1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27 #include "xfs_file.h"
28 #include "xfs_aops.h"
29 #include "xfs_zone_alloc.h"
30
31 #include <linux/dax.h>
32 #include <linux/falloc.h>
33 #include <linux/backing-dev.h>
34 #include <linux/mman.h>
35 #include <linux/fadvise.h>
36 #include <linux/mount.h>
37
38 static const struct vm_operations_struct xfs_file_vm_ops;
39
40 /*
41 * Decide if the given file range is aligned to the size of the fundamental
42 * allocation unit for the file.
43 */
44 bool
xfs_is_falloc_aligned(struct xfs_inode * ip,loff_t pos,long long int len)45 xfs_is_falloc_aligned(
46 struct xfs_inode *ip,
47 loff_t pos,
48 long long int len)
49 {
50 unsigned int alloc_unit = xfs_inode_alloc_unitsize(ip);
51
52 if (!is_power_of_2(alloc_unit))
53 return isaligned_64(pos, alloc_unit) &&
54 isaligned_64(len, alloc_unit);
55
56 return !((pos | len) & (alloc_unit - 1));
57 }
58
59 /*
60 * Fsync operations on directories are much simpler than on regular files,
61 * as there is no file data to flush, and thus also no need for explicit
62 * cache flush operations, and there are no non-transaction metadata updates
63 * on directories either.
64 */
65 STATIC int
xfs_dir_fsync(struct file * file,loff_t start,loff_t end,int datasync)66 xfs_dir_fsync(
67 struct file *file,
68 loff_t start,
69 loff_t end,
70 int datasync)
71 {
72 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
73
74 trace_xfs_dir_fsync(ip);
75 return xfs_log_force_inode(ip);
76 }
77
78 static xfs_csn_t
xfs_fsync_seq(struct xfs_inode * ip,bool datasync)79 xfs_fsync_seq(
80 struct xfs_inode *ip,
81 bool datasync)
82 {
83 if (!xfs_ipincount(ip))
84 return 0;
85 if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
86 return 0;
87 return ip->i_itemp->ili_commit_seq;
88 }
89
90 /*
91 * All metadata updates are logged, which means that we just have to flush the
92 * log up to the latest LSN that touched the inode.
93 *
94 * If we have concurrent fsync/fdatasync() calls, we need them to all block on
95 * the log force before we clear the ili_fsync_fields field. This ensures that
96 * we don't get a racing sync operation that does not wait for the metadata to
97 * hit the journal before returning. If we race with clearing ili_fsync_fields,
98 * then all that will happen is the log force will do nothing as the lsn will
99 * already be on disk. We can't race with setting ili_fsync_fields because that
100 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
101 * shared until after the ili_fsync_fields is cleared.
102 */
103 static int
xfs_fsync_flush_log(struct xfs_inode * ip,bool datasync,int * log_flushed)104 xfs_fsync_flush_log(
105 struct xfs_inode *ip,
106 bool datasync,
107 int *log_flushed)
108 {
109 int error = 0;
110 xfs_csn_t seq;
111
112 xfs_ilock(ip, XFS_ILOCK_SHARED);
113 seq = xfs_fsync_seq(ip, datasync);
114 if (seq) {
115 error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
116 log_flushed);
117
118 spin_lock(&ip->i_itemp->ili_lock);
119 ip->i_itemp->ili_fsync_fields = 0;
120 spin_unlock(&ip->i_itemp->ili_lock);
121 }
122 xfs_iunlock(ip, XFS_ILOCK_SHARED);
123 return error;
124 }
125
126 STATIC int
xfs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)127 xfs_file_fsync(
128 struct file *file,
129 loff_t start,
130 loff_t end,
131 int datasync)
132 {
133 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
134 struct xfs_mount *mp = ip->i_mount;
135 int error, err2;
136 int log_flushed = 0;
137
138 trace_xfs_file_fsync(ip);
139
140 error = file_write_and_wait_range(file, start, end);
141 if (error)
142 return error;
143
144 if (xfs_is_shutdown(mp))
145 return -EIO;
146
147 xfs_iflags_clear(ip, XFS_ITRUNCATED);
148
149 /*
150 * If we have an RT and/or log subvolume we need to make sure to flush
151 * the write cache the device used for file data first. This is to
152 * ensure newly written file data make it to disk before logging the new
153 * inode size in case of an extending write.
154 */
155 if (XFS_IS_REALTIME_INODE(ip) && mp->m_rtdev_targp != mp->m_ddev_targp)
156 error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
157 else if (mp->m_logdev_targp != mp->m_ddev_targp)
158 error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
159
160 /*
161 * Any inode that has dirty modifications in the log is pinned. The
162 * racy check here for a pinned inode will not catch modifications
163 * that happen concurrently to the fsync call, but fsync semantics
164 * only require to sync previously completed I/O.
165 */
166 if (xfs_ipincount(ip)) {
167 err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed);
168 if (err2 && !error)
169 error = err2;
170 }
171
172 /*
173 * If we only have a single device, and the log force about was
174 * a no-op we might have to flush the data device cache here.
175 * This can only happen for fdatasync/O_DSYNC if we were overwriting
176 * an already allocated file and thus do not have any metadata to
177 * commit.
178 */
179 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
180 mp->m_logdev_targp == mp->m_ddev_targp) {
181 err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
182 if (err2 && !error)
183 error = err2;
184 }
185
186 return error;
187 }
188
189 static int
xfs_ilock_iocb(struct kiocb * iocb,unsigned int lock_mode)190 xfs_ilock_iocb(
191 struct kiocb *iocb,
192 unsigned int lock_mode)
193 {
194 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
195
196 if (iocb->ki_flags & IOCB_NOWAIT) {
197 if (!xfs_ilock_nowait(ip, lock_mode))
198 return -EAGAIN;
199 } else {
200 xfs_ilock(ip, lock_mode);
201 }
202
203 return 0;
204 }
205
206 static int
xfs_ilock_iocb_for_write(struct kiocb * iocb,unsigned int * lock_mode)207 xfs_ilock_iocb_for_write(
208 struct kiocb *iocb,
209 unsigned int *lock_mode)
210 {
211 ssize_t ret;
212 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
213
214 ret = xfs_ilock_iocb(iocb, *lock_mode);
215 if (ret)
216 return ret;
217
218 /*
219 * If a reflink remap is in progress we always need to take the iolock
220 * exclusively to wait for it to finish.
221 */
222 if (*lock_mode == XFS_IOLOCK_SHARED &&
223 xfs_iflags_test(ip, XFS_IREMAPPING)) {
224 xfs_iunlock(ip, *lock_mode);
225 *lock_mode = XFS_IOLOCK_EXCL;
226 return xfs_ilock_iocb(iocb, *lock_mode);
227 }
228
229 return 0;
230 }
231
232 STATIC ssize_t
xfs_file_dio_read(struct kiocb * iocb,struct iov_iter * to)233 xfs_file_dio_read(
234 struct kiocb *iocb,
235 struct iov_iter *to)
236 {
237 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
238 ssize_t ret;
239
240 trace_xfs_file_direct_read(iocb, to);
241
242 if (!iov_iter_count(to))
243 return 0; /* skip atime */
244
245 file_accessed(iocb->ki_filp);
246
247 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
248 if (ret)
249 return ret;
250 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0);
251 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
252
253 return ret;
254 }
255
256 static noinline ssize_t
xfs_file_dax_read(struct kiocb * iocb,struct iov_iter * to)257 xfs_file_dax_read(
258 struct kiocb *iocb,
259 struct iov_iter *to)
260 {
261 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
262 ssize_t ret = 0;
263
264 trace_xfs_file_dax_read(iocb, to);
265
266 if (!iov_iter_count(to))
267 return 0; /* skip atime */
268
269 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
270 if (ret)
271 return ret;
272 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
273 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
274
275 file_accessed(iocb->ki_filp);
276 return ret;
277 }
278
279 STATIC ssize_t
xfs_file_buffered_read(struct kiocb * iocb,struct iov_iter * to)280 xfs_file_buffered_read(
281 struct kiocb *iocb,
282 struct iov_iter *to)
283 {
284 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
285 ssize_t ret;
286
287 trace_xfs_file_buffered_read(iocb, to);
288
289 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
290 if (ret)
291 return ret;
292 ret = generic_file_read_iter(iocb, to);
293 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
294
295 return ret;
296 }
297
298 STATIC ssize_t
xfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)299 xfs_file_read_iter(
300 struct kiocb *iocb,
301 struct iov_iter *to)
302 {
303 struct inode *inode = file_inode(iocb->ki_filp);
304 struct xfs_mount *mp = XFS_I(inode)->i_mount;
305 ssize_t ret = 0;
306
307 XFS_STATS_INC(mp, xs_read_calls);
308
309 if (xfs_is_shutdown(mp))
310 return -EIO;
311
312 if (IS_DAX(inode))
313 ret = xfs_file_dax_read(iocb, to);
314 else if (iocb->ki_flags & IOCB_DIRECT)
315 ret = xfs_file_dio_read(iocb, to);
316 else
317 ret = xfs_file_buffered_read(iocb, to);
318
319 if (ret > 0)
320 XFS_STATS_ADD(mp, xs_read_bytes, ret);
321 return ret;
322 }
323
324 STATIC ssize_t
xfs_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)325 xfs_file_splice_read(
326 struct file *in,
327 loff_t *ppos,
328 struct pipe_inode_info *pipe,
329 size_t len,
330 unsigned int flags)
331 {
332 struct inode *inode = file_inode(in);
333 struct xfs_inode *ip = XFS_I(inode);
334 struct xfs_mount *mp = ip->i_mount;
335 ssize_t ret = 0;
336
337 XFS_STATS_INC(mp, xs_read_calls);
338
339 if (xfs_is_shutdown(mp))
340 return -EIO;
341
342 trace_xfs_file_splice_read(ip, *ppos, len);
343
344 xfs_ilock(ip, XFS_IOLOCK_SHARED);
345 ret = filemap_splice_read(in, ppos, pipe, len, flags);
346 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
347 if (ret > 0)
348 XFS_STATS_ADD(mp, xs_read_bytes, ret);
349 return ret;
350 }
351
352 /*
353 * Take care of zeroing post-EOF blocks when they might exist.
