1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_error.h"
26 #include "xfs_quota.h"
27 #include "xfs_fsops.h"
28 #include "xfs_icache.h"
29 #include "xfs_sysfs.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_refcount_btree.h"
32 #include "xfs_reflink.h"
33 #include "xfs_extent_busy.h"
34 #include "xfs_health.h"
35 #include "xfs_trace.h"
36 #include "xfs_ag.h"
37 #include "xfs_rtbitmap.h"
38 #include "xfs_metafile.h"
39 #include "xfs_rtgroup.h"
40 #include "xfs_rtrmap_btree.h"
41 #include "xfs_rtrefcount_btree.h"
42 #include "scrub/stats.h"
43 #include "xfs_zone_alloc.h"
44
45 static DEFINE_MUTEX(xfs_uuid_table_mutex);
46 static int xfs_uuid_table_size;
47 static uuid_t *xfs_uuid_table;
48
49 void
xfs_uuid_table_free(void)50 xfs_uuid_table_free(void)
51 {
52 if (xfs_uuid_table_size == 0)
53 return;
54 kfree(xfs_uuid_table);
55 xfs_uuid_table = NULL;
56 xfs_uuid_table_size = 0;
57 }
58
59 /*
60 * See if the UUID is unique among mounted XFS filesystems.
61 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
62 */
63 STATIC int
xfs_uuid_mount(struct xfs_mount * mp)64 xfs_uuid_mount(
65 struct xfs_mount *mp)
66 {
67 uuid_t *uuid = &mp->m_sb.sb_uuid;
68 int hole, i;
69
70 /* Publish UUID in struct super_block */
71 super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid));
72
73 if (xfs_has_nouuid(mp))
74 return 0;
75
76 if (uuid_is_null(uuid)) {
77 xfs_warn(mp, "Filesystem has null UUID - can't mount");
78 return -EINVAL;
79 }
80
81 mutex_lock(&xfs_uuid_table_mutex);
82 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
83 if (uuid_is_null(&xfs_uuid_table[i])) {
84 hole = i;
85 continue;
86 }
87 if (uuid_equal(uuid, &xfs_uuid_table[i]))
88 goto out_duplicate;
89 }
90
91 if (hole < 0) {
92 xfs_uuid_table = krealloc(xfs_uuid_table,
93 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
94 GFP_KERNEL | __GFP_NOFAIL);
95 hole = xfs_uuid_table_size++;
96 }
97 xfs_uuid_table[hole] = *uuid;
98 mutex_unlock(&xfs_uuid_table_mutex);
99
100 return 0;
101
102 out_duplicate:
103 mutex_unlock(&xfs_uuid_table_mutex);
104 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
105 return -EINVAL;
106 }
107
108 STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)109 xfs_uuid_unmount(
110 struct xfs_mount *mp)
111 {
112 uuid_t *uuid = &mp->m_sb.sb_uuid;
113 int i;
114
115 if (xfs_has_nouuid(mp))
116 return;
117
118 mutex_lock(&xfs_uuid_table_mutex);
119 for (i = 0; i < xfs_uuid_table_size; i++) {
120 if (uuid_is_null(&xfs_uuid_table[i]))
121 continue;
122 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
123 continue;
124 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
125 break;
126 }
127 ASSERT(i < xfs_uuid_table_size);
128 mutex_unlock(&xfs_uuid_table_mutex);
129 }
130
131 /*
132 * Check size of device based on the (data/realtime) block count.
133 * Note: this check is used by the growfs code as well as mount.
134 */
135 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,uint64_t nblocks)136 xfs_sb_validate_fsb_count(
137 xfs_sb_t *sbp,
138 uint64_t nblocks)
139 {
140 uint64_t max_bytes;
141
142 ASSERT(sbp->sb_blocklog >= BBSHIFT);
143
144 if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes))
145 return -EFBIG;
146
147 /* Limited by ULONG_MAX of page cache index */
148 if (max_bytes >> PAGE_SHIFT > ULONG_MAX)
149 return -EFBIG;
150 return 0;
151 }
152
153 /*
154 * xfs_readsb
155 *
156 * Does the initial read of the superblock.
