1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_ag.h"
26 #include "xfs_log_priv.h"
27 #include "xfs_health.h"
28 #include "xfs_da_format.h"
29 #include "xfs_dir2.h"
30 #include "xfs_metafile.h"
31
32 #include <linux/iversion.h>
33
34 /* Radix tree tags for incore inode tree. */
35
36 /* inode is to be reclaimed */
37 #define XFS_ICI_RECLAIM_TAG 0
38 /* Inode has speculative preallocations (posteof or cow) to clean. */
39 #define XFS_ICI_BLOCKGC_TAG 1
40
41 /*
42 * The goal for walking incore inodes. These can correspond with incore inode
43 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace.
44 */
45 enum xfs_icwalk_goal {
46 /* Goals directly associated with tagged inodes. */
47 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG,
48 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG,
49 };
50
51 static int xfs_icwalk(struct xfs_mount *mp,
52 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
53 static int xfs_icwalk_ag(struct xfs_perag *pag,
54 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
55
56 /*
57 * Private inode cache walk flags for struct xfs_icwalk. Must not
58 * coincide with XFS_ICWALK_FLAGS_VALID.
59 */
60
61 /* Stop scanning after icw_scan_limit inodes. */
62 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28)
63
64 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27)
65 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */
66
67 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \
68 XFS_ICWALK_FLAG_RECLAIM_SICK | \
69 XFS_ICWALK_FLAG_UNION)
70
71 /* Marks for the perag xarray */
72 #define XFS_PERAG_RECLAIM_MARK XA_MARK_0
73 #define XFS_PERAG_BLOCKGC_MARK XA_MARK_1
74
ici_tag_to_mark(unsigned int tag)75 static inline xa_mark_t ici_tag_to_mark(unsigned int tag)
76 {
77 if (tag == XFS_ICI_RECLAIM_TAG)
78 return XFS_PERAG_RECLAIM_MARK;
79 ASSERT(tag == XFS_ICI_BLOCKGC_TAG);
80 return XFS_PERAG_BLOCKGC_MARK;
81 }
82
83 /*
84 * Allocate and initialise an xfs_inode.
85 */
86 struct xfs_inode *
xfs_inode_alloc(struct xfs_mount * mp,xfs_ino_t ino)87 xfs_inode_alloc(
88 struct xfs_mount *mp,
89 xfs_ino_t ino)
90 {
91 struct xfs_inode *ip;
92
93 /*
94 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
95 * and return NULL here on ENOMEM.
96 */
97 ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
98
99 if (inode_init_always(mp->m_super, VFS_I(ip))) {
100 kmem_cache_free(xfs_inode_cache, ip);
101 return NULL;
102 }
103
104 /* VFS doesn't initialise i_mode! */
105 VFS_I(ip)->i_mode = 0;
106 mapping_set_folio_min_order(VFS_I(ip)->i_mapping,
107 M_IGEO(mp)->min_folio_order);
108
109 XFS_STATS_INC(mp, vn_active);
110 ASSERT(atomic_read(&ip->i_pincount) == 0);
111 ASSERT(ip->i_ino == 0);
112
113 /* initialise the xfs inode */
114 ip->i_ino = ino;
115 ip->i_mount = mp;
116 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
117 ip->i_cowfp = NULL;
118 memset(&ip->i_af, 0, sizeof(ip->i_af));
119 ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
120 memset(&ip->i_df, 0, sizeof(ip->i_df));
121 ip->i_flags = 0;
122 ip->i_delayed_blks = 0;
123 ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
124 ip->i_nblocks = 0;
125 ip->i_forkoff = 0;
126 ip->i_sick = 0;
127 ip->i_checked = 0;
128 INIT_WORK(&ip->i_ioend_work, xfs_end_io);
129 INIT_LIST_HEAD(&ip->i_ioend_list);
130 spin_lock_init(&ip->i_ioend_lock);
131 ip->i_next_unlinked = NULLAGINO;
132 ip->i_prev_unlinked = 0;
133
134 return ip;
135 }
136
137 STATIC void
xfs_inode_free_callback(struct rcu_head * head)138 xfs_inode_free_callback(
139 struct rcu_head *head)
140 {
141 struct inode *inode = container_of(head, struct inode, i_rcu);
142 struct xfs_inode *ip = XFS_I(inode);
143
144 switch (VFS_I(ip)->i_mode & S_IFMT) {
145 case S_IFREG:
146 case S_IFDIR:
147 case S_IFLNK:
148 xfs_idestroy_fork(&ip->i_df);
149 break;
150 }
151
152 xfs_ifork_zap_attr(ip);
153
154 if (ip->i_cowfp) {
155 xfs_idestroy_fork(ip->i_cowfp);
156 kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
157 }
158 if (ip->i_itemp) {
159 ASSERT(!test_bit(XFS_LI_IN_AIL,
160 &ip->i_itemp->ili_item.li_flags));
161 xfs_inode_item_destroy(ip);
162 ip->i_itemp = NULL;
163 }
164
165 kmem_cache_free(xfs_inode_cache, ip);
166 }
167
168 static void
__xfs_inode_free(struct xfs_inode * ip)169 __xfs_inode_free(
170 struct xfs_inode *ip)
171 {
172 /* asserts to verify all state is correct here */
173 ASSERT(atomic_read(&ip->i_pincount) == 0);
174 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
175 XFS_STATS_DEC(ip->i_mount, vn_active);
176
177 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
178 }
179
180 void
xfs_inode_free(struct xfs_inode * ip)181 xfs_inode_free(
182 struct xfs_inode *ip)
183 {
184 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
185
186 /*
187 * Because we use RCU freeing we need to ensure the inode always
188 * appears to be reclaimed with an invalid inode number when in the
189 * free state. The ip->i_flags_lock provides the barrier against lookup
190 * races.
191 */
192 spin_lock(&ip->i_flags_lock);
193 ip->i_flags = XFS_IRECLAIM;
194 ip->i_ino = 0;
195 spin_unlock(&ip->i_flags_lock);
196
197 __xfs_inode_free(ip);
198 }
199
200 /*
201 * Queue background inode reclaim work if there are reclaimable inodes and there
202 * isn't reclaim work already scheduled or in progress.
203 */
204 static void
xfs_reclaim_work_queue(struct xfs_mount * mp)205 xfs_reclaim_work_queue(
206 struct xfs_mount *mp)
207 {
208
209 rcu_read_lock();
210 if (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) {
211 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
212 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
213 }
214 rcu_read_unlock();
215 }
216
217 /*
218 * Background scanning to trim preallocated space. This is queued based on the
219 * 'speculative_prealloc_lifetime' tunable (5m by default).
220 */
221 static inline void
xfs_blockgc_queue(struct xfs_perag * pag)222 xfs_blockgc_queue(
223 struct xfs_perag *pag)
224 {
225 struct xfs_mount *mp = pag_mount(pag);
226
227 if (!xfs_is_blockgc_enabled(mp))
228 return;
229
230 rcu_read_lock();
231 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
232 queue_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work,
233 secs_to_jiffies(xfs_blockgc_secs));
234 rcu_read_unlock();
235 }
236
237 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
238 static void
xfs_perag_set_inode_tag(struct xfs_perag * pag,xfs_agino_t agino,unsigned int tag)239 xfs_perag_set_inode_tag(
240 struct xfs_perag *pag,
241 xfs_agino_t agino,
242 unsigned int tag)
243 {
244 bool was_tagged;
245
246 lockdep_assert_held(&pag->pag_ici_lock);
247
248 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
249 radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
250
251 if (tag == XFS_ICI_RECLAIM_TAG)
252 pag->pag_ici_reclaimable++;
253
254 if (was_tagged)
255 return;
256
257 /* propagate the tag up into the pag xarray tree */
258 xfs_group_set_mark(pag_group(pag), ici_tag_to_mark(tag));
259
260 /* start background work */
261 switch (tag) {
262 case XFS_ICI_RECLAIM_TAG:
263 xfs_reclaim_work_queue(pag_mount(pag));
264 break;
265 case XFS_ICI_BLOCKGC_TAG:
266 xfs_blockgc_queue(pag);
267 break;
268 }
269
270 trace_xfs_perag_set_inode_tag(pag, _RET_IP_);
271 }
272
273 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
274 static void
xfs_perag_clear_inode_tag(struct xfs_perag * pag,xfs_agino_t agino,unsigned int tag)275 xfs_perag_clear_inode_tag(
276 struct xfs_perag *pag,
277 xfs_agino_t agino,
278 unsigned int tag)
279 {
280 lockdep_assert_held(&pag->pag_ici_lock);
281
282 /*
283 * Reclaim can signal (with a null agino) that it cleared its own tag
284 * by removing the inode from the radix tree.
285 */
286 if (agino != NULLAGINO)
287 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
288 else
289 ASSERT(tag == XFS_ICI_RECLAIM_TAG);
290
291 if (tag == XFS_ICI_RECLAIM_TAG)
292 pag->pag_ici_reclaimable--;
293
294 if (radix_tree_tagged(&pag->pag_ici_root, tag))
295 return;
296
297 /* clear the tag from the pag xarray */
298 xfs_group_clear_mark(pag_group(pag), ici_tag_to_mark(tag));
299 trace_xfs_perag_clear_inode_tag(pag, _RET_IP_);
300 }
301
302 /*
303 * Find the next AG after @pag, or the first AG if @pag is NULL.
304 */
305 static struct xfs_perag *
xfs_perag_grab_next_tag(struct xfs_mount * mp,struct xfs_perag * pag,int tag)306 xfs_perag_grab_next_tag(
307 struct xfs_mount *mp,
308 struct xfs_perag *pag,
309 int tag)
310 {
311 return to_perag(xfs_group_grab_next_mark(mp,
312 pag ? pag_group(pag) : NULL,
313 ici_tag_to_mark(tag), XG_TYPE_AG));
314 }
315
316 /*
317 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
318 * part of the structure. This is made more complex by the fact we store
319 * information about the on-disk values in the VFS inode and so we can't just
320 * overwrite the values unconditionally. Hence we save the parameters we
321 * need to retain across reinitialisation, and rewrite them into the VFS inode
322 * after reinitialisation even if it fails.
