs_iunlock(ip, XFS_ILOCK_EXCL);
715 return error;
716 }
717
718 static inline bool
imap_needs_alloc(struct inode * inode,unsigned flags,struct xfs_bmbt_irec * imap,int nimaps)719 imap_needs_alloc(
720 struct inode *inode,
721 unsigned flags,
722 struct xfs_bmbt_irec *imap,
723 int nimaps)
724 {
725 /* don't allocate blocks when just zeroing */
726 if (flags & IOMAP_ZERO)
727 return false;
728 if (!nimaps ||
729 imap->br_startblock == HOLESTARTBLOCK ||
730 imap->br_startblock == DELAYSTARTBLOCK)
731 return true;
732 /* we convert unwritten extents before copying the data for DAX */
733 if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN)
734 return true;
735 return false;
736 }
737
738 static inline bool
imap_needs_cow(struct xfs_inode * ip,unsigned int flags,struct xfs_bmbt_irec * imap,int nimaps)739 imap_needs_cow(
740 struct xfs_inode *ip,
741 unsigned int flags,
742 struct xfs_bmbt_irec *imap,
743 int nimaps)
744 {
745 if (!xfs_is_cow_inode(ip))
746 return false;
747
748 /* when zeroing we don't have to COW holes or unwritten extents */
749 if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) {
750 if (!nimaps ||
751 imap->br_startblock == HOLESTARTBLOCK ||
752 imap->br_state == XFS_EXT_UNWRITTEN)
753 return false;
754 }
755
756 return true;
757 }
758
759 /*
760 * Extents not yet cached requires exclusive access, don't block for
761 * IOMAP_NOWAIT.
762 *
763 * This is basically an opencoded xfs_ilock_data_map_shared() call, but with
764 * support for IOMAP_NOWAIT.
765 */
766 static int
xfs_ilock_for_iomap(struct xfs_inode * ip,unsigned flags,unsigned * lockmode)767 xfs_ilock_for_iomap(
768 struct xfs_inode *ip,
769 unsigned flags,
770 unsigned *lockmode)
771 {
772 if (flags & IOMAP_NOWAIT) {
773 if (xfs_need_iread_extents(&ip->i_df))
774 return -EAGAIN;
775 if (!xfs_ilock_nowait(ip, *lockmode))
776 return -EAGAIN;
777 } else {
778 if (xfs_need_iread_extents(&ip->i_df))
779 *lockmode = XFS_ILOCK_EXCL;
780 xfs_ilock(ip, *lockmode);
781 }
782
783 return 0;
784 }
785
786 /*
787 * Check that the imap we are going to return to the caller spans the entire
788 * range that the caller requested for the IO.
789 */
790 static bool
imap_spans_range(struct xfs_bmbt_irec * imap,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb)791 imap_spans_range(
792 struct xfs_bmbt_irec *imap,
793 xfs_fileoff_t offset_fsb,
794 xfs_fileoff_t end_fsb)
795 {
796 if (imap->br_startoff > offset_fsb)
797 return false;
798 if (imap->br_startoff + imap->br_blockcount < end_fsb)
799 return false;
800 return true;
801 }
802
803 static bool
xfs_bmap_hw_atomic_write_possible(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb)804 xfs_bmap_hw_atomic_write_possible(
805 struct xfs_inode *ip,
806 struct xfs_bmbt_irec *imap,
807 xfs_fileoff_t offset_fsb,
808 xfs_fileoff_t end_fsb)
809 {
810 struct xfs_mount *mp = ip->i_mount;
811 xfs_fsize_t len = XFS_FSB_TO_B(mp, end_fsb - offset_fsb);
812
813 /*
814 * atomic writes are required to be naturally aligned for disk blocks,
815 * which ensures that we adhere to block layer rules that we won't
816 * straddle any boundary or violate write alignment requirement.
817 */
818 if (!IS_ALIGNED(imap->br_startblock, imap->br_blockcount))
819 return false;
820
821 /*
822 * Spanning multiple extents would mean that multiple BIOs would be
823 * issued, and so would lose atomicity required for REQ_ATOMIC-based
824 * atomics.
825 */
826 if (!imap_spans_range(imap, offset_fsb, end_fsb))
827 return false;
828
829 /*
830 * The ->iomap_begin caller should ensure this, but check anyway.
831 */
832 return len <= xfs_inode_buftarg(ip)->bt_awu_max;
833 }
834
835 static int
xfs_direct_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)836 xfs_direct_write_iomap_begin(
837 struct inode *inode,
838 loff_t offset,
839 loff_t length,
840 unsigned flags,
841 struct iomap *iomap,
842 struct iomap *srcmap)
843 {
844 struct xfs_inode *ip = XFS_I(inode);
845 struct xfs_mount *mp = ip->i_mount;
846 struct xfs_bmbt_irec imap, cmap;
847 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
848 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
849 xfs_fileoff_t orig_end_fsb = end_fsb;
850 int nimaps = 1, error = 0;
851 bool shared = false;
852 u16 iomap_flags = 0;
853 bool needs_alloc;
854 unsigned int lockmode;
855 u64 seq;
856
857 ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO));
858
859 if (xfs_is_shutdown(mp))
860 return -EIO;
861
862 /*
863 * Writes that span EOF might trigger an IO size update on completion,
864 * so consider them to be dirty for the purposes of O_DSYNC even if
865 * there is no other metadata changes pending or have been made here.
866 */
867 if (offset + length > i_size_read(inode))
868 iomap_flags |= IOMAP_F_DIRTY;
869
870 /* HW-offload atomics are always used in this path */
871 if (flags & IOMAP_ATOMIC)
872 iomap_flags |= IOMAP_F_ATOMIC_BIO;
873
874 /*
875 * COW writes may allocate delalloc space or convert unwritten COW
876 * extents, so we need to make sure to take the lock exclusively here.
877 */
878 if (xfs_is_cow_inode(ip))
879 lockmode = XFS_ILOCK_EXCL;
880 else
881 lockmode = XFS_ILOCK_SHARED;
882
883 relock:
884 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
885 if (error)
886 return error;
887
888 /*
889 * The reflink iflag could have changed since the earlier unlocked
890 * check, check if it again and relock if needed.
891 */
892 if (xfs_is_cow_inode(ip) && lockmode == XFS_ILOCK_SHARED) {
893 xfs_iunlock(ip, lockmode);
894 lockmode = XFS_ILOCK_EXCL;
895 goto relock;
896 }
897
898 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
899 &nimaps, 0);
900 if (error)
901 goto out_unlock;
902
903 if (imap_needs_cow(ip, flags, &imap, nimaps)) {
904 error = -EAGAIN;
905 if (flags & IOMAP_NOWAIT)
906 goto out_unlock;
907
908 /* may drop and re-acquire the ilock */
909 error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared,
910 &lockmode,
911 (flags & IOMAP_DIRECT) || IS_DAX(inode));
912 if (error)
913 goto out_unlock;
914 if (shared) {
915 if ((flags & IOMAP_ATOMIC) &&
916 !xfs_bmap_hw_atomic_write_possible(ip, &cmap,
917 offset_fsb, end_fsb)) {
918 error = -ENOPROTOOPT;
919 goto out_unlock;
920 }
921 goto out_found_cow;
922 }
923 end_fsb = imap.br_startoff + imap.br_blockcount;
924 length = XFS_FSB_TO_B(mp, end_fsb) - offset;
925 }
926
927 needs_alloc = imap_needs_alloc(inode, flags, &imap, nimaps);
928
929 if (flags & IOMAP_ATOMIC) {
930 error = -ENOPROTOOPT;
931 /*
932 * If we allocate less than what is required for the write
933 * then we may end up with multiple extents, which means that
934 * REQ_ATOMIC-based cannot be used, so avoid this possibility.