157 */
158 int
xfs_readsb(struct xfs_mount * mp,int flags)159 xfs_readsb(
160 struct xfs_mount *mp,
161 int flags)
162 {
163 unsigned int sector_size;
164 struct xfs_buf *bp;
165 struct xfs_sb *sbp = &mp->m_sb;
166 int error;
167 int loud = !(flags & XFS_MFSI_QUIET);
168 const struct xfs_buf_ops *buf_ops;
169
170 ASSERT(mp->m_sb_bp == NULL);
171 ASSERT(mp->m_ddev_targp != NULL);
172
173 /*
174 * In the first pass, use the device sector size to just read enough
175 * of the superblock to extract the XFS sector size.
176 *
177 * The device sector size must be smaller than or equal to the XFS
178 * sector size and thus we can always read the superblock. Once we know
179 * the XFS sector size, re-read it and run the buffer verifier.
180 */
181 sector_size = mp->m_ddev_targp->bt_logical_sectorsize;
182 buf_ops = NULL;
183
184 reread:
185 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
186 BTOBB(sector_size), &bp, buf_ops);
187 if (error) {
188 if (loud)
189 xfs_warn(mp, "SB validate failed with error %d.", error);
190 /* bad CRC means corrupted metadata */
191 if (error == -EFSBADCRC)
192 error = -EFSCORRUPTED;
193 return error;
194 }
195
196 /*
197 * Initialize the mount structure from the superblock.
198 */
199 xfs_sb_from_disk(sbp, bp->b_addr);
200
201 /*
202 * If we haven't validated the superblock, do so now before we try
203 * to check the sector size and reread the superblock appropriately.
204 */
205 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
206 if (loud)
207 xfs_warn(mp, "Invalid superblock magic number");
208 error = -EINVAL;
209 goto release_buf;
210 }
211
212 /*
213 * We must be able to do sector-sized and sector-aligned IO.
214 */
215 if (sector_size > sbp->sb_sectsize) {
216 if (loud)
217 xfs_warn(mp, "device supports %u byte sectors (not %u)",
218 sector_size, sbp->sb_sectsize);
219 error = -ENOSYS;
220 goto release_buf;
221 }
222
223 if (buf_ops == NULL) {
224 /*
225 * Re-read the superblock so the buffer is correctly sized,
226 * and properly verified.
227 */
228 xfs_buf_relse(bp);
229 sector_size = sbp->sb_sectsize;
230 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
231 goto reread;
232 }
233
234 mp->m_features |= xfs_sb_version_to_features(sbp);
235 xfs_reinit_percpu_counters(mp);
236
237 /*
238 * If logged xattrs are enabled after log recovery finishes, then set
239 * the opstate so that log recovery will work properly.
240 */
241 if (xfs_sb_version_haslogxattrs(&mp->m_sb))
242 xfs_set_using_logged_xattrs(mp);
243
244 /* no need to be quiet anymore, so reset the buf ops */
245 bp->b_ops = &xfs_sb_buf_ops;
246
247 /*
248 * Keep a pointer of the sb buffer around instead of caching it in the
249 * buffer cache because we access it frequently.
250 */
251 mp->m_sb_bp = bp;
252 xfs_buf_unlock(bp);
253 return 0;
254
255 release_buf:
256 xfs_buf_relse(bp);
257 return error;
258 }
259
260 /*
261 * If the sunit/swidth change would move the precomputed root inode value, we
262 * must reject the ondisk change because repair will stumble over that.
263 * However, we allow the mount to proceed because we never rejected this
264 * combination before. Returns true to update the sb, false otherwise.
265 */
266 static inline int
xfs_check_new_dalign(struct xfs_mount * mp,int new_dalign,bool * update_sb)267 xfs_check_new_dalign(
268 struct xfs_mount *mp,
269 int new_dalign,
270 bool *update_sb)
271 {
272 struct xfs_sb *sbp = &mp->m_sb;
273 xfs_ino_t calc_ino;
274
275 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
276 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
277
278 if (sbp->sb_rootino == calc_ino) {
279 *update_sb = true;
280 return 0;
281 }
282
283 xfs_warn(mp,
284 "Cannot change stripe alignment; would require moving root inode.");
285
286 /*
287 * XXX: Next time we add a new incompat feature, this should start
288 * returning -EINVAL to fail the mount. Until then, spit out a warning
289 * that we're ignoring the administrator's instructions.