323 */
324 static int
xfs_reinit_inode(struct xfs_mount * mp,struct inode * inode)325 xfs_reinit_inode(
326 struct xfs_mount *mp,
327 struct inode *inode)
328 {
329 int error;
330 uint32_t nlink = inode->i_nlink;
331 uint32_t generation = inode->i_generation;
332 uint64_t version = inode_peek_iversion(inode);
333 umode_t mode = inode->i_mode;
334 dev_t dev = inode->i_rdev;
335 kuid_t uid = inode->i_uid;
336 kgid_t gid = inode->i_gid;
337 unsigned long state = inode->i_state;
338
339 error = inode_init_always(mp->m_super, inode);
340
341 set_nlink(inode, nlink);
342 inode->i_generation = generation;
343 inode_set_iversion_queried(inode, version);
344 inode->i_mode = mode;
345 inode->i_rdev = dev;
346 inode->i_uid = uid;
347 inode->i_gid = gid;
348 inode->i_state = state;
349 mapping_set_folio_min_order(inode->i_mapping,
350 M_IGEO(mp)->min_folio_order);
351 return error;
352 }
353
354 /*
355 * Carefully nudge an inode whose VFS state has been torn down back into a
356 * usable state. Drops the i_flags_lock and the rcu read lock.
357 */
358 static int
xfs_iget_recycle(struct xfs_perag * pag,struct xfs_inode * ip)359 xfs_iget_recycle(
360 struct xfs_perag *pag,
361 struct xfs_inode *ip) __releases(&ip->i_flags_lock)
362 {
363 struct xfs_mount *mp = ip->i_mount;
364 struct inode *inode = VFS_I(ip);
365 int error;
366
367 trace_xfs_iget_recycle(ip);
368
369 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
370 return -EAGAIN;
371
372 /*
373 * We need to make it look like the inode is being reclaimed to prevent
374 * the actual reclaim workers from stomping over us while we recycle
375 * the inode. We can't clear the radix tree tag yet as it requires
376 * pag_ici_lock to be held exclusive.
377 */
378 ip->i_flags |= XFS_IRECLAIM;
379
380 spin_unlock(&ip->i_flags_lock);
381 rcu_read_unlock();
382
383 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
384 error = xfs_reinit_inode(mp, inode);
385 xfs_iunlock(ip, XFS_ILOCK_EXCL);
386 if (error) {
387 /*
388 * Re-initializing the inode failed, and we are in deep
389 * trouble. Try to re-add it to the reclaim list.
390 */
391 rcu_read_lock();
392 spin_lock(&ip->i_flags_lock);
393 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
394 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
395 spin_unlock(&ip->i_flags_lock);
396 rcu_read_unlock();
397
398 trace_xfs_iget_recycle_fail(ip);
399 return error;
400 }
401
402 spin_lock(&pag->pag_ici_lock);
403 spin_lock(&ip->i_flags_lock);
404
405 /*
406 * Clear the per-lifetime state in the inode as we are now effectively
407 * a new inode and need to return to the initial state before reuse
408 * occurs.
409 */
410 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
411 ip->i_flags |= XFS_INEW;
412 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
413 XFS_ICI_RECLAIM_TAG);
414 inode->i_state = I_NEW;
415 spin_unlock(&ip->i_flags_lock);
416 spin_unlock(&pag->pag_ici_lock);
417
418 return 0;
419 }
420
421 /*
422 * If we are allocating a new inode, then check what was returned is
423 * actually a free, empty inode. If we are not allocating an inode,
424 * then check we didn't find a free inode.
425 *
426 * Returns:
427 * 0 if the inode free state matches the lookup context
428 * -ENOENT if the inode is free and we are not allocating
429 * -EFSCORRUPTED if there is any state mismatch at all
430 */
431 static int
xfs_iget_check_free_state(struct xfs_inode * ip,int flags)432 xfs_iget_check_free_state(
433 struct xfs_inode *ip,
434 int flags)
435 {
436 if (flags & XFS_IGET_CREATE) {
437 /* should be a free inode */
438 if (VFS_I(ip)->i_mode != 0) {
439 xfs_warn(ip->i_mount,
440 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
441 ip->i_ino, VFS_I(ip)->i_mode);
442 xfs_agno_mark_sick(ip->i_mount,
443 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
444 XFS_SICK_AG_INOBT);
445 return -EFSCORRUPTED;
446 }
447
448 if (ip->i_nblocks != 0) {
449 xfs_warn(ip->i_mount,
450 "Corruption detected! Free inode 0x%llx has blocks allocated!",
451 ip->i_ino);
452 xfs_agno_mark_sick(ip->i_mount,
453 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
454 XFS_SICK_AG_INOBT);
455 return -EFSCORRUPTED;
456 }
457 return 0;
458 }
459
460 /* should be an allocated inode */
461 if (VFS_I(ip)->i_mode == 0)
462 return -ENOENT;
463
464 return 0;
465 }
466
467 /* Make all pending inactivation work start immediately. */
468 static bool
xfs_inodegc_queue_all(struct xfs_mount * mp)469 xfs_inodegc_queue_all(
470 struct xfs_mount *mp)
471 {
472 struct xfs_inodegc *gc;
473 int cpu;
474 bool ret = false;
475
476 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
477 gc = per_cpu_ptr(mp->m_inodegc, cpu);
478 if (!llist_empty(&gc->list)) {
479 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
480 ret = true;
481 }
482 }
483
484 return ret;
485 }
486
487 /* Wait for all queued work and collect errors */
488 static int
xfs_inodegc_wait_all(struct xfs_mount * mp)489 xfs_inodegc_wait_all(
490 struct xfs_mount *mp)
491 {
492 int cpu;
493 int error = 0;
494
495 flush_workqueue(mp->m_inodegc_wq);
496 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
497 struct xfs_inodegc *gc;
498
499 gc = per_cpu_ptr(mp->m_inodegc, cpu);
500 if (gc->error && !error)
501 error = gc->error;
502 gc->error = 0;
503 }
504
505 return error;
506 }
507
508 /*
509 * Check the validity of the inode we just found it the cache
510 */
511 static int
xfs_iget_cache_hit(struct xfs_perag * pag,struct xfs_inode * ip,xfs_ino_t ino,int flags,int lock_flags)512 xfs_iget_cache_hit(
513 struct xfs_perag *pag,
514 struct xfs_inode *ip,
515 xfs_ino_t ino,
516 int flags,
517 int lock_flags) __releases(RCU)
518 {
519 struct inode *inode = VFS_I(ip);
520 struct xfs_mount *mp = ip->i_mount;
521 int error;
522
523 /*
524 * check for re-use of an inode within an RCU grace period due to the
525 * radix tree nodes not being updated yet. We monitor for this by
526 * setting the inode number to zero before freeing the inode structure.
527 * If the inode has been reallocated and set up, then the inode number
528 * will not match, so check for that, too.
529 */
530 spin_lock(&ip->i_flags_lock);
531 if (ip->i_ino != ino)
532 goto out_skip;
533
534 /*
535 * If we are racing with another cache hit that is currently
536 * instantiating this inode or currently recycling it out of
537 * reclaimable state, wait for the initialisation to complete
538 * before continuing.
539 *
540 * If we're racing with the inactivation worker we also want to wait.
541 * If we're creating a new file, it's possible that the worker
542 * previously marked the inode as free on disk but hasn't finished
543 * updating the incore state yet. The AGI buffer will be dirty and
544 * locked to the icreate transaction, so a synchronous push of the
545 * inodegc workers would result in deadlock. For a regular iget, the
546 * worker is running already, so we might as well wait.
547 *
548 * XXX(hch): eventually we should do something equivalent to
549 * wait_on_inode to wait for these flags to be cleared
550 * instead of polling for it.
551 */
552 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
553 goto out_skip;
554
555 if (ip->i_flags & XFS_NEED_INACTIVE) {
556 /* Unlinked inodes cannot be re-grabbed. */
557 if (VFS_I(ip)->i_nlink == 0) {
558 error = -ENOENT;
559 goto out_error;
560 }
561 goto out_inodegc_flush;
562 }
563
564 /*
565 * Check the inode free state is valid. This also detects lookup
566 * racing with unlinks.
567 */
568 error = xfs_iget_check_free_state(ip, flags);
569 if (error)
570 goto out_error;
571
572 /* Skip inodes that have no vfs state. */
573 if ((flags & XFS_IGET_INCORE) &&
574 (ip->i_flags & XFS_IRECLAIMABLE))
575 goto out_skip;
576
577 /* The inode fits the selection criteria; process it. */
578 if (ip->i_flags & XFS_IRECLAIMABLE) {
579 /* Drops i_flags_lock and RCU read lock. */
580 error = xfs_iget_recycle(pag, ip);
581 if (error == -EAGAIN)
582 goto out_skip;
583 if (error)
584 return error;
585 } else {
586 /* If the VFS inode is being torn down, pause and try again. */
587 if (!igrab(inode))
588 goto out_skip;
589
590 /* We've got a live one. */
591 spin_unlock(&ip->i_flags_lock);
592 rcu_read_unlock();
593 trace_xfs_iget_hit(ip);
594 }
595
596 if (lock_flags != 0)
597 xfs_ilock(ip, lock_flags);
598
599 if (!(flags & XFS_IGET_INCORE))
600 xfs_iflags_clear(ip, XFS_ISTALE);
601 XFS_STATS_INC(mp, xs_ig_found);
602
603 return 0;
604
605 out_skip:
606 trace_xfs_iget_skip(ip);
607 XFS_STATS_INC(mp, xs_ig_frecycle);
608 error = -EAGAIN;
609 out_error:
610 spin_unlock(&ip->i_flags_lock);
611 rcu_read_unlock();
612 return error;
613
614 out_inodegc_flush:
615 spin_unlock(&ip->i_flags_lock);
616 rcu_read_unlock();
617 /*
618 * Do not wait for the workers, because the caller could hold an AGI
619 * buffer lock. We're just going to sleep in a loop anyway.