935 */
936 if (needs_alloc && orig_end_fsb - offset_fsb > 1)
937 goto out_unlock;
938
939 if (!xfs_bmap_hw_atomic_write_possible(ip, &imap, offset_fsb,
940 orig_end_fsb))
941 goto out_unlock;
942 }
943
944 if (needs_alloc)
945 goto allocate_blocks;
946
947 /*
948 * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with
949 * a single map so that we avoid partial IO failures due to the rest of
950 * the I/O range not covered by this map triggering an EAGAIN condition
951 * when it is subsequently mapped and aborting the I/O.
952 */
953 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) {
954 error = -EAGAIN;
955 if (!imap_spans_range(&imap, offset_fsb, end_fsb))
956 goto out_unlock;
957 }
958
959 /*
960 * For overwrite only I/O, we cannot convert unwritten extents without
961 * requiring sub-block zeroing. This can only be done under an
962 * exclusive IOLOCK, hence return -EAGAIN if this is not a written
963 * extent to tell the caller to try again.
964 */
965 if (flags & IOMAP_OVERWRITE_ONLY) {
966 error = -EAGAIN;
967 if (imap.br_state != XFS_EXT_NORM &&
968 ((offset | length) & mp->m_blockmask))
969 goto out_unlock;
970 }
971
972 seq = xfs_iomap_inode_sequence(ip, iomap_flags);
973 xfs_iunlock(ip, lockmode);
974 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
975 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq);
976
977 allocate_blocks:
978 error = -EAGAIN;
979 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY))
980 goto out_unlock;
981
982 /*
983 * We cap the maximum length we map to a sane size to keep the chunks
984 * of work done where somewhat symmetric with the work writeback does.
985 * This is a completely arbitrary number pulled out of thin air as a
986 * best guess for initial testing.
987 *
988 * Note that the values needs to be less than 32-bits wide until the
989 * lower level functions are updated.
990 */
991 length = min_t(loff_t, length, 1024 * PAGE_SIZE);
992 end_fsb = xfs_iomap_end_fsb(mp, offset, length);
993
994 if (offset + length > XFS_ISIZE(ip))
995 end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb);
996 else if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
997 end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount);
998 xfs_iunlock(ip, lockmode);
999
1000 error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb,
1001 flags, &imap, &seq);
1002 if (error)
1003 return error;
1004
1005 trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap);
1006 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
1007 iomap_flags | IOMAP_F_NEW, seq);
1008
1009 out_found_cow:
1010 length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount);
1011 trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap);
1012 if (imap.br_startblock != HOLESTARTBLOCK) {
1013 seq = xfs_iomap_inode_sequence(ip, 0);
1014 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq);
1015 if (error)
1016 goto out_unlock;
1017 }
1018 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
1019 xfs_iunlock(ip, lockmode);
1020 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq);
1021
1022 out_unlock:
1023 if (lockmode)
1024 xfs_iunlock(ip, lockmode);
1025 return error;
1026 }
1027
1028 const struct iomap_ops xfs_direct_write_iomap_ops = {
1029 .iomap_begin = xfs_direct_write_iomap_begin,
1030 };
1031
1032 #ifdef CONFIG_XFS_RT
1033 /*
1034 * This is really simple. The space has already been reserved before taking the
1035 * IOLOCK, the actual block allocation is done just before submitting the bio
1036 * and only recorded in the extent map on I/O completion.
1037 */
1038 static int
xfs_zoned_direct_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1039 xfs_zoned_direct_write_iomap_begin(
1040 struct inode *inode,
1041 loff_t offset,
1042 loff_t length,
1043 unsigned flags,
1044 struct iomap *iomap,
1045 struct iomap *srcmap)
1046 {
1047 struct xfs_inode *ip = XFS_I(inode);
1048 int error;
1049
1050 ASSERT(!(flags & IOMAP_OVERWRITE_ONLY));
1051
1052 /*
1053 * Needs to be pushed down into the allocator so that only writes into
1054 * a single zone can be supported.
1055 */
1056 if (flags & IOMAP_NOWAIT)
1057 return -EAGAIN;
1058
1059 /*
1060 * Ensure the extent list is in memory in so that we don't have to do
1061 * read it from the I/O completion handler.
1062 */
1063 if (xfs_need_iread_extents(&ip->i_df)) {
1064 xfs_ilock(ip, XFS_ILOCK_EXCL);
1065 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1066 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1067 if (error)
1068 return error;
1069 }
1070
1071 iomap->type = IOMAP_MAPPED;
1072 iomap->flags = IOMAP_F_DIRTY;
1073 iomap->bdev = ip->i_mount->m_rtdev_targp->bt_bdev;
1074 iomap->offset = offset;
1075 iomap->length = length;
1076 iomap->flags = IOMAP_F_ANON_WRITE;
1077 return 0;
1078 }
1079
1080 const struct iomap_ops xfs_zoned_direct_write_iomap_ops = {
1081 .iomap_begin = xfs_zoned_direct_write_iomap_begin,
1082 };
1083 #endif /* CONFIG_XFS_RT */
1084
1085 static int
xfs_atomic_write_cow_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1086 xfs_atomic_write_cow_iomap_begin(
1087 struct inode *inode,
1088 loff_t offset,
1089 loff_t length,
1090 unsigned flags,
1091 struct iomap *iomap,
1092 struct iomap *srcmap)
1093 {
1094 struct xfs_inode *ip = XFS_I(inode);
1095 struct xfs_mount *mp = ip->i_mount;
1096 const xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1097 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
1098 xfs_filblks_t count_fsb = end_fsb - offset_fsb;
1099 int nmaps = 1;
1100 xfs_filblks_t resaligned;
1101 struct xfs_bmbt_irec cmap;
1102 struct xfs_iext_cursor icur;
1103 struct xfs_trans *tp;
1104 unsigned int dblocks = 0, rblocks = 0;
1105 int error;
1106 u64 seq;
1107
1108 ASSERT(flags & IOMAP_WRITE);
1109 ASSERT(flags & IOMAP_DIRECT);
1110
1111 if (xfs_is_shutdown(mp))
1112 return -EIO;
1113
1114 if (!xfs_can_sw_atomic_write(mp)) {
1115 ASSERT(xfs_can_sw_atomic_write(mp));
1116 return -EINVAL;
1117 }
1118
1119 /* blocks are always allocated in this path */
1120 if (flags & IOMAP_NOWAIT)
1121 return -EAGAIN;
1122
1123 trace_xfs_iomap_atomic_write_cow(ip, offset, length);
1124
1125 xfs_ilock(ip, XFS_ILOCK_EXCL);
1126
1127 if (!ip->i_cowfp) {
1128 ASSERT(!xfs_is_reflink_inode(ip));
1129 xfs_ifork_init_cow(ip);
1130 }
1131
1132 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
1133 cmap.br_startoff = end_fsb;
1134 if (cmap.br_startoff <= offset_fsb) {
1135 xfs_trim_extent(&cmap, offset_fsb, count_fsb);
1136 goto found;
1137 }
1138
1139 end_fsb = cmap.br_startoff;
1140 count_fsb = end_fsb - offset_fsb;
1141
1142 resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb,
1143 xfs_get_cowextsz_hint(ip));
1144 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1145
1146 if (XFS_IS_REALTIME_INODE(ip)) {
1147 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1148 rblocks = resaligned;
1149 } else {
1150 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
1151 rblocks = 0;
1152 }
1153
1154 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks,
1155 rblocks, false, &tp);
1156 if (error)
1157 return error;
1158
1159 /* extent layout could have changed since the unlock, so check again */
1160 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
1161 cmap.br_startoff = end_fsb;
1162 if (cmap.br_startoff <= offset_fsb) {
1163 xfs_trim_extent(&cmap, offset_fsb, count_fsb);
1164 xfs_trans_cancel(tp);
1165 goto found;
1166 }
1167
1168 /*
1169 * Allocate the entire reservation as unwritten blocks.