354 *
355 * Returns 0 if successfully, a negative error for a failure, or 1 if this
356 * function dropped the iolock and reacquired it exclusively and the caller
357 * needs to restart the write sanity checks.
358 */
359 static ssize_t
xfs_file_write_zero_eof(struct kiocb * iocb,struct iov_iter * from,unsigned int * iolock,size_t count,bool * drained_dio,struct xfs_zone_alloc_ctx * ac)360 xfs_file_write_zero_eof(
361 struct kiocb *iocb,
362 struct iov_iter *from,
363 unsigned int *iolock,
364 size_t count,
365 bool *drained_dio,
366 struct xfs_zone_alloc_ctx *ac)
367 {
368 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
369 loff_t isize;
370 int error;
371
372 /*
373 * We need to serialise against EOF updates that occur in IO completions
374 * here. We want to make sure that nobody is changing the size while
375 * we do this check until we have placed an IO barrier (i.e. hold
376 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. The
377 * spinlock effectively forms a memory barrier once we have
378 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
379 * hence be able to correctly determine if we need to run zeroing.
380 */
381 spin_lock(&ip->i_flags_lock);
382 isize = i_size_read(VFS_I(ip));
383 if (iocb->ki_pos <= isize) {
384 spin_unlock(&ip->i_flags_lock);
385 return 0;
386 }
387 spin_unlock(&ip->i_flags_lock);
388
389 if (iocb->ki_flags & IOCB_NOWAIT)
390 return -EAGAIN;
391
392 if (!*drained_dio) {
393 /*
394 * If zeroing is needed and we are currently holding the iolock
395 * shared, we need to update it to exclusive which implies
396 * having to redo all checks before.
397 */
398 if (*iolock == XFS_IOLOCK_SHARED) {
399 xfs_iunlock(ip, *iolock);
400 *iolock = XFS_IOLOCK_EXCL;
401 xfs_ilock(ip, *iolock);
402 iov_iter_reexpand(from, count);
403 }
404
405 /*
406 * We now have an IO submission barrier in place, but AIO can do
407 * EOF updates during IO completion and hence we now need to
408 * wait for all of them to drain. Non-AIO DIO will have drained
409 * before we are given the XFS_IOLOCK_EXCL, and so for most
410 * cases this wait is a no-op.
411 */
412 inode_dio_wait(VFS_I(ip));
413 *drained_dio = true;
414 return 1;
415 }
416
417 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
418
419 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
420 error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, ac, NULL);
421 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
422
423 return error;
424 }
425
426 /*
427 * Common pre-write limit and setup checks.
428 *
429 * Called with the iolock held either shared and exclusive according to
430 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
431 * if called for a direct write beyond i_size.
432 */
433 STATIC ssize_t
xfs_file_write_checks(struct kiocb * iocb,struct iov_iter * from,unsigned int * iolock,struct xfs_zone_alloc_ctx * ac)434 xfs_file_write_checks(
435 struct kiocb *iocb,
436 struct iov_iter *from,
437 unsigned int *iolock,
438 struct xfs_zone_alloc_ctx *ac)
439 {
440 struct inode *inode = iocb->ki_filp->f_mapping->host;
441 size_t count = iov_iter_count(from);
442 bool drained_dio = false;
443 ssize_t error;
444
445 restart:
446 error = generic_write_checks(iocb, from);
447 if (error <= 0)
448 return error;
449
450 if (iocb->ki_flags & IOCB_NOWAIT) {
451 error = break_layout(inode, false);
452 if (error == -EWOULDBLOCK)
453 error = -EAGAIN;
454 } else {
455 error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
456 }
457
458 if (error)
459 return error;
460
461 /*
462 * For changing security info in file_remove_privs() we need i_rwsem
463 * exclusively.
464 */
465 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
466 xfs_iunlock(XFS_I(inode), *iolock);
467 *iolock = XFS_IOLOCK_EXCL;
468 error = xfs_ilock_iocb(iocb, *iolock);
469 if (error) {
470 *iolock = 0;
471 return error;
472 }
473 goto restart;
474 }
475
476 /*
477 * If the offset is beyond the size of the file, we need to zero all
478 * blocks that fall between the existing EOF and the start of this
479 * write.
480 *
481 * We can do an unlocked check for i_size here safely as I/O completion
482 * can only extend EOF. Truncate is locked out at this point, so the
483 * EOF can not move backwards, only forwards. Hence we only need to take
484 * the slow path when we are at or beyond the current EOF.
485 */
486 if (iocb->ki_pos > i_size_read(inode)) {
487 error = xfs_file_write_zero_eof(iocb, from, iolock, count,
488 &drained_dio, ac);
489 if (error == 1)
490 goto restart;
491 if (error)
492 return error;
493 }
494
495 return kiocb_modified(iocb);
496 }
497
498 static ssize_t
xfs_zoned_write_space_reserve(struct xfs_mount * mp,struct kiocb * iocb,struct iov_iter * from,unsigned int flags,struct xfs_zone_alloc_ctx * ac)499 xfs_zoned_write_space_reserve(
500 struct xfs_mount *mp,
501 struct kiocb *iocb,
502 struct iov_iter *from,
503 unsigned int flags,
504 struct xfs_zone_alloc_ctx *ac)
505 {
506 loff_t count = iov_iter_count(from);
507 int error;
508
509 if (iocb->ki_flags & IOCB_NOWAIT)
510 flags |= XFS_ZR_NOWAIT;
511
512 /*
513 * Check the rlimit and LFS boundary first so that we don't over-reserve
514 * by possibly a lot.
515 *
516 * The generic write path will redo this check later, and it might have
517 * changed by then. If it got expanded we'll stick to our earlier
518 * smaller limit, and if it is decreased the new smaller limit will be
519 * used and our extra space reservation will be returned after finishing
520 * the write.
521 */
522 error = generic_write_check_limits(iocb->ki_filp, iocb->ki_pos, &count);
523 if (error)
524 return error;
525
526 /*
527 * Sloppily round up count to file system blocks.
528 *
529 * This will often reserve an extra block, but that avoids having to look
530 * at the start offset, which isn't stable for O_APPEND until taking the
531 * iolock. Also we need to reserve a block each for zeroing the old
532 * EOF block and the new start block if they are unaligned.
533 *
534 * Any remaining block will be returned after the write.
535 */
536 return xfs_zoned_space_reserve(mp, XFS_B_TO_FSB(mp, count) + 1 + 2,
537 flags, ac);
538 }
539
540 static int
xfs_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned flags)541 xfs_dio_write_end_io(
542 struct kiocb *iocb,
543 ssize_t size,
544 int error,
545 unsigned flags)
546 {
547 struct inode *inode = file_inode(iocb->ki_filp);
548 struct xfs_inode *ip = XFS_I(inode);
549 loff_t offset = iocb->ki_pos;
550 unsigned int nofs_flag;
551
552 ASSERT(!xfs_is_zoned_inode(ip) ||
553 !(flags & (IOMAP_DIO_UNWRITTEN | IOMAP_DIO_COW)));
554
555 trace_xfs_end_io_direct_write(ip, offset, size);
556
557 if (xfs_is_shutdown(ip->i_mount))
558 return -EIO;
559
560 if (error)
561 return error;
562 if (!size)
563 return 0;
564
565 /*
566 * Capture amount written on completion as we can't reliably account
567 * for it on submission.