620 */
621 if (xfs_is_inodegc_enabled(mp))
622 xfs_inodegc_queue_all(mp);
623 return -EAGAIN;
624 }
625
626 static int
xfs_iget_cache_miss(struct xfs_mount * mp,struct xfs_perag * pag,xfs_trans_t * tp,xfs_ino_t ino,struct xfs_inode ** ipp,int flags,int lock_flags)627 xfs_iget_cache_miss(
628 struct xfs_mount *mp,
629 struct xfs_perag *pag,
630 xfs_trans_t *tp,
631 xfs_ino_t ino,
632 struct xfs_inode **ipp,
633 int flags,
634 int lock_flags)
635 {
636 struct xfs_inode *ip;
637 int error;
638 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
639
640 ip = xfs_inode_alloc(mp, ino);
641 if (!ip)
642 return -ENOMEM;
643
644 error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags);
645 if (error)
646 goto out_destroy;
647
648 /*
649 * For version 5 superblocks, if we are initialising a new inode and we
650 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
651 * simply build the new inode core with a random generation number.
652 *
653 * For version 4 (and older) superblocks, log recovery is dependent on
654 * the i_flushiter field being initialised from the current on-disk
655 * value and hence we must also read the inode off disk even when
656 * initializing new inodes.
657 */
658 if (xfs_has_v3inodes(mp) &&
659 (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
660 VFS_I(ip)->i_generation = get_random_u32();
661 } else {
662 struct xfs_buf *bp;
663
664 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
665 if (error)
666 goto out_destroy;
667
668 error = xfs_inode_from_disk(ip,
669 xfs_buf_offset(bp, ip->i_imap.im_boffset));
670 if (!error)
671 xfs_buf_set_ref(bp, XFS_INO_REF);
672 else
673 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
674 xfs_trans_brelse(tp, bp);
675
676 if (error)
677 goto out_destroy;
678 }
679
680 trace_xfs_iget_miss(ip);
681
682 /*
683 * Check the inode free state is valid. This also detects lookup
684 * racing with unlinks.
685 */
686 error = xfs_iget_check_free_state(ip, flags);
687 if (error)
688 goto out_destroy;
689
690 /*
691 * Preload the radix tree so we can insert safely under the
692 * write spinlock. Note that we cannot sleep inside the preload
693 * region.
694 */
695 if (radix_tree_preload(GFP_KERNEL | __GFP_NOLOCKDEP)) {
696 error = -EAGAIN;
697 goto out_destroy;
698 }
699
700 /*
701 * Because the inode hasn't been added to the radix-tree yet it can't
702 * be found by another thread, so we can do the non-sleeping lock here.
703 */
704 if (lock_flags) {
705 if (!xfs_ilock_nowait(ip, lock_flags))
706 BUG();
707 }
708
709 /*
710 * These values must be set before inserting the inode into the radix
711 * tree as the moment it is inserted a concurrent lookup (allowed by the
712 * RCU locking mechanism) can find it and that lookup must see that this
713 * is an inode currently under construction (i.e. that XFS_INEW is set).
714 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
715 * memory barrier that ensures this detection works correctly at lookup
716 * time.
717 */
718 if (flags & XFS_IGET_DONTCACHE)
719 d_mark_dontcache(VFS_I(ip));
720 ip->i_udquot = NULL;
721 ip->i_gdquot = NULL;
722 ip->i_pdquot = NULL;
723 xfs_iflags_set(ip, XFS_INEW);
724
725 /* insert the new inode */
726 spin_lock(&pag->pag_ici_lock);
727 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
728 if (unlikely(error)) {
729 WARN_ON(error != -EEXIST);
730 XFS_STATS_INC(mp, xs_ig_dup);
731 error = -EAGAIN;
732 goto out_preload_end;
733 }
734 spin_unlock(&pag->pag_ici_lock);
735 radix_tree_preload_end();
736
737 *ipp = ip;
738 return 0;
739
740 out_preload_end:
741 spin_unlock(&pag->pag_ici_lock);
742 radix_tree_preload_end();
743 if (lock_flags)
744 xfs_iunlock(ip, lock_flags);
745 out_destroy:
746 __destroy_inode(VFS_I(ip));
747 xfs_inode_free(ip);
748 return error;
749 }
750
751 /*
752 * Look up an inode by number in the given file system. The inode is looked up
753 * in the cache held in each AG. If the inode is found in the cache, initialise
754 * the vfs inode if necessary.
755 *
756 * If it is not in core, read it in from the file system's device, add it to the
757 * cache and initialise the vfs inode.
758 *
759 * The inode is locked according to the value of the lock_flags parameter.
760 * Inode lookup is only done during metadata operations and not as part of the
761 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
762 */
763 int
xfs_iget(struct xfs_mount * mp,struct xfs_trans * tp,xfs_ino_t ino,uint flags,uint lock_flags,struct xfs_inode ** ipp)764 xfs_iget(
765 struct xfs_mount *mp,
766 struct xfs_trans *tp,
767 xfs_ino_t ino,
768 uint flags,
769 uint lock_flags,
770 struct xfs_inode **ipp)
771 {
772 struct xfs_inode *ip;
773 struct xfs_perag *pag;
774 xfs_agino_t agino;
775 int error;
776
777 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
778
779 /* reject inode numbers outside existing AGs */
780 if (!xfs_verify_ino(mp, ino))
781 return -EINVAL;
782
783 XFS_STATS_INC(mp, xs_ig_attempts);
784
785 /* get the perag structure and ensure that it's inode capable */
786 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
787 agino = XFS_INO_TO_AGINO(mp, ino);
788
789 again:
790 error = 0;
791 rcu_read_lock();
792 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
793
794 if (ip) {
795 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
796 if (error)
797 goto out_error_or_again;
798 } else {
799 rcu_read_unlock();
800 if (flags & XFS_IGET_INCORE) {
801 error = -ENODATA;
802 goto out_error_or_again;
803 }
804 XFS_STATS_INC(mp, xs_ig_missed);
805
806 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
807 flags, lock_flags);
808 if (error)
809 goto out_error_or_again;
810 }
811 xfs_perag_put(pag);
812
813 *ipp = ip;
814
815 /*
816 * If we have a real type for an on-disk inode, we can setup the inode
817 * now. If it's a new inode being created, xfs_init_new_inode will
818 * handle it.
819 */
820 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
821 xfs_setup_existing_inode(ip);
822 return 0;
823
824 out_error_or_again:
825 if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) &&
826 error == -EAGAIN) {
827 delay(1);
828 goto again;
829 }
830 xfs_perag_put(pag);
831 return error;
832 }
833
834 /*
835 * Get a metadata inode.
836 *
837 * The metafile type must match the file mode exactly, and for files in the
838 * metadata directory tree, it must match the inode's metatype exactly.
839 */
840 int
xfs_trans_metafile_iget(struct xfs_trans * tp,xfs_ino_t ino,enum xfs_metafile_type metafile_type,struct xfs_inode ** ipp)841 xfs_trans_metafile_iget(
842 struct xfs_trans *tp,
843 xfs_ino_t ino,
844 enum xfs_metafile_type metafile_type,
845 struct xfs_inode **ipp)
846 {
847 struct xfs_mount *mp = tp->t_mountp;
848 struct xfs_inode *ip;
849 umode_t mode;
850 int error;
851
852 error = xfs_iget(mp, tp, ino, 0, 0, &ip);
853 if (error == -EFSCORRUPTED || error == -EINVAL)
854 goto whine;
855 if (error)
856 return error;
857
858 if (VFS_I(ip)->i_nlink == 0)
859 goto bad_rele;
860
861 if (metafile_type == XFS_METAFILE_DIR)
862 mode = S_IFDIR;
863 else
864 mode = S_IFREG;
865 if (inode_wrong_type(VFS_I(ip), mode))
866 goto bad_rele;
867 if (xfs_has_metadir(mp)) {
868 if (!xfs_is_metadir_inode(ip))
869 goto bad_rele;
870 if (metafile_type != ip->i_metatype)
871 goto bad_rele;
872 }
873
874 *ipp = ip;
875 return 0;
876 bad_rele:
877 xfs_irele(ip);
878 whine:
879 xfs_err(mp, "metadata inode 0x%llx type %u is corrupt", ino,
880 metafile_type);
881 xfs_fs_mark_sick(mp, XFS_SICK_FS_METADIR);
882 return -EFSCORRUPTED;
883 }
884
885 /* Grab a metadata file if the caller doesn't already have a transaction. */
886 int
xfs_metafile_iget(struct xfs_mount * mp,xfs_ino_t ino,enum xfs_metafile_type metafile_type,struct xfs_inode ** ipp)887 xfs_metafile_iget(
888 struct xfs_mount *mp,
889 xfs_ino_t ino,
890 enum xfs_metafile_type metafile_type,
891 struct xfs_inode **ipp)
892 {
893 struct xfs_trans *tp;
894 int error;
895
896 tp = xfs_trans_alloc_empty(mp);
897 error = xfs_trans_metafile_iget(tp, ino, metafile_type, ipp);
898 xfs_trans_cancel(tp);
899 return error;
900 }
901
902 /*
903 * Grab the inode for reclaim exclusively.
904 *
905 * We have found this inode via a lookup under RCU, so the inode may have
906 * already been freed, or it may be in the process of being recycled by
907 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
908 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
909 * will not be set. Hence we need to check for both these flag conditions to
910 * avoid inodes that are no longer reclaim candidates.