1170 *
1171 * Use XFS_BMAPI_EXTSZALIGN to hint at aligning new extents according to
1172 * extszhint, such that there will be a greater chance that future
1173 * atomic writes to that same range will be aligned (and don't require
1174 * this COW-based method).
1175 */
1176 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
1177 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC |
1178 XFS_BMAPI_EXTSZALIGN, 0, &cmap, &nmaps);
1179 if (error) {
1180 xfs_trans_cancel(tp);
1181 goto out_unlock;
1182 }
1183
1184 xfs_inode_set_cowblocks_tag(ip);
1185 error = xfs_trans_commit(tp);
1186 if (error)
1187 goto out_unlock;
1188
1189 found:
1190 if (cmap.br_state != XFS_EXT_NORM) {
1191 error = xfs_reflink_convert_cow_locked(ip, offset_fsb,
1192 count_fsb);
1193 if (error)
1194 goto out_unlock;
1195 cmap.br_state = XFS_EXT_NORM;
1196 }
1197
1198 length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount);
1199 trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap);
1200 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
1201 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1202 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq);
1203
1204 out_unlock:
1205 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1206 return error;
1207 }
1208
1209 const struct iomap_ops xfs_atomic_write_cow_iomap_ops = {
1210 .iomap_begin = xfs_atomic_write_cow_iomap_begin,
1211 };
1212
1213 static int
xfs_dax_write_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)1214 xfs_dax_write_iomap_end(
1215 struct inode *inode,
1216 loff_t pos,
1217 loff_t length,
1218 ssize_t written,
1219 unsigned flags,
1220 struct iomap *iomap)
1221 {
1222 struct xfs_inode *ip = XFS_I(inode);
1223
1224 if (!xfs_is_cow_inode(ip))
1225 return 0;
1226
1227 if (!written)
1228 return xfs_reflink_cancel_cow_range(ip, pos, length, true);
1229
1230 return xfs_reflink_end_cow(ip, pos, written);
1231 }
1232
1233 const struct iomap_ops xfs_dax_write_iomap_ops = {
1234 .iomap_begin = xfs_direct_write_iomap_begin,
1235 .iomap_end = xfs_dax_write_iomap_end,
1236 };
1237
1238 /*
1239 * Convert a hole to a delayed allocation.
1240 */
1241 static void
xfs_bmap_add_extent_hole_delay(struct xfs_inode * ip,int whichfork,struct xfs_iext_cursor * icur,struct xfs_bmbt_irec * new)1242 xfs_bmap_add_extent_hole_delay(
1243 struct xfs_inode *ip, /* incore inode pointer */
1244 int whichfork,
1245 struct xfs_iext_cursor *icur,
1246 struct xfs_bmbt_irec *new) /* new data to add to file extents */
1247 {
1248 struct xfs_ifork *ifp; /* inode fork pointer */
1249 xfs_bmbt_irec_t left; /* left neighbor extent entry */
1250 xfs_filblks_t newlen=0; /* new indirect size */
1251 xfs_filblks_t oldlen=0; /* old indirect size */
1252 xfs_bmbt_irec_t right; /* right neighbor extent entry */
1253 uint32_t state = xfs_bmap_fork_to_state(whichfork);
1254 xfs_filblks_t temp; /* temp for indirect calculations */
1255
1256 ifp = xfs_ifork_ptr(ip, whichfork);
1257 ASSERT(isnullstartblock(new->br_startblock));
1258
1259 /*
1260 * Check and set flags if this segment has a left neighbor
1261 */
1262 if (xfs_iext_peek_prev_extent(ifp, icur, &left)) {
1263 state |= BMAP_LEFT_VALID;
1264 if (isnullstartblock(left.br_startblock))
1265 state |= BMAP_LEFT_DELAY;
1266 }
1267
1268 /*
1269 * Check and set flags if the current (right) segment exists.
1270 * If it doesn't exist, we're converting the hole at end-of-file.
1271 */
1272 if (xfs_iext_get_extent(ifp, icur, &right)) {
1273 state |= BMAP_RIGHT_VALID;
1274 if (isnullstartblock(right.br_startblock))
1275 state |= BMAP_RIGHT_DELAY;
1276 }
1277
1278 /*
1279 * Set contiguity flags on the left and right neighbors.
1280 * Don't let extents get too large, even if the pieces are contiguous.
1281 */
1282 if ((state & BMAP_LEFT_VALID) && (state & BMAP_LEFT_DELAY) &&
1283 left.br_startoff + left.br_blockcount == new->br_startoff &&
1284 left.br_blockcount + new->br_blockcount <= XFS_MAX_BMBT_EXTLEN)
1285 state |= BMAP_LEFT_CONTIG;
1286
1287 if ((state & BMAP_RIGHT_VALID) && (state & BMAP_RIGHT_DELAY) &&
1288 new->br_startoff + new->br_blockcount == right.br_startoff &&
1289 new->br_blockcount + right.br_blockcount <= XFS_MAX_BMBT_EXTLEN &&
1290 (!(state & BMAP_LEFT_CONTIG) ||
1291 (left.br_blockcount + new->br_blockcount +
1292 right.br_blockcount <= XFS_MAX_BMBT_EXTLEN)))
1293 state |= BMAP_RIGHT_CONTIG;
1294
1295 /*
1296 * Switch out based on the contiguity flags.