290 */
291 xfs_warn(mp, "Skipping superblock stripe alignment update.");
292 *update_sb = false;
293 return 0;
294 }
295
296 /*
297 * If we were provided with new sunit/swidth values as mount options, make sure
298 * that they pass basic alignment and superblock feature checks, and convert
299 * them into the same units (FSB) that everything else expects. This step
300 * /must/ be done before computing the inode geometry.
301 */
302 STATIC int
xfs_validate_new_dalign(struct xfs_mount * mp)303 xfs_validate_new_dalign(
304 struct xfs_mount *mp)
305 {
306 if (mp->m_dalign == 0)
307 return 0;
308
309 /*
310 * If stripe unit and stripe width are not multiples
311 * of the fs blocksize turn off alignment.
312 */
313 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
314 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
315 xfs_warn(mp,
316 "alignment check failed: sunit/swidth vs. blocksize(%d)",
317 mp->m_sb.sb_blocksize);
318 return -EINVAL;
319 }
320
321 /*
322 * Convert the stripe unit and width to FSBs.
323 */
324 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
325 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
326 xfs_warn(mp,
327 "alignment check failed: sunit/swidth vs. agsize(%d)",
328 mp->m_sb.sb_agblocks);
329 return -EINVAL;
330 }
331
332 if (!mp->m_dalign) {
333 xfs_warn(mp,
334 "alignment check failed: sunit(%d) less than bsize(%d)",
335 mp->m_dalign, mp->m_sb.sb_blocksize);
336 return -EINVAL;
337 }
338
339 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
340
341 if (!xfs_has_dalign(mp)) {
342 xfs_warn(mp,
343 "cannot change alignment: superblock does not support data alignment");
344 return -EINVAL;
345 }
346
347 return 0;
348 }
349
350 /* Update alignment values based on mount options and sb values. */
351 STATIC int
xfs_update_alignment(struct xfs_mount * mp)352 xfs_update_alignment(
353 struct xfs_mount *mp)
354 {
355 struct xfs_sb *sbp = &mp->m_sb;
356
357 if (mp->m_dalign) {
358 bool update_sb;
359 int error;
360
361 if (sbp->sb_unit == mp->m_dalign &&
362 sbp->sb_width == mp->m_swidth)
363 return 0;
364
365 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
366 if (error || !update_sb)
367 return error;
368
369 sbp->sb_unit = mp->m_dalign;
370 sbp->sb_width = mp->m_swidth;
371 mp->m_update_sb = true;
372 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
373 mp->m_dalign = sbp->sb_unit;
374 mp->m_swidth = sbp->sb_width;
375 }
376
377 return 0;
378 }
379
380 /*
381 * precalculate the low space thresholds for dynamic speculative preallocation.
382 */
383 void
xfs_set_low_space_thresholds(struct xfs_mount * mp)384 xfs_set_low_space_thresholds(
385 struct xfs_mount *mp)
386 {
387 uint64_t dblocks = mp->m_sb.sb_dblocks;
388 uint64_t rtexts = mp->m_sb.sb_rextents;
389 int i;
390
391 do_div(dblocks, 100);
392 do_div(rtexts, 100);
393
394 for (i = 0; i < XFS_LOWSP_MAX; i++) {
395 mp->m_low_space[i] = dblocks * (i + 1);
396 mp->m_low_rtexts[i] = rtexts * (i + 1);
397 }
398 }
399
400 /*
401 * Check that the data (and log if separate) is an ok size.