568 */
569 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
570
571 /*
572 * We can allocate memory here while doing writeback on behalf of
573 * memory reclaim. To avoid memory allocation deadlocks set the
574 * task-wide nofs context for the following operations.
575 */
576 nofs_flag = memalloc_nofs_save();
577
578 if (flags & IOMAP_DIO_COW) {
579 if (iocb->ki_flags & IOCB_ATOMIC)
580 error = xfs_reflink_end_atomic_cow(ip, offset, size);
581 else
582 error = xfs_reflink_end_cow(ip, offset, size);
583 if (error)
584 goto out;
585 }
586
587 /*
588 * Unwritten conversion updates the in-core isize after extent
589 * conversion but before updating the on-disk size. Updating isize any
590 * earlier allows a racing dio read to find unwritten extents before
591 * they are converted.
592 */
593 if (flags & IOMAP_DIO_UNWRITTEN) {
594 error = xfs_iomap_write_unwritten(ip, offset, size, true);
595 goto out;
596 }
597
598 /*
599 * We need to update the in-core inode size here so that we don't end up
600 * with the on-disk inode size being outside the in-core inode size. We
601 * have no other method of updating EOF for AIO, so always do it here
602 * if necessary.
603 *
604 * We need to lock the test/set EOF update as we can be racing with
605 * other IO completions here to update the EOF. Failing to serialise
606 * here can result in EOF moving backwards and Bad Things Happen when
607 * that occurs.
608 *
609 * As IO completion only ever extends EOF, we can do an unlocked check
610 * here to avoid taking the spinlock. If we land within the current EOF,
611 * then we do not need to do an extending update at all, and we don't
612 * need to take the lock to check this. If we race with an update moving
613 * EOF, then we'll either still be beyond EOF and need to take the lock,
614 * or we'll be within EOF and we don't need to take it at all.
615 */
616 if (offset + size <= i_size_read(inode))
617 goto out;
618
619 spin_lock(&ip->i_flags_lock);
620 if (offset + size > i_size_read(inode)) {
621 i_size_write(inode, offset + size);
622 spin_unlock(&ip->i_flags_lock);
623 error = xfs_setfilesize(ip, offset, size);
624 } else {
625 spin_unlock(&ip->i_flags_lock);
626 }
627
628 out:
629 memalloc_nofs_restore(nofs_flag);
630 return error;
631 }
632
633 static const struct iomap_dio_ops xfs_dio_write_ops = {
634 .end_io = xfs_dio_write_end_io,
635 };
636
637 static void
xfs_dio_zoned_submit_io(const struct iomap_iter * iter,struct bio * bio,loff_t file_offset)638 xfs_dio_zoned_submit_io(
639 const struct iomap_iter *iter,
640 struct bio *bio,
641 loff_t file_offset)
642 {
643 struct xfs_mount *mp = XFS_I(iter->inode)->i_mount;
644 struct xfs_zone_alloc_ctx *ac = iter->private;
645 xfs_filblks_t count_fsb;
646 struct iomap_ioend *ioend;
647
648 count_fsb = XFS_B_TO_FSB(mp, bio->bi_iter.bi_size);
649 if (count_fsb > ac->reserved_blocks) {
650 xfs_err(mp,
651 "allocation (%lld) larger than reservation (%lld).",
652 count_fsb, ac->reserved_blocks);
653 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
654 bio_io_error(bio);
655 return;
656 }
657 ac->reserved_blocks -= count_fsb;
658
659 bio->bi_end_io = xfs_end_bio;
660 ioend = iomap_init_ioend(iter->inode, bio, file_offset,
661 IOMAP_IOEND_DIRECT);
662 xfs_zone_alloc_and_submit(ioend, &ac->open_zone);
663 }
664
665 static const struct iomap_dio_ops xfs_dio_zoned_write_ops = {
666 .bio_set = &iomap_ioend_bioset,
667 .submit_io = xfs_dio_zoned_submit_io,
668 .end_io = xfs_dio_write_end_io,
669 };
670
671 /*
672 * Handle block aligned direct I/O writes.
673 */
674 static noinline ssize_t
xfs_file_dio_write_aligned(struct xfs_inode * ip,struct kiocb * iocb,struct iov_iter * from,const struct iomap_ops * ops,const struct iomap_dio_ops * dops,struct xfs_zone_alloc_ctx * ac)675 xfs_file_dio_write_aligned(
676 struct xfs_inode *ip,
677 struct kiocb *iocb,
678 struct iov_iter *from,
679 const struct iomap_ops *ops,
680 const struct iomap_dio_ops *dops,
681 struct xfs_zone_alloc_ctx *ac)
682 {
683 unsigned int iolock = XFS_IOLOCK_SHARED;
684 ssize_t ret;
685
686 ret = xfs_ilock_iocb_for_write(iocb, &iolock);
687 if (ret)
688 return ret;
689 ret = xfs_file_write_checks(iocb, from, &iolock, ac);
690 if (ret)
691 goto out_unlock;
692
693 /*
694 * We don't need to hold the IOLOCK exclusively across the IO, so demote
695 * the iolock back to shared if we had to take the exclusive lock in
696 * xfs_file_write_checks() for other reasons.
697 */
698 if (iolock == XFS_IOLOCK_EXCL) {
699 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
700 iolock = XFS_IOLOCK_SHARED;
701 }
702 trace_xfs_file_direct_write(iocb, from);
703 ret = iomap_dio_rw(iocb, from, ops, dops, 0, ac, 0);
704 out_unlock:
705 xfs_iunlock(ip, iolock);
706 return ret;
707 }
708
709 /*
710 * Handle block aligned direct I/O writes to zoned devices.
711 */
712 static noinline ssize_t
xfs_file_dio_write_zoned(struct xfs_inode * ip,struct kiocb * iocb,struct iov_iter * from)713 xfs_file_dio_write_zoned(
714 struct xfs_inode *ip,
715 struct kiocb *iocb,
716 struct iov_iter *from)
717 {
718 struct xfs_zone_alloc_ctx ac = { };
719 ssize_t ret;
720
721 ret = xfs_zoned_write_space_reserve(ip->i_mount, iocb, from, 0, &ac);
722 if (ret < 0)
723 return ret;
724 ret = xfs_file_dio_write_aligned(ip, iocb, from,
725 &xfs_zoned_direct_write_iomap_ops,
726 &xfs_dio_zoned_write_ops, &ac);
727 xfs_zoned_space_unreserve(ip->i_mount, &ac);
728 return ret;
729 }
730
731 /*
732 * Handle block atomic writes
733 *
734 * Two methods of atomic writes are supported:
735 * - REQ_ATOMIC-based, which would typically use some form of HW offload in the
736 * disk
737 * - COW-based, which uses a COW fork as a staging extent for data updates
738 * before atomically updating extent mappings for the range being written
739 *
740 */
741 static noinline ssize_t
xfs_file_dio_write_atomic(struct xfs_inode * ip,struct kiocb * iocb,struct iov_iter * from)742 xfs_file_dio_write_atomic(
743 struct xfs_inode *ip,
744 struct kiocb *iocb,
745 struct iov_iter *from)
746 {
747 unsigned int iolock = XFS_IOLOCK_SHARED;
748 ssize_t ret, ocount = iov_iter_count(from);
749 const struct iomap_ops *dops;
750
751 /*
752 * HW offload should be faster, so try that first if it is already
753 * known that the write length is not too large.
754 */
755 if (ocount > xfs_inode_buftarg(ip)->bt_awu_max)
756 dops = &xfs_atomic_write_cow_iomap_ops;
757 else
758 dops = &xfs_direct_write_iomap_ops;
759
760 retry:
761 ret = xfs_ilock_iocb_for_write(iocb, &iolock);
762 if (ret)
763 return ret;
764
765 ret = xfs_file_write_checks(iocb, from, &iolock, NULL);
766 if (ret)
767 goto out_unlock;
768
769 /* Demote similar to xfs_file_dio_write_aligned() */
770 if (iolock == XFS_IOLOCK_EXCL) {
771 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
772 iolock = XFS_IOLOCK_SHARED;
773 }
774
775 trace_xfs_file_direct_write(iocb, from);
776 ret = iomap_dio_rw(iocb, from, dops, &xfs_dio_write_ops,
777 0, NULL, 0);
778
779 /*
780 * The retry mechanism is based on the ->iomap_begin method returning
781 * -ENOPROTOOPT, which would be when the REQ_ATOMIC-based write is not
782 * possible. The REQ_ATOMIC-based method typically not be possible if
783 * the write spans multiple extents or the disk blocks are misaligned.