911 *
912 * Note: checking for other state flags here, under the i_flags_lock or not, is
913 * racy and should be avoided. Those races should be resolved only after we have
914 * ensured that we are able to reclaim this inode and the world can see that we
915 * are going to reclaim it.
916 *
917 * Return true if we grabbed it, false otherwise.
918 */
919 static bool
xfs_reclaim_igrab(struct xfs_inode * ip,struct xfs_icwalk * icw)920 xfs_reclaim_igrab(
921 struct xfs_inode *ip,
922 struct xfs_icwalk *icw)
923 {
924 ASSERT(rcu_read_lock_held());
925
926 spin_lock(&ip->i_flags_lock);
927 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
928 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
929 /* not a reclaim candidate. */
930 spin_unlock(&ip->i_flags_lock);
931 return false;
932 }
933
934 /* Don't reclaim a sick inode unless the caller asked for it. */
935 if (ip->i_sick &&
936 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
937 spin_unlock(&ip->i_flags_lock);
938 return false;
939 }
940
941 __xfs_iflags_set(ip, XFS_IRECLAIM);
942 spin_unlock(&ip->i_flags_lock);
943 return true;
944 }
945
946 /*
947 * Inode reclaim is non-blocking, so the default action if progress cannot be
948 * made is to "requeue" the inode for reclaim by unlocking it and clearing the
949 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about
950 * blocking anymore and hence we can wait for the inode to be able to reclaim
951 * it.
952 *
953 * We do no IO here - if callers require inodes to be cleaned they must push the
954 * AIL first to trigger writeback of dirty inodes. This enables writeback to be
955 * done in the background in a non-blocking manner, and enables memory reclaim
956 * to make progress without blocking.
957 */
958 static void
xfs_reclaim_inode(struct xfs_inode * ip,struct xfs_perag * pag)959 xfs_reclaim_inode(
960 struct xfs_inode *ip,
961 struct xfs_perag *pag)
962 {
963 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
964
965 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
966 goto out;
967 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
968 goto out_iunlock;
969
970 /*
971 * Check for log shutdown because aborting the inode can move the log
972 * tail and corrupt in memory state. This is fine if the log is shut
973 * down, but if the log is still active and only the mount is shut down
974 * then the in-memory log tail movement caused by the abort can be
975 * incorrectly propagated to disk.
976 */
977 if (xlog_is_shutdown(ip->i_mount->m_log)) {
978 xfs_iunpin_wait(ip);
979 /*
980 * Avoid a ABBA deadlock on the inode cluster buffer vs
981 * concurrent xfs_ifree_cluster() trying to mark the inode
982 * stale. We don't need the inode locked to run the flush abort
983 * code, but the flush abort needs to lock the cluster buffer.
984 */
985 xfs_iunlock(ip, XFS_ILOCK_EXCL);
986 xfs_iflush_shutdown_abort(ip);
987 xfs_ilock(ip, XFS_ILOCK_EXCL);
988 goto reclaim;
989 }
990 if (xfs_ipincount(ip))
991 goto out_clear_flush;
992 if (!xfs_inode_clean(ip))
993 goto out_clear_flush;
994
995 xfs_iflags_clear(ip, XFS_IFLUSHING);
996 reclaim:
997 trace_xfs_inode_reclaiming(ip);
998
999 /*
1000 * Because we use RCU freeing we need to ensure the inode always appears
1001 * to be reclaimed with an invalid inode number when in the free state.
1002 * We do this as early as possible under the ILOCK so that
1003 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1004 * detect races with us here. By doing this, we guarantee that once
1005 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1006 * it will see either a valid inode that will serialise correctly, or it
1007 * will see an invalid inode that it can skip.
1008 */
1009 spin_lock(&ip->i_flags_lock);
1010 ip->i_flags = XFS_IRECLAIM;
1011 ip->i_ino = 0;
1012 ip->i_sick = 0;
1013 ip->i_checked = 0;
1014 spin_unlock(&ip->i_flags_lock);
1015
1016 ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
1017 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1018
1019 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1020 /*
1021 * Remove the inode from the per-AG radix tree.
1022 *
1023 * Because radix_tree_delete won't complain even if the item was never
1024 * added to the tree assert that it's been there before to catch
1025 * problems with the inode life time early on.
1026 */
1027 spin_lock(&pag->pag_ici_lock);
1028 if (!radix_tree_delete(&pag->pag_ici_root,
1029 XFS_INO_TO_AGINO(ip->i_mount, ino)))
1030 ASSERT(0);
1031 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
1032 spin_unlock(&pag->pag_ici_lock);
1033
1034 /*
1035 * Here we do an (almost) spurious inode lock in order to coordinate
1036 * with inode cache radix tree lookups. This is because the lookup
1037 * can reference the inodes in the cache without taking references.
1038 *
1039 * We make that OK here by ensuring that we wait until the inode is
1040 * unlocked after the lookup before we go ahead and free it.
1041 */
1042 xfs_ilock(ip, XFS_ILOCK_EXCL);
1043 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
1044 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1045 ASSERT(xfs_inode_clean(ip));
1046
1047 __xfs_inode_free(ip);
1048 return;
1049
1050 out_clear_flush:
1051 xfs_iflags_clear(ip, XFS_IFLUSHING);
1052 out_iunlock:
1053 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1054 out:
1055 xfs_iflags_clear(ip, XFS_IRECLAIM);
1056 }
1057
1058 /* Reclaim sick inodes if we're unmounting or the fs went down. */
1059 static inline bool
xfs_want_reclaim_sick(struct xfs_mount * mp)1060 xfs_want_reclaim_sick(
1061 struct xfs_mount *mp)
1062 {
1063 return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
1064 xfs_is_shutdown(mp);
1065 }
1066
1067 void
xfs_reclaim_inodes(struct xfs_mount * mp)1068 xfs_reclaim_inodes(
1069 struct xfs_mount *mp)
1070 {
1071 struct xfs_icwalk icw = {
1072 .icw_flags = 0,
1073 };
1074
1075 if (xfs_want_reclaim_sick(mp))
1076 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1077
1078 while (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) {
1079 xfs_ail_push_all_sync(mp->m_ail);
1080 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1081 }
1082 }
1083
1084 /*
1085 * The shrinker infrastructure determines how many inodes we should scan for
1086 * reclaim. We want as many clean inodes ready to reclaim as possible, so we
1087 * push the AIL here. We also want to proactively free up memory if we can to
1088 * minimise the amount of work memory reclaim has to do so we kick the
1089 * background reclaim if it isn't already scheduled.
1090 */
1091 long
xfs_reclaim_inodes_nr(struct xfs_mount * mp,unsigned long nr_to_scan)1092 xfs_reclaim_inodes_nr(
1093 struct xfs_mount *mp,
1094 unsigned long nr_to_scan)
1095 {
1096 struct xfs_icwalk icw = {
1097 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT,
1098 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan),
1099 };
1100
1101 if (xfs_want_reclaim_sick(mp))
1102 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1103
1104 /* kick background reclaimer and push the AIL */
1105 xfs_reclaim_work_queue(mp);
1106 xfs_ail_push_all(mp->m_ail);
1107
1108 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1109 return 0;
1110 }
1111
1112 /*
1113 * Return the number of reclaimable inodes in the filesystem for
1114 * the shrinker to determine how much to reclaim.
1115 */
1116 long
xfs_reclaim_inodes_count(struct xfs_mount * mp)1117 xfs_reclaim_inodes_count(
1118 struct xfs_mount *mp)
1119 {
1120 XA_STATE (xas, &mp->m_groups[XG_TYPE_AG].xa, 0);
1121 long reclaimable = 0;
1122 struct xfs_perag *pag;
1123
1124 rcu_read_lock();
1125 xas_for_each_marked(&xas, pag, ULONG_MAX, XFS_PERAG_RECLAIM_MARK) {
1126 trace_xfs_reclaim_inodes_count(pag, _THIS_IP_);
1127 reclaimable += pag->pag_ici_reclaimable;
1128 }
1129 rcu_read_unlock();
1130
1131 return reclaimable;
1132 }
1133
1134 STATIC bool
xfs_icwalk_match_id(struct xfs_inode * ip,struct xfs_icwalk * icw)1135 xfs_icwalk_match_id(
1136 struct xfs_inode *ip,
1137 struct xfs_icwalk *icw)
1138 {
1139 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1140 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1141 return false;
1142
1143 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1144 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1145 return false;
1146
1147 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1148 ip->i_projid != icw->icw_prid)
1149 return false;
1150
1151 return true;
1152 }
1153
1154 /*
1155 * A union-based inode filtering algorithm. Process the inode if any of the
1156 * criteria match. This is for global/internal scans only.
1157 */
1158 STATIC bool
xfs_icwalk_match_id_union(struct xfs_inode * ip,struct xfs_icwalk * icw)1159 xfs_icwalk_match_id_union(
1160 struct xfs_inode *ip,
1161 struct xfs_icwalk *icw)
1162 {
1163 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1164 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1165 return true;
1166
1167 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1168 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1169 return true;
1170
1171 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1172 ip->i_projid == icw->icw_prid)
1173 return true;
1174
1175 return false;
1176 }
1177
1178 /*
1179 * Is this inode @ip eligible for eof/cow block reclamation, given some
1180 * filtering parameters @icw? The inode is eligible if @icw is null or
1181 * if the predicate functions match.
1182 */
1183 static bool
xfs_icwalk_match(struct xfs_inode * ip,struct xfs_icwalk * icw)1184 xfs_icwalk_match(
1185 struct xfs_inode *ip,
1186 struct xfs_icwalk *icw)
1187 {
1188 bool match;
1189
1190 if (!icw)
1191 return true;
1192
1193 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1194 match = xfs_icwalk_match_id_union(ip, icw);
1195 else
1196 match = xfs_icwalk_match_id(ip, icw);
1197 if (!match)
1198 return false;
1199
1200 /* skip the inode if the file size is too small */
1201 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1202 XFS_ISIZE(ip) < icw->icw_min_file_size)
1203 return false;
1204
1205 return true;
1206 }
1207
1208 /*
1209 * This is a fast pass over the inode cache to try to get reclaim moving on as
1210 * many inodes as possible in a short period of time. It kicks itself every few
1211 * seconds, as well as being kicked by the inode cache shrinker when memory
1212 * goes low.