402 */
403 STATIC int
xfs_check_sizes(struct xfs_mount * mp)404 xfs_check_sizes(
405 struct xfs_mount *mp)
406 {
407 struct xfs_buf *bp;
408 xfs_daddr_t d;
409 int error;
410
411 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
412 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
413 xfs_warn(mp, "filesystem size mismatch detected");
414 return -EFBIG;
415 }
416 error = xfs_buf_read_uncached(mp->m_ddev_targp,
417 d - XFS_FSS_TO_BB(mp, 1),
418 XFS_FSS_TO_BB(mp, 1), &bp, NULL);
419 if (error) {
420 xfs_warn(mp, "last sector read failed");
421 return error;
422 }
423 xfs_buf_relse(bp);
424
425 if (mp->m_logdev_targp == mp->m_ddev_targp)
426 return 0;
427
428 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
429 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
430 xfs_warn(mp, "log size mismatch detected");
431 return -EFBIG;
432 }
433 error = xfs_buf_read_uncached(mp->m_logdev_targp,
434 d - XFS_FSB_TO_BB(mp, 1),
435 XFS_FSB_TO_BB(mp, 1), &bp, NULL);
436 if (error) {
437 xfs_warn(mp, "log device read failed");
438 return error;
439 }
440 xfs_buf_relse(bp);
441 return 0;
442 }
443
444 /*
445 * Clear the quotaflags in memory and in the superblock.
446 */
447 int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)448 xfs_mount_reset_sbqflags(
449 struct xfs_mount *mp)
450 {
451 mp->m_qflags = 0;
452
453 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
454 if (mp->m_sb.sb_qflags == 0)
455 return 0;
456 spin_lock(&mp->m_sb_lock);
457 mp->m_sb.sb_qflags = 0;
458 spin_unlock(&mp->m_sb_lock);
459
460 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
461 return 0;
462
463 return xfs_sync_sb(mp, false);
464 }
465
466 static const char *const xfs_free_pool_name[] = {
467 [XC_FREE_BLOCKS] = "free blocks",
468 [XC_FREE_RTEXTENTS] = "free rt extents",
469 [XC_FREE_RTAVAILABLE] = "available rt extents",
470 };
471
472 uint64_t
xfs_default_resblks(struct xfs_mount * mp,enum xfs_free_counter ctr)473 xfs_default_resblks(
474 struct xfs_mount *mp,
475 enum xfs_free_counter ctr)
476 {
477 switch (ctr) {
478 case XC_FREE_BLOCKS:
479 /*
480 * Default to 5% or 8192 FSBs of space reserved, whichever is
481 * smaller.
482 *
483 * This is intended to cover concurrent allocation transactions
484 * when we initially hit ENOSPC. These each require a 4 block
485 * reservation. Hence by default we cover roughly 2000
486 * concurrent allocation reservations.
487 */
488 return min(div_u64(mp->m_sb.sb_dblocks, 20), 8192ULL);
489 case XC_FREE_RTEXTENTS:
490 case XC_FREE_RTAVAILABLE:
491 if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(mp))
492 return xfs_zoned_default_resblks(mp, ctr);
493 return 0;
494 default:
495 ASSERT(0);
496 return 0;
497 }
498 }
499
500 /* Ensure the summary counts are correct. */
501 STATIC int
xfs_check_summary_counts(struct xfs_mount * mp)502 xfs_check_summary_counts(
503 struct xfs_mount *mp)
504 {
505 int error = 0;
506
507 /*
508 * The AG0 superblock verifier rejects in-progress filesystems,
509 * so we should never see the flag set this far into mounting.
510 */
511 if (mp->m_sb.sb_inprogress) {
512 xfs_err(mp, "sb_inprogress set after log recovery??");
513 WARN_ON(1);
514 return -EFSCORRUPTED;
515 }
516
517 /*
518 * Now the log is mounted, we know if it was an unclean shutdown or
519 * not. If it was, with the first phase of recovery has completed, we
520 * have consistent AG blocks on disk. We have not recovered EFIs yet,
521 * but they are recovered transactionally in the second recovery phase
522 * later.
523 *
524 * If the log was clean when we mounted, we can check the summary
525 * counters. If any of them are obviously incorrect, we can recompute
526 * them from the AGF headers in the next step.