784 */
785 if (ret == -ENOPROTOOPT && dops == &xfs_direct_write_iomap_ops) {
786 xfs_iunlock(ip, iolock);
787 dops = &xfs_atomic_write_cow_iomap_ops;
788 goto retry;
789 }
790
791 out_unlock:
792 if (iolock)
793 xfs_iunlock(ip, iolock);
794 return ret;
795 }
796
797 /*
798 * Handle block unaligned direct I/O writes
799 *
800 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
801 * them to be done in parallel with reads and other direct I/O writes. However,
802 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
803 * to do sub-block zeroing and that requires serialisation against other direct
804 * I/O to the same block. In this case we need to serialise the submission of
805 * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
806 * In the case where sub-block zeroing is not required, we can do concurrent
807 * sub-block dios to the same block successfully.
808 *
809 * Optimistically submit the I/O using the shared lock first, but use the
810 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
811 * if block allocation or partial block zeroing would be required. In that case
812 * we try again with the exclusive lock.
813 */
814 static noinline ssize_t
xfs_file_dio_write_unaligned(struct xfs_inode * ip,struct kiocb * iocb,struct iov_iter * from)815 xfs_file_dio_write_unaligned(
816 struct xfs_inode *ip,
817 struct kiocb *iocb,
818 struct iov_iter *from)
819 {
820 size_t isize = i_size_read(VFS_I(ip));
821 size_t count = iov_iter_count(from);
822 unsigned int iolock = XFS_IOLOCK_SHARED;
823 unsigned int flags = IOMAP_DIO_OVERWRITE_ONLY;
824 ssize_t ret;
825
826 /*
827 * Extending writes need exclusivity because of the sub-block zeroing
828 * that the DIO code always does for partial tail blocks beyond EOF, so
829 * don't even bother trying the fast path in this case.
830 */
831 if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
832 if (iocb->ki_flags & IOCB_NOWAIT)
833 return -EAGAIN;
834 retry_exclusive:
835 iolock = XFS_IOLOCK_EXCL;
836 flags = IOMAP_DIO_FORCE_WAIT;
837 }
838
839 ret = xfs_ilock_iocb_for_write(iocb, &iolock);
840 if (ret)
841 return ret;
842
843 /*
844 * We can't properly handle unaligned direct I/O to reflink files yet,
845 * as we can't unshare a partial block.
846 */
847 if (xfs_is_cow_inode(ip)) {
848 trace_xfs_reflink_bounce_dio_write(iocb, from);
849 ret = -ENOTBLK;
850 goto out_unlock;
851 }
852
853 ret = xfs_file_write_checks(iocb, from, &iolock, NULL);
854 if (ret)
855 goto out_unlock;
856
857 /*
858 * If we are doing exclusive unaligned I/O, this must be the only I/O
859 * in-flight. Otherwise we risk data corruption due to unwritten extent
860 * conversions from the AIO end_io handler. Wait for all other I/O to
861 * drain first.
862 */
863 if (flags & IOMAP_DIO_FORCE_WAIT)
864 inode_dio_wait(VFS_I(ip));
865
866 trace_xfs_file_direct_write(iocb, from);
867 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
868 &xfs_dio_write_ops, flags, NULL, 0);
869
870 /*
871 * Retry unaligned I/O with exclusive blocking semantics if the DIO
872 * layer rejected it for mapping or locking reasons. If we are doing
873 * nonblocking user I/O, propagate the error.
874 */
875 if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
876 ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
877 xfs_iunlock(ip, iolock);
878 goto retry_exclusive;
879 }
880
881 out_unlock:
882 if (iolock)
883 xfs_iunlock(ip, iolock);
884 return ret;
885 }
886
887 static ssize_t
xfs_file_dio_write(struct kiocb * iocb,struct iov_iter * from)888 xfs_file_dio_write(
889 struct kiocb *iocb,
890 struct iov_iter *from)
891 {
892 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
893 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
894 size_t count = iov_iter_count(from);
895
896 /* direct I/O must be aligned to device logical sector size */
897 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
898 return -EINVAL;
899
900 /*
901 * For always COW inodes we also must check the alignment of each
902 * individual iovec segment, as they could end up with different
903 * I/Os due to the way bio_iov_iter_get_pages works, and we'd
904 * then overwrite an already written block.
905 */
906 if (((iocb->ki_pos | count) & ip->i_mount->m_blockmask) ||
907 (xfs_is_always_cow_inode(ip) &&
908 (iov_iter_alignment(from) & ip->i_mount->m_blockmask)))
909 return xfs_file_dio_write_unaligned(ip, iocb, from);
910 if (xfs_is_zoned_inode(ip))
911 return xfs_file_dio_write_zoned(ip, iocb, from);
912 if (iocb->ki_flags & IOCB_ATOMIC)
913 return xfs_file_dio_write_atomic(ip, iocb, from);
914 return xfs_file_dio_write_aligned(ip, iocb, from,
915 &xfs_direct_write_iomap_ops, &xfs_dio_write_ops, NULL);
916 }
917
918 static noinline ssize_t
xfs_file_dax_write(struct kiocb * iocb,struct iov_iter * from)919 xfs_file_dax_write(
920 struct kiocb *iocb,
921 struct iov_iter *from)
922 {
923 struct inode *inode = iocb->ki_filp->f_mapping->host;
924 struct xfs_inode *ip = XFS_I(inode);
925 unsigned int iolock = XFS_IOLOCK_EXCL;
926 ssize_t ret, error = 0;
927 loff_t pos;
928
929 ret = xfs_ilock_iocb(iocb, iolock);
930 if (ret)
931 return ret;
932 ret = xfs_file_write_checks(iocb, from, &iolock, NULL);
933 if (ret)
934 goto out;
935
936 pos = iocb->ki_pos;
937
938 trace_xfs_file_dax_write(iocb, from);
939 ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops);
940 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
941 i_size_write(inode, iocb->ki_pos);
942 error = xfs_setfilesize(ip, pos, ret);
943 }
944 out:
945 if (iolock)
946 xfs_iunlock(ip, iolock);
947 if (error)
948 return error;
949
950 if (ret > 0) {
951 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
952
953 /* Handle various SYNC-type writes */
954 ret = generic_write_sync(iocb, ret);
955 }
956 return ret;
957 }
958
959 STATIC ssize_t
xfs_file_buffered_write(struct kiocb * iocb,struct iov_iter * from)960 xfs_file_buffered_write(
961 struct kiocb *iocb,
962 struct iov_iter *from)
963 {
964 struct inode *inode = iocb->ki_filp->f_mapping->host;
965 struct xfs_inode *ip = XFS_I(inode);
966 ssize_t ret;
967 bool cleared_space = false;
968 unsigned int iolock;
969
970 write_retry:
971 iolock = XFS_IOLOCK_EXCL;
972 ret = xfs_ilock_iocb(iocb, iolock);
973 if (ret)
974 return ret;
975
976 ret = xfs_file_write_checks(iocb, from, &iolock, NULL);
977 if (ret)
978 goto out;
979
980 trace_xfs_file_buffered_write(iocb, from);
981 ret = iomap_file_buffered_write(iocb, from,
982 &xfs_buffered_write_iomap_ops, &xfs_iomap_write_ops,
983 NULL);
984
985 /*
986 * If we hit a space limit, try to free up some lingering preallocated
987 * space before returning an error. In the case of ENOSPC, first try to
988 * write back all dirty inodes to free up some of the excess reserved
989 * metadata space. This reduces the chances that the eofblocks scan
990 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
991 * also behaves as a filter to prevent too many eofblocks scans from
992 * running at the same time. Use a synchronous scan to increase the
993 * effectiveness of the scan.
994 */
995 if (ret == -EDQUOT && !cleared_space) {
996 xfs_iunlock(ip, iolock);
997 xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
998 cleared_space = true;
999 goto write_retry;
1000 } else if (ret == -ENOSPC && !cleared_space) {
1001 struct xfs_icwalk icw = {0};
1002
1003 cleared_space = true;
1004 xfs_flush_inodes(ip->i_mount);
1005
1006 xfs_iunlock(ip, iolock);
1007 icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
1008 xfs_blockgc_free_space(ip->i_mount, &icw);
1009 goto write_retry;
1010 }
1011
1012 out:
1013 if (iolock)
1014 xfs_iunlock(ip, iolock);
1015
1016 if (ret > 0) {
1017 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
1018 /* Handle various SYNC-type writes */
1019 ret = generic_write_sync(iocb, ret);
1020 }
1021 return ret;
1022 }
1023
1024 STATIC ssize_t
xfs_file_buffered_write_zoned(struct kiocb * iocb,struct iov_iter * from)1025 xfs_file_buffered_write_zoned(
1026 struct kiocb *iocb,
1027 struct iov_iter *from)
1028 {
1029 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
1030 struct xfs_mount *mp = ip->i_mount;
1031 unsigned int iolock = XFS_IOLOCK_EXCL;
1032 bool cleared_space = false;
1033 struct xfs_zone_alloc_ctx ac = { };
1034 ssize_t ret;
1035
1036 ret = xfs_zoned_write_space_reserve(mp, iocb, from, XFS_ZR_GREEDY, &ac);
1037 if (ret < 0)
1038 return ret;
1039
1040 ret = xfs_ilock_iocb(iocb, iolock);
1041 if (ret)
1042 goto out_unreserve;
1043
1044 ret = xfs_file_write_checks(iocb, from, &iolock, &ac);
1045 if (ret)
1046 goto out_unlock;
1047
1048 /*
1049 * Truncate the iter to the length that we were actually able to
1050 * allocate blocks for. This needs to happen after
1051 * xfs_file_write_checks, because that assigns ki_pos for O_APPEND
1052 * writes.