1213 */
1214 void
xfs_reclaim_worker(struct work_struct * work)1215 xfs_reclaim_worker(
1216 struct work_struct *work)
1217 {
1218 struct xfs_mount *mp = container_of(to_delayed_work(work),
1219 struct xfs_mount, m_reclaim_work);
1220
1221 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1222 xfs_reclaim_work_queue(mp);
1223 }
1224
1225 STATIC int
xfs_inode_free_eofblocks(struct xfs_inode * ip,struct xfs_icwalk * icw,unsigned int * lockflags)1226 xfs_inode_free_eofblocks(
1227 struct xfs_inode *ip,
1228 struct xfs_icwalk *icw,
1229 unsigned int *lockflags)
1230 {
1231 bool wait;
1232
1233 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1234
1235 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1236 return 0;
1237
1238 /*
1239 * If the mapping is dirty the operation can block and wait for some
1240 * time. Unless we are waiting, skip it.
1241 */
1242 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1243 return 0;
1244
1245 if (!xfs_icwalk_match(ip, icw))
1246 return 0;
1247
1248 /*
1249 * If the caller is waiting, return -EAGAIN to keep the background
1250 * scanner moving and revisit the inode in a subsequent pass.
1251 */
1252 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1253 if (wait)
1254 return -EAGAIN;
1255 return 0;
1256 }
1257 *lockflags |= XFS_IOLOCK_EXCL;
1258
1259 if (xfs_can_free_eofblocks(ip))
1260 return xfs_free_eofblocks(ip);
1261
1262 /* inode could be preallocated */
1263 trace_xfs_inode_free_eofblocks_invalid(ip);
1264 xfs_inode_clear_eofblocks_tag(ip);
1265 return 0;
1266 }
1267
1268 static void
xfs_blockgc_set_iflag(struct xfs_inode * ip,unsigned long iflag)1269 xfs_blockgc_set_iflag(
1270 struct xfs_inode *ip,
1271 unsigned long iflag)
1272 {
1273 struct xfs_mount *mp = ip->i_mount;
1274 struct xfs_perag *pag;
1275
1276 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1277
1278 /*
1279 * Don't bother locking the AG and looking up in the radix trees
1280 * if we already know that we have the tag set.
1281 */
1282 if (ip->i_flags & iflag)
1283 return;
1284 spin_lock(&ip->i_flags_lock);
1285 ip->i_flags |= iflag;
1286 spin_unlock(&ip->i_flags_lock);
1287
1288 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1289 spin_lock(&pag->pag_ici_lock);
1290
1291 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1292 XFS_ICI_BLOCKGC_TAG);
1293
1294 spin_unlock(&pag->pag_ici_lock);
1295 xfs_perag_put(pag);
1296 }
1297
1298 void
xfs_inode_set_eofblocks_tag(xfs_inode_t * ip)1299 xfs_inode_set_eofblocks_tag(
1300 xfs_inode_t *ip)
1301 {
1302 trace_xfs_inode_set_eofblocks_tag(ip);
1303 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1304 }
1305
1306 static void
xfs_blockgc_clear_iflag(struct xfs_inode * ip,unsigned long iflag)1307 xfs_blockgc_clear_iflag(
1308 struct xfs_inode *ip,
1309 unsigned long iflag)
1310 {
1311 struct xfs_mount *mp = ip->i_mount;
1312 struct xfs_perag *pag;
1313 bool clear_tag;
1314
1315 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1316
1317 spin_lock(&ip->i_flags_lock);
1318 ip->i_flags &= ~iflag;
1319 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1320 spin_unlock(&ip->i_flags_lock);
1321
1322 if (!clear_tag)
1323 return;
1324
1325 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1326 spin_lock(&pag->pag_ici_lock);
1327
1328 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1329 XFS_ICI_BLOCKGC_TAG);
1330
1331 spin_unlock(&pag->pag_ici_lock);
1332 xfs_perag_put(pag);
1333 }
1334
1335 void
xfs_inode_clear_eofblocks_tag(xfs_inode_t * ip)1336 xfs_inode_clear_eofblocks_tag(
1337 xfs_inode_t *ip)
1338 {
1339 trace_xfs_inode_clear_eofblocks_tag(ip);
1340 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1341 }
1342
1343 /*
1344 * Prepare to free COW fork blocks from an inode.
1345 */
1346 static bool
xfs_prep_free_cowblocks(struct xfs_inode * ip,struct xfs_icwalk * icw)1347 xfs_prep_free_cowblocks(
1348 struct xfs_inode *ip,
1349 struct xfs_icwalk *icw)
1350 {
1351 bool sync;
1352
1353 sync = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1354
1355 /*
1356 * Just clear the tag if we have an empty cow fork or none at all. It's
1357 * possible the inode was fully unshared since it was originally tagged.
1358 */
1359 if (!xfs_inode_has_cow_data(ip)) {
1360 trace_xfs_inode_free_cowblocks_invalid(ip);
1361 xfs_inode_clear_cowblocks_tag(ip);
1362 return false;
1363 }
1364
1365 /*
1366 * A cowblocks trim of an inode can have a significant effect on
1367 * fragmentation even when a reasonable COW extent size hint is set.
1368 * Therefore, we prefer to not process cowblocks unless they are clean
1369 * and idle. We can never process a cowblocks inode that is dirty or has
1370 * in-flight I/O under any circumstances, because outstanding writeback
1371 * or dio expects targeted COW fork blocks exist through write
1372 * completion where they can be remapped into the data fork.
1373 *
1374 * Therefore, the heuristic used here is to never process inodes
1375 * currently opened for write from background (i.e. non-sync) scans. For
1376 * sync scans, use the pagecache/dio state of the inode to ensure we
1377 * never free COW fork blocks out from under pending I/O.
1378 */
1379 if (!sync && inode_is_open_for_write(VFS_I(ip)))
1380 return false;
1381 return xfs_can_free_cowblocks(ip);
1382 }
1383
1384 /*
1385 * Automatic CoW Reservation Freeing
1386 *
1387 * These functions automatically garbage collect leftover CoW reservations
1388 * that were made on behalf of a cowextsize hint when we start to run out
1389 * of quota or when the reservations sit around for too long. If the file
1390 * has dirty pages or is undergoing writeback, its CoW reservations will
1391 * be retained.
1392 *
1393 * The actual garbage collection piggybacks off the same code that runs
1394 * the speculative EOF preallocation garbage collector.
1395 */
1396 STATIC int
xfs_inode_free_cowblocks(struct xfs_inode * ip,struct xfs_icwalk * icw,unsigned int * lockflags)1397 xfs_inode_free_cowblocks(
1398 struct xfs_inode *ip,
1399 struct xfs_icwalk *icw,
1400 unsigned int *lockflags)
1401 {
1402 bool wait;
1403 int ret = 0;
1404
1405 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1406
1407 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1408 return 0;
1409
1410 if (!xfs_prep_free_cowblocks(ip, icw))
1411 return 0;
1412
1413 if (!xfs_icwalk_match(ip, icw))
1414 return 0;
1415
1416 /*
1417 * If the caller is waiting, return -EAGAIN to keep the background
1418 * scanner moving and revisit the inode in a subsequent pass.
1419 */
1420 if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1421 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1422 if (wait)
1423 return -EAGAIN;
1424 return 0;
1425 }
1426 *lockflags |= XFS_IOLOCK_EXCL;
1427
1428 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1429 if (wait)
1430 return -EAGAIN;
1431 return 0;
1432 }
1433 *lockflags |= XFS_MMAPLOCK_EXCL;
1434
1435 /*
1436 * Check again, nobody else should be able to dirty blocks or change
1437 * the reflink iflag now that we have the first two locks held.
1438 */
1439 if (xfs_prep_free_cowblocks(ip, icw))
1440 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1441 return ret;
1442 }
1443
1444 void
xfs_inode_set_cowblocks_tag(xfs_inode_t * ip)1445 xfs_inode_set_cowblocks_tag(
1446 xfs_inode_t *ip)
1447 {
1448 trace_xfs_inode_set_cowblocks_tag(ip);
1449 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1450 }
1451
1452 void
xfs_inode_clear_cowblocks_tag(xfs_inode_t * ip)1453 xfs_inode_clear_cowblocks_tag(
1454 xfs_inode_t *ip)
1455 {
1456 trace_xfs_inode_clear_cowblocks_tag(ip);
1457 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1458 }
1459
1460 /* Disable post-EOF and CoW block auto-reclamation. */
1461 void
xfs_blockgc_stop(struct xfs_mount * mp)1462 xfs_blockgc_stop(
1463 struct xfs_mount *mp)
1464 {
1465 struct xfs_perag *pag = NULL;
1466
1467 if (!xfs_clear_blockgc_enabled(mp))
1468 return;
1469
1470 while ((pag = xfs_perag_next(mp, pag)))
1471 cancel_delayed_work_sync(&pag->pag_blockgc_work);
1472 trace_xfs_blockgc_stop(mp, __return_address);
1473 }
1474
1475 /* Enable post-EOF and CoW block auto-reclamation. */
1476 void
xfs_blockgc_start(struct xfs_mount * mp)1477 xfs_blockgc_start(
1478 struct xfs_mount *mp)
1479 {
1480 struct xfs_perag *pag = NULL;
1481
1482 if (xfs_set_blockgc_enabled(mp))
1483 return;
1484
1485 trace_xfs_blockgc_start(mp, __return_address);
1486 while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
1487 xfs_blockgc_queue(pag);
1488 }
1489
1490 /* Don't try to run block gc on an inode that's in any of these states. */
1491 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \
1492 XFS_NEED_INACTIVE | \
1493 XFS_INACTIVATING | \
1494 XFS_IRECLAIMABLE | \
1495 XFS_IRECLAIM)
1496 /*
1497 * Decide if the given @ip is eligible for garbage collection of speculative
1498 * preallocations, and grab it if so. Returns true if it's ready to go or
1499 * false if we should just ignore it.