527 */
528 if (xfs_is_clean(mp) &&
529 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
530 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
531 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
532 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
533
534 /*
535 * We can safely re-initialise incore superblock counters from the
536 * per-ag data. These may not be correct if the filesystem was not
537 * cleanly unmounted, so we waited for recovery to finish before doing
538 * this.
539 *
540 * If the filesystem was cleanly unmounted or the previous check did
541 * not flag anything weird, then we can trust the values in the
542 * superblock to be correct and we don't need to do anything here.
543 * Otherwise, recalculate the summary counters.
544 */
545 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
546 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
547 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
548 if (error)
549 return error;
550 }
551
552 /*
553 * Older kernels misused sb_frextents to reflect both incore
554 * reservations made by running transactions and the actual count of
555 * free rt extents in the ondisk metadata. Transactions committed
556 * during runtime can therefore contain a superblock update that
557 * undercounts the number of free rt extents tracked in the rt bitmap.
558 * A clean unmount record will have the correct frextents value since
559 * there can be no other transactions running at that point.
560 *
561 * If we're mounting the rt volume after recovering the log, recompute
562 * frextents from the rtbitmap file to fix the inconsistency.
563 */
564 if (xfs_has_realtime(mp) && !xfs_has_zoned(mp) && !xfs_is_clean(mp)) {
565 error = xfs_rtalloc_reinit_frextents(mp);
566 if (error)
567 return error;
568 }
569
570 return 0;
571 }
572
573 static void
xfs_unmount_check(struct xfs_mount * mp)574 xfs_unmount_check(
575 struct xfs_mount *mp)
576 {
577 if (xfs_is_shutdown(mp))
578 return;
579
580 if (percpu_counter_sum(&mp->m_ifree) >
581 percpu_counter_sum(&mp->m_icount)) {
582 xfs_alert(mp, "ifree/icount mismatch at unmount");
583 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
584 }
585 }
586
587 /*
588 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
589 * internal inode structures can be sitting in the CIL and AIL at this point,
590 * so we need to unpin them, write them back and/or reclaim them before unmount
591 * can proceed. In other words, callers are required to have inactivated all
592 * inodes.
593 *
594 * An inode cluster that has been freed can have its buffer still pinned in
595 * memory because the transaction is still sitting in a iclog. The stale inodes
596 * on that buffer will be pinned to the buffer until the transaction hits the
597 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
598 * may never see the pinned buffer, so nothing will push out the iclog and
599 * unpin the buffer.
600 *
601 * Hence we need to force the log to unpin everything first. However, log
602 * forces don't wait for the discards they issue to complete, so we have to
603 * explicitly wait for them to complete here as well.
604 *
605 * Then we can tell the world we are unmounting so that error handling knows
606 * that the filesystem is going away and we should error out anything that we
607 * have been retrying in the background. This will prevent never-ending
608 * retries in AIL pushing from hanging the unmount.
609 *
610 * Finally, we can push the AIL to clean all the remaining dirty objects, then
611 * reclaim the remaining inodes that are still in memory at this point in time.