1053 */
1054 iov_iter_truncate(from,
1055 XFS_FSB_TO_B(mp, ac.reserved_blocks) -
1056 (iocb->ki_pos & mp->m_blockmask));
1057 if (!iov_iter_count(from))
1058 goto out_unlock;
1059
1060 retry:
1061 trace_xfs_file_buffered_write(iocb, from);
1062 ret = iomap_file_buffered_write(iocb, from,
1063 &xfs_buffered_write_iomap_ops, &xfs_iomap_write_ops,
1064 &ac);
1065 if (ret == -ENOSPC && !cleared_space) {
1066 /*
1067 * Kick off writeback to convert delalloc space and release the
1068 * usually too pessimistic indirect block reservations.
1069 */
1070 xfs_flush_inodes(mp);
1071 cleared_space = true;
1072 goto retry;
1073 }
1074
1075 out_unlock:
1076 xfs_iunlock(ip, iolock);
1077 out_unreserve:
1078 xfs_zoned_space_unreserve(ip->i_mount, &ac);
1079 if (ret > 0) {
1080 XFS_STATS_ADD(mp, xs_write_bytes, ret);
1081 ret = generic_write_sync(iocb, ret);
1082 }
1083 return ret;
1084 }
1085
1086 STATIC ssize_t
xfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1087 xfs_file_write_iter(
1088 struct kiocb *iocb,
1089 struct iov_iter *from)
1090 {
1091 struct inode *inode = iocb->ki_filp->f_mapping->host;
1092 struct xfs_inode *ip = XFS_I(inode);
1093 ssize_t ret;
1094 size_t ocount = iov_iter_count(from);
1095
1096 XFS_STATS_INC(ip->i_mount, xs_write_calls);
1097
1098 if (ocount == 0)
1099 return 0;
1100
1101 if (xfs_is_shutdown(ip->i_mount))
1102 return -EIO;
1103
1104 if (IS_DAX(inode))
1105 return xfs_file_dax_write(iocb, from);
1106
1107 if (iocb->ki_flags & IOCB_ATOMIC) {
1108 if (ocount < xfs_get_atomic_write_min(ip))
1109 return -EINVAL;
1110
1111 if (ocount > xfs_get_atomic_write_max(ip))
1112 return -EINVAL;
1113
1114 ret = generic_atomic_write_valid(iocb, from);
1115 if (ret)
1116 return ret;
1117 }
1118
1119 if (iocb->ki_flags & IOCB_DIRECT) {
1120 /*
1121 * Allow a directio write to fall back to a buffered
1122 * write *only* in the case that we're doing a reflink
1123 * CoW. In all other directio scenarios we do not
1124 * allow an operation to fall back to buffered mode.
1125 */
1126 ret = xfs_file_dio_write(iocb, from);
1127 if (ret != -ENOTBLK)
1128 return ret;
1129 }
1130
1131 if (xfs_is_zoned_inode(ip))
1132 return xfs_file_buffered_write_zoned(iocb, from);
1133 return xfs_file_buffered_write(iocb, from);
1134 }
1135
1136 /* Does this file, inode, or mount want synchronous writes? */
xfs_file_sync_writes(struct file * filp)1137 static inline bool xfs_file_sync_writes(struct file *filp)
1138 {
1139 struct xfs_inode *ip = XFS_I(file_inode(filp));
1140
1141 if (xfs_has_wsync(ip->i_mount))
1142 return true;
1143 if (filp->f_flags & (__O_SYNC | O_DSYNC))
1144 return true;
1145 if (IS_SYNC(file_inode(filp)))
1146 return true;
1147
1148 return false;
1149 }
1150
1151 static int
xfs_falloc_newsize(struct file * file,int mode,loff_t offset,loff_t len,loff_t * new_size)1152 xfs_falloc_newsize(
1153 struct file *file,
1154 int mode,
1155 loff_t offset,
1156 loff_t len,
1157 loff_t *new_size)
1158 {
1159 struct inode *inode = file_inode(file);
1160
1161 if ((mode & FALLOC_FL_KEEP_SIZE) || offset + len <= i_size_read(inode))
1162 return 0;
1163 *new_size = offset + len;
1164 return inode_newsize_ok(inode, *new_size);
1165 }
1166
1167 static int
xfs_falloc_setsize(struct file * file,loff_t new_size)1168 xfs_falloc_setsize(
1169 struct file *file,
1170 loff_t new_size)
1171 {
1172 struct iattr iattr = {
1173 .ia_valid = ATTR_SIZE,
1174 .ia_size = new_size,
1175 };
1176
1177 if (!new_size)
1178 return 0;
1179 return xfs_vn_setattr_size(file_mnt_idmap(file), file_dentry(file),
1180 &iattr);
1181 }
1182
1183 static int
xfs_falloc_collapse_range(struct file * file,loff_t offset,loff_t len,struct xfs_zone_alloc_ctx * ac)1184 xfs_falloc_collapse_range(
1185 struct file *file,
1186 loff_t offset,
1187 loff_t len,
1188 struct xfs_zone_alloc_ctx *ac)
1189 {
1190 struct inode *inode = file_inode(file);
1191 loff_t new_size = i_size_read(inode) - len;
1192 int error;
1193
1194 if (!xfs_is_falloc_aligned(XFS_I(inode), offset, len))
1195 return -EINVAL;
1196
1197 /*
1198 * There is no need to overlap collapse range with EOF, in which case it
1199 * is effectively a truncate operation
1200 */
1201 if (offset + len >= i_size_read(inode))
1202 return -EINVAL;
1203
1204 error = xfs_collapse_file_space(XFS_I(inode), offset, len, ac);
1205 if (error)
1206 return error;
1207 return xfs_falloc_setsize(file, new_size);
1208 }
1209
1210 static int
xfs_falloc_insert_range(struct file * file,loff_t offset,loff_t len)1211 xfs_falloc_insert_range(
1212 struct file *file,
1213 loff_t offset,
1214 loff_t len)
1215 {
1216 struct inode *inode = file_inode(file);
1217 loff_t isize = i_size_read(inode);
1218 int error;
1219
1220 if (!xfs_is_falloc_aligned(XFS_I(inode), offset, len))
1221 return -EINVAL;
1222
1223 /*
1224 * New inode size must not exceed ->s_maxbytes, accounting for
1225 * possible signed overflow.
1226 */
1227 if (inode->i_sb->s_maxbytes - isize < len)
1228 return -EFBIG;
1229
1230 /* Offset should be less than i_size */
1231 if (offset >= isize)
1232 return -EINVAL;
1233
1234 error = xfs_falloc_setsize(file, isize + len);
1235 if (error)
1236 return error;
1237
1238 /*
1239 * Perform hole insertion now that the file size has been updated so
1240 * that if we crash during the operation we don't leave shifted extents
1241 * past EOF and hence losing access to the data that is contained within
1242 * them.
1243 */
1244 return xfs_insert_file_space(XFS_I(inode), offset, len);
1245 }
1246
1247 /*
1248 * Punch a hole and prealloc the range. We use a hole punch rather than
1249 * unwritten extent conversion for two reasons:
1250 *
1251 * 1.) Hole punch handles partial block zeroing for us.
1252 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued by
1253 * virtue of the hole punch.
