xref: /linux/fs/xfs/xfs_iomap.c (revision b5d760d53ac2e36825fbbb8d1f54ad9ce6138f7b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * Copyright (c) 2016-2018 Christoph Hellwig.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_bmap_btree.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_space.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_iomap.h"
25 #include "xfs_trace.h"
26 #include "xfs_quota.h"
27 #include "xfs_rtgroup.h"
28 #include "xfs_dquot_item.h"
29 #include "xfs_dquot.h"
30 #include "xfs_reflink.h"
31 #include "xfs_health.h"
32 #include "xfs_rtbitmap.h"
33 #include "xfs_icache.h"
34 #include "xfs_zone_alloc.h"
35 
36 #define XFS_ALLOC_ALIGN(mp, off) \
37 	(((off) >> mp->m_allocsize_log) << mp->m_allocsize_log)
38 
39 static int
xfs_alert_fsblock_zero(xfs_inode_t * ip,xfs_bmbt_irec_t * imap)40 xfs_alert_fsblock_zero(
41 	xfs_inode_t	*ip,
42 	xfs_bmbt_irec_t	*imap)
43 {
44 	xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO,
45 			"Access to block zero in inode %llu "
46 			"start_block: %llx start_off: %llx "
47 			"blkcnt: %llx extent-state: %x",
48 		(unsigned long long)ip->i_ino,
49 		(unsigned long long)imap->br_startblock,
50 		(unsigned long long)imap->br_startoff,
51 		(unsigned long long)imap->br_blockcount,
52 		imap->br_state);
53 	xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
54 	return -EFSCORRUPTED;
55 }
56 
57 u64
xfs_iomap_inode_sequence(struct xfs_inode * ip,u16 iomap_flags)58 xfs_iomap_inode_sequence(
59 	struct xfs_inode	*ip,
60 	u16			iomap_flags)
61 {
62 	u64			cookie = 0;
63 
64 	if (iomap_flags & IOMAP_F_XATTR)
65 		return READ_ONCE(ip->i_af.if_seq);
66 	if ((iomap_flags & IOMAP_F_SHARED) && ip->i_cowfp)
67 		cookie = (u64)READ_ONCE(ip->i_cowfp->if_seq) << 32;
68 	return cookie | READ_ONCE(ip->i_df.if_seq);
69 }
70 
71 /*
72  * Check that the iomap passed to us is still valid for the given offset and
73  * length.
74  */
75 static bool
xfs_iomap_valid(struct inode * inode,const struct iomap * iomap)76 xfs_iomap_valid(
77 	struct inode		*inode,
78 	const struct iomap	*iomap)
79 {
80 	struct xfs_inode	*ip = XFS_I(inode);
81 
82 	if (iomap->type == IOMAP_HOLE)
83 		return true;
84 
85 	if (iomap->validity_cookie !=
86 			xfs_iomap_inode_sequence(ip, iomap->flags)) {
87 		trace_xfs_iomap_invalid(ip, iomap);
88 		return false;
89 	}
90 
91 	XFS_ERRORTAG_DELAY(ip->i_mount, XFS_ERRTAG_WRITE_DELAY_MS);
92 	return true;
93 }
94 
95 const struct iomap_write_ops xfs_iomap_write_ops = {
96 	.iomap_valid		= xfs_iomap_valid,
97 };
98 
99 int
xfs_bmbt_to_iomap(struct xfs_inode * ip,struct iomap * iomap,struct xfs_bmbt_irec * imap,unsigned int mapping_flags,u16 iomap_flags,u64 sequence_cookie)100 xfs_bmbt_to_iomap(
101 	struct xfs_inode	*ip,
102 	struct iomap		*iomap,
103 	struct xfs_bmbt_irec	*imap,
104 	unsigned int		mapping_flags,
105 	u16			iomap_flags,
106 	u64			sequence_cookie)
107 {
108 	struct xfs_mount	*mp = ip->i_mount;
109 	struct xfs_buftarg	*target = xfs_inode_buftarg(ip);
110 
111 	if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) {
112 		xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
113 		return xfs_alert_fsblock_zero(ip, imap);
114 	}
115 
116 	if (imap->br_startblock == HOLESTARTBLOCK) {
117 		iomap->addr = IOMAP_NULL_ADDR;
118 		iomap->type = IOMAP_HOLE;
119 	} else if (imap->br_startblock == DELAYSTARTBLOCK ||
120 		   isnullstartblock(imap->br_startblock)) {
121 		iomap->addr = IOMAP_NULL_ADDR;
122 		iomap->type = IOMAP_DELALLOC;
123 	} else {
124 		xfs_daddr_t	daddr = xfs_fsb_to_db(ip, imap->br_startblock);
125 
126 		iomap->addr = BBTOB(daddr);
127 		if (mapping_flags & IOMAP_DAX)
128 			iomap->addr += target->bt_dax_part_off;
129 
130 		if (imap->br_state == XFS_EXT_UNWRITTEN)
131 			iomap->type = IOMAP_UNWRITTEN;
132 		else
133 			iomap->type = IOMAP_MAPPED;
134 
135 		/*
136 		 * Mark iomaps starting at the first sector of a RTG as merge
137 		 * boundary so that each I/O completions is contained to a
138 		 * single RTG.
139 		 */
140 		if (XFS_IS_REALTIME_INODE(ip) && xfs_has_rtgroups(mp) &&
141 		    xfs_rtbno_is_group_start(mp, imap->br_startblock))
142 			iomap->flags |= IOMAP_F_BOUNDARY;
143 	}
144 	iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff);
145 	iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount);
146 	if (mapping_flags & IOMAP_DAX)
147 		iomap->dax_dev = target->bt_daxdev;
148 	else
149 		iomap->bdev = target->bt_bdev;
150 	iomap->flags = iomap_flags;
151 
152 	if (xfs_ipincount(ip) &&
153 	    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
154 		iomap->flags |= IOMAP_F_DIRTY;
155 
156 	iomap->validity_cookie = sequence_cookie;
157 	return 0;
158 }
159 
160 static void
xfs_hole_to_iomap(struct xfs_inode * ip,struct iomap * iomap,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb)161 xfs_hole_to_iomap(
162 	struct xfs_inode	*ip,
163 	struct iomap		*iomap,
164 	xfs_fileoff_t		offset_fsb,
165 	xfs_fileoff_t		end_fsb)
166 {
167 	struct xfs_buftarg	*target = xfs_inode_buftarg(ip);
168 
169 	iomap->addr = IOMAP_NULL_ADDR;
170 	iomap->type = IOMAP_HOLE;
171 	iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb);
172 	iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb);
173 	iomap->bdev = target->bt_bdev;
174 	iomap->dax_dev = target->bt_daxdev;
175 }
176 
177 static inline xfs_fileoff_t
xfs_iomap_end_fsb(struct xfs_mount * mp,loff_t offset,loff_t count)178 xfs_iomap_end_fsb(
179 	struct xfs_mount	*mp,
180 	loff_t			offset,
181 	loff_t			count)
182 {
183 	ASSERT(offset <= mp->m_super->s_maxbytes);
184 	return min(XFS_B_TO_FSB(mp, offset + count),
185 		   XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
186 }
187 
188 static xfs_extlen_t
xfs_eof_alignment(struct xfs_inode * ip)189 xfs_eof_alignment(
190 	struct xfs_inode	*ip)
191 {
192 	struct xfs_mount	*mp = ip->i_mount;
193 	xfs_extlen_t		align = 0;
194 
195 	if (!XFS_IS_REALTIME_INODE(ip)) {
196 		/*
197 		 * Round up the allocation request to a stripe unit
198 		 * (m_dalign) boundary if the file size is >= stripe unit
199 		 * size, and we are allocating past the allocation eof.
200 		 *
201 		 * If mounted with the "-o swalloc" option the alignment is
202 		 * increased from the strip unit size to the stripe width.
203 		 */
204 		if (mp->m_swidth && xfs_has_swalloc(mp))
205 			align = mp->m_swidth;
206 		else if (mp->m_dalign)
207 			align = mp->m_dalign;
208 
209 		if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align))
210 			align = 0;
211 	}
212 
213 	return align;
214 }
215 
216 /*
217  * Check if last_fsb is outside the last extent, and if so grow it to the next
218  * stripe unit boundary.
219  */
220 xfs_fileoff_t
xfs_iomap_eof_align_last_fsb(struct xfs_inode * ip,xfs_fileoff_t end_fsb)221 xfs_iomap_eof_align_last_fsb(
222 	struct xfs_inode	*ip,
223 	xfs_fileoff_t		end_fsb)
224 {
225 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
226 	xfs_extlen_t		extsz = xfs_get_extsz_hint(ip);
227 	xfs_extlen_t		align = xfs_eof_alignment(ip);
228 	struct xfs_bmbt_irec	irec;
229 	struct xfs_iext_cursor	icur;
230 
231 	ASSERT(!xfs_need_iread_extents(ifp));
232 
233 	/*
234 	 * Always round up the allocation request to the extent hint boundary.
235 	 */
236 	if (extsz) {
237 		if (align)
238 			align = roundup_64(align, extsz);
239 		else
240 			align = extsz;
241 	}
242 
243 	if (align) {
244 		xfs_fileoff_t	aligned_end_fsb = roundup_64(end_fsb, align);
245 
246 		xfs_iext_last(ifp, &icur);
247 		if (!xfs_iext_get_extent(ifp, &icur, &irec) ||
248 		    aligned_end_fsb >= irec.br_startoff + irec.br_blockcount)
249 			return aligned_end_fsb;
250 	}
251 
252 	return end_fsb;
253 }
254 
255 int
xfs_iomap_write_direct(struct xfs_inode * ip,xfs_fileoff_t offset_fsb,xfs_fileoff_t count_fsb,unsigned int flags,struct xfs_bmbt_irec * imap,u64 * seq)256 xfs_iomap_write_direct(
257 	struct xfs_inode	*ip,
258 	xfs_fileoff_t		offset_fsb,
259 	xfs_fileoff_t		count_fsb,
260 	unsigned int		flags,
261 	struct xfs_bmbt_irec	*imap,
262 	u64			*seq)
263 {
264 	struct xfs_mount	*mp = ip->i_mount;
265 	struct xfs_trans	*tp;
266 	xfs_filblks_t		resaligned;
267 	int			nimaps;
268 	unsigned int		dblocks, rblocks;
269 	bool			force = false;
270 	int			error;
271 	int			bmapi_flags = XFS_BMAPI_PREALLOC;
272 	int			nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT;
273 
274 	ASSERT(count_fsb > 0);
275 
276 	resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb,
277 					   xfs_get_extsz_hint(ip));
278 	if (unlikely(XFS_IS_REALTIME_INODE(ip))) {
279 		dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
280 		rblocks = resaligned;
281 	} else {
282 		dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
283 		rblocks = 0;
284 	}
285 
286 	error = xfs_qm_dqattach(ip);
287 	if (error)
288 		return error;
289 
290 	/*
291 	 * For DAX, we do not allocate unwritten extents, but instead we zero
292 	 * the block before we commit the transaction.  Ideally we'd like to do
293 	 * this outside the transaction context, but if we commit and then crash
294 	 * we may not have zeroed the blocks and this will be exposed on
295 	 * recovery of the allocation. Hence we must zero before commit.