1500 */
1501 static bool
xfs_blockgc_igrab(struct xfs_inode * ip)1502 xfs_blockgc_igrab(
1503 struct xfs_inode *ip)
1504 {
1505 struct inode *inode = VFS_I(ip);
1506
1507 ASSERT(rcu_read_lock_held());
1508
1509 /* Check for stale RCU freed inode */
1510 spin_lock(&ip->i_flags_lock);
1511 if (!ip->i_ino)
1512 goto out_unlock_noent;
1513
1514 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1515 goto out_unlock_noent;
1516 spin_unlock(&ip->i_flags_lock);
1517
1518 /* nothing to sync during shutdown */
1519 if (xfs_is_shutdown(ip->i_mount))
1520 return false;
1521
1522 /* If we can't grab the inode, it must on it's way to reclaim. */
1523 if (!igrab(inode))
1524 return false;
1525
1526 /* inode is valid */
1527 return true;
1528
1529 out_unlock_noent:
1530 spin_unlock(&ip->i_flags_lock);
1531 return false;
1532 }
1533
1534 /* Scan one incore inode for block preallocations that we can remove. */
1535 static int
xfs_blockgc_scan_inode(struct xfs_inode * ip,struct xfs_icwalk * icw)1536 xfs_blockgc_scan_inode(
1537 struct xfs_inode *ip,
1538 struct xfs_icwalk *icw)
1539 {
1540 unsigned int lockflags = 0;
1541 int error;
1542
1543 error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1544 if (error)
1545 goto unlock;
1546
1547 error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1548 unlock:
1549 if (lockflags)
1550 xfs_iunlock(ip, lockflags);
1551 xfs_irele(ip);
1552 return error;
1553 }
1554
1555 /* Background worker that trims preallocated space. */
1556 void
xfs_blockgc_worker(struct work_struct * work)1557 xfs_blockgc_worker(
1558 struct work_struct *work)
1559 {
1560 struct xfs_perag *pag = container_of(to_delayed_work(work),
1561 struct xfs_perag, pag_blockgc_work);
1562 struct xfs_mount *mp = pag_mount(pag);
1563 int error;
1564
1565 trace_xfs_blockgc_worker(mp, __return_address);
1566
1567 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1568 if (error)
1569 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1570 pag_agno(pag), error);
1571 xfs_blockgc_queue(pag);
1572 }
1573
1574 /*
1575 * Try to free space in the filesystem by purging inactive inodes, eofblocks
1576 * and cowblocks.
1577 */
1578 int
xfs_blockgc_free_space(struct xfs_mount * mp,struct xfs_icwalk * icw)1579 xfs_blockgc_free_space(
1580 struct xfs_mount *mp,
1581 struct xfs_icwalk *icw)
1582 {
1583 int error;
1584
1585 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1586
1587 error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1588 if (error)
1589 return error;
1590
1591 return xfs_inodegc_flush(mp);
1592 }
1593
1594 /*
1595 * Reclaim all the free space that we can by scheduling the background blockgc
1596 * and inodegc workers immediately and waiting for them all to clear.
1597 */
1598 int
xfs_blockgc_flush_all(struct xfs_mount * mp)1599 xfs_blockgc_flush_all(
1600 struct xfs_mount *mp)
1601 {
1602 struct xfs_perag *pag = NULL;
1603
1604 trace_xfs_blockgc_flush_all(mp, __return_address);
1605
1606 /*
1607 * For each blockgc worker, move its queue time up to now. If it wasn't
1608 * queued, it will not be requeued. Then flush whatever is left.
1609 */
1610 while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
1611 mod_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work, 0);
1612
1613 while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
1614 flush_delayed_work(&pag->pag_blockgc_work);
1615
1616 return xfs_inodegc_flush(mp);
1617 }
1618
1619 /*
1620 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which
1621 * quota caused an allocation failure, so we make a best effort by including
1622 * each quota under low free space conditions (less than 1% free space) in the
1623 * scan.
1624 *
1625 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan
1626 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1627 * MMAPLOCK.
1628 */
1629 int
xfs_blockgc_free_dquots(struct xfs_mount * mp,struct xfs_dquot * udqp,struct xfs_dquot * gdqp,struct xfs_dquot * pdqp,unsigned int iwalk_flags)1630 xfs_blockgc_free_dquots(
1631 struct xfs_mount *mp,
1632 struct xfs_dquot *udqp,
1633 struct xfs_dquot *gdqp,
1634 struct xfs_dquot *pdqp,
1635 unsigned int iwalk_flags)
1636 {
1637 struct xfs_icwalk icw = {0};
1638 bool do_work = false;
1639
1640 if (!udqp && !gdqp && !pdqp)
1641 return 0;
1642
1643 /*
1644 * Run a scan to free blocks using the union filter to cover all
1645 * applicable quotas in a single scan.
1646 */
1647 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1648
1649 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1650 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1651 icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1652 do_work = true;
1653 }
1654
1655 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1656 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1657 icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1658 do_work = true;
1659 }
1660
1661 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1662 icw.icw_prid = pdqp->q_id;
1663 icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1664 do_work = true;
1665 }
1666
1667 if (!do_work)
1668 return 0;
1669
1670 return xfs_blockgc_free_space(mp, &icw);
1671 }
1672
1673 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1674 int
xfs_blockgc_free_quota(struct xfs_inode * ip,unsigned int iwalk_flags)1675 xfs_blockgc_free_quota(
1676 struct xfs_inode *ip,
1677 unsigned int iwalk_flags)
1678 {
1679 return xfs_blockgc_free_dquots(ip->i_mount,
1680 xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1681 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1682 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1683 }
1684
1685 /* XFS Inode Cache Walking Code */
1686
1687 /*
1688 * The inode lookup is done in batches to keep the amount of lock traffic and
1689 * radix tree lookups to a minimum. The batch size is a trade off between
1690 * lookup reduction and stack usage. This is in the reclaim path, so we can't
1691 * be too greedy.
1692 */
1693 #define XFS_LOOKUP_BATCH 32
1694
1695
1696 /*
1697 * Decide if we want to grab this inode in anticipation of doing work towards
1698 * the goal.
1699 */
1700 static inline bool
xfs_icwalk_igrab(enum xfs_icwalk_goal goal,struct xfs_inode * ip,struct xfs_icwalk * icw)1701 xfs_icwalk_igrab(
1702 enum xfs_icwalk_goal goal,
1703 struct xfs_inode *ip,
1704 struct xfs_icwalk *icw)
1705 {
1706 switch (goal) {
1707 case XFS_ICWALK_BLOCKGC:
1708 return xfs_blockgc_igrab(ip);
1709 case XFS_ICWALK_RECLAIM:
1710 return xfs_reclaim_igrab(ip, icw);
1711 default:
1712 return false;
1713 }
1714 }
1715
1716 /*
1717 * Process an inode. Each processing function must handle any state changes
1718 * made by the icwalk igrab function. Return -EAGAIN to skip an inode.
1719 */
1720 static inline int
xfs_icwalk_process_inode(enum xfs_icwalk_goal goal,struct xfs_inode * ip,struct xfs_perag * pag,struct xfs_icwalk * icw)1721 xfs_icwalk_process_inode(
1722 enum xfs_icwalk_goal goal,
1723 struct xfs_inode *ip,
1724 struct xfs_perag *pag,
1725 struct xfs_icwalk *icw)
1726 {
1727 int error = 0;
1728
1729 switch (goal) {
1730 case XFS_ICWALK_BLOCKGC:
1731 error = xfs_blockgc_scan_inode(ip, icw);
1732 break;
1733 case XFS_ICWALK_RECLAIM:
1734 xfs_reclaim_inode(ip, pag);
1735 break;
1736 }
1737 return error;
1738 }
1739
1740 /*
1741 * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1742 * process them in some manner.
1743 */
1744 static int
xfs_icwalk_ag(struct xfs_perag * pag,enum xfs_icwalk_goal goal,struct xfs_icwalk * icw)1745 xfs_icwalk_ag(
1746 struct xfs_perag *pag,
1747 enum xfs_icwalk_goal goal,
1748 struct xfs_icwalk *icw)
1749 {
1750 struct xfs_mount *mp = pag_mount(pag);
1751 uint32_t first_index;
1752 int last_error = 0;
1753 int skipped;
1754 bool done;
1755 int nr_found;
1756
1757 restart:
1758 done = false;
1759 skipped = 0;
1760 if (goal == XFS_ICWALK_RECLAIM)
1761 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1762 else
1763 first_index = 0;
1764 nr_found = 0;
1765 do {
1766 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1767 int error = 0;
1768 int i;
1769
1770 rcu_read_lock();
1771
1772 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1773 (void **) batch, first_index,
1774 XFS_LOOKUP_BATCH, goal);
1775 if (!nr_found) {
1776 done = true;
1777 rcu_read_unlock();
1778 break;
1779 }
1780
1781 /*
1782 * Grab the inodes before we drop the lock. if we found
1783 * nothing, nr == 0 and the loop will be skipped.
1784 */
1785 for (i = 0; i < nr_found; i++) {
1786 struct xfs_inode *ip = batch[i];
1787
1788 if (done || !xfs_icwalk_igrab(goal, ip, icw))
1789 batch[i] = NULL;
1790
1791 /*
1792 * Update the index for the next lookup. Catch
1793 * overflows into the next AG range which can occur if
1794 * we have inodes in the last block of the AG and we
1795 * are currently pointing to the last inode.