1254 */
1255 static int
xfs_falloc_zero_range(struct file * file,int mode,loff_t offset,loff_t len,struct xfs_zone_alloc_ctx * ac)1256 xfs_falloc_zero_range(
1257 struct file *file,
1258 int mode,
1259 loff_t offset,
1260 loff_t len,
1261 struct xfs_zone_alloc_ctx *ac)
1262 {
1263 struct inode *inode = file_inode(file);
1264 unsigned int blksize = i_blocksize(inode);
1265 loff_t new_size = 0;
1266 int error;
1267
1268 trace_xfs_zero_file_space(XFS_I(inode));
1269
1270 error = xfs_falloc_newsize(file, mode, offset, len, &new_size);
1271 if (error)
1272 return error;
1273
1274 error = xfs_free_file_space(XFS_I(inode), offset, len, ac);
1275 if (error)
1276 return error;
1277
1278 len = round_up(offset + len, blksize) - round_down(offset, blksize);
1279 offset = round_down(offset, blksize);
1280 error = xfs_alloc_file_space(XFS_I(inode), offset, len);
1281 if (error)
1282 return error;
1283 return xfs_falloc_setsize(file, new_size);
1284 }
1285
1286 static int
xfs_falloc_unshare_range(struct file * file,int mode,loff_t offset,loff_t len)1287 xfs_falloc_unshare_range(
1288 struct file *file,
1289 int mode,
1290 loff_t offset,
1291 loff_t len)
1292 {
1293 struct inode *inode = file_inode(file);
1294 loff_t new_size = 0;
1295 int error;
1296
1297 error = xfs_falloc_newsize(file, mode, offset, len, &new_size);
1298 if (error)
1299 return error;
1300
1301 error = xfs_reflink_unshare(XFS_I(inode), offset, len);
1302 if (error)
1303 return error;
1304
1305 error = xfs_alloc_file_space(XFS_I(inode), offset, len);
1306 if (error)
1307 return error;
1308 return xfs_falloc_setsize(file, new_size);
1309 }
1310
1311 static int
xfs_falloc_allocate_range(struct file * file,int mode,loff_t offset,loff_t len)1312 xfs_falloc_allocate_range(
1313 struct file *file,
1314 int mode,
1315 loff_t offset,
1316 loff_t len)
1317 {
1318 struct inode *inode = file_inode(file);
1319 loff_t new_size = 0;
1320 int error;
1321
1322 /*
1323 * If always_cow mode we can't use preallocations and thus should not
1324 * create them.
1325 */
1326 if (xfs_is_always_cow_inode(XFS_I(inode)))
1327 return -EOPNOTSUPP;
1328
1329 error = xfs_falloc_newsize(file, mode, offset, len, &new_size);
1330 if (error)
1331 return error;
1332
1333 error = xfs_alloc_file_space(XFS_I(inode), offset, len);
1334 if (error)
1335 return error;
1336 return xfs_falloc_setsize(file, new_size);
1337 }
1338
1339 #define XFS_FALLOC_FL_SUPPORTED \
1340 (FALLOC_FL_ALLOCATE_RANGE | FALLOC_FL_KEEP_SIZE | \
1341 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | \
1342 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE | \
1343 FALLOC_FL_UNSHARE_RANGE)
1344
1345 STATIC long
__xfs_file_fallocate(struct file * file,int mode,loff_t offset,loff_t len,struct xfs_zone_alloc_ctx * ac)1346 __xfs_file_fallocate(
1347 struct file *file,
1348 int mode,
1349 loff_t offset,
1350 loff_t len,
1351 struct xfs_zone_alloc_ctx *ac)
1352 {
1353 struct inode *inode = file_inode(file);
1354 struct xfs_inode *ip = XFS_I(inode);
1355 long error;
1356 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1357
1358 xfs_ilock(ip, iolock);
1359 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
1360 if (error)
1361 goto out_unlock;
1362
1363 /*
1364 * Must wait for all AIO to complete before we continue as AIO can
1365 * change the file size on completion without holding any locks we
1366 * currently hold. We must do this first because AIO can update both
1367 * the on disk and in memory inode sizes, and the operations that follow
1368 * require the in-memory size to be fully up-to-date.
1369 */
1370 inode_dio_wait(inode);
1371
1372 error = file_modified(file);
1373 if (error)
1374 goto out_unlock;
1375
1376 switch (mode & FALLOC_FL_MODE_MASK) {
1377 case FALLOC_FL_PUNCH_HOLE:
1378 error = xfs_free_file_space(ip, offset, len, ac);
1379 break;
1380 case FALLOC_FL_COLLAPSE_RANGE:
1381 error = xfs_falloc_collapse_range(file, offset, len, ac);
1382 break;
1383 case FALLOC_FL_INSERT_RANGE:
1384 error = xfs_falloc_insert_range(file, offset, len);
1385 break;
1386 case FALLOC_FL_ZERO_RANGE:
1387 error = xfs_falloc_zero_range(file, mode, offset, len, ac);
1388 break;
1389 case FALLOC_FL_UNSHARE_RANGE:
1390 error = xfs_falloc_unshare_range(file, mode, offset, len);
1391 break;
1392 case FALLOC_FL_ALLOCATE_RANGE:
1393 error = xfs_falloc_allocate_range(file, mode, offset, len);
1394 break;
1395 default:
1396 error = -EOPNOTSUPP;
1397 break;
1398 }
1399
1400 if (!error && xfs_file_sync_writes(file))
1401 error = xfs_log_force_inode(ip);
1402
1403 out_unlock:
1404 xfs_iunlock(ip, iolock);
1405 return error;
1406 }
1407
1408 static long
xfs_file_zoned_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1409 xfs_file_zoned_fallocate(
1410 struct file *file,
1411 int mode,
1412 loff_t offset,
1413 loff_t len)
1414 {
1415 struct xfs_zone_alloc_ctx ac = { };
1416 struct xfs_inode *ip = XFS_I(file_inode(file));
1417 int error;
1418
1419 error = xfs_zoned_space_reserve(ip->i_mount, 2, XFS_ZR_RESERVED, &ac);
1420 if (error)
1421 return error;
1422 error = __xfs_file_fallocate(file, mode, offset, len, &ac);
1423 xfs_zoned_space_unreserve(ip->i_mount, &ac);
1424 return error;
1425 }
1426
1427 static long
xfs_file_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1428 xfs_file_fallocate(
1429 struct file *file,
1430 int mode,
1431 loff_t offset,
1432 loff_t len)
1433 {
1434 struct inode *inode = file_inode(file);
1435
1436 if (!S_ISREG(inode->i_mode))
1437 return -EINVAL;
1438 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
1439 return -EOPNOTSUPP;
1440
1441 /*
1442 * For zoned file systems, zeroing the first and last block of a hole
1443 * punch requires allocating a new block to rewrite the remaining data
1444 * and new zeroes out of place. Get a reservations for those before
1445 * taking the iolock. Dip into the reserved pool because we are
1446 * expected to be able to punch a hole even on a completely full
1447 * file system.
1448 */
1449 if (xfs_is_zoned_inode(XFS_I(inode)) &&
1450 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
1451 FALLOC_FL_COLLAPSE_RANGE)))
1452 return xfs_file_zoned_fallocate(file, mode, offset, len);
1453 return __xfs_file_fallocate(file, mode, offset, len, NULL);
1454 }
1455
1456 STATIC int
xfs_file_fadvise(struct file * file,loff_t start,loff_t end,int advice)1457 xfs_file_fadvise(
1458 struct file *file,
1459 loff_t start,
1460 loff_t end,
1461 int advice)
1462 {
1463 struct xfs_inode *ip = XFS_I(file_inode(file));
1464 int ret;
1465 int lockflags = 0;
1466
1467 /*
1468 * Operations creating pages in page cache need protection from hole
1469 * punching and similar ops
1470 */
1471 if (advice == POSIX_FADV_WILLNEED) {
1472 lockflags = XFS_IOLOCK_SHARED;
1473 xfs_ilock(ip, lockflags);
1474 }
1475 ret = generic_fadvise(file, start, end, advice);
1476 if (lockflags)
1477 xfs_iunlock(ip, lockflags);
1478 return ret;
1479 }
1480
1481 STATIC loff_t
xfs_file_remap_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t len,unsigned int remap_flags)1482 xfs_file_remap_range(
1483 struct file *file_in,
1484 loff_t pos_in,
1485 struct file *file_out,
1486 loff_t pos_out,
1487 loff_t len,
1488 unsigned int remap_flags)
1489 {
1490 struct inode *inode_in = file_inode(file_in);
1491 struct xfs_inode *src = XFS_I(inode_in);
1492 struct inode *inode_out = file_inode(file_out);
1493 struct xfs_inode *dest = XFS_I(inode_out);
1494 struct xfs_mount *mp = src->i_mount;
1495 loff_t remapped = 0;
1496 xfs_extlen_t cowextsize;
1497 int ret;
1498
1499 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1500 return -EINVAL;
1501
1502 if (!xfs_has_reflink(mp))
1503 return -EOPNOTSUPP;
1504
1505 if (xfs_is_shutdown(mp))
1506 return -EIO;
1507
1508 /* Prepare and then clone file data. */
1509 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1510 &len, remap_flags);
1511 if (ret || len == 0)
1512 return ret;
1513
1514 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1515
1516 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1517 &remapped);
1518 if (ret)
1519 goto out_unlock;
1520
1521 /*
1522 * Carry the cowextsize hint from src to dest if we're sharing the
1523 * entire source file to the entire destination file, the source file
1524 * has a cowextsize hint, and the destination file does not.