296 	 *
297 	 * Further, if we are mapping unwritten extents here, we need to zero
298 	 * and convert them to written so that we don't need an unwritten extent
299 	 * callback for DAX. This also means that we need to be able to dip into
300 	 * the reserve block pool for bmbt block allocation if there is no space
301 	 * left but we need to do unwritten extent conversion.
302 	 */
303 	if (flags & IOMAP_DAX) {
304 		bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO;
305 		if (imap->br_state == XFS_EXT_UNWRITTEN) {
306 			force = true;
307 			nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT;
308 			dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
309 		}
310 	}
311 
312 	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks,
313 			rblocks, force, &tp);
314 	if (error)
315 		return error;
316 
317 	error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, nr_exts);
318 	if (error)
319 		goto out_trans_cancel;
320 
321 	/*
322 	 * From this point onwards we overwrite the imap pointer that the
323 	 * caller gave to us.
324 	 */
325 	nimaps = 1;
326 	error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0,
327 				imap, &nimaps);
328 	if (error)
329 		goto out_trans_cancel;
330 
331 	/*
332 	 * Complete the transaction
333 	 */
334 	error = xfs_trans_commit(tp);
335 	if (error)
336 		goto out_unlock;
337 
338 	if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) {
339 		xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
340 		error = xfs_alert_fsblock_zero(ip, imap);
341 	}
342 
343 out_unlock:
344 	*seq = xfs_iomap_inode_sequence(ip, 0);
345 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
346 	return error;
347 
348 out_trans_cancel:
349 	xfs_trans_cancel(tp);
350 	goto out_unlock;
351 }
352 
353 STATIC bool
xfs_quota_need_throttle(struct xfs_inode * ip,xfs_dqtype_t type,xfs_fsblock_t alloc_blocks)354 xfs_quota_need_throttle(
355 	struct xfs_inode	*ip,
356 	xfs_dqtype_t		type,
357 	xfs_fsblock_t		alloc_blocks)
358 {
359 	struct xfs_dquot	*dq = xfs_inode_dquot(ip, type);
360 	struct xfs_dquot_res	*res;
361 	struct xfs_dquot_pre	*pre;
362 
363 	if (!dq || !xfs_this_quota_on(ip->i_mount, type))
364 		return false;
365 
366 	if (XFS_IS_REALTIME_INODE(ip)) {
367 		res = &dq->q_rtb;
368 		pre = &dq->q_rtb_prealloc;
369 	} else {
370 		res = &dq->q_blk;
371 		pre = &dq->q_blk_prealloc;
372 	}
373 
374 	/* no hi watermark, no throttle */
375 	if (!pre->q_prealloc_hi_wmark)
376 		return false;
377 
378 	/* under the lo watermark, no throttle */
379 	if (res->reserved + alloc_blocks < pre->q_prealloc_lo_wmark)
380 		return false;
381 
382 	return true;
383 }
384 
385 STATIC void
xfs_quota_calc_throttle(struct xfs_inode * ip,xfs_dqtype_t type,xfs_fsblock_t * qblocks,int * qshift,int64_t * qfreesp)386 xfs_quota_calc_throttle(
387 	struct xfs_inode	*ip,
388 	xfs_dqtype_t		type,
389 	xfs_fsblock_t		*qblocks,
390 	int			*qshift,
391 	int64_t			*qfreesp)
392 {
393 	struct xfs_dquot	*dq = xfs_inode_dquot(ip, type);
394 	struct xfs_dquot_res	*res;
395 	struct xfs_dquot_pre	*pre;
396 	int64_t			freesp;
397 	int			shift = 0;
398 
399 	if (!dq) {
400 		res = NULL;
401 		pre = NULL;
402 	} else if (XFS_IS_REALTIME_INODE(ip)) {
403 		res = &dq->q_rtb;
404 		pre = &dq->q_rtb_prealloc;
405 	} else {
406 		res = &dq->q_blk;
407 		pre = &dq->q_blk_prealloc;
408 	}
409 
410 	/* no dq, or over hi wmark, squash the prealloc completely */
411 	if (!res || res->reserved >= pre->q_prealloc_hi_wmark) {
412 		*qblocks = 0;
413 		*qfreesp = 0;
414 		return;
415 	}
416 
417 	freesp = pre->q_prealloc_hi_wmark - res->reserved;
418 	if (freesp < pre->q_low_space[XFS_QLOWSP_5_PCNT]) {
419 		shift = 2;
420 		if (freesp < pre->q_low_space[XFS_QLOWSP_3_PCNT])
421 			shift += 2;
422 		if (freesp < pre->q_low_space[XFS_QLOWSP_1_PCNT])
423 			shift += 2;
424 	}
425 
426 	if (freesp < *qfreesp)
427 		*qfreesp = freesp;
428 
429 	/* only overwrite the throttle values if we are more aggressive */
430 	if ((freesp >> shift) < (*qblocks >> *qshift)) {
431 		*qblocks = freesp;
432 		*qshift = shift;
433 	}
434 }
435 
436 static int64_t
xfs_iomap_freesp(struct xfs_mount * mp,unsigned int idx,uint64_t low_space[XFS_LOWSP_MAX],int * shift)437 xfs_iomap_freesp(
438 	struct xfs_mount	*mp,
439 	unsigned int		idx,
440 	uint64_t		low_space[XFS_LOWSP_MAX],
441 	int			*shift)
442 {
443 	int64_t			freesp;
444 
445 	freesp = xfs_estimate_freecounter(mp, idx);
446 	if (freesp < low_space[XFS_LOWSP_5_PCNT]) {
447 		*shift = 2;
448 		if (freesp < low_space[XFS_LOWSP_4_PCNT])
449 			(*shift)++;
450 		if (freesp < low_space[XFS_LOWSP_3_PCNT])
451 			(*shift)++;
452 		if (freesp < low_space[XFS_LOWSP_2_PCNT])
453 			(*shift)++;
454 		if (freesp < low_space[XFS_LOWSP_1_PCNT])
455 			(*shift)++;
456 	}
457 	return freesp;
458 }
459 
460 /*
461  * If we don't have a user specified preallocation size, dynamically increase
462  * the preallocation size as the size of the file grows.  Cap the maximum size
463  * at a single extent or less if the filesystem is near full. The closer the
464  * filesystem is to being full, the smaller the maximum preallocation.
465  */
466 STATIC xfs_fsblock_t
xfs_iomap_prealloc_size(struct xfs_inode * ip,int whichfork,loff_t offset,loff_t count,struct xfs_iext_cursor * icur)467 xfs_iomap_prealloc_size(
468 	struct xfs_inode	*ip,
469 	int			whichfork,
470 	loff_t			offset,
471 	loff_t			count,
472 	struct xfs_iext_cursor	*icur)
473 {
474 	struct xfs_iext_cursor	ncur = *icur;
475 	struct xfs_bmbt_irec	prev, got;
476 	struct xfs_mount	*mp = ip->i_mount;
477 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
478 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
479 	int64_t			freesp;
480 	xfs_fsblock_t		qblocks;
481 	xfs_fsblock_t		alloc_blocks = 0;
482 	xfs_extlen_t		plen;
483 	int			shift = 0;
484 	int			qshift = 0;
485 
486 	/*
487 	 * As an exception we don't do any preallocation at all if the file is
488 	 * smaller than the minimum preallocation and we are using the default
489 	 * dynamic preallocation scheme, as it is likely this is the only write
490 	 * to the file that is going to be done.
491 	 */
492 	if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks))
493 		return 0;
494 
495 	/*
496 	 * Use the minimum preallocation size for small files or if we are
497 	 * writing right after a hole.
498 	 */
499 	if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) ||
500 	    !xfs_iext_prev_extent(ifp, &ncur, &prev) ||
501 	    prev.br_startoff + prev.br_blockcount < offset_fsb)
502 		return mp->m_allocsize_blocks;
503 
504 	/*
505 	 * Take the size of the preceding data extents as the basis for the
506 	 * preallocation size. Note that we don't care if the previous extents
507 	 * are written or not.
508 	 */
509 	plen = prev.br_blockcount;
510 	while (xfs_iext_prev_extent(ifp, &ncur, &got)) {
511 		if (plen > XFS_MAX_BMBT_EXTLEN / 2 ||
512 		    isnullstartblock(got.br_startblock) ||
513 		    got.br_startoff + got.br_blockcount != prev.br_startoff ||
514 		    got.br_startblock + got.br_blockcount != prev.br_startblock)
515 			break;
516 		plen += got.br_blockcount;
517 		prev = got;
518 	}
519 
520 	/*
521 	 * If the size of the extents is greater than half the maximum extent
522 	 * length, then use the current offset as the basis.  This ensures that
523 	 * for large files the preallocation size always extends to
524 	 * XFS_BMBT_MAX_EXTLEN rather than falling short due to things like stripe
525 	 * unit/width alignment of real extents.
526 	 */
527 	alloc_blocks = plen * 2;
528 	if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
529 		alloc_blocks = XFS_B_TO_FSB(mp, offset);
530 	qblocks = alloc_blocks;
531 
532 	/*
533 	 * XFS_BMBT_MAX_EXTLEN is not a power of two value but we round the prealloc
534 	 * down to the nearest power of two value after throttling. To prevent
535 	 * the round down from unconditionally reducing the maximum supported
536 	 * prealloc size, we round up first, apply appropriate throttling, round
537 	 * down and cap the value to XFS_BMBT_MAX_EXTLEN.
538 	 */
539 	alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(XFS_MAX_BMBT_EXTLEN),
540 				       alloc_blocks);
541 
542 	if (unlikely(XFS_IS_REALTIME_INODE(ip)))
543 		freesp = xfs_rtbxlen_to_blen(mp,
544 				xfs_iomap_freesp(mp, XC_FREE_RTEXTENTS,
545 					mp->m_low_rtexts, &shift));
546 	else
547 		freesp = xfs_iomap_freesp(mp, XC_FREE_BLOCKS, mp->m_low_space,
548 				&shift);
549 
550 	/*
551 	 * Check each quota to cap the prealloc size, provide a shift value to
552 	 * throttle with and adjust amount of available space.
553 	 */
554 	if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks))
555 		xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift,
556 					&freesp);
557 	if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks))
558 		xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift,
559 					&freesp);
560 	if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks))
561 		xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift,
562 					&freesp);
563 
564 	/*
565 	 * The final prealloc size is set to the minimum of free space available
566 	 * in each of the quotas and the overall filesystem.
567 	 *
568 	 * The shift throttle value is set to the maximum value as determined by
569 	 * the global low free space values and per-quota low free space values.