1297 */
1298 switch (state & (BMAP_LEFT_CONTIG | BMAP_RIGHT_CONTIG)) {
1299 case BMAP_LEFT_CONTIG | BMAP_RIGHT_CONTIG:
1300 /*
1301 * New allocation is contiguous with delayed allocations
1302 * on the left and on the right.
1303 * Merge all three into a single extent record.
1304 */
1305 temp = left.br_blockcount + new->br_blockcount +
1306 right.br_blockcount;
1307
1308 oldlen = startblockval(left.br_startblock) +
1309 startblockval(new->br_startblock) +
1310 startblockval(right.br_startblock);
1311 newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp),
1312 oldlen);
1313 left.br_startblock = nullstartblock(newlen);
1314 left.br_blockcount = temp;
1315
1316 xfs_iext_remove(ip, icur, state);
1317 xfs_iext_prev(ifp, icur);
1318 xfs_iext_update_extent(ip, state, icur, &left);
1319 break;
1320
1321 case BMAP_LEFT_CONTIG:
1322 /*
1323 * New allocation is contiguous with a delayed allocation
1324 * on the left.
1325 * Merge the new allocation with the left neighbor.
1326 */
1327 temp = left.br_blockcount + new->br_blockcount;
1328
1329 oldlen = startblockval(left.br_startblock) +
1330 startblockval(new->br_startblock);
1331 newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp),
1332 oldlen);
1333 left.br_blockcount = temp;
1334 left.br_startblock = nullstartblock(newlen);
1335
1336 xfs_iext_prev(ifp, icur);
1337 xfs_iext_update_extent(ip, state, icur, &left);
1338 break;
1339
1340 case BMAP_RIGHT_CONTIG:
1341 /*
1342 * New allocation is contiguous with a delayed allocation
1343 * on the right.
1344 * Merge the new allocation with the right neighbor.
1345 */
1346 temp = new->br_blockcount + right.br_blockcount;
1347 oldlen = startblockval(new->br_startblock) +
1348 startblockval(right.br_startblock);
1349 newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp),
1350 oldlen);
1351 right.br_startoff = new->br_startoff;
1352 right.br_startblock = nullstartblock(newlen);
1353 right.br_blockcount = temp;
1354 xfs_iext_update_extent(ip, state, icur, &right);
1355 break;
1356
1357 case 0:
1358 /*
1359 * New allocation is not contiguous with another
1360 * delayed allocation.
1361 * Insert a new entry.
1362 */
1363 oldlen = newlen = 0;
1364 xfs_iext_insert(ip, icur, new, state);
1365 break;
1366 }
1367 if (oldlen != newlen) {
1368 ASSERT(oldlen > newlen);
1369 xfs_add_fdblocks(ip->i_mount, oldlen - newlen);
1370
1371 /*
1372 * Nothing to do for disk quota accounting here.
1373 */
1374 xfs_mod_delalloc(ip, 0, (int64_t)newlen - oldlen);
1375 }
1376 }
1377
1378 /*
1379 * Add a delayed allocation extent to an inode. Blocks are reserved from the
1380 * global pool and the extent inserted into the inode in-core extent tree.
1381 *
1382 * On entry, got refers to the first extent beyond the offset of the extent to
1383 * allocate or eof is specified if no such extent exists. On return, got refers
1384 * to the extent record that was inserted to the inode fork.
1385 *
1386 * Note that the allocated extent may have been merged with contiguous extents
1387 * during insertion into the inode fork. Thus, got does not reflect the current
1388 * state of the inode fork on return. If necessary, the caller can use lastx to
1389 * look up the updated record in the inode fork.
1390 */
1391 static int
xfs_bmapi_reserve_delalloc(struct xfs_inode * ip,int whichfork,xfs_fileoff_t off,xfs_filblks_t len,xfs_filblks_t prealloc,struct xfs_bmbt_irec * got,struct xfs_iext_cursor * icur,int eof)1392 xfs_bmapi_reserve_delalloc(
1393 struct xfs_inode *ip,
1394 int whichfork,
1395 xfs_fileoff_t off,
1396 xfs_filblks_t len,
1397 xfs_filblks_t prealloc,
1398 struct xfs_bmbt_irec *got,
1399 struct xfs_iext_cursor *icur,
1400 int eof)
1401 {
1402 struct xfs_mount *mp = ip->i_mount;
1403 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
1404 xfs_extlen_t alen;
1405 xfs_extlen_t indlen;
1406 uint64_t fdblocks;
1407 int error;
1408 xfs_fileoff_t aoff;
1409 bool use_cowextszhint =
1410 whichfork == XFS_COW_FORK && !prealloc;
1411
1412 retry:
1413 /*
1414 * Cap the alloc length. Keep track of prealloc so we know whether to
1415 * tag the inode before we return.
1416 */
1417 aoff = off;
1418 alen = XFS_FILBLKS_MIN(len + prealloc, XFS_MAX_BMBT_EXTLEN);
1419 if (!eof)
1420 alen = XFS_FILBLKS_MIN(alen, got->br_startoff - aoff);
1421 if (prealloc && alen >= len)
1422 prealloc = alen - len;
1423
1424 /*
1425 * If we're targetting the COW fork but aren't creating a speculative
1426 * posteof preallocation, try to expand the reservation to align with
1427 * the COW extent size hint if there's sufficient free space.
1428 *
1429 * Unlike the data fork, the CoW cancellation functions will free all
1430 * the reservations at inactivation, so we don't require that every
1431 * delalloc reservation have a dirty pagecache.
1432 */
1433 if (use_cowextszhint) {
1434 struct xfs_bmbt_irec prev;
1435 xfs_extlen_t extsz = xfs_get_cowextsz_hint(ip);
1436
1437 if (!xfs_iext_peek_prev_extent(ifp, icur, &prev))
1438 prev.br_startoff = NULLFILEOFF;
1439
1440 error = xfs_bmap_extsize_align(mp, got, &prev, extsz, 0, eof,
1441 1, 0, &aoff, &alen);
1442 ASSERT(!error);
1443 }
1444
1445 /*
1446 * Make a transaction-less quota reservation for delayed allocation
1447 * blocks. This number gets adjusted later. We return if we haven't
1448 * allocated blocks already inside this loop.
1449 */
1450 error = xfs_quota_reserve_blkres(ip, alen);
1451 if (error)
1452 goto out;
1453
1454 /*
1455 * Split changing sb for alen and indlen since they could be coming
1456 * from different places.