612 */
613 static void
xfs_unmount_flush_inodes(struct xfs_mount * mp)614 xfs_unmount_flush_inodes(
615 struct xfs_mount *mp)
616 {
617 xfs_log_force(mp, XFS_LOG_SYNC);
618 xfs_extent_busy_wait_all(mp);
619 flush_workqueue(xfs_discard_wq);
620
621 xfs_set_unmounting(mp);
622
623 xfs_ail_push_all_sync(mp->m_ail);
624 xfs_inodegc_stop(mp);
625 cancel_delayed_work_sync(&mp->m_reclaim_work);
626 xfs_reclaim_inodes(mp);
627 xfs_health_unmount(mp);
628 }
629
630 static void
xfs_mount_setup_inode_geom(struct xfs_mount * mp)631 xfs_mount_setup_inode_geom(
632 struct xfs_mount *mp)
633 {
634 struct xfs_ino_geometry *igeo = M_IGEO(mp);
635
636 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
637 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
638
639 xfs_ialloc_setup_geometry(mp);
640 }
641
642 /* Mount the metadata directory tree root. */
643 STATIC int
xfs_mount_setup_metadir(struct xfs_mount * mp)644 xfs_mount_setup_metadir(
645 struct xfs_mount *mp)
646 {
647 int error;
648
649 /* Load the metadata directory root inode into memory. */
650 error = xfs_metafile_iget(mp, mp->m_sb.sb_metadirino, XFS_METAFILE_DIR,
651 &mp->m_metadirip);
652 if (error)
653 xfs_warn(mp, "Failed to load metadir root directory, error %d",
654 error);
655 return error;
656 }
657
658 /* Compute maximum possible height for per-AG btree types for this fs. */
659 static inline void
xfs_agbtree_compute_maxlevels(struct xfs_mount * mp)660 xfs_agbtree_compute_maxlevels(
661 struct xfs_mount *mp)
662 {
663 unsigned int levels;
664
665 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
666 levels = max(levels, mp->m_rmap_maxlevels);
667 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
668 }
669
670 /* Maximum atomic write IO size that the kernel allows. */
xfs_calc_atomic_write_max(struct xfs_mount * mp)671 static inline xfs_extlen_t xfs_calc_atomic_write_max(struct xfs_mount *mp)
672 {
673 return rounddown_pow_of_two(XFS_B_TO_FSB(mp, MAX_RW_COUNT));
674 }
675
676 /*
677 * If the underlying device advertises atomic write support, limit the size of
678 * atomic writes to the greatest power-of-two factor of the group size so
679 * that every atomic write unit aligns with the start of every group. This is
680 * required so that the allocations for an atomic write will always be
681 * aligned compatibly with the alignment requirements of the storage.
682 *
683 * If the device doesn't advertise atomic writes, then there are no alignment
684 * restrictions and the largest out-of-place write we can do ourselves is the
685 * number of blocks that user files can allocate from any group.
686 */
687 static xfs_extlen_t
xfs_calc_group_awu_max(struct xfs_mount * mp,enum xfs_group_type type)688 xfs_calc_group_awu_max(
689 struct xfs_mount *mp,
690 enum xfs_group_type type)
691 {
692 struct xfs_groups *g = &mp->m_groups[type];
693 struct xfs_buftarg *btp = xfs_group_type_buftarg(mp, type);
694
695 if (g->blocks == 0)
696 return 0;
697 if (btp && btp->bt_awu_min > 0)
698 return max_pow_of_two_factor(g->blocks);
699 return rounddown_pow_of_two(g->blocks);
700 }
701
702 /* Compute the maximum atomic write unit size for each section. */
703 static inline void
xfs_calc_atomic_write_unit_max(struct xfs_mount * mp,enum xfs_group_type type)704 xfs_calc_atomic_write_unit_max(
705 struct xfs_mount *mp,
706 enum xfs_group_type type)
707 {
708 struct xfs_groups *g = &mp->m_groups[type];
709
710 const xfs_extlen_t max_write = xfs_calc_atomic_write_max(mp);
711 const xfs_extlen_t max_ioend = xfs_reflink_max_atomic_cow(mp);
712 const xfs_extlen_t max_gsize = xfs_calc_group_awu_max(mp, type);
713
714 g->awu_max = min3(max_write, max_ioend, max_gsize);
715 trace_xfs_calc_atomic_write_unit_max(mp, type, max_write, max_ioend,
716 max_gsize, g->awu_max);
717 }
718
719 /*
720 * Try to set the atomic write maximum to a new value that we got from
721 * userspace via mount option.