570 	 */
571 	alloc_blocks = min(alloc_blocks, qblocks);
572 	shift = max(shift, qshift);
573 
574 	if (shift)
575 		alloc_blocks >>= shift;
576 	/*
577 	 * rounddown_pow_of_two() returns an undefined result if we pass in
578 	 * alloc_blocks = 0.
579 	 */
580 	if (alloc_blocks)
581 		alloc_blocks = rounddown_pow_of_two(alloc_blocks);
582 	if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
583 		alloc_blocks = XFS_MAX_BMBT_EXTLEN;
584 
585 	/*
586 	 * If we are still trying to allocate more space than is
587 	 * available, squash the prealloc hard. This can happen if we
588 	 * have a large file on a small filesystem and the above
589 	 * lowspace thresholds are smaller than XFS_BMBT_MAX_EXTLEN.
590 	 */
591 	while (alloc_blocks && alloc_blocks >= freesp)
592 		alloc_blocks >>= 4;
593 	if (alloc_blocks < mp->m_allocsize_blocks)
594 		alloc_blocks = mp->m_allocsize_blocks;
595 	trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift,
596 				      mp->m_allocsize_blocks);
597 	return alloc_blocks;
598 }
599 
600 int
xfs_iomap_write_unwritten(xfs_inode_t * ip,xfs_off_t offset,xfs_off_t count,bool update_isize)601 xfs_iomap_write_unwritten(
602 	xfs_inode_t	*ip,
603 	xfs_off_t	offset,
604 	xfs_off_t	count,
605 	bool		update_isize)
606 {
607 	xfs_mount_t	*mp = ip->i_mount;
608 	xfs_fileoff_t	offset_fsb;
609 	xfs_filblks_t	count_fsb;
610 	xfs_filblks_t	numblks_fsb;
611 	int		nimaps;
612 	xfs_trans_t	*tp;
613 	xfs_bmbt_irec_t imap;
614 	struct inode	*inode = VFS_I(ip);
615 	xfs_fsize_t	i_size;
616 	uint		resblks;
617 	int		error;
618 
619 	trace_xfs_unwritten_convert(ip, offset, count);
620 
621 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
622 	count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
623 	count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb);
624 
625 	/*
626 	 * Reserve enough blocks in this transaction for two complete extent
627 	 * btree splits.  We may be converting the middle part of an unwritten
628 	 * extent and in this case we will insert two new extents in the btree
629 	 * each of which could cause a full split.
630 	 *
631 	 * This reservation amount will be used in the first call to
632 	 * xfs_bmbt_split() to select an AG with enough space to satisfy the
633 	 * rest of the operation.
634 	 */
635 	resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
636 
637 	/* Attach dquots so that bmbt splits are accounted correctly. */
638 	error = xfs_qm_dqattach(ip);
639 	if (error)
640 		return error;
641 
642 	do {
643 		/*
644 		 * Set up a transaction to convert the range of extents
645 		 * from unwritten to real. Do allocations in a loop until
646 		 * we have covered the range passed in.
647 		 *
648 		 * Note that we can't risk to recursing back into the filesystem
649 		 * here as we might be asked to write out the same inode that we
650 		 * complete here and might deadlock on the iolock.
651 		 */
652 		error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks,
653 				0, true, &tp);
654 		if (error)
655 			return error;
656 
657 		error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK,
658 				XFS_IEXT_WRITE_UNWRITTEN_CNT);
659 		if (error)
660 			goto error_on_bmapi_transaction;
661 
662 		/*
663 		 * Modify the unwritten extent state of the buffer.
664 		 */
665 		nimaps = 1;
666 		error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
667 					XFS_BMAPI_CONVERT, resblks, &imap,
668 					&nimaps);
669 		if (error)
670 			goto error_on_bmapi_transaction;
671 
672 		/*
673 		 * Log the updated inode size as we go.  We have to be careful
674 		 * to only log it up to the actual write offset if it is
675 		 * halfway into a block.
676 		 */
677 		i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb);
678 		if (i_size > offset + count)
679 			i_size = offset + count;
680 		if (update_isize && i_size > i_size_read(inode))
681 			i_size_write(inode, i_size);
682 		i_size = xfs_new_eof(ip, i_size);
683 		if (i_size) {
684 			ip->i_disk_size = i_size;
685 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
686 		}
687 
688 		error = xfs_trans_commit(tp);
689 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
690 		if (error)
691 			return error;
692 
693 		if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock))) {
694 			xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
695 			return xfs_alert_fsblock_zero(ip, &imap);
696 		}
697 
698 		if ((numblks_fsb = imap.br_blockcount) == 0) {
699 			/*
700 			 * The numblks_fsb value should always get
701 			 * smaller, otherwise the loop is stuck.
702 			 */
703 			ASSERT(imap.br_blockcount);
704 			break;
705 		}
706 		offset_fsb += numblks_fsb;
707 		count_fsb -= numblks_fsb;
708 	} while (count_fsb > 0);
709 
710 	return 0;
711 
712 error_on_bmapi_transaction:
713 	xfs_trans_cancel(tp);
714 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
715 	return error;
716 }
717 
718 static inline bool
imap_needs_alloc(struct inode * inode,unsigned flags,struct xfs_bmbt_irec * imap,int nimaps)719 imap_needs_alloc(
720 	struct inode		*inode,
721 	unsigned		flags,
722 	struct xfs_bmbt_irec	*imap,
723 	int			nimaps)
724 {
725 	/* don't allocate blocks when just zeroing */
726 	if (flags & IOMAP_ZERO)
727 		return false;
728 	if (!nimaps ||
729 	    imap->br_startblock == HOLESTARTBLOCK ||
730 	    imap->br_startblock == DELAYSTARTBLOCK)
731 		return true;
732 	/* we convert unwritten extents before copying the data for DAX */
733 	if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN)
734 		return true;
735 	return false;
736 }
737 
738 static inline bool
imap_needs_cow(struct xfs_inode * ip,unsigned int flags,struct xfs_bmbt_irec * imap,int nimaps)739 imap_needs_cow(
740 	struct xfs_inode	*ip,
741 	unsigned int		flags,
742 	struct xfs_bmbt_irec	*imap,
743 	int			nimaps)
744 {
745 	if (!xfs_is_cow_inode(ip))
746 		return false;
747 
748 	/* when zeroing we don't have to COW holes or unwritten extents */
749 	if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) {
750 		if (!nimaps ||
751 		    imap->br_startblock == HOLESTARTBLOCK ||
752 		    imap->br_state == XFS_EXT_UNWRITTEN)
753 			return false;
754 	}
755 
756 	return true;
757 }
758 
759 /*
760  * Extents not yet cached requires exclusive access, don't block for
761  * IOMAP_NOWAIT.
762  *
763  * This is basically an opencoded xfs_ilock_data_map_shared() call, but with
764  * support for IOMAP_NOWAIT.
765  */
766 static int
xfs_ilock_for_iomap(struct xfs_inode * ip,unsigned flags,unsigned * lockmode)767 xfs_ilock_for_iomap(
768 	struct xfs_inode	*ip,
769 	unsigned		flags,
770 	unsigned		*lockmode)
771 {
772 	if (flags & IOMAP_NOWAIT) {
773 		if (xfs_need_iread_extents(&ip->i_df))
774 			return -EAGAIN;
775 		if (!xfs_ilock_nowait(ip, *lockmode))
776 			return -EAGAIN;
777 	} else {
778 		if (xfs_need_iread_extents(&ip->i_df))
779 			*lockmode = XFS_ILOCK_EXCL;
780 		xfs_ilock(ip, *lockmode);
781 	}
782 
783 	return 0;
784 }
785 
786 /*
787  * Check that the imap we are going to return to the caller spans the entire
788  * range that the caller requested for the IO.
789  */
790 static bool
imap_spans_range(struct xfs_bmbt_irec * imap,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb)791 imap_spans_range(
792 	struct xfs_bmbt_irec	*imap,
793 	xfs_fileoff_t		offset_fsb,
794 	xfs_fileoff_t		end_fsb)
795 {
796 	if (imap->br_startoff > offset_fsb)
797 		return false;
798 	if (imap->br_startoff + imap->br_blockcount < end_fsb)
799 		return false;
800 	return true;
801 }
802 
803 static bool
xfs_bmap_hw_atomic_write_possible(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb)804 xfs_bmap_hw_atomic_write_possible(
805 	struct xfs_inode	*ip,
806 	struct xfs_bmbt_irec	*imap,
807 	xfs_fileoff_t		offset_fsb,
808 	xfs_fileoff_t		end_fsb)
809 {
810 	struct xfs_mount	*mp = ip->i_mount;
811 	xfs_fsize_t		len = XFS_FSB_TO_B(mp, end_fsb - offset_fsb);
812 
813 	/*
814 	 * atomic writes are required to be naturally aligned for disk blocks,
815 	 * which ensures that we adhere to block layer rules that we won't
816 	 * straddle any boundary or violate write alignment requirement.
817 	 */
818 	if (!IS_ALIGNED(imap->br_startblock, imap->br_blockcount))
819 		return false;
820 
821 	/*
822 	 * Spanning multiple extents would mean that multiple BIOs would be
823 	 * issued, and so would lose atomicity required for REQ_ATOMIC-based
824 	 * atomics.
825 	 */
826 	if (!imap_spans_range(imap, offset_fsb, end_fsb))
827 		return false;
828 
829 	/*
830 	 * The ->iomap_begin caller should ensure this, but check anyway.
831 	 */
832 	return len <= xfs_inode_buftarg(ip)->bt_awu_max;
833 }
834 
835 static int
xfs_direct_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)836 xfs_direct_write_iomap_begin(
837 	struct inode		*inode,
838 	loff_t			offset,
839 	loff_t			length,
840 	unsigned		flags,
841 	struct iomap		*iomap,
842 	struct iomap		*srcmap)
843 {
844 	struct xfs_inode	*ip = XFS_I(inode);
845 	struct xfs_mount	*mp = ip->i_mount;
846 	struct xfs_bmbt_irec	imap, cmap;
847 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
848 	xfs_fileoff_t		end_fsb = xfs_iomap_end_fsb(mp, offset, length);
849 	xfs_fileoff_t		orig_end_fsb = end_fsb;
850 	int			nimaps = 1, error = 0;
851 	bool			shared = false;
852 	u16			iomap_flags = 0;
853 	bool			needs_alloc;
854 	unsigned int		lockmode;
855 	u64			seq;
856 
857 	ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO));
858 
859 	if (xfs_is_shutdown(mp))
860 		return -EIO;
861 
862 	/*
863 	 * Writes that span EOF might trigger an IO size update on completion,
864 	 * so consider them to be dirty for the purposes of O_DSYNC even if
865 	 * there is no other metadata changes pending or have been made here.