1457 */
1458 indlen = (xfs_extlen_t)xfs_bmap_worst_indlen(ip, alen);
1459 ASSERT(indlen > 0);
1460
1461 fdblocks = indlen;
1462 if (XFS_IS_REALTIME_INODE(ip)) {
1463 ASSERT(!xfs_is_zoned_inode(ip));
1464 error = xfs_dec_frextents(mp, xfs_blen_to_rtbxlen(mp, alen));
1465 if (error)
1466 goto out_unreserve_quota;
1467 } else {
1468 fdblocks += alen;
1469 }
1470
1471 error = xfs_dec_fdblocks(mp, fdblocks, false);
1472 if (error)
1473 goto out_unreserve_frextents;
1474
1475 ip->i_delayed_blks += alen;
1476 xfs_mod_delalloc(ip, alen, indlen);
1477
1478 got->br_startoff = aoff;
1479 got->br_startblock = nullstartblock(indlen);
1480 got->br_blockcount = alen;
1481 got->br_state = XFS_EXT_NORM;
1482
1483 xfs_bmap_add_extent_hole_delay(ip, whichfork, icur, got);
1484
1485 /*
1486 * Tag the inode if blocks were preallocated. Note that COW fork
1487 * preallocation can occur at the start or end of the extent, even when
1488 * prealloc == 0, so we must also check the aligned offset and length.
1489 */
1490 if (whichfork == XFS_DATA_FORK && prealloc)
1491 xfs_inode_set_eofblocks_tag(ip);
1492 if (whichfork == XFS_COW_FORK && (prealloc || aoff < off || alen > len))
1493 xfs_inode_set_cowblocks_tag(ip);
1494
1495 return 0;
1496
1497 out_unreserve_frextents:
1498 if (XFS_IS_REALTIME_INODE(ip))
1499 xfs_add_frextents(mp, xfs_blen_to_rtbxlen(mp, alen));
1500 out_unreserve_quota:
1501 if (XFS_IS_QUOTA_ON(mp))
1502 xfs_quota_unreserve_blkres(ip, alen);
1503 out:
1504 if (error == -ENOSPC || error == -EDQUOT) {
1505 trace_xfs_delalloc_enospc(ip, off, len);
1506
1507 if (prealloc || use_cowextszhint) {
1508 /* retry without any preallocation */
1509 use_cowextszhint = false;
1510 prealloc = 0;
1511 goto retry;
1512 }
1513 }
1514 return error;
1515 }
1516
1517 static int
xfs_zoned_buffered_write_iomap_begin(struct inode * inode,loff_t offset,loff_t count,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1518 xfs_zoned_buffered_write_iomap_begin(
1519 struct inode *inode,
1520 loff_t offset,
1521 loff_t count,
1522 unsigned flags,
1523 struct iomap *iomap,
1524 struct iomap *srcmap)
1525 {
1526 struct iomap_iter *iter =
1527 container_of(iomap, struct iomap_iter, iomap);
1528 struct xfs_zone_alloc_ctx *ac = iter->private;
1529 struct xfs_inode *ip = XFS_I(inode);
1530 struct xfs_mount *mp = ip->i_mount;
1531 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1532 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1533 u16 iomap_flags = IOMAP_F_SHARED;
1534 unsigned int lockmode = XFS_ILOCK_EXCL;
1535 xfs_filblks_t count_fsb;
1536 xfs_extlen_t indlen;
1537 struct xfs_bmbt_irec got;
1538 struct xfs_iext_cursor icur;
1539 int error = 0;
1540
1541 ASSERT(!xfs_get_extsz_hint(ip));
1542 ASSERT(!(flags & IOMAP_UNSHARE));
1543 ASSERT(ac);
1544
1545 if (xfs_is_shutdown(mp))
1546 return -EIO;
1547
1548 error = xfs_qm_dqattach(ip);
1549 if (error)
1550 return error;
1551
1552 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1553 if (error)
1554 return error;
1555
1556 if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) ||
1557 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) {
1558 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
1559 error = -EFSCORRUPTED;
1560 goto out_unlock;
1561 }
1562
1563 XFS_STATS_INC(mp, xs_blk_mapw);
1564
1565 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1566 if (error)
1567 goto out_unlock;
1568
1569 /*
1570 * For zeroing operations check if there is any data to zero first.
1571 *
1572 * For regular writes we always need to allocate new blocks, but need to
1573 * provide the source mapping when the range is unaligned to support
1574 * read-modify-write of the whole block in the page cache.
1575 *
1576 * In either case we need to limit the reported range to the boundaries
1577 * of the source map in the data fork.
1578 */
1579 if (!IS_ALIGNED(offset, mp->m_sb.sb_blocksize) ||
1580 !IS_ALIGNED(offset + count, mp->m_sb.sb_blocksize) ||
1581 (flags & IOMAP_ZERO)) {
1582 struct xfs_bmbt_irec smap;
1583 struct xfs_iext_cursor scur;
1584
1585 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &scur,
1586 &smap))
1587 smap.br_startoff = end_fsb; /* fake hole until EOF */
1588 if (smap.br_startoff > offset_fsb) {
1589 /*
1590 * We never need to allocate blocks for zeroing a hole.
1591 */
1592 if (flags & IOMAP_ZERO) {
1593 xfs_hole_to_iomap(ip, iomap, offset_fsb,
1594 smap.br_startoff);
1595 goto out_unlock;
1596 }
1597 end_fsb = min(end_fsb, smap.br_startoff);
1598 } else {
1599 end_fsb = min(end_fsb,
1600 smap.br_startoff + smap.br_blockcount);
1601 xfs_trim_extent(&smap, offset_fsb,
1602 end_fsb - offset_fsb);
1603 error = xfs_bmbt_to_iomap(ip, srcmap, &smap, flags, 0,
1604 xfs_iomap_inode_sequence(ip, 0));
1605 if (error)
1606 goto out_unlock;
1607 }
1608 }
1609
1610 if (!ip->i_cowfp)
1611 xfs_ifork_init_cow(ip);
1612
1613 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
1614 got.br_startoff = end_fsb;
1615 if (got.br_startoff <= offset_fsb) {
1616 trace_xfs_reflink_cow_found(ip, &got);
1617 goto done;
1618 }
1619
1620 /*
1621 * Cap the maximum length to keep the chunks of work done here somewhat
1622 * symmetric with the work writeback does.
1623 */
1624 end_fsb = min(end_fsb, got.br_startoff);
1625 count_fsb = min3(end_fsb - offset_fsb, XFS_MAX_BMBT_EXTLEN,
1626 XFS_B_TO_FSB(mp, 1024 * PAGE_SIZE));
1627
1628 /*
1629 * The block reservation is supposed to cover all blocks that the
1630 * operation could possible write, but there is a nasty corner case
1631 * where blocks could be stolen from underneath us:
1632 *
1633 * 1) while this thread iterates over a larger buffered write,
1634 * 2) another thread is causing a write fault that calls into
1635 * ->page_mkwrite in range this thread writes to, using up the
1636 * delalloc reservation created by a previous call to this function.
1637 * 3) another thread does direct I/O on the range that the write fault
1638 * happened on, which causes writeback of the dirty data.
1639 * 4) this then set the stale flag, which cuts the current iomap
1640 * iteration short, causing the new call to ->iomap_begin that gets
1641 * us here again, but now without a sufficient reservation.
1642 *
1643 * This is a very unusual I/O pattern, and nothing but generic/095 is
1644 * known to hit it. There's not really much we can do here, so turn this
1645 * into a short write.