1525 */
1526 cowextsize = 0;
1527 if (pos_in == 0 && len == i_size_read(inode_in) &&
1528 (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1529 pos_out == 0 && len >= i_size_read(inode_out) &&
1530 !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
1531 cowextsize = src->i_cowextsize;
1532
1533 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1534 remap_flags);
1535 if (ret)
1536 goto out_unlock;
1537
1538 if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1539 xfs_log_force_inode(dest);
1540 out_unlock:
1541 xfs_iunlock2_remapping(src, dest);
1542 if (ret)
1543 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1544 /*
1545 * If the caller did not set CAN_SHORTEN, then it is not prepared to
1546 * handle partial results -- either the whole remap succeeds, or we
1547 * must say why it did not. In this case, any error should be returned
1548 * to the caller.
1549 */
1550 if (ret && remapped < len && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
1551 return ret;
1552 return remapped > 0 ? remapped : ret;
1553 }
1554
1555 STATIC int
xfs_file_open(struct inode * inode,struct file * file)1556 xfs_file_open(
1557 struct inode *inode,
1558 struct file *file)
1559 {
1560 if (xfs_is_shutdown(XFS_M(inode->i_sb)))
1561 return -EIO;
1562 file->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
1563 if (xfs_get_atomic_write_min(XFS_I(inode)) > 0)
1564 file->f_mode |= FMODE_CAN_ATOMIC_WRITE;
1565 return generic_file_open(inode, file);
1566 }
1567
1568 STATIC int
xfs_dir_open(struct inode * inode,struct file * file)1569 xfs_dir_open(
1570 struct inode *inode,
1571 struct file *file)
1572 {
1573 struct xfs_inode *ip = XFS_I(inode);
1574 unsigned int mode;
1575 int error;
1576
1577 if (xfs_is_shutdown(ip->i_mount))
1578 return -EIO;
1579 error = generic_file_open(inode, file);
1580 if (error)
1581 return error;
1582
1583 /*
1584 * If there are any blocks, read-ahead block 0 as we're almost
1585 * certain to have the next operation be a read there.
1586 */
1587 mode = xfs_ilock_data_map_shared(ip);
1588 if (ip->i_df.if_nextents > 0)
1589 error = xfs_dir3_data_readahead(ip, 0, 0);
1590 xfs_iunlock(ip, mode);
1591 return error;
1592 }
1593
1594 /*
1595 * Don't bother propagating errors. We're just doing cleanup, and the caller
1596 * ignores the return value anyway.
1597 */
1598 STATIC int
xfs_file_release(struct inode * inode,struct file * file)1599 xfs_file_release(
1600 struct inode *inode,
1601 struct file *file)
1602 {
1603 struct xfs_inode *ip = XFS_I(inode);
1604 struct xfs_mount *mp = ip->i_mount;
1605
1606 /*
1607 * If this is a read-only mount or the file system has been shut down,
1608 * don't generate I/O.
1609 */
1610 if (xfs_is_readonly(mp) || xfs_is_shutdown(mp))
1611 return 0;
1612
1613 /*
1614 * If we previously truncated this file and removed old data in the
1615 * process, we want to initiate "early" writeout on the last close.
1616 * This is an attempt to combat the notorious NULL files problem which
1617 * is particularly noticeable from a truncate down, buffered (re-)write
1618 * (delalloc), followed by a crash. What we are effectively doing here
1619 * is significantly reducing the time window where we'd otherwise be
1620 * exposed to that problem.
1621 */
1622 if (xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED)) {
1623 xfs_iflags_clear(ip, XFS_EOFBLOCKS_RELEASED);
1624 if (ip->i_delayed_blks > 0)
1625 filemap_flush(inode->i_mapping);
1626 }
1627
1628 /*
1629 * XFS aggressively preallocates post-EOF space to generate contiguous
1630 * allocations for writers that append to the end of the file.
1631 *
1632 * To support workloads that close and reopen the file frequently, these
1633 * preallocations usually persist after a close unless it is the first
1634 * close for the inode. This is a tradeoff to generate tightly packed
1635 * data layouts for unpacking tarballs or similar archives that write
1636 * one file after another without going back to it while keeping the
1637 * preallocation for files that have recurring open/write/close cycles.
1638 *
1639 * This heuristic is skipped for inodes with the append-only flag as
1640 * that flag is rather pointless for inodes written only once.
1641 *
1642 * There is no point in freeing blocks here for open but unlinked files
1643 * as they will be taken care of by the inactivation path soon.
1644 *
1645 * When releasing a read-only context, don't flush data or trim post-EOF
1646 * blocks. This avoids open/read/close workloads from removing EOF
1647 * blocks that other writers depend upon to reduce fragmentation.
1648 *
1649 * Inodes on the zoned RT device never have preallocations, so skip
1650 * taking the locks below.
1651 */
1652 if (!inode->i_nlink ||
1653 !(file->f_mode & FMODE_WRITE) ||
1654 (ip->i_diflags & XFS_DIFLAG_APPEND) ||
1655 xfs_is_zoned_inode(ip))
1656 return 0;
1657
1658 /*
1659 * If we can't get the iolock just skip truncating the blocks past EOF
1660 * because we could deadlock with the mmap_lock otherwise. We'll get
1661 * another chance to drop them once the last reference to the inode is
1662 * dropped, so we'll never leak blocks permanently.
1663 */
1664 if (!xfs_iflags_test(ip, XFS_EOFBLOCKS_RELEASED) &&
1665 xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1666 if (xfs_can_free_eofblocks(ip) &&
1667 !xfs_iflags_test_and_set(ip, XFS_EOFBLOCKS_RELEASED))
1668 xfs_free_eofblocks(ip);
1669 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1670 }
1671
1672 return 0;
1673 }
1674
1675 STATIC int
xfs_file_readdir(struct file * file,struct dir_context * ctx)1676 xfs_file_readdir(
1677 struct file *file,
1678 struct dir_context *ctx)
1679 {
1680 struct inode *inode = file_inode(file);
1681 xfs_inode_t *ip = XFS_I(inode);
1682 size_t bufsize;
1683
1684 /*
1685 * The Linux API doesn't pass down the total size of the buffer
1686 * we read into down to the filesystem. With the filldir concept
1687 * it's not needed for correct information, but the XFS dir2 leaf
1688 * code wants an estimate of the buffer size to calculate it's
1689 * readahead window and size the buffers used for mapping to
1690 * physical blocks.
1691 *
1692 * Try to give it an estimate that's good enough, maybe at some
1693 * point we can change the ->readdir prototype to include the
1694 * buffer size. For now we use the current glibc buffer size.
1695 */
1696 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
1697
1698 return xfs_readdir(NULL, ip, ctx, bufsize);
1699 }
1700
1701 STATIC loff_t
xfs_file_llseek(struct file * file,loff_t offset,int whence)1702 xfs_file_llseek(
1703 struct file *file,
1704 loff_t offset,
1705 int whence)
1706 {
1707 struct inode *inode = file->f_mapping->host;
1708
1709 if (xfs_is_shutdown(XFS_I(inode)->i_mount))
1710 return -EIO;
1711
1712 switch (whence) {
1713 default:
1714 return generic_file_llseek(file, offset, whence);
1715 case SEEK_HOLE:
1716 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1717 break;
1718 case SEEK_DATA:
1719 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1720 break;
1721 }
1722
1723 if (offset < 0)
1724 return offset;
1725 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1726 }
1727
1728 static inline vm_fault_t
xfs_dax_fault_locked(struct vm_fault * vmf,unsigned int order,bool write_fault)1729 xfs_dax_fault_locked(
1730 struct vm_fault *vmf,
1731 unsigned int order,
1732 bool write_fault)
1733 {
1734 vm_fault_t ret;
1735 unsigned long pfn;
1736
1737 if (!IS_ENABLED(CONFIG_FS_DAX)) {
1738 ASSERT(0);
1739 return VM_FAULT_SIGBUS;
1740 }
1741 ret = dax_iomap_fault(vmf, order, &pfn, NULL,
1742 (write_fault && !vmf->cow_page) ?