866 	 */
867 	if (offset + length > i_size_read(inode))
868 		iomap_flags |= IOMAP_F_DIRTY;
869 
870 	/* HW-offload atomics are always used in this path */
871 	if (flags & IOMAP_ATOMIC)
872 		iomap_flags |= IOMAP_F_ATOMIC_BIO;
873 
874 	/*
875 	 * COW writes may allocate delalloc space or convert unwritten COW
876 	 * extents, so we need to make sure to take the lock exclusively here.
877 	 */
878 	if (xfs_is_cow_inode(ip))
879 		lockmode = XFS_ILOCK_EXCL;
880 	else
881 		lockmode = XFS_ILOCK_SHARED;
882 
883 relock:
884 	error = xfs_ilock_for_iomap(ip, flags, &lockmode);
885 	if (error)
886 		return error;
887 
888 	/*
889 	 * The reflink iflag could have changed since the earlier unlocked
890 	 * check, check if it again and relock if needed.
891 	 */
892 	if (xfs_is_cow_inode(ip) && lockmode == XFS_ILOCK_SHARED) {
893 		xfs_iunlock(ip, lockmode);
894 		lockmode = XFS_ILOCK_EXCL;
895 		goto relock;
896 	}
897 
898 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
899 			       &nimaps, 0);
900 	if (error)
901 		goto out_unlock;
902 
903 	if (imap_needs_cow(ip, flags, &imap, nimaps)) {
904 		error = -EAGAIN;
905 		if (flags & IOMAP_NOWAIT)
906 			goto out_unlock;
907 
908 		/* may drop and re-acquire the ilock */
909 		error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared,
910 				&lockmode,
911 				(flags & IOMAP_DIRECT) || IS_DAX(inode));
912 		if (error)
913 			goto out_unlock;
914 		if (shared) {
915 			if ((flags & IOMAP_ATOMIC) &&
916 			    !xfs_bmap_hw_atomic_write_possible(ip, &cmap,
917 					offset_fsb, end_fsb)) {
918 				error = -ENOPROTOOPT;
919 				goto out_unlock;
920 			}
921 			goto out_found_cow;
922 		}
923 		end_fsb = imap.br_startoff + imap.br_blockcount;
924 		length = XFS_FSB_TO_B(mp, end_fsb) - offset;
925 	}
926 
927 	needs_alloc = imap_needs_alloc(inode, flags, &imap, nimaps);
928 
929 	if (flags & IOMAP_ATOMIC) {
930 		error = -ENOPROTOOPT;
931 		/*
932 		 * If we allocate less than what is required for the write
933 		 * then we may end up with multiple extents, which means that
934 		 * REQ_ATOMIC-based cannot be used, so avoid this possibility.
935 		 */
936 		if (needs_alloc && orig_end_fsb - offset_fsb > 1)
937 			goto out_unlock;
938 
939 		if (!xfs_bmap_hw_atomic_write_possible(ip, &imap, offset_fsb,
940 				orig_end_fsb))
941 			goto out_unlock;
942 	}
943 
944 	if (needs_alloc)
945 		goto allocate_blocks;
946 
947 	/*
948 	 * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with
949 	 * a single map so that we avoid partial IO failures due to the rest of
950 	 * the I/O range not covered by this map triggering an EAGAIN condition
951 	 * when it is subsequently mapped and aborting the I/O.
952 	 */
953 	if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) {
954 		error = -EAGAIN;
955 		if (!imap_spans_range(&imap, offset_fsb, end_fsb))
956 			goto out_unlock;
957 	}
958 
959 	/*
960 	 * For overwrite only I/O, we cannot convert unwritten extents without
961 	 * requiring sub-block zeroing.  This can only be done under an
962 	 * exclusive IOLOCK, hence return -EAGAIN if this is not a written
963 	 * extent to tell the caller to try again.
964 	 */
965 	if (flags & IOMAP_OVERWRITE_ONLY) {
966 		error = -EAGAIN;
967 		if (imap.br_state != XFS_EXT_NORM &&
968 	            ((offset | length) & mp->m_blockmask))
969 			goto out_unlock;
970 	}
971 
972 	seq = xfs_iomap_inode_sequence(ip, iomap_flags);
973 	xfs_iunlock(ip, lockmode);
974 	trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
975 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq);
976 
977 allocate_blocks:
978 	error = -EAGAIN;
979 	if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY))
980 		goto out_unlock;
981 
982 	/*
983 	 * We cap the maximum length we map to a sane size  to keep the chunks
984 	 * of work done where somewhat symmetric with the work writeback does.
985 	 * This is a completely arbitrary number pulled out of thin air as a
986 	 * best guess for initial testing.
987 	 *
988 	 * Note that the values needs to be less than 32-bits wide until the
989 	 * lower level functions are updated.
990 	 */
991 	length = min_t(loff_t, length, 1024 * PAGE_SIZE);
992 	end_fsb = xfs_iomap_end_fsb(mp, offset, length);
993 
994 	if (offset + length > XFS_ISIZE(ip))
995 		end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb);
996 	else if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
997 		end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount);
998 	xfs_iunlock(ip, lockmode);
999 
1000 	error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb,
1001 			flags, &imap, &seq);
1002 	if (error)
1003 		return error;
1004 
1005 	trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap);
1006 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
1007 				 iomap_flags | IOMAP_F_NEW, seq);
1008 
1009 out_found_cow:
1010 	length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount);
1011 	trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap);
1012 	if (imap.br_startblock != HOLESTARTBLOCK) {
1013 		seq = xfs_iomap_inode_sequence(ip, 0);
1014 		error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq);
1015 		if (error)
1016 			goto out_unlock;
1017 	}
1018 	seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
1019 	xfs_iunlock(ip, lockmode);
1020 	return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq);
1021 
1022 out_unlock:
1023 	if (lockmode)
1024 		xfs_iunlock(ip, lockmode);
1025 	return error;
1026 }
1027 
1028 const struct iomap_ops xfs_direct_write_iomap_ops = {
1029 	.iomap_begin		= xfs_direct_write_iomap_begin,
1030 };
1031 
1032 #ifdef CONFIG_XFS_RT
1033 /*
1034  * This is really simple.  The space has already been reserved before taking the
1035  * IOLOCK, the actual block allocation is done just before submitting the bio
1036  * and only recorded in the extent map on I/O completion.
1037  */
1038 static int
xfs_zoned_direct_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1039 xfs_zoned_direct_write_iomap_begin(
1040 	struct inode		*inode,
1041 	loff_t			offset,
1042 	loff_t			length,
1043 	unsigned		flags,
1044 	struct iomap		*iomap,
1045 	struct iomap		*srcmap)
1046 {
1047 	struct xfs_inode	*ip = XFS_I(inode);
1048 	int			error;
1049 
1050 	ASSERT(!(flags & IOMAP_OVERWRITE_ONLY));
1051 
1052 	/*
1053 	 * Needs to be pushed down into the allocator so that only writes into
1054 	 * a single zone can be supported.
1055 	 */
1056 	if (flags & IOMAP_NOWAIT)
1057 		return -EAGAIN;
1058 
1059 	/*
1060 	 * Ensure the extent list is in memory in so that we don't have to do
1061 	 * read it from the I/O completion handler.
1062 	 */
1063 	if (xfs_need_iread_extents(&ip->i_df)) {
1064 		xfs_ilock(ip, XFS_ILOCK_EXCL);
1065 		error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1066 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1067 		if (error)
1068 			return error;
1069 	}
1070 
1071 	iomap->type = IOMAP_MAPPED;
1072 	iomap->flags = IOMAP_F_DIRTY;
1073 	iomap->bdev = ip->i_mount->m_rtdev_targp->bt_bdev;
1074 	iomap->offset = offset;
1075 	iomap->length = length;
1076 	iomap->flags = IOMAP_F_ANON_WRITE;
1077 	return 0;
1078 }
1079 
1080 const struct iomap_ops xfs_zoned_direct_write_iomap_ops = {
1081 	.iomap_begin		= xfs_zoned_direct_write_iomap_begin,
1082 };
1083 #endif /* CONFIG_XFS_RT */
1084 
1085 static int
xfs_atomic_write_cow_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1086 xfs_atomic_write_cow_iomap_begin(
1087 	struct inode		*inode,
1088 	loff_t			offset,
1089 	loff_t			length,
1090 	unsigned		flags,
1091 	struct iomap		*iomap,
1092 	struct iomap		*srcmap)
1093 {
1094 	struct xfs_inode	*ip = XFS_I(inode);
1095 	struct xfs_mount	*mp = ip->i_mount;
1096 	const xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
1097 	xfs_fileoff_t		end_fsb = xfs_iomap_end_fsb(mp, offset, length);
1098 	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
1099 	int			nmaps = 1;
1100 	xfs_filblks_t		resaligned;
1101 	struct xfs_bmbt_irec	cmap;
1102 	struct xfs_iext_cursor	icur;
1103 	struct xfs_trans	*tp;
1104 	unsigned int		dblocks = 0, rblocks = 0;
1105 	int			error;
1106 	u64			seq;
1107 
1108 	ASSERT(flags & IOMAP_WRITE);
1109 	ASSERT(flags & IOMAP_DIRECT);
1110 
1111 	if (xfs_is_shutdown(mp))
1112 		return -EIO;
1113 
1114 	if (!xfs_can_sw_atomic_write(mp)) {
1115 		ASSERT(xfs_can_sw_atomic_write(mp));
1116 		return -EINVAL;
1117 	}
1118 
1119 	/* blocks are always allocated in this path */
1120 	if (flags & IOMAP_NOWAIT)
1121 		return -EAGAIN;
1122 
1123 	trace_xfs_iomap_atomic_write_cow(ip, offset, length);
1124 
1125 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1126 
1127 	if (!ip->i_cowfp) {
1128 		ASSERT(!xfs_is_reflink_inode(ip));
1129 		xfs_ifork_init_cow(ip);
1130 	}
1131 
1132 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
1133 		cmap.br_startoff = end_fsb;
1134 	if (cmap.br_startoff <= offset_fsb) {
1135 		xfs_trim_extent(&cmap, offset_fsb, count_fsb);
1136 		goto found;
1137 	}
1138 
1139 	end_fsb = cmap.br_startoff;
1140 	count_fsb = end_fsb - offset_fsb;
1141 
1142 	resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb,
1143 			xfs_get_cowextsz_hint(ip));
1144 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1145 
1146 	if (XFS_IS_REALTIME_INODE(ip)) {
1147 		dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1148 		rblocks = resaligned;
1149 	} else {
1150 		dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
1151 		rblocks = 0;
1152 	}
1153 
1154 	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks,
1155 			rblocks, false, &tp);
1156 	if (error)
1157 		return error;
1158 
1159 	/* extent layout could have changed since the unlock, so check again */
1160 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
1161 		cmap.br_startoff = end_fsb;
1162 	if (cmap.br_startoff <= offset_fsb) {
1163 		xfs_trim_extent(&cmap, offset_fsb, count_fsb);
1164 		xfs_trans_cancel(tp);
1165 		goto found;
1166 	}
1167 
1168 	/*
1169 	 * Allocate the entire reservation as unwritten blocks.