1646 */
1647 if (count_fsb > ac->reserved_blocks) {
1648 xfs_warn_ratelimited(mp,
1649 "Short write on ino 0x%llx comm %.20s due to three-way race with write fault and direct I/O",
1650 ip->i_ino, current->comm);
1651 count_fsb = ac->reserved_blocks;
1652 if (!count_fsb) {
1653 error = -EIO;
1654 goto out_unlock;
1655 }
1656 }
1657
1658 error = xfs_quota_reserve_blkres(ip, count_fsb);
1659 if (error)
1660 goto out_unlock;
1661
1662 indlen = xfs_bmap_worst_indlen(ip, count_fsb);
1663 error = xfs_dec_fdblocks(mp, indlen, false);
1664 if (error)
1665 goto out_unlock;
1666 ip->i_delayed_blks += count_fsb;
1667 xfs_mod_delalloc(ip, count_fsb, indlen);
1668
1669 got.br_startoff = offset_fsb;
1670 got.br_startblock = nullstartblock(indlen);
1671 got.br_blockcount = count_fsb;
1672 got.br_state = XFS_EXT_NORM;
1673 xfs_bmap_add_extent_hole_delay(ip, XFS_COW_FORK, &icur, &got);
1674 ac->reserved_blocks -= count_fsb;
1675 iomap_flags |= IOMAP_F_NEW;
1676
1677 trace_xfs_iomap_alloc(ip, offset, XFS_FSB_TO_B(mp, count_fsb),
1678 XFS_COW_FORK, &got);
1679 done:
1680 error = xfs_bmbt_to_iomap(ip, iomap, &got, flags, iomap_flags,
1681 xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED));
1682 out_unlock:
1683 xfs_iunlock(ip, lockmode);
1684 return error;
1685 }
1686
1687 static int
xfs_buffered_write_iomap_begin(struct inode * inode,loff_t offset,loff_t count,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1688 xfs_buffered_write_iomap_begin(
1689 struct inode *inode,
1690 loff_t offset,
1691 loff_t count,
1692 unsigned flags,
1693 struct iomap *iomap,
1694 struct iomap *srcmap)
1695 {
1696 struct xfs_inode *ip = XFS_I(inode);
1697 struct xfs_mount *mp = ip->i_mount;
1698 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1699 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1700 struct xfs_bmbt_irec imap, cmap;
1701 struct xfs_iext_cursor icur, ccur;
1702 xfs_fsblock_t prealloc_blocks = 0;
1703 bool eof = false, cow_eof = false, shared = false;
1704 int allocfork = XFS_DATA_FORK;
1705 int error = 0;
1706 unsigned int lockmode = XFS_ILOCK_EXCL;
1707 unsigned int iomap_flags = 0;
1708 u64 seq;
1709
1710 if (xfs_is_shutdown(mp))
1711 return -EIO;
1712
1713 if (xfs_is_zoned_inode(ip))
1714 return xfs_zoned_buffered_write_iomap_begin(inode, offset,
1715 count, flags, iomap, srcmap);
1716
1717 /* we can't use delayed allocations when using extent size hints */
1718 if (xfs_get_extsz_hint(ip))
1719 return xfs_direct_write_iomap_begin(inode, offset, count,
1720 flags, iomap, srcmap);
1721
1722 error = xfs_qm_dqattach(ip);
1723 if (error)
1724 return error;
1725
1726 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1727 if (error)
1728 return error;
1729
1730 if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) ||
1731 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) {
1732 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
1733 error = -EFSCORRUPTED;
1734 goto out_unlock;
1735 }
1736
1737 XFS_STATS_INC(mp, xs_blk_mapw);
1738
1739 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1740 if (error)
1741 goto out_unlock;
1742
1743 /*
1744 * Search the data fork first to look up our source mapping. We
1745 * always need the data fork map, as we have to return it to the
1746 * iomap code so that the higher level write code can read data in to
1747 * perform read-modify-write cycles for unaligned writes.
1748 */
1749 eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap);
1750 if (eof)
1751 imap.br_startoff = end_fsb; /* fake hole until the end */
1752
1753 /* We never need to allocate blocks for zeroing or unsharing a hole. */
1754 if ((flags & (IOMAP_UNSHARE | IOMAP_ZERO)) &&
1755 imap.br_startoff > offset_fsb) {
1756 xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff);
1757 goto out_unlock;
1758 }
1759
1760 /*
1761 * For zeroing, trim a delalloc extent that extends beyond the EOF
1762 * block. If it starts beyond the EOF block, convert it to an
1763 * unwritten extent.
1764 */
1765 if ((flags & IOMAP_ZERO) && imap.br_startoff <= offset_fsb &&
1766 isnullstartblock(imap.br_startblock)) {
1767 xfs_fileoff_t eof_fsb = XFS_B_TO_FSB(mp, XFS_ISIZE(ip));
1768
1769 if (offset_fsb >= eof_fsb)
1770 goto convert_delay;
1771 if (end_fsb > eof_fsb) {
1772 end_fsb = eof_fsb;
1773 xfs_trim_extent(&imap, offset_fsb,
1774 end_fsb - offset_fsb);
1775 }
1776 }
1777
1778 /*
1779 * Search the COW fork extent list even if we did not find a data fork
1780 * extent. This serves two purposes: first this implements the
1781 * speculative preallocation using cowextsize, so that we also unshare
1782 * block adjacent to shared blocks instead of just the shared blocks
1783 * themselves. Second the lookup in the extent list is generally faster
1784 * than going out to the shared extent tree.
1785 */
1786 if (xfs_is_cow_inode(ip)) {
1787 if (!ip->i_cowfp) {
1788 ASSERT(!xfs_is_reflink_inode(ip));
1789 xfs_ifork_init_cow(ip);
1790 }
1791 cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb,
1792 &ccur, &cmap);
1793 if (!cow_eof && cmap.br_startoff <= offset_fsb) {
1794 trace_xfs_reflink_cow_found(ip, &cmap);
1795 goto found_cow;
1796 }
1797 }
1798
1799 if (imap.br_startoff <= offset_fsb) {
1800 /*
1801 * For reflink files we may need a delalloc reservation when
1802 * overwriting shared extents. This includes zeroing of
1803 * existing extents that contain data.
1804 */
1805 if (!xfs_is_cow_inode(ip) ||
1806 ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) {
1807 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1808 &imap);
1809 goto found_imap;
1810 }
1811
1812 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
1813
1814 /* Trim the mapping to the nearest shared extent boundary. */
1815 error = xfs_bmap_trim_cow(ip, &imap, &shared);
1816 if (error)
1817 goto out_unlock;
1818
1819 /* Not shared? Just report the (potentially capped) extent. */
1820 if (!shared) {
1821 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1822 &imap);
1823 goto found_imap;
1824 }
1825
1826 /*
1827 * Fork all the shared blocks from our write offset until the
1828 * end of the extent.