1796 *
1797 * Because we may see inodes that are from the wrong AG
1798 * due to RCU freeing and reallocation, only update the
1799 * index if it lies in this AG. It was a race that lead
1800 * us to see this inode, so another lookup from the
1801 * same index will not find it again.
1802 */
1803 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag_agno(pag))
1804 continue;
1805 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1806 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1807 done = true;
1808 }
1809
1810 /* unlock now we've grabbed the inodes. */
1811 rcu_read_unlock();
1812
1813 for (i = 0; i < nr_found; i++) {
1814 if (!batch[i])
1815 continue;
1816 error = xfs_icwalk_process_inode(goal, batch[i], pag,
1817 icw);
1818 if (error == -EAGAIN) {
1819 skipped++;
1820 continue;
1821 }
1822 if (error && last_error != -EFSCORRUPTED)
1823 last_error = error;
1824 }
1825
1826 /* bail out if the filesystem is corrupted. */
1827 if (error == -EFSCORRUPTED)
1828 break;
1829
1830 cond_resched();
1831
1832 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1833 icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1834 if (icw->icw_scan_limit <= 0)
1835 break;
1836 }
1837 } while (nr_found && !done);
1838
1839 if (goal == XFS_ICWALK_RECLAIM) {
1840 if (done)
1841 first_index = 0;
1842 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1843 }
1844
1845 if (skipped) {
1846 delay(1);
1847 goto restart;
1848 }
1849 return last_error;
1850 }
1851
1852 /* Walk all incore inodes to achieve a given goal. */
1853 static int
xfs_icwalk(struct xfs_mount * mp,enum xfs_icwalk_goal goal,struct xfs_icwalk * icw)1854 xfs_icwalk(
1855 struct xfs_mount *mp,
1856 enum xfs_icwalk_goal goal,
1857 struct xfs_icwalk *icw)
1858 {
1859 struct xfs_perag *pag = NULL;
1860 int error = 0;
1861 int last_error = 0;
1862
1863 while ((pag = xfs_perag_grab_next_tag(mp, pag, goal))) {
1864 error = xfs_icwalk_ag(pag, goal, icw);
1865 if (error) {
1866 last_error = error;
1867 if (error == -EFSCORRUPTED) {
1868 xfs_perag_rele(pag);
1869 break;
1870 }
1871 }
1872 }
1873 return last_error;
1874 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1875 }
1876
1877 #ifdef DEBUG
1878 static void
xfs_check_delalloc(struct xfs_inode * ip,int whichfork)1879 xfs_check_delalloc(
1880 struct xfs_inode *ip,
1881 int whichfork)
1882 {
1883 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
1884 struct xfs_bmbt_irec got;
1885 struct xfs_iext_cursor icur;
1886
1887 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1888 return;
1889 do {
1890 if (isnullstartblock(got.br_startblock)) {
1891 xfs_warn(ip->i_mount,
1892 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1893 ip->i_ino,
1894 whichfork == XFS_DATA_FORK ? "data" : "cow",
1895 got.br_startoff, got.br_blockcount);
1896 }
1897 } while (xfs_iext_next_extent(ifp, &icur, &got));
1898 }
1899 #else
1900 #define xfs_check_delalloc(ip, whichfork) do { } while (0)
1901 #endif
1902
1903 /* Schedule the inode for reclaim. */
1904 static void
xfs_inodegc_set_reclaimable(struct xfs_inode * ip)1905 xfs_inodegc_set_reclaimable(
1906 struct xfs_inode *ip)
1907 {
1908 struct xfs_mount *mp = ip->i_mount;
1909 struct xfs_perag *pag;
1910
1911 if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1912 xfs_check_delalloc(ip, XFS_DATA_FORK);
1913 xfs_check_delalloc(ip, XFS_COW_FORK);
1914 ASSERT(0);
1915 }
1916
1917 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1918 spin_lock(&pag->pag_ici_lock);
1919 spin_lock(&ip->i_flags_lock);
1920
1921 trace_xfs_inode_set_reclaimable(ip);
1922 ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1923 ip->i_flags |= XFS_IRECLAIMABLE;
1924 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1925 XFS_ICI_RECLAIM_TAG);
1926
1927 spin_unlock(&ip->i_flags_lock);
1928 spin_unlock(&pag->pag_ici_lock);
1929 xfs_perag_put(pag);
1930 }
1931
1932 /*
1933 * Free all speculative preallocations and possibly even the inode itself.
1934 * This is the last chance to make changes to an otherwise unreferenced file
1935 * before incore reclamation happens.
1936 */
1937 static int
xfs_inodegc_inactivate(struct xfs_inode * ip)1938 xfs_inodegc_inactivate(
1939 struct xfs_inode *ip)
1940 {
1941 int error;
1942
1943 trace_xfs_inode_inactivating(ip);
1944 error = xfs_inactive(ip);
1945 xfs_inodegc_set_reclaimable(ip);
1946 return error;
1947
1948 }
1949
1950 void
xfs_inodegc_worker(struct work_struct * work)1951 xfs_inodegc_worker(
1952 struct work_struct *work)
1953 {
1954 struct xfs_inodegc *gc = container_of(to_delayed_work(work),
1955 struct xfs_inodegc, work);
1956 struct llist_node *node = llist_del_all(&gc->list);
1957 struct xfs_inode *ip, *n;
1958 struct xfs_mount *mp = gc->mp;
1959 unsigned int nofs_flag;
1960
1961 /*
1962 * Clear the cpu mask bit and ensure that we have seen the latest
1963 * update of the gc structure associated with this CPU. This matches
1964 * with the release semantics used when setting the cpumask bit in
1965 * xfs_inodegc_queue.
1966 */
1967 cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask);
1968 smp_mb__after_atomic();
1969
1970 WRITE_ONCE(gc->items, 0);
1971
1972 if (!node)
1973 return;
1974
1975 /*
1976 * We can allocate memory here while doing writeback on behalf of
1977 * memory reclaim. To avoid memory allocation deadlocks set the
1978 * task-wide nofs context for the following operations.
1979 */
1980 nofs_flag = memalloc_nofs_save();
1981
1982 ip = llist_entry(node, struct xfs_inode, i_gclist);
1983 trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits));
1984
1985 WRITE_ONCE(gc->shrinker_hits, 0);
1986 llist_for_each_entry_safe(ip, n, node, i_gclist) {
1987 int error;
1988
1989 xfs_iflags_set(ip, XFS_INACTIVATING);
1990 error = xfs_inodegc_inactivate(ip);
1991 if (error && !gc->error)
1992 gc->error = error;
1993 }
1994
1995 memalloc_nofs_restore(nofs_flag);
1996 }
1997
1998 /*
1999 * Expedite all pending inodegc work to run immediately. This does not wait for
2000 * completion of the work.
2001 */
2002 void
xfs_inodegc_push(struct xfs_mount * mp)2003 xfs_inodegc_push(
2004 struct xfs_mount *mp)
2005 {
2006 if (!xfs_is_inodegc_enabled(mp))
2007 return;
2008 trace_xfs_inodegc_push(mp, __return_address);
2009 xfs_inodegc_queue_all(mp);
2010 }
2011
2012 /*
2013 * Force all currently queued inode inactivation work to run immediately and
2014 * wait for the work to finish.
2015 */
2016 int
xfs_inodegc_flush(struct xfs_mount * mp)2017 xfs_inodegc_flush(
2018 struct xfs_mount *mp)
2019 {
2020 xfs_inodegc_push(mp);
2021 trace_xfs_inodegc_flush(mp, __return_address);
2022 return xfs_inodegc_wait_all(mp);
2023 }
2024
2025 /*
2026 * Flush all the pending work and then disable the inode inactivation background
2027 * workers and wait for them to stop. Caller must hold sb->s_umount to
2028 * coordinate changes in the inodegc_enabled state.
2029 */
2030 void
xfs_inodegc_stop(struct xfs_mount * mp)2031 xfs_inodegc_stop(
2032 struct xfs_mount *mp)
2033 {
2034 bool rerun;
2035
2036 if (!xfs_clear_inodegc_enabled(mp))
2037 return;
2038
2039 /*
2040 * Drain all pending inodegc work, including inodes that could be
2041 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
2042 * threads that sample the inodegc state just prior to us clearing it.
2043 * The inodegc flag state prevents new threads from queuing more
2044 * inodes, so we queue pending work items and flush the workqueue until
2045 * all inodegc lists are empty. IOWs, we cannot use drain_workqueue
2046 * here because it does not allow other unserialized mechanisms to
2047 * reschedule inodegc work while this draining is in progress.
2048 */
2049 xfs_inodegc_queue_all(mp);
2050 do {
2051 flush_workqueue(mp->m_inodegc_wq);
2052 rerun = xfs_inodegc_queue_all(mp);
2053 } while (rerun);
2054
2055 trace_xfs_inodegc_stop(mp, __return_address);
2056 }
2057
2058 /*
2059 * Enable the inode inactivation background workers and schedule deferred inode
2060 * inactivation work if there is any. Caller must hold sb->s_umount to
2061 * coordinate changes in the inodegc_enabled state.
2062 */
2063 void
xfs_inodegc_start(struct xfs_mount * mp)2064 xfs_inodegc_start(
2065 struct xfs_mount *mp)
2066 {
2067 if (xfs_set_inodegc_enabled(mp))
2068 return;
2069
2070 trace_xfs_inodegc_start(mp, __return_address);
2071 xfs_inodegc_queue_all(mp);
2072 }
2073
2074 #ifdef CONFIG_XFS_RT
2075 static inline bool
xfs_inodegc_want_queue_rt_file(struct xfs_inode * ip)2076 xfs_inodegc_want_queue_rt_file(
2077 struct xfs_inode *ip)
2078 {
2079 struct xfs_mount *mp = ip->i_mount;
2080
2081 if (!XFS_IS_REALTIME_INODE(ip) || xfs_has_zoned(mp))
2082 return false;
2083
2084 if (xfs_compare_freecounter(mp, XC_FREE_RTEXTENTS,
2085 mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
2086 XFS_FDBLOCKS_BATCH) < 0)
2087 return true;
2088
2089 return false;
2090 }
2091 #else
2092 # define xfs_inodegc_want_queue_rt_file(ip) (false)
2093 #endif /* CONFIG_XFS_RT */
2094
2095 /*
2096 * Schedule the inactivation worker when:
2097 *
2098 * - We've accumulated more than one inode cluster buffer's worth of inodes.