1170 	 *
1171 	 * Use XFS_BMAPI_EXTSZALIGN to hint at aligning new extents according to
1172 	 * extszhint, such that there will be a greater chance that future
1173 	 * atomic writes to that same range will be aligned (and don't require
1174 	 * this COW-based method).
1175 	 */
1176 	error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
1177 			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC |
1178 			XFS_BMAPI_EXTSZALIGN, 0, &cmap, &nmaps);
1179 	if (error) {
1180 		xfs_trans_cancel(tp);
1181 		goto out_unlock;
1182 	}
1183 
1184 	xfs_inode_set_cowblocks_tag(ip);
1185 	error = xfs_trans_commit(tp);
1186 	if (error)
1187 		goto out_unlock;
1188 
1189 found:
1190 	if (cmap.br_state != XFS_EXT_NORM) {
1191 		error = xfs_reflink_convert_cow_locked(ip, offset_fsb,
1192 				count_fsb);
1193 		if (error)
1194 			goto out_unlock;
1195 		cmap.br_state = XFS_EXT_NORM;
1196 	}
1197 
1198 	length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount);
1199 	trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap);
1200 	seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
1201 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1202 	return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq);
1203 
1204 out_unlock:
1205 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1206 	return error;
1207 }
1208 
1209 const struct iomap_ops xfs_atomic_write_cow_iomap_ops = {
1210 	.iomap_begin		= xfs_atomic_write_cow_iomap_begin,
1211 };
1212 
1213 static int
xfs_dax_write_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)1214 xfs_dax_write_iomap_end(
1215 	struct inode		*inode,
1216 	loff_t			pos,
1217 	loff_t			length,
1218 	ssize_t			written,
1219 	unsigned		flags,
1220 	struct iomap		*iomap)
1221 {
1222 	struct xfs_inode	*ip = XFS_I(inode);
1223 
1224 	if (!xfs_is_cow_inode(ip))
1225 		return 0;
1226 
1227 	if (!written)
1228 		return xfs_reflink_cancel_cow_range(ip, pos, length, true);
1229 
1230 	return xfs_reflink_end_cow(ip, pos, written);
1231 }
1232 
1233 const struct iomap_ops xfs_dax_write_iomap_ops = {
1234 	.iomap_begin	= xfs_direct_write_iomap_begin,
1235 	.iomap_end	= xfs_dax_write_iomap_end,
1236 };
1237 
1238 /*
1239  * Convert a hole to a delayed allocation.
1240  */
1241 static void
xfs_bmap_add_extent_hole_delay(struct xfs_inode * ip,int whichfork,struct xfs_iext_cursor * icur,struct xfs_bmbt_irec * new)1242 xfs_bmap_add_extent_hole_delay(
1243 	struct xfs_inode	*ip,	/* incore inode pointer */
1244 	int			whichfork,
1245 	struct xfs_iext_cursor	*icur,
1246 	struct xfs_bmbt_irec	*new)	/* new data to add to file extents */
1247 {
1248 	struct xfs_ifork	*ifp;	/* inode fork pointer */
1249 	xfs_bmbt_irec_t		left;	/* left neighbor extent entry */
1250 	xfs_filblks_t		newlen=0;	/* new indirect size */
1251 	xfs_filblks_t		oldlen=0;	/* old indirect size */
1252 	xfs_bmbt_irec_t		right;	/* right neighbor extent entry */
1253 	uint32_t		state = xfs_bmap_fork_to_state(whichfork);
1254 	xfs_filblks_t		temp;	 /* temp for indirect calculations */
1255 
1256 	ifp = xfs_ifork_ptr(ip, whichfork);
1257 	ASSERT(isnullstartblock(new->br_startblock));
1258 
1259 	/*
1260 	 * Check and set flags if this segment has a left neighbor
1261 	 */
1262 	if (xfs_iext_peek_prev_extent(ifp, icur, &left)) {
1263 		state |= BMAP_LEFT_VALID;
1264 		if (isnullstartblock(left.br_startblock))
1265 			state |= BMAP_LEFT_DELAY;
1266 	}
1267 
1268 	/*
1269 	 * Check and set flags if the current (right) segment exists.
1270 	 * If it doesn't exist, we're converting the hole at end-of-file.
1271 	 */
1272 	if (xfs_iext_get_extent(ifp, icur, &right)) {
1273 		state |= BMAP_RIGHT_VALID;
1274 		if (isnullstartblock(right.br_startblock))
1275 			state |= BMAP_RIGHT_DELAY;
1276 	}
1277 
1278 	/*
1279 	 * Set contiguity flags on the left and right neighbors.
1280 	 * Don't let extents get too large, even if the pieces are contiguous.
1281 	 */
1282 	if ((state & BMAP_LEFT_VALID) && (state & BMAP_LEFT_DELAY) &&
1283 	    left.br_startoff + left.br_blockcount == new->br_startoff &&
1284 	    left.br_blockcount + new->br_blockcount <= XFS_MAX_BMBT_EXTLEN)
1285 		state |= BMAP_LEFT_CONTIG;
1286 
1287 	if ((state & BMAP_RIGHT_VALID) && (state & BMAP_RIGHT_DELAY) &&
1288 	    new->br_startoff + new->br_blockcount == right.br_startoff &&
1289 	    new->br_blockcount + right.br_blockcount <= XFS_MAX_BMBT_EXTLEN &&
1290 	    (!(state & BMAP_LEFT_CONTIG) ||
1291 	     (left.br_blockcount + new->br_blockcount +
1292 	      right.br_blockcount <= XFS_MAX_BMBT_EXTLEN)))
1293 		state |= BMAP_RIGHT_CONTIG;
1294 
1295 	/*
1296 	 * Switch out based on the contiguity flags.
1297 	 */
1298 	switch (state & (BMAP_LEFT_CONTIG | BMAP_RIGHT_CONTIG)) {
1299 	case BMAP_LEFT_CONTIG | BMAP_RIGHT_CONTIG:
1300 		/*
1301 		 * New allocation is contiguous with delayed allocations
1302 		 * on the left and on the right.
1303 		 * Merge all three into a single extent record.
1304 		 */
1305 		temp = left.br_blockcount + new->br_blockcount +
1306 			right.br_blockcount;
1307 
1308 		oldlen = startblockval(left.br_startblock) +
1309 			startblockval(new->br_startblock) +
1310 			startblockval(right.br_startblock);
1311 		newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp),
1312 					 oldlen);
1313 		left.br_startblock = nullstartblock(newlen);
1314 		left.br_blockcount = temp;
1315 
1316 		xfs_iext_remove(ip, icur, state);
1317 		xfs_iext_prev(ifp, icur);
1318 		xfs_iext_update_extent(ip, state, icur, &left);
1319 		break;
1320 
1321 	case BMAP_LEFT_CONTIG:
1322 		/*
1323 		 * New allocation is contiguous with a delayed allocation
1324 		 * on the left.
1325 		 * Merge the new allocation with the left neighbor.
1326 		 */
1327 		temp = left.br_blockcount + new->br_blockcount;
1328 
1329 		oldlen = startblockval(left.br_startblock) +
1330 			startblockval(new->br_startblock);
1331 		newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp),
1332 					 oldlen);
1333 		left.br_blockcount = temp;
1334 		left.br_startblock = nullstartblock(newlen);
1335 
1336 		xfs_iext_prev(ifp, icur);
1337 		xfs_iext_update_extent(ip, state, icur, &left);
1338 		break;
1339 
1340 	case BMAP_RIGHT_CONTIG:
1341 		/*
1342 		 * New allocation is contiguous with a delayed allocation
1343 		 * on the right.
1344 		 * Merge the new allocation with the right neighbor.
1345 		 */
1346 		temp = new->br_blockcount + right.br_blockcount;
1347 		oldlen = startblockval(new->br_startblock) +
1348 			startblockval(right.br_startblock);
1349 		newlen = XFS_FILBLKS_MIN(xfs_bmap_worst_indlen(ip, temp),
1350 					 oldlen);
1351 		right.br_startoff = new->br_startoff;
1352 		right.br_startblock = nullstartblock(newlen);
1353 		right.br_blockcount = temp;
1354 		xfs_iext_update_extent(ip, state, icur, &right);
1355 		break;
1356 
1357 	case 0:
1358 		/*
1359 		 * New allocation is not contiguous with another
1360 		 * delayed allocation.
1361 		 * Insert a new entry.
1362 		 */
1363 		oldlen = newlen = 0;
1364 		xfs_iext_insert(ip, icur, new, state);
1365 		break;
1366 	}
1367 	if (oldlen != newlen) {
1368 		ASSERT(oldlen > newlen);
1369 		xfs_add_fdblocks(ip->i_mount, oldlen - newlen);
1370 
1371 		/*
1372 		 * Nothing to do for disk quota accounting here.
1373 		 */
1374 		xfs_mod_delalloc(ip, 0, (int64_t)newlen - oldlen);
1375 	}
1376 }
1377 
1378 /*
1379  * Add a delayed allocation extent to an inode. Blocks are reserved from the
1380  * global pool and the extent inserted into the inode in-core extent tree.
1381  *
1382  * On entry, got refers to the first extent beyond the offset of the extent to
1383  * allocate or eof is specified if no such extent exists. On return, got refers
1384  * to the extent record that was inserted to the inode fork.
1385  *
1386  * Note that the allocated extent may have been merged with contiguous extents
1387  * during insertion into the inode fork. Thus, got does not reflect the current
1388  * state of the inode fork on return. If necessary, the caller can use lastx to
1389  * look up the updated record in the inode fork.
1390  */
1391 static int
xfs_bmapi_reserve_delalloc(struct xfs_inode * ip,int whichfork,xfs_fileoff_t off,xfs_filblks_t len,xfs_filblks_t prealloc,struct xfs_bmbt_irec * got,struct xfs_iext_cursor * icur,int eof)1392 xfs_bmapi_reserve_delalloc(
1393 	struct xfs_inode	*ip,
1394 	int			whichfork,
1395 	xfs_fileoff_t		off,
1396 	xfs_filblks_t		len,
1397 	xfs_filblks_t		prealloc,
1398 	struct xfs_bmbt_irec	*got,
1399 	struct xfs_iext_cursor	*icur,
1400 	int			eof)
1401 {
1402 	struct xfs_mount	*mp = ip->i_mount;
1403 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
1404 	xfs_extlen_t		alen;
1405 	xfs_extlen_t		indlen;
1406 	uint64_t		fdblocks;
1407 	int			error;
1408 	xfs_fileoff_t		aoff;
1409 	bool			use_cowextszhint =
1410 					whichfork == XFS_COW_FORK && !prealloc;
1411 
1412 retry:
1413 	/*
1414 	 * Cap the alloc length. Keep track of prealloc so we know whether to
1415 	 * tag the inode before we return.