1829 */
1830 allocfork = XFS_COW_FORK;
1831 end_fsb = imap.br_startoff + imap.br_blockcount;
1832 } else {
1833 /*
1834 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES
1835 * pages to keep the chunks of work done where somewhat
1836 * symmetric with the work writeback does. This is a completely
1837 * arbitrary number pulled out of thin air.
1838 *
1839 * Note that the values needs to be less than 32-bits wide until
1840 * the lower level functions are updated.
1841 */
1842 count = min_t(loff_t, count, 1024 * PAGE_SIZE);
1843 end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1844
1845 if (xfs_is_always_cow_inode(ip))
1846 allocfork = XFS_COW_FORK;
1847 }
1848
1849 if (eof && offset + count > XFS_ISIZE(ip)) {
1850 /*
1851 * Determine the initial size of the preallocation.
1852 * We clean up any extra preallocation when the file is closed.
1853 */
1854 if (xfs_has_allocsize(mp))
1855 prealloc_blocks = mp->m_allocsize_blocks;
1856 else if (allocfork == XFS_DATA_FORK)
1857 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1858 offset, count, &icur);
1859 else
1860 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1861 offset, count, &ccur);
1862 if (prealloc_blocks) {
1863 xfs_extlen_t align;
1864 xfs_off_t end_offset;
1865 xfs_fileoff_t p_end_fsb;
1866
1867 end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1);
1868 p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) +
1869 prealloc_blocks;
1870
1871 align = xfs_eof_alignment(ip);
1872 if (align)
1873 p_end_fsb = roundup_64(p_end_fsb, align);
1874
1875 p_end_fsb = min(p_end_fsb,
1876 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
1877 ASSERT(p_end_fsb > offset_fsb);
1878 prealloc_blocks = p_end_fsb - end_fsb;
1879 }
1880 }
1881
1882 /*
1883 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch
1884 * them out if the write happens to fail.
1885 */
1886 iomap_flags |= IOMAP_F_NEW;
1887 if (allocfork == XFS_COW_FORK) {
1888 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1889 end_fsb - offset_fsb, prealloc_blocks, &cmap,
1890 &ccur, cow_eof);
1891 if (error)
1892 goto out_unlock;
1893
1894 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap);
1895 goto found_cow;
1896 }
1897
1898 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1899 end_fsb - offset_fsb, prealloc_blocks, &imap, &icur,
1900 eof);
1901 if (error)
1902 goto out_unlock;
1903
1904 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap);
1905 found_imap:
1906 seq = xfs_iomap_inode_sequence(ip, iomap_flags);
1907 xfs_iunlock(ip, lockmode);
1908 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq);
1909
1910 convert_delay:
1911 xfs_iunlock(ip, lockmode);
1912 truncate_pagecache(inode, offset);
1913 error = xfs_bmapi_convert_delalloc(ip, XFS_DATA_FORK, offset,
1914 iomap, NULL);
1915 if (error)
1916 return error;
1917
1918 trace_xfs_iomap_alloc(ip, offset, count, XFS_DATA_FORK, &imap);
1919 return 0;
1920
1921 found_cow:
1922 if (imap.br_startoff <= offset_fsb) {
1923 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0,
1924 xfs_iomap_inode_sequence(ip, 0));
1925 if (error)
1926 goto out_unlock;
1927 } else {
1928 xfs_trim_extent(&cmap, offset_fsb,
1929 imap.br_startoff - offset_fsb);
1930 }
1931
1932 iomap_flags |= IOMAP_F_SHARED;
1933 seq = xfs_iomap_inode_sequence(ip, iomap_flags);
1934 xfs_iunlock(ip, lockmode);
1935 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, iomap_flags, seq);
1936
1937 out_unlock:
1938 xfs_iunlock(ip, lockmode);
1939 return error;
1940 }
1941
1942 static void
xfs_buffered_write_delalloc_punch(struct inode * inode,loff_t offset,loff_t length,struct iomap * iomap)1943 xfs_buffered_write_delalloc_punch(
1944 struct inode *inode,
1945 loff_t offset,
1946 loff_t length,
1947 struct iomap *iomap)
1948 {
1949 struct iomap_iter *iter =
1950 container_of(iomap, struct iomap_iter, iomap);
1951
1952 xfs_bmap_punch_delalloc_range(XFS_I(inode),
1953 (iomap->flags & IOMAP_F_SHARED) ?
1954 XFS_COW_FORK : XFS_DATA_FORK,
1955 offset, offset + length, iter->private);
1956 }
1957
1958 static int
xfs_buffered_write_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)1959 xfs_buffered_write_iomap_end(
1960 struct inode *inode,
1961 loff_t offset,
1962 loff_t length,
1963 ssize_t written,
1964 unsigned flags,
1965 struct iomap *iomap)
1966 {
1967 loff_t start_byte, end_byte;
1968
1969 /* If we didn't reserve the blocks, we're not allowed to punch them. */
1970 if (iomap->type != IOMAP_DELALLOC || !(iomap->flags & IOMAP_F_NEW))
1971 return 0;
1972
1973 /*
1974 * iomap_page_mkwrite() will never fail in a way that requires delalloc
1975 * extents that it allocated to be revoked. Hence never try to release
1976 * them here.
1977 */
1978 if (flags & IOMAP_FAULT)
1979 return 0;
1980
1981 /* Nothing to do if we've written the entire delalloc extent */
1982 start_byte = iomap_last_written_block(inode, offset, written);
1983 end_byte = round_up(offset + length, i_blocksize(inode));
1984 if (start_byte >= end_byte)
1985 return 0;
1986
1987 /* For zeroing operations the callers already hold invalidate_lock. */
1988 if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) {
1989 rwsem_assert_held_write(&inode->i_mapping->invalidate_lock);
1990 iomap_write_delalloc_release(inode, start_byte, end_byte, flags,
1991 iomap, xfs_buffered_write_delalloc_punch);
1992 } else {
1993 filemap_invalidate_lock(inode->i_mapping);
1994 iomap_write_delalloc_release(inode, start_byte, end_byte, flags,
1995 iomap, xfs_buffered_write_delalloc_punch);
1996 filemap_invalidate_unlock(inode->i_mapping);
1997 }
1998
1999 return 0;
2000 }
2001
2002 const struct iomap_ops xfs_buffered_write_iomap_ops = {
2003 .iomap_begin = xfs_buffered_write_iomap_begin,
2004 .iomap_end = xfs_buffered_write_iomap_end,
2005 };
2006
2007 static int
xfs_read_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)2008 xfs_read_iomap_begin(
2009 struct inode *inode,
2010 loff_t offset,
2011 loff_t length,
2012 unsigned flags,
2013 struct iomap *iomap,
2014 struct iomap *srcmap)
2015 {
2016 struct xfs_inode *ip = XFS_I(inode);
2017 struct xfs_mount *mp = ip->i_mount;
2018 struct xfs_bmbt_irec imap;
2019 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
2020 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
2021 int nimaps = 1, error = 0;
2022 bool shared = false;
2023 unsigned int lockmode = XFS_ILOCK_SHARED;
2024 u64 seq;
2025
2026 ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO)));
2027
2028 if (xfs_is_shutdown(mp))
2029 return -EIO;
2030
2031 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
2032 if (error)
2033 return error;
2034 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
2035 &nimaps, 0);
2036 if (!error && ((flags & IOMAP_REPORT) || IS_DAX(inode)))
2037 error = xfs_reflink_trim_around_shared(ip, &imap, &shared);
2038 seq = xfs_iomap_inode_sequence(ip, shared ? IOMAP_F_SHARED : 0);
2039 xfs_iunlock(ip, lockmode);
2040
2041 if (error)
2042 return error;
2043 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
2044 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
2045 shared ? IOMAP_F_SHARED : 0, seq);
2046 }
2047
2048 const struct iomap_ops xfs_read_iomap_ops = {
2049 .iomap_begin = xfs_read_iomap_begin,
2050 };
2051
2052 static int
xfs_seek_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)2053 xfs_seek_iomap_begin(
2054 struct inode *inode,
2055 loff_t offset,
2056 loff_t length,
2057 unsigned flags,
2058 struct iomap *iomap,
2059 struct iomap *srcmap)
2060 {
2061 struct xfs_inode *ip = XFS_I(inode);
2062 struct xfs_mount *mp = ip->i_mount;
2063 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
2064 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
2065 xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF;
2066 struct xfs_iext_cursor icur;
2067 struct xfs_bmbt_irec imap, cmap;
2068 int error = 0;
2069 unsigned lockmode;
2070 u64 seq;
2071
2072 if (xfs_is_shutdown(mp))
2073 return -EIO;
2074
2075 lockmode = xfs_ilock_data_map_shared(ip);
2076 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
2077 if (error)
2078 goto out_unlock;
2079
2080 if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) {
2081 /*
2082 * If we found a data extent we are done.