722 */
723 int
xfs_set_max_atomic_write_opt(struct xfs_mount * mp,unsigned long long new_max_bytes)724 xfs_set_max_atomic_write_opt(
725 struct xfs_mount *mp,
726 unsigned long long new_max_bytes)
727 {
728 const xfs_filblks_t new_max_fsbs = XFS_B_TO_FSBT(mp, new_max_bytes);
729 const xfs_extlen_t max_write = xfs_calc_atomic_write_max(mp);
730 const xfs_extlen_t max_group =
731 max(mp->m_groups[XG_TYPE_AG].blocks,
732 mp->m_groups[XG_TYPE_RTG].blocks);
733 const xfs_extlen_t max_group_write =
734 max(xfs_calc_group_awu_max(mp, XG_TYPE_AG),
735 xfs_calc_group_awu_max(mp, XG_TYPE_RTG));
736 int error;
737
738 if (new_max_bytes == 0)
739 goto set_limit;
740
741 ASSERT(max_write <= U32_MAX);
742
743 /* generic_atomic_write_valid enforces power of two length */
744 if (!is_power_of_2(new_max_bytes)) {
745 xfs_warn(mp,
746 "max atomic write size of %llu bytes is not a power of 2",
747 new_max_bytes);
748 return -EINVAL;
749 }
750
751 if (new_max_bytes & mp->m_blockmask) {
752 xfs_warn(mp,
753 "max atomic write size of %llu bytes not aligned with fsblock",
754 new_max_bytes);
755 return -EINVAL;
756 }
757
758 if (new_max_fsbs > max_write) {
759 xfs_warn(mp,
760 "max atomic write size of %lluk cannot be larger than max write size %lluk",
761 new_max_bytes >> 10,
762 XFS_FSB_TO_B(mp, max_write) >> 10);
763 return -EINVAL;
764 }
765
766 if (new_max_fsbs > max_group) {
767 xfs_warn(mp,
768 "max atomic write size of %lluk cannot be larger than allocation group size %lluk",
769 new_max_bytes >> 10,
770 XFS_FSB_TO_B(mp, max_group) >> 10);
771 return -EINVAL;
772 }
773
774 if (new_max_fsbs > max_group_write) {
775 xfs_warn(mp,
776 "max atomic write size of %lluk cannot be larger than max allocation group write size %lluk",
777 new_max_bytes >> 10,
778 XFS_FSB_TO_B(mp, max_group_write) >> 10);
779 return -EINVAL;
780 }
781
782 set_limit:
783 error = xfs_calc_atomic_write_reservation(mp, new_max_fsbs);
784 if (error) {
785 xfs_warn(mp,
786 "cannot support completing atomic writes of %lluk",
787 new_max_bytes >> 10);
788 return error;
789 }
790
791 xfs_calc_atomic_write_unit_max(mp, XG_TYPE_AG);
792 xfs_calc_atomic_write_unit_max(mp, XG_TYPE_RTG);
793 mp->m_awu_max_bytes = new_max_bytes;
794 return 0;
795 }
796
797 /* Compute maximum possible height for realtime btree types for this fs. */
798 static inline void
xfs_rtbtree_compute_maxlevels(struct xfs_mount * mp)799 xfs_rtbtree_compute_maxlevels(
800 struct xfs_mount *mp)
801 {
802 mp->m_rtbtree_maxlevels = max(mp->m_rtrmap_maxlevels,
803 mp->m_rtrefc_maxlevels);
804 }
805
806 /*
807 * This function does the following on an initial mount of a file system:
808 * - reads the superblock from disk and init the mount struct
809 * - if we're a 32-bit kernel, do a size check on the superblock
810 * so we don't mount terabyte filesystems
811 * - init mount struct realtime fields
812 * - allocate inode hash table for fs
813 * - init directory manager
814 * - perform recovery and init the log manager
815 */
816 int
xfs_mountfs(struct xfs_mount * mp)817 xfs_mountfs(
818 struct xfs_mount *mp)
819 {
820 struct xfs_sb *sbp = &(mp->m_sb);
821 struct xfs_inode *rip;
822 struct xfs_ino_geometry *igeo = M_IGEO(mp);
823 uint quotamount = 0;
824 uint quotaflags = 0;
825 int error = 0;
826 int i;
827
828 xfs_sb_mount_common(mp, sbp);
829
830 /*
831 * Check for a mismatched features2 values. Older kernels read & wrote
832 * into the wrong sb offset for sb_features2 on some platforms due to
833 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
834 * which made older superblock reading/writing routines swap it as a
835 * 64-bit value.
836 *
837 * For backwards compatibility, we make both slots equal.