1416 	 */
1417 	aoff = off;
1418 	alen = XFS_FILBLKS_MIN(len + prealloc, XFS_MAX_BMBT_EXTLEN);
1419 	if (!eof)
1420 		alen = XFS_FILBLKS_MIN(alen, got->br_startoff - aoff);
1421 	if (prealloc && alen >= len)
1422 		prealloc = alen - len;
1423 
1424 	/*
1425 	 * If we're targetting the COW fork but aren't creating a speculative
1426 	 * posteof preallocation, try to expand the reservation to align with
1427 	 * the COW extent size hint if there's sufficient free space.
1428 	 *
1429 	 * Unlike the data fork, the CoW cancellation functions will free all
1430 	 * the reservations at inactivation, so we don't require that every
1431 	 * delalloc reservation have a dirty pagecache.
1432 	 */
1433 	if (use_cowextszhint) {
1434 		struct xfs_bmbt_irec	prev;
1435 		xfs_extlen_t		extsz = xfs_get_cowextsz_hint(ip);
1436 
1437 		if (!xfs_iext_peek_prev_extent(ifp, icur, &prev))
1438 			prev.br_startoff = NULLFILEOFF;
1439 
1440 		error = xfs_bmap_extsize_align(mp, got, &prev, extsz, 0, eof,
1441 					       1, 0, &aoff, &alen);
1442 		ASSERT(!error);
1443 	}
1444 
1445 	/*
1446 	 * Make a transaction-less quota reservation for delayed allocation
1447 	 * blocks.  This number gets adjusted later.  We return if we haven't
1448 	 * allocated blocks already inside this loop.
1449 	 */
1450 	error = xfs_quota_reserve_blkres(ip, alen);
1451 	if (error)
1452 		goto out;
1453 
1454 	/*
1455 	 * Split changing sb for alen and indlen since they could be coming
1456 	 * from different places.
1457 	 */
1458 	indlen = (xfs_extlen_t)xfs_bmap_worst_indlen(ip, alen);
1459 	ASSERT(indlen > 0);
1460 
1461 	fdblocks = indlen;
1462 	if (XFS_IS_REALTIME_INODE(ip)) {
1463 		ASSERT(!xfs_is_zoned_inode(ip));
1464 		error = xfs_dec_frextents(mp, xfs_blen_to_rtbxlen(mp, alen));
1465 		if (error)
1466 			goto out_unreserve_quota;
1467 	} else {
1468 		fdblocks += alen;
1469 	}
1470 
1471 	error = xfs_dec_fdblocks(mp, fdblocks, false);
1472 	if (error)
1473 		goto out_unreserve_frextents;
1474 
1475 	ip->i_delayed_blks += alen;
1476 	xfs_mod_delalloc(ip, alen, indlen);
1477 
1478 	got->br_startoff = aoff;
1479 	got->br_startblock = nullstartblock(indlen);
1480 	got->br_blockcount = alen;
1481 	got->br_state = XFS_EXT_NORM;
1482 
1483 	xfs_bmap_add_extent_hole_delay(ip, whichfork, icur, got);
1484 
1485 	/*
1486 	 * Tag the inode if blocks were preallocated. Note that COW fork
1487 	 * preallocation can occur at the start or end of the extent, even when
1488 	 * prealloc == 0, so we must also check the aligned offset and length.
1489 	 */
1490 	if (whichfork == XFS_DATA_FORK && prealloc)
1491 		xfs_inode_set_eofblocks_tag(ip);
1492 	if (whichfork == XFS_COW_FORK && (prealloc || aoff < off || alen > len))
1493 		xfs_inode_set_cowblocks_tag(ip);
1494 
1495 	return 0;
1496 
1497 out_unreserve_frextents:
1498 	if (XFS_IS_REALTIME_INODE(ip))
1499 		xfs_add_frextents(mp, xfs_blen_to_rtbxlen(mp, alen));
1500 out_unreserve_quota:
1501 	if (XFS_IS_QUOTA_ON(mp))
1502 		xfs_quota_unreserve_blkres(ip, alen);
1503 out:
1504 	if (error == -ENOSPC || error == -EDQUOT) {
1505 		trace_xfs_delalloc_enospc(ip, off, len);
1506 
1507 		if (prealloc || use_cowextszhint) {
1508 			/* retry without any preallocation */
1509 			use_cowextszhint = false;
1510 			prealloc = 0;
1511 			goto retry;
1512 		}
1513 	}
1514 	return error;
1515 }
1516 
1517 static int
xfs_zoned_buffered_write_iomap_begin(struct inode * inode,loff_t offset,loff_t count,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1518 xfs_zoned_buffered_write_iomap_begin(
1519 	struct inode		*inode,
1520 	loff_t			offset,
1521 	loff_t			count,
1522 	unsigned		flags,
1523 	struct iomap		*iomap,
1524 	struct iomap		*srcmap)
1525 {
1526 	struct iomap_iter	*iter =
1527 		container_of(iomap, struct iomap_iter, iomap);
1528 	struct xfs_zone_alloc_ctx *ac = iter->private;
1529 	struct xfs_inode	*ip = XFS_I(inode);
1530 	struct xfs_mount	*mp = ip->i_mount;
1531 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
1532 	xfs_fileoff_t		end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1533 	u16			iomap_flags = IOMAP_F_SHARED;
1534 	unsigned int		lockmode = XFS_ILOCK_EXCL;
1535 	xfs_filblks_t		count_fsb;
1536 	xfs_extlen_t		indlen;
1537 	struct xfs_bmbt_irec	got;
1538 	struct xfs_iext_cursor	icur;
1539 	int			error = 0;
1540 
1541 	ASSERT(!xfs_get_extsz_hint(ip));
1542 	ASSERT(!(flags & IOMAP_UNSHARE));
1543 	ASSERT(ac);
1544 
1545 	if (xfs_is_shutdown(mp))
1546 		return -EIO;
1547 
1548 	error = xfs_qm_dqattach(ip);
1549 	if (error)
1550 		return error;
1551 
1552 	error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1553 	if (error)
1554 		return error;
1555 
1556 	if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) ||
1557 	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) {
1558 		xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
1559 		error = -EFSCORRUPTED;
1560 		goto out_unlock;
1561 	}
1562 
1563 	XFS_STATS_INC(mp, xs_blk_mapw);
1564 
1565 	error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1566 	if (error)
1567 		goto out_unlock;
1568 
1569 	/*
1570 	 * For zeroing operations check if there is any data to zero first.
1571 	 *
1572 	 * For regular writes we always need to allocate new blocks, but need to
1573 	 * provide the source mapping when the range is unaligned to support
1574 	 * read-modify-write of the whole block in the page cache.
1575 	 *
1576 	 * In either case we need to limit the reported range to the boundaries
1577 	 * of the source map in the data fork.
1578 	 */
1579 	if (!IS_ALIGNED(offset, mp->m_sb.sb_blocksize) ||
1580 	    !IS_ALIGNED(offset + count, mp->m_sb.sb_blocksize) ||
1581 	    (flags & IOMAP_ZERO)) {
1582 		struct xfs_bmbt_irec	smap;
1583 		struct xfs_iext_cursor	scur;
1584 
1585 		if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &scur,
1586 				&smap))
1587 			smap.br_startoff = end_fsb; /* fake hole until EOF */
1588 		if (smap.br_startoff > offset_fsb) {
1589 			/*
1590 			 * We never need to allocate blocks for zeroing a hole.
1591 			 */
1592 			if (flags & IOMAP_ZERO) {
1593 				xfs_hole_to_iomap(ip, iomap, offset_fsb,
1594 						smap.br_startoff);
1595 				goto out_unlock;
1596 			}
1597 			end_fsb = min(end_fsb, smap.br_startoff);
1598 		} else {
1599 			end_fsb = min(end_fsb,
1600 				smap.br_startoff + smap.br_blockcount);
1601 			xfs_trim_extent(&smap, offset_fsb,
1602 					end_fsb - offset_fsb);
1603 			error = xfs_bmbt_to_iomap(ip, srcmap, &smap, flags, 0,
1604 					xfs_iomap_inode_sequence(ip, 0));
1605 			if (error)
1606 				goto out_unlock;
1607 		}
1608 	}
1609 
1610 	if (!ip->i_cowfp)
1611 		xfs_ifork_init_cow(ip);
1612 
1613 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
1614 		got.br_startoff = end_fsb;
1615 	if (got.br_startoff <= offset_fsb) {
1616 		trace_xfs_reflink_cow_found(ip, &got);
1617 		goto done;
1618 	}
1619 
1620 	/*
1621 	 * Cap the maximum length to keep the chunks of work done here somewhat
1622 	 * symmetric with the work writeback does.
1623 	 */
1624 	end_fsb = min(end_fsb, got.br_startoff);
1625 	count_fsb = min3(end_fsb - offset_fsb, XFS_MAX_BMBT_EXTLEN,
1626 			 XFS_B_TO_FSB(mp, 1024 * PAGE_SIZE));
1627 
1628 	/*
1629 	 * The block reservation is supposed to cover all blocks that the
1630 	 * operation could possible write, but there is a nasty corner case
1631 	 * where blocks could be stolen from underneath us:
1632 	 *
1633 	 *  1) while this thread iterates over a larger buffered write,
1634 	 *  2) another thread is causing a write fault that calls into
1635 	 *     ->page_mkwrite in range this thread writes to, using up the
1636 	 *     delalloc reservation created by a previous call to this function.
1637 	 *  3) another thread does direct I/O on the range that the write fault
1638 	 *     happened on, which causes writeback of the dirty data.
1639 	 *  4) this then set the stale flag, which cuts the current iomap
1640 	 *     iteration short, causing the new call to ->iomap_begin that gets
1641 	 *     us here again, but now without a sufficient reservation.
1642 	 *
1643 	 * This is a very unusual I/O pattern, and nothing but generic/095 is
1644 	 * known to hit it. There's not really much we can do here, so turn this
1645 	 * into a short write.