2083 */
2084 if (imap.br_startoff <= offset_fsb)
2085 goto done;
2086 data_fsb = imap.br_startoff;
2087 } else {
2088 /*
2089 * Fake a hole until the end of the file.
2090 */
2091 data_fsb = xfs_iomap_end_fsb(mp, offset, length);
2092 }
2093
2094 /*
2095 * If a COW fork extent covers the hole, report it - capped to the next
2096 * data fork extent:
2097 */
2098 if (xfs_inode_has_cow_data(ip) &&
2099 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
2100 cow_fsb = cmap.br_startoff;
2101 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
2102 if (data_fsb < cow_fsb + cmap.br_blockcount)
2103 end_fsb = min(end_fsb, data_fsb);
2104 xfs_trim_extent(&cmap, offset_fsb, end_fsb - offset_fsb);
2105 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
2106 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags,
2107 IOMAP_F_SHARED, seq);
2108 /*
2109 * This is a COW extent, so we must probe the page cache
2110 * because there could be dirty page cache being backed
2111 * by this extent.
2112 */
2113 iomap->type = IOMAP_UNWRITTEN;
2114 goto out_unlock;
2115 }
2116
2117 /*
2118 * Else report a hole, capped to the next found data or COW extent.
2119 */
2120 if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb)
2121 imap.br_blockcount = cow_fsb - offset_fsb;
2122 else
2123 imap.br_blockcount = data_fsb - offset_fsb;
2124 imap.br_startoff = offset_fsb;
2125 imap.br_startblock = HOLESTARTBLOCK;
2126 imap.br_state = XFS_EXT_NORM;
2127 done:
2128 seq = xfs_iomap_inode_sequence(ip, 0);
2129 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
2130 error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq);
2131 out_unlock:
2132 xfs_iunlock(ip, lockmode);
2133 return error;
2134 }
2135
2136 const struct iomap_ops xfs_seek_iomap_ops = {
2137 .iomap_begin = xfs_seek_iomap_begin,
2138 };
2139
2140 static int
xfs_xattr_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)2141 xfs_xattr_iomap_begin(
2142 struct inode *inode,
2143 loff_t offset,
2144 loff_t length,
2145 unsigned flags,
2146 struct iomap *iomap,
2147 struct iomap *srcmap)
2148 {
2149 struct xfs_inode *ip = XFS_I(inode);
2150 struct xfs_mount *mp = ip->i_mount;
2151 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
2152 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
2153 struct xfs_bmbt_irec imap;
2154 int nimaps = 1, error = 0;
2155 unsigned lockmode;
2156 int seq;
2157
2158 if (xfs_is_shutdown(mp))
2159 return -EIO;
2160
2161 lockmode = xfs_ilock_attr_map_shared(ip);
2162
2163 /* if there are no attribute fork or extents, return ENOENT */
2164 if (!xfs_inode_has_attr_fork(ip) || !ip->i_af.if_nextents) {
2165 error = -ENOENT;
2166 goto out_unlock;
2167 }
2168
2169 ASSERT(ip->i_af.if_format != XFS_DINODE_FMT_LOCAL);
2170 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
2171 &nimaps, XFS_BMAPI_ATTRFORK);
2172 out_unlock:
2173
2174 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_XATTR);
2175 xfs_iunlock(ip, lockmode);
2176
2177 if (error)
2178 return error;
2179 ASSERT(nimaps);
2180 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_XATTR, seq);
2181 }
2182
2183 const struct iomap_ops xfs_xattr_iomap_ops = {
2184 .iomap_begin = xfs_xattr_iomap_begin,
2185 };
2186
2187 int
xfs_zero_range(struct xfs_inode * ip,loff_t pos,loff_t len,struct xfs_zone_alloc_ctx * ac,bool * did_zero)2188 xfs_zero_range(
2189 struct xfs_inode *ip,
2190 loff_t pos,
2191 loff_t len,
2192 struct xfs_zone_alloc_ctx *ac,
2193 bool *did_zero)
2194 {
2195 struct inode *inode = VFS_I(ip);
2196
2197 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL);
2198
2199 if (IS_DAX(inode))
2200 return dax_zero_range(inode, pos, len, did_zero,
2201 &xfs_dax_write_iomap_ops);
2202 return iomap_zero_range(inode, pos, len, did_zero,
2203 &xfs_buffered_write_iomap_ops, &xfs_iomap_write_ops,
2204 ac);
2205 }
2206
2207 int
xfs_truncate_page(struct xfs_inode * ip,loff_t pos,struct xfs_zone_alloc_ctx * ac,bool * did_zero)2208 xfs_truncate_page(
2209 struct xfs_inode *ip,
2210 loff_t pos,
2211 struct xfs_zone_alloc_ctx *ac,
2212 bool *did_zero)
2213 {
2214 struct inode *inode = VFS_I(ip);
2215
2216 if (IS_DAX(inode))
2217 return dax_truncate_page(inode, pos, did_zero,
2218 &xfs_dax_write_iomap_ops);
2219 return iomap_truncate_page(inode, pos, did_zero,
2220 &xfs_buffered_write_iomap_ops, &xfs_iomap_write_ops,
2221 ac);
2222 }
2223