2099 * - There is less than 5% free space left.
2100 * - Any of the quotas for this inode are near an enforcement limit.
2101 */
2102 static inline bool
xfs_inodegc_want_queue_work(struct xfs_inode * ip,unsigned int items)2103 xfs_inodegc_want_queue_work(
2104 struct xfs_inode *ip,
2105 unsigned int items)
2106 {
2107 struct xfs_mount *mp = ip->i_mount;
2108
2109 if (items > mp->m_ino_geo.inodes_per_cluster)
2110 return true;
2111
2112 if (xfs_compare_freecounter(mp, XC_FREE_BLOCKS,
2113 mp->m_low_space[XFS_LOWSP_5_PCNT],
2114 XFS_FDBLOCKS_BATCH) < 0)
2115 return true;
2116
2117 if (xfs_inodegc_want_queue_rt_file(ip))
2118 return true;
2119
2120 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
2121 return true;
2122
2123 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
2124 return true;
2125
2126 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
2127 return true;
2128
2129 return false;
2130 }
2131
2132 /*
2133 * Upper bound on the number of inodes in each AG that can be queued for
2134 * inactivation at any given time, to avoid monopolizing the workqueue.
2135 */
2136 #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK)
2137
2138 /*
2139 * Make the frontend wait for inactivations when:
2140 *
2141 * - Memory shrinkers queued the inactivation worker and it hasn't finished.
2142 * - The queue depth exceeds the maximum allowable percpu backlog.
2143 *
2144 * Note: If we are in a NOFS context here (e.g. current thread is running a
2145 * transaction) the we don't want to block here as inodegc progress may require
2146 * filesystem resources we hold to make progress and that could result in a
2147 * deadlock. Hence we skip out of here if we are in a scoped NOFS context.
2148 */
2149 static inline bool
xfs_inodegc_want_flush_work(struct xfs_inode * ip,unsigned int items,unsigned int shrinker_hits)2150 xfs_inodegc_want_flush_work(
2151 struct xfs_inode *ip,
2152 unsigned int items,
2153 unsigned int shrinker_hits)
2154 {
2155 if (current->flags & PF_MEMALLOC_NOFS)
2156 return false;
2157
2158 if (shrinker_hits > 0)
2159 return true;
2160
2161 if (items > XFS_INODEGC_MAX_BACKLOG)
2162 return true;
2163
2164 return false;
2165 }
2166
2167 /*
2168 * Queue a background inactivation worker if there are inodes that need to be
2169 * inactivated and higher level xfs code hasn't disabled the background
2170 * workers.
2171 */
2172 static void
xfs_inodegc_queue(struct xfs_inode * ip)2173 xfs_inodegc_queue(
2174 struct xfs_inode *ip)
2175 {
2176 struct xfs_mount *mp = ip->i_mount;
2177 struct xfs_inodegc *gc;
2178 int items;
2179 unsigned int shrinker_hits;
2180 unsigned int cpu_nr;
2181 unsigned long queue_delay = 1;
2182
2183 trace_xfs_inode_set_need_inactive(ip);
2184 spin_lock(&ip->i_flags_lock);
2185 ip->i_flags |= XFS_NEED_INACTIVE;
2186 spin_unlock(&ip->i_flags_lock);
2187
2188 cpu_nr = get_cpu();
2189 gc = this_cpu_ptr(mp->m_inodegc);
2190 llist_add(&ip->i_gclist, &gc->list);
2191 items = READ_ONCE(gc->items);
2192 WRITE_ONCE(gc->items, items + 1);
2193 shrinker_hits = READ_ONCE(gc->shrinker_hits);
2194
2195 /*
2196 * Ensure the list add is always seen by anyone who finds the cpumask
2197 * bit set. This effectively gives the cpumask bit set operation
2198 * release ordering semantics.
2199 */
2200 smp_mb__before_atomic();
2201 if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask))
2202 cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask);
2203
2204 /*
2205 * We queue the work while holding the current CPU so that the work
2206 * is scheduled to run on this CPU.
2207 */
2208 if (!xfs_is_inodegc_enabled(mp)) {
2209 put_cpu();
2210 return;
2211 }
2212
2213 if (xfs_inodegc_want_queue_work(ip, items))
2214 queue_delay = 0;
2215
2216 trace_xfs_inodegc_queue(mp, __return_address);
2217 mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
2218 queue_delay);
2219 put_cpu();
2220
2221 if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2222 trace_xfs_inodegc_throttle(mp, __return_address);
2223 flush_delayed_work(&gc->work);
2224 }
2225 }
2226
2227 /*
2228 * We set the inode flag atomically with the radix tree tag. Once we get tag
2229 * lookups on the radix tree, this inode flag can go away.
2230 *
2231 * We always use background reclaim here because even if the inode is clean, it
2232 * still may be under IO and hence we have wait for IO completion to occur
2233 * before we can reclaim the inode. The background reclaim path handles this
2234 * more efficiently than we can here, so simply let background reclaim tear down
2235 * all inodes.
2236 */
2237 void
xfs_inode_mark_reclaimable(struct xfs_inode * ip)2238 xfs_inode_mark_reclaimable(
2239 struct xfs_inode *ip)
2240 {
2241 struct xfs_mount *mp = ip->i_mount;
2242 bool need_inactive;
2243
2244 XFS_STATS_INC(mp, vn_reclaim);
2245
2246 /*
2247 * We should never get here with any of the reclaim flags already set.
2248 */
2249 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2250
2251 need_inactive = xfs_inode_needs_inactive(ip);
2252 if (need_inactive) {
2253 xfs_inodegc_queue(ip);
2254 return;
2255 }
2256
2257 /* Going straight to reclaim, so drop the dquots. */
2258 xfs_qm_dqdetach(ip);
2259 xfs_inodegc_set_reclaimable(ip);
2260 }
2261
2262 /*
2263 * Register a phony shrinker so that we can run background inodegc sooner when
2264 * there's memory pressure. Inactivation does not itself free any memory but
2265 * it does make inodes reclaimable, which eventually frees memory.
2266 *
2267 * The count function, seek value, and batch value are crafted to trigger the
2268 * scan function during the second round of scanning. Hopefully this means
2269 * that we reclaimed enough memory that initiating metadata transactions won't
2270 * make things worse.
2271 */
2272 #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY)
2273 #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2274
2275 static unsigned long
xfs_inodegc_shrinker_count(struct shrinker * shrink,struct shrink_control * sc)2276 xfs_inodegc_shrinker_count(
2277 struct shrinker *shrink,
2278 struct shrink_control *sc)
2279 {
2280 struct xfs_mount *mp = shrink->private_data;
2281 struct xfs_inodegc *gc;
2282 int cpu;
2283
2284 if (!xfs_is_inodegc_enabled(mp))
2285 return 0;
2286
2287 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2288 gc = per_cpu_ptr(mp->m_inodegc, cpu);
2289 if (!llist_empty(&gc->list))
2290 return XFS_INODEGC_SHRINKER_COUNT;
2291 }
2292
2293 return 0;
2294 }
2295
2296 static unsigned long
xfs_inodegc_shrinker_scan(struct shrinker * shrink,struct shrink_control * sc)2297 xfs_inodegc_shrinker_scan(
2298 struct shrinker *shrink,
2299 struct shrink_control *sc)
2300 {
2301 struct xfs_mount *mp = shrink->private_data;
2302 struct xfs_inodegc *gc;
2303 int cpu;
2304 bool no_items = true;
2305
2306 if (!xfs_is_inodegc_enabled(mp))
2307 return SHRINK_STOP;
2308
2309 trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2310
2311 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2312 gc = per_cpu_ptr(mp->m_inodegc, cpu);
2313 if (!llist_empty(&gc->list)) {
2314 unsigned int h = READ_ONCE(gc->shrinker_hits);
2315
2316 WRITE_ONCE(gc->shrinker_hits, h + 1);
2317 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2318 no_items = false;
2319 }
2320 }
2321
2322 /*
2323 * If there are no inodes to inactivate, we don't want the shrinker
2324 * to think there's deferred work to call us back about.
2325 */
2326 if (no_items)
2327 return LONG_MAX;
2328
2329 return SHRINK_STOP;
2330 }
2331
2332 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2333 int
xfs_inodegc_register_shrinker(struct xfs_mount * mp)2334 xfs_inodegc_register_shrinker(
2335 struct xfs_mount *mp)
2336 {
2337 mp->m_inodegc_shrinker = shrinker_alloc(SHRINKER_NONSLAB,
2338 "xfs-inodegc:%s",
2339 mp->m_super->s_id);
2340 if (!mp->m_inodegc_shrinker)
2341 return -ENOMEM;
2342
2343 mp->m_inodegc_shrinker->count_objects = xfs_inodegc_shrinker_count;
2344 mp->m_inodegc_shrinker->scan_objects = xfs_inodegc_shrinker_scan;
2345 mp->m_inodegc_shrinker->seeks = 0;
2346 mp->m_inodegc_shrinker->batch = XFS_INODEGC_SHRINKER_BATCH;
2347 mp->m_inodegc_shrinker->private_data = mp;
2348
2349 shrinker_register(mp->m_inodegc_shrinker);
2350
2351 return 0;
2352 }
2353