1646 	 */
1647 	if (count_fsb > ac->reserved_blocks) {
1648 		xfs_warn_ratelimited(mp,
1649 "Short write on ino 0x%llx comm %.20s due to three-way race with write fault and direct I/O",
1650 			ip->i_ino, current->comm);
1651 		count_fsb = ac->reserved_blocks;
1652 		if (!count_fsb) {
1653 			error = -EIO;
1654 			goto out_unlock;
1655 		}
1656 	}
1657 
1658 	error = xfs_quota_reserve_blkres(ip, count_fsb);
1659 	if (error)
1660 		goto out_unlock;
1661 
1662 	indlen = xfs_bmap_worst_indlen(ip, count_fsb);
1663 	error = xfs_dec_fdblocks(mp, indlen, false);
1664 	if (error)
1665 		goto out_unlock;
1666 	ip->i_delayed_blks += count_fsb;
1667 	xfs_mod_delalloc(ip, count_fsb, indlen);
1668 
1669 	got.br_startoff = offset_fsb;
1670 	got.br_startblock = nullstartblock(indlen);
1671 	got.br_blockcount = count_fsb;
1672 	got.br_state = XFS_EXT_NORM;
1673 	xfs_bmap_add_extent_hole_delay(ip, XFS_COW_FORK, &icur, &got);
1674 	ac->reserved_blocks -= count_fsb;
1675 	iomap_flags |= IOMAP_F_NEW;
1676 
1677 	trace_xfs_iomap_alloc(ip, offset, XFS_FSB_TO_B(mp, count_fsb),
1678 			XFS_COW_FORK, &got);
1679 done:
1680 	error = xfs_bmbt_to_iomap(ip, iomap, &got, flags, iomap_flags,
1681 			xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED));
1682 out_unlock:
1683 	xfs_iunlock(ip, lockmode);
1684 	return error;
1685 }
1686 
1687 static int
xfs_buffered_write_iomap_begin(struct inode * inode,loff_t offset,loff_t count,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1688 xfs_buffered_write_iomap_begin(
1689 	struct inode		*inode,
1690 	loff_t			offset,
1691 	loff_t			count,
1692 	unsigned		flags,
1693 	struct iomap		*iomap,
1694 	struct iomap		*srcmap)
1695 {
1696 	struct xfs_inode	*ip = XFS_I(inode);
1697 	struct xfs_mount	*mp = ip->i_mount;
1698 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
1699 	xfs_fileoff_t		end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1700 	struct xfs_bmbt_irec	imap, cmap;
1701 	struct xfs_iext_cursor	icur, ccur;
1702 	xfs_fsblock_t		prealloc_blocks = 0;
1703 	bool			eof = false, cow_eof = false, shared = false;
1704 	int			allocfork = XFS_DATA_FORK;
1705 	int			error = 0;
1706 	unsigned int		lockmode = XFS_ILOCK_EXCL;
1707 	unsigned int		iomap_flags = 0;
1708 	u64			seq;
1709 
1710 	if (xfs_is_shutdown(mp))
1711 		return -EIO;
1712 
1713 	if (xfs_is_zoned_inode(ip))
1714 		return xfs_zoned_buffered_write_iomap_begin(inode, offset,
1715 				count, flags, iomap, srcmap);
1716 
1717 	/* we can't use delayed allocations when using extent size hints */
1718 	if (xfs_get_extsz_hint(ip))
1719 		return xfs_direct_write_iomap_begin(inode, offset, count,
1720 				flags, iomap, srcmap);
1721 
1722 	error = xfs_qm_dqattach(ip);
1723 	if (error)
1724 		return error;
1725 
1726 	error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1727 	if (error)
1728 		return error;
1729 
1730 	if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) ||
1731 	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) {
1732 		xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
1733 		error = -EFSCORRUPTED;
1734 		goto out_unlock;
1735 	}
1736 
1737 	XFS_STATS_INC(mp, xs_blk_mapw);
1738 
1739 	error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1740 	if (error)
1741 		goto out_unlock;
1742 
1743 	/*
1744 	 * Search the data fork first to look up our source mapping.  We
1745 	 * always need the data fork map, as we have to return it to the
1746 	 * iomap code so that the higher level write code can read data in to
1747 	 * perform read-modify-write cycles for unaligned writes.
1748 	 */
1749 	eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap);
1750 	if (eof)
1751 		imap.br_startoff = end_fsb; /* fake hole until the end */
1752 
1753 	/* We never need to allocate blocks for zeroing or unsharing a hole. */
1754 	if ((flags & (IOMAP_UNSHARE | IOMAP_ZERO)) &&
1755 	    imap.br_startoff > offset_fsb) {
1756 		xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff);
1757 		goto out_unlock;
1758 	}
1759 
1760 	/*
1761 	 * For zeroing, trim a delalloc extent that extends beyond the EOF
1762 	 * block.  If it starts beyond the EOF block, convert it to an
1763 	 * unwritten extent.
1764 	 */
1765 	if ((flags & IOMAP_ZERO) && imap.br_startoff <= offset_fsb &&
1766 	    isnullstartblock(imap.br_startblock)) {
1767 		xfs_fileoff_t eof_fsb = XFS_B_TO_FSB(mp, XFS_ISIZE(ip));
1768 
1769 		if (offset_fsb >= eof_fsb)
1770 			goto convert_delay;
1771 		if (end_fsb > eof_fsb) {
1772 			end_fsb = eof_fsb;
1773 			xfs_trim_extent(&imap, offset_fsb,
1774 					end_fsb - offset_fsb);
1775 		}
1776 	}
1777 
1778 	/*
1779 	 * Search the COW fork extent list even if we did not find a data fork
1780 	 * extent.  This serves two purposes: first this implements the
1781 	 * speculative preallocation using cowextsize, so that we also unshare
1782 	 * block adjacent to shared blocks instead of just the shared blocks
1783 	 * themselves.  Second the lookup in the extent list is generally faster
1784 	 * than going out to the shared extent tree.
1785 	 */
1786 	if (xfs_is_cow_inode(ip)) {
1787 		if (!ip->i_cowfp) {
1788 			ASSERT(!xfs_is_reflink_inode(ip));
1789 			xfs_ifork_init_cow(ip);
1790 		}
1791 		cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb,
1792 				&ccur, &cmap);
1793 		if (!cow_eof && cmap.br_startoff <= offset_fsb) {
1794 			trace_xfs_reflink_cow_found(ip, &cmap);
1795 			goto found_cow;
1796 		}
1797 	}
1798 
1799 	if (imap.br_startoff <= offset_fsb) {
1800 		/*
1801 		 * For reflink files we may need a delalloc reservation when
1802 		 * overwriting shared extents.   This includes zeroing of
1803 		 * existing extents that contain data.
1804 		 */
1805 		if (!xfs_is_cow_inode(ip) ||
1806 		    ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) {
1807 			trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1808 					&imap);
1809 			goto found_imap;
1810 		}
1811 
1812 		xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
1813 
1814 		/* Trim the mapping to the nearest shared extent boundary. */
1815 		error = xfs_bmap_trim_cow(ip, &imap, &shared);
1816 		if (error)
1817 			goto out_unlock;
1818 
1819 		/* Not shared?  Just report the (potentially capped) extent. */
1820 		if (!shared) {
1821 			trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1822 					&imap);
1823 			goto found_imap;
1824 		}
1825 
1826 		/*
1827 		 * Fork all the shared blocks from our write offset until the
1828 		 * end of the extent.
1829 		 */
1830 		allocfork = XFS_COW_FORK;
1831 		end_fsb = imap.br_startoff + imap.br_blockcount;
1832 	} else {
1833 		/*
1834 		 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES
1835 		 * pages to keep the chunks of work done where somewhat
1836 		 * symmetric with the work writeback does.  This is a completely
1837 		 * arbitrary number pulled out of thin air.
1838 		 *
1839 		 * Note that the values needs to be less than 32-bits wide until
1840 		 * the lower level functions are updated.
1841 		 */
1842 		count = min_t(loff_t, count, 1024 * PAGE_SIZE);
1843 		end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1844 
1845 		if (xfs_is_always_cow_inode(ip))
1846 			allocfork = XFS_COW_FORK;
1847 	}
1848 
1849 	if (eof && offset + count > XFS_ISIZE(ip)) {
1850 		/*
1851 		 * Determine the initial size of the preallocation.
1852 		 * We clean up any extra preallocation when the file is closed.
1853 		 */
1854 		if (xfs_has_allocsize(mp))
1855 			prealloc_blocks = mp->m_allocsize_blocks;
1856 		else if (allocfork == XFS_DATA_FORK)
1857 			prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1858 						offset, count, &icur);
1859 		else
1860 			prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1861 						offset, count, &ccur);
1862 		if (prealloc_blocks) {
1863 			xfs_extlen_t	align;
1864 			xfs_off_t	end_offset;
1865 			xfs_fileoff_t	p_end_fsb;
1866 
1867 			end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1);
1868 			p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) +
1869 					prealloc_blocks;
1870 
1871 			align = xfs_eof_alignment(ip);
1872 			if (align)
1873 				p_end_fsb = roundup_64(p_end_fsb, align);
1874 
1875 			p_end_fsb = min(p_end_fsb,
1876 				XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
1877 			ASSERT(p_end_fsb > offset_fsb);
1878 			prealloc_blocks = p_end_fsb - end_fsb;
1879 		}
1880 	}
1881 
1882 	/*
1883 	 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch
1884 	 * them out if the write happens to fail.
1885 	 */
1886 	iomap_flags |= IOMAP_F_NEW;
1887 	if (allocfork == XFS_COW_FORK) {
1888 		error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1889 				end_fsb - offset_fsb, prealloc_blocks, &cmap,
1890 				&ccur, cow_eof);
1891 		if (error)
1892 			goto out_unlock;
1893 
1894 		trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap);
1895 		goto found_cow;
1896 	}
1897 
1898 	error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1899 			end_fsb - offset_fsb, prealloc_blocks, &imap, &icur,
1900 			eof);
1901 	if (error)
1902 		goto out_unlock;
1903 
1904 	trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap);
1905 found_imap:
1906 	seq = xfs_iomap_inode_sequence(ip, iomap_flags);
1907 	xfs_iunlock(ip, lockmode);
1908 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq);
1909 
1910 convert_delay:
1911 	xfs_iunlock(ip, lockmode);
1912 	truncate_pagecache(inode, offset);
1913 	error = xfs_bmapi_convert_delalloc(ip, XFS_DATA_FORK, offset,
1914 					   iomap, NULL);
1915 	if (error)
1916 		return error;
1917 
1918 	trace_xfs_iomap_alloc(ip, offset, count, XFS_DATA_FORK, &imap);
1919 	return 0;
1920 
1921 found_cow:
1922 	if (imap.br_startoff <= offset_fsb) {
1923 		error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0,
1924 				xfs_iomap_inode_sequence(ip, 0));
1925 		if (error)
1926 			goto out_unlock;
1927 	} else {
1928 		xfs_trim_extent(&cmap, offset_fsb,
1929 				imap.br_startoff - offset_fsb);
1930 	}
1931 
1932 	iomap_flags |= IOMAP_F_SHARED;
1933 	seq = xfs_iomap_inode_sequence(ip, iomap_flags);
1934 	xfs_iunlock(ip, lockmode);
1935 	return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, iomap_flags, seq);
1936 
1937 out_unlock:
1938 	xfs_iunlock(ip, lockmode);
1939 	return error;
1940 }
1941 
1942 static void
xfs_buffered_write_delalloc_punch(struct inode * inode,loff_t offset,loff_t length,struct iomap * iomap)1943 xfs_buffered_write_delalloc_punch(
1944 	struct inode		*inode,
1945 	loff_t			offset,
1946 	loff_t			length,
1947 	struct iomap		*iomap)
1948 {
1949 	struct iomap_iter	*iter =
1950 		container_of(iomap, struct iomap_iter, iomap);
1951 
1952 	xfs_bmap_punch_delalloc_range(XFS_I(inode),
1953 			(iomap->flags & IOMAP_F_SHARED) ?