1743 &xfs_dax_write_iomap_ops :
1744 &xfs_read_iomap_ops);
1745 if (ret & VM_FAULT_NEEDDSYNC)
1746 ret = dax_finish_sync_fault(vmf, order, pfn);
1747 return ret;
1748 }
1749
1750 static vm_fault_t
xfs_dax_read_fault(struct vm_fault * vmf,unsigned int order)1751 xfs_dax_read_fault(
1752 struct vm_fault *vmf,
1753 unsigned int order)
1754 {
1755 struct xfs_inode *ip = XFS_I(file_inode(vmf->vma->vm_file));
1756 vm_fault_t ret;
1757
1758 trace_xfs_read_fault(ip, order);
1759
1760 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1761 ret = xfs_dax_fault_locked(vmf, order, false);
1762 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1763
1764 return ret;
1765 }
1766
1767 /*
1768 * Locking for serialisation of IO during page faults. This results in a lock
1769 * ordering of:
1770 *
1771 * mmap_lock (MM)
1772 * sb_start_pagefault(vfs, freeze)
1773 * invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
1774 * page_lock (MM)
1775 * i_lock (XFS - extent map serialisation)
1776 */
1777 static vm_fault_t
__xfs_write_fault(struct vm_fault * vmf,unsigned int order,struct xfs_zone_alloc_ctx * ac)1778 __xfs_write_fault(
1779 struct vm_fault *vmf,
1780 unsigned int order,
1781 struct xfs_zone_alloc_ctx *ac)
1782 {
1783 struct inode *inode = file_inode(vmf->vma->vm_file);
1784 struct xfs_inode *ip = XFS_I(inode);
1785 unsigned int lock_mode = XFS_MMAPLOCK_SHARED;
1786 vm_fault_t ret;
1787
1788 trace_xfs_write_fault(ip, order);
1789
1790 sb_start_pagefault(inode->i_sb);
1791 file_update_time(vmf->vma->vm_file);
1792
1793 /*
1794 * Normally we only need the shared mmaplock, but if a reflink remap is
1795 * in progress we take the exclusive lock to wait for the remap to
1796 * finish before taking a write fault.
1797 */
1798 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1799 if (xfs_iflags_test(ip, XFS_IREMAPPING)) {
1800 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1801 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1802 lock_mode = XFS_MMAPLOCK_EXCL;
1803 }
1804
1805 if (IS_DAX(inode))
1806 ret = xfs_dax_fault_locked(vmf, order, true);
1807 else
1808 ret = iomap_page_mkwrite(vmf, &xfs_buffered_write_iomap_ops,
1809 ac);
1810 xfs_iunlock(ip, lock_mode);
1811
1812 sb_end_pagefault(inode->i_sb);
1813 return ret;
1814 }
1815
1816 static vm_fault_t
xfs_write_fault_zoned(struct vm_fault * vmf,unsigned int order)1817 xfs_write_fault_zoned(
1818 struct vm_fault *vmf,
1819 unsigned int order)
1820 {
1821 struct xfs_inode *ip = XFS_I(file_inode(vmf->vma->vm_file));
1822 unsigned int len = folio_size(page_folio(vmf->page));
1823 struct xfs_zone_alloc_ctx ac = { };
1824 int error;
1825 vm_fault_t ret;
1826
1827 /*
1828 * This could over-allocate as it doesn't check for truncation.
1829 *
1830 * But as the overallocation is limited to less than a folio and will be
1831 * release instantly that's just fine.
1832 */
1833 error = xfs_zoned_space_reserve(ip->i_mount,
1834 XFS_B_TO_FSB(ip->i_mount, len), 0, &ac);
1835 if (error < 0)
1836 return vmf_fs_error(error);
1837 ret = __xfs_write_fault(vmf, order, &ac);
1838 xfs_zoned_space_unreserve(ip->i_mount, &ac);
1839 return ret;
1840 }
1841
1842 static vm_fault_t
xfs_write_fault(struct vm_fault * vmf,unsigned int order)1843 xfs_write_fault(
1844 struct vm_fault *vmf,
1845 unsigned int order)
1846 {
1847 if (xfs_is_zoned_inode(XFS_I(file_inode(vmf->vma->vm_file))))
1848 return xfs_write_fault_zoned(vmf, order);
1849 return __xfs_write_fault(vmf, order, NULL);
1850 }
1851
1852 static inline bool
xfs_is_write_fault(struct vm_fault * vmf)1853 xfs_is_write_fault(
1854 struct vm_fault *vmf)
1855 {
1856 return (vmf->flags & FAULT_FLAG_WRITE) &&
1857 (vmf->vma->vm_flags & VM_SHARED);
1858 }
1859
1860 static vm_fault_t
xfs_filemap_fault(struct vm_fault * vmf)1861 xfs_filemap_fault(
1862 struct vm_fault *vmf)
1863 {
1864 struct inode *inode = file_inode(vmf->vma->vm_file);
1865
1866 /* DAX can shortcut the normal fault path on write faults! */
1867 if (IS_DAX(inode)) {
1868 if (xfs_is_write_fault(vmf))
1869 return xfs_write_fault(vmf, 0);
1870 return xfs_dax_read_fault(vmf, 0);
1871 }
1872
1873 trace_xfs_read_fault(XFS_I(inode), 0);
1874 return filemap_fault(vmf);
1875 }
1876
1877 static vm_fault_t
xfs_filemap_huge_fault(struct vm_fault * vmf,unsigned int order)1878 xfs_filemap_huge_fault(
1879 struct vm_fault *vmf,
1880 unsigned int order)
1881 {
1882 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1883 return VM_FAULT_FALLBACK;
1884
1885 /* DAX can shortcut the normal fault path on write faults! */
1886 if (xfs_is_write_fault(vmf))
1887 return xfs_write_fault(vmf, order);
1888 return xfs_dax_read_fault(vmf, order);
1889 }
1890
1891 static vm_fault_t
xfs_filemap_page_mkwrite(struct vm_fault * vmf)1892 xfs_filemap_page_mkwrite(
1893 struct vm_fault *vmf)
1894 {
1895 return xfs_write_fault(vmf, 0);
1896 }
1897
1898 /*
1899 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1900 * on write faults. In reality, it needs to serialise against truncate and
1901 * prepare memory for writing so handle is as standard write fault.
1902 */
1903 static vm_fault_t
xfs_filemap_pfn_mkwrite(struct vm_fault * vmf)1904 xfs_filemap_pfn_mkwrite(
1905 struct vm_fault *vmf)
1906 {
1907 return xfs_write_fault(vmf, 0);
1908 }
1909
1910 static const struct vm_operations_struct xfs_file_vm_ops = {
1911 .fault = xfs_filemap_fault,
1912 .huge_fault = xfs_filemap_huge_fault,
1913 .map_pages = filemap_map_pages,
1914 .page_mkwrite = xfs_filemap_page_mkwrite,
1915 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1916 };
1917
1918 STATIC int
xfs_file_mmap_prepare(struct vm_area_desc * desc)1919 xfs_file_mmap_prepare(
1920 struct vm_area_desc *desc)
1921 {
1922 struct file *file = desc->file;
1923 struct inode *inode = file_inode(file);
1924 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode));
1925
1926 /*
1927 * We don't support synchronous mappings for non-DAX files and
1928 * for DAX files if underneath dax_device is not synchronous.
1929 */
1930 if (!daxdev_mapping_supported(desc->vm_flags, file_inode(file),
1931 target->bt_daxdev))
1932 return -EOPNOTSUPP;
1933
1934 file_accessed(file);
1935 desc->vm_ops = &xfs_file_vm_ops;
1936 if (IS_DAX(inode))
1937 desc->vm_flags |= VM_HUGEPAGE;
1938 return 0;
1939 }
1940
1941 const struct file_operations xfs_file_operations = {
1942 .llseek = xfs_file_llseek,
1943 .read_iter = xfs_file_read_iter,
1944 .write_iter = xfs_file_write_iter,
1945 .splice_read = xfs_file_splice_read,
1946 .splice_write = iter_file_splice_write,
1947 .iopoll = iocb_bio_iopoll,
1948 .unlocked_ioctl = xfs_file_ioctl,
1949 #ifdef CONFIG_COMPAT
1950 .compat_ioctl = xfs_file_compat_ioctl,
1951 #endif
1952 .mmap_prepare = xfs_file_mmap_prepare,
1953 .open = xfs_file_open,
1954 .release = xfs_file_release,
1955 .fsync = xfs_file_fsync,
1956 .get_unmapped_area = thp_get_unmapped_area,
1957 .fallocate = xfs_file_fallocate,
1958 .fadvise = xfs_file_fadvise,
1959 .remap_file_range = xfs_file_remap_range,
1960 .fop_flags = FOP_MMAP_SYNC | FOP_BUFFER_RASYNC |
1961 FOP_BUFFER_WASYNC | FOP_DIO_PARALLEL_WRITE |
1962 FOP_DONTCACHE,
1963 };
1964
1965 const struct file_operations xfs_dir_file_operations = {
1966 .open = xfs_dir_open,
1967 .read = generic_read_dir,
1968 .iterate_shared = xfs_file_readdir,
1969 .llseek = generic_file_llseek,
1970 .unlocked_ioctl = xfs_file_ioctl,
1971 #ifdef CONFIG_COMPAT
1972 .compat_ioctl = xfs_file_compat_ioctl,
1973 #endif
1974 .fsync = xfs_dir_fsync,
1975 };
1976