1954 				XFS_COW_FORK : XFS_DATA_FORK,
1955 			offset, offset + length, iter->private);
1956 }
1957 
1958 static int
xfs_buffered_write_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)1959 xfs_buffered_write_iomap_end(
1960 	struct inode		*inode,
1961 	loff_t			offset,
1962 	loff_t			length,
1963 	ssize_t			written,
1964 	unsigned		flags,
1965 	struct iomap		*iomap)
1966 {
1967 	loff_t			start_byte, end_byte;
1968 
1969 	/* If we didn't reserve the blocks, we're not allowed to punch them. */
1970 	if (iomap->type != IOMAP_DELALLOC || !(iomap->flags & IOMAP_F_NEW))
1971 		return 0;
1972 
1973 	/*
1974 	 * iomap_page_mkwrite() will never fail in a way that requires delalloc
1975 	 * extents that it allocated to be revoked.  Hence never try to release
1976 	 * them here.
1977 	 */
1978 	if (flags & IOMAP_FAULT)
1979 		return 0;
1980 
1981 	/* Nothing to do if we've written the entire delalloc extent */
1982 	start_byte = iomap_last_written_block(inode, offset, written);
1983 	end_byte = round_up(offset + length, i_blocksize(inode));
1984 	if (start_byte >= end_byte)
1985 		return 0;
1986 
1987 	/* For zeroing operations the callers already hold invalidate_lock. */
1988 	if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) {
1989 		rwsem_assert_held_write(&inode->i_mapping->invalidate_lock);
1990 		iomap_write_delalloc_release(inode, start_byte, end_byte, flags,
1991 				iomap, xfs_buffered_write_delalloc_punch);
1992 	} else {
1993 		filemap_invalidate_lock(inode->i_mapping);
1994 		iomap_write_delalloc_release(inode, start_byte, end_byte, flags,
1995 				iomap, xfs_buffered_write_delalloc_punch);
1996 		filemap_invalidate_unlock(inode->i_mapping);
1997 	}
1998 
1999 	return 0;
2000 }
2001 
2002 const struct iomap_ops xfs_buffered_write_iomap_ops = {
2003 	.iomap_begin		= xfs_buffered_write_iomap_begin,
2004 	.iomap_end		= xfs_buffered_write_iomap_end,
2005 };
2006 
2007 static int
xfs_read_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)2008 xfs_read_iomap_begin(
2009 	struct inode		*inode,
2010 	loff_t			offset,
2011 	loff_t			length,
2012 	unsigned		flags,
2013 	struct iomap		*iomap,
2014 	struct iomap		*srcmap)
2015 {
2016 	struct xfs_inode	*ip = XFS_I(inode);
2017 	struct xfs_mount	*mp = ip->i_mount;
2018 	struct xfs_bmbt_irec	imap;
2019 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
2020 	xfs_fileoff_t		end_fsb = xfs_iomap_end_fsb(mp, offset, length);
2021 	int			nimaps = 1, error = 0;
2022 	bool			shared = false;
2023 	unsigned int		lockmode = XFS_ILOCK_SHARED;
2024 	u64			seq;
2025 
2026 	ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO)));
2027 
2028 	if (xfs_is_shutdown(mp))
2029 		return -EIO;
2030 
2031 	error = xfs_ilock_for_iomap(ip, flags, &lockmode);
2032 	if (error)
2033 		return error;
2034 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
2035 			       &nimaps, 0);
2036 	if (!error && ((flags & IOMAP_REPORT) || IS_DAX(inode)))
2037 		error = xfs_reflink_trim_around_shared(ip, &imap, &shared);
2038 	seq = xfs_iomap_inode_sequence(ip, shared ? IOMAP_F_SHARED : 0);
2039 	xfs_iunlock(ip, lockmode);
2040 
2041 	if (error)
2042 		return error;
2043 	trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
2044 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
2045 				 shared ? IOMAP_F_SHARED : 0, seq);
2046 }
2047 
2048 const struct iomap_ops xfs_read_iomap_ops = {
2049 	.iomap_begin		= xfs_read_iomap_begin,
2050 };
2051 
2052 static int
xfs_seek_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)2053 xfs_seek_iomap_begin(
2054 	struct inode		*inode,
2055 	loff_t			offset,
2056 	loff_t			length,
2057 	unsigned		flags,
2058 	struct iomap		*iomap,
2059 	struct iomap		*srcmap)
2060 {
2061 	struct xfs_inode	*ip = XFS_I(inode);
2062 	struct xfs_mount	*mp = ip->i_mount;
2063 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
2064 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + length);
2065 	xfs_fileoff_t		cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF;
2066 	struct xfs_iext_cursor	icur;
2067 	struct xfs_bmbt_irec	imap, cmap;
2068 	int			error = 0;
2069 	unsigned		lockmode;
2070 	u64			seq;
2071 
2072 	if (xfs_is_shutdown(mp))
2073 		return -EIO;
2074 
2075 	lockmode = xfs_ilock_data_map_shared(ip);
2076 	error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
2077 	if (error)
2078 		goto out_unlock;
2079 
2080 	if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) {
2081 		/*
2082 		 * If we found a data extent we are done.
2083 		 */
2084 		if (imap.br_startoff <= offset_fsb)
2085 			goto done;
2086 		data_fsb = imap.br_startoff;
2087 	} else {
2088 		/*
2089 		 * Fake a hole until the end of the file.
2090 		 */
2091 		data_fsb = xfs_iomap_end_fsb(mp, offset, length);
2092 	}
2093 
2094 	/*
2095 	 * If a COW fork extent covers the hole, report it - capped to the next
2096 	 * data fork extent:
2097 	 */
2098 	if (xfs_inode_has_cow_data(ip) &&
2099 	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
2100 		cow_fsb = cmap.br_startoff;
2101 	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
2102 		if (data_fsb < cow_fsb + cmap.br_blockcount)
2103 			end_fsb = min(end_fsb, data_fsb);
2104 		xfs_trim_extent(&cmap, offset_fsb, end_fsb - offset_fsb);
2105 		seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
2106 		error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags,
2107 				IOMAP_F_SHARED, seq);
2108 		/*
2109 		 * This is a COW extent, so we must probe the page cache
2110 		 * because there could be dirty page cache being backed
2111 		 * by this extent.
2112 		 */
2113 		iomap->type = IOMAP_UNWRITTEN;
2114 		goto out_unlock;
2115 	}
2116 
2117 	/*
2118 	 * Else report a hole, capped to the next found data or COW extent.
2119 	 */
2120 	if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb)
2121 		imap.br_blockcount = cow_fsb - offset_fsb;
2122 	else
2123 		imap.br_blockcount = data_fsb - offset_fsb;
2124 	imap.br_startoff = offset_fsb;
2125 	imap.br_startblock = HOLESTARTBLOCK;
2126 	imap.br_state = XFS_EXT_NORM;
2127 done:
2128 	seq = xfs_iomap_inode_sequence(ip, 0);
2129 	xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
2130 	error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq);
2131 out_unlock:
2132 	xfs_iunlock(ip, lockmode);
2133 	return error;
2134 }
2135 
2136 const struct iomap_ops xfs_seek_iomap_ops = {
2137 	.iomap_begin		= xfs_seek_iomap_begin,
2138 };
2139 
2140 static int
xfs_xattr_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)2141 xfs_xattr_iomap_begin(
2142 	struct inode		*inode,
2143 	loff_t			offset,
2144 	loff_t			length,
2145 	unsigned		flags,
2146 	struct iomap		*iomap,
2147 	struct iomap		*srcmap)
2148 {
2149 	struct xfs_inode	*ip = XFS_I(inode);
2150 	struct xfs_mount	*mp = ip->i_mount;
2151 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
2152 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + length);
2153 	struct xfs_bmbt_irec	imap;
2154 	int			nimaps = 1, error = 0;
2155 	unsigned		lockmode;
2156 	int			seq;
2157 
2158 	if (xfs_is_shutdown(mp))
2159 		return -EIO;
2160 
2161 	lockmode = xfs_ilock_attr_map_shared(ip);
2162 
2163 	/* if there are no attribute fork or extents, return ENOENT */
2164 	if (!xfs_inode_has_attr_fork(ip) || !ip->i_af.if_nextents) {
2165 		error = -ENOENT;
2166 		goto out_unlock;
2167 	}
2168 
2169 	ASSERT(ip->i_af.if_format != XFS_DINODE_FMT_LOCAL);
2170 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
2171 			       &nimaps, XFS_BMAPI_ATTRFORK);
2172 out_unlock:
2173 
2174 	seq = xfs_iomap_inode_sequence(ip, IOMAP_F_XATTR);
2175 	xfs_iunlock(ip, lockmode);
2176 
2177 	if (error)
2178 		return error;
2179 	ASSERT(nimaps);
2180 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_XATTR, seq);
2181 }
2182 
2183 const struct iomap_ops xfs_xattr_iomap_ops = {
2184 	.iomap_begin		= xfs_xattr_iomap_begin,
2185 };
2186 
2187 int
xfs_zero_range(struct xfs_inode * ip,loff_t pos,loff_t len,struct xfs_zone_alloc_ctx * ac,bool * did_zero)2188 xfs_zero_range(
2189 	struct xfs_inode	*ip,
2190 	loff_t			pos,
2191 	loff_t			len,
2192 	struct xfs_zone_alloc_ctx *ac,
2193 	bool			*did_zero)
2194 {
2195 	struct inode		*inode = VFS_I(ip);
2196 
2197 	xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL);
2198 
2199 	if (IS_DAX(inode))
2200 		return dax_zero_range(inode, pos, len, did_zero,
2201 				      &xfs_dax_write_iomap_ops);
2202 	return iomap_zero_range(inode, pos, len, did_zero,
2203 			&xfs_buffered_write_iomap_ops, &xfs_iomap_write_ops,
2204 			ac);
2205 }
2206 
2207 int
xfs_truncate_page(struct xfs_inode * ip,loff_t pos,struct xfs_zone_alloc_ctx * ac,bool * did_zero)2208 xfs_truncate_page(
2209 	struct xfs_inode	*ip,
2210 	loff_t			pos,
2211 	struct xfs_zone_alloc_ctx *ac,
2212 	bool			*did_zero)
2213 {
2214 	struct inode		*inode = VFS_I(ip);
2215 
2216 	if (IS_DAX(inode))
2217 		return dax_truncate_page(inode, pos, did_zero,
2218 					&xfs_dax_write_iomap_ops);
2219 	return iomap_truncate_page(inode, pos, did_zero,
2220 			&xfs_buffered_write_iomap_ops, &xfs_iomap_write_ops,
2221 			ac);
2222 }
2223