838 *
839 * If we detect a mismatched field, we OR the set bits into the existing
840 * features2 field in case it has already been modified; we don't want
841 * to lose any features. We then update the bad location with the ORed
842 * value so that older kernels will see any features2 flags. The
843 * superblock writeback code ensures the new sb_features2 is copied to
844 * sb_bad_features2 before it is logged or written to disk.
845 */
846 if (xfs_sb_has_mismatched_features2(sbp)) {
847 xfs_warn(mp, "correcting sb_features alignment problem");
848 sbp->sb_features2 |= sbp->sb_bad_features2;
849 mp->m_update_sb = true;
850 }
851
852
853 /* always use v2 inodes by default now */
854 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
855 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
856 mp->m_features |= XFS_FEAT_NLINK;
857 mp->m_update_sb = true;
858 }
859
860 /*
861 * If we were given new sunit/swidth options, do some basic validation
862 * checks and convert the incore dalign and swidth values to the
863 * same units (FSB) that everything else uses. This /must/ happen
864 * before computing the inode geometry.
865 */
866 error = xfs_validate_new_dalign(mp);
867 if (error)
868 goto out;
869
870 xfs_alloc_compute_maxlevels(mp);
871 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
872 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
873 xfs_mount_setup_inode_geom(mp);
874 xfs_rmapbt_compute_maxlevels(mp);
875 xfs_rtrmapbt_compute_maxlevels(mp);
876 xfs_refcountbt_compute_maxlevels(mp);
877 xfs_rtrefcountbt_compute_maxlevels(mp);
878
879 xfs_agbtree_compute_maxlevels(mp);
880 xfs_rtbtree_compute_maxlevels(mp);
881
882 /*
883 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
884 * is NOT aligned turn off m_dalign since allocator alignment is within
885 * an ag, therefore ag has to be aligned at stripe boundary. Note that
886 * we must compute the free space and rmap btree geometry before doing
887 * this.
888 */
889 error = xfs_update_alignment(mp);
890 if (error)
891 goto out;
892
893 /* enable fail_at_unmount as default */
894 mp->m_fail_unmount = true;
895
896 error = xfs_mount_sysfs_init(mp);
897 if (error)
898 goto out_remove_scrub_stats;
899
900 xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs);
901
902 error = xfs_errortag_init(mp);
903 if (error)
904 goto out_remove_sysfs;
905
906 error = xfs_uuid_mount(mp);
907 if (error)
908 goto out_remove_errortag;
909
910 /*
911 * Update the preferred write size based on the information from the
912 * on-disk superblock.
913 */
914 mp->m_allocsize_log =
915 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
916 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
917
918 /* set the low space thresholds for dynamic preallocation */
919 xfs_set_low_space_thresholds(mp);
920
921 /*
922 * If enabled, sparse inode chunk alignment is expected to match the
923 * cluster size. Full inode chunk alignment must match the chunk size,
924 * but that is checked on sb read verification...
925 */
926 if (xfs_has_sparseinodes(mp) &&
927 mp->m_sb.sb_spino_align !=
928 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
929 xfs_warn(mp,
930 "Sparse inode block alignment (%u) must match cluster size (%llu).",
931 mp->m_sb.sb_spino_align,
932 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
933 error = -EINVAL;
934 goto out_remove_uuid;
935 }
936
937 /*
938 * Check that the data (and log if separate) is an ok size.
939 */
940 error = xfs_check_sizes(mp);
941 if (error)
942 goto out_remove_uuid;
943
944 /*
945 * Initialize realtime fields in the mount structure
946 */
947 error = xfs_rtmount_init(mp);
948 if (error) {
949 xfs_warn(mp, "RT mount failed");
950 goto out_remove_uuid;
951 }
952
953 /*
954 * Copies the low order bits of the timestamp and the randomly
955 * set "sequence" number out of a UUID.
956 */
957 mp->m_fixedfsid[0] =
958 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
959 get_unaligned_be16(&sbp->sb_uuid.b[4]);
960 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
961
962 error = xfs_da_mount(mp);
963 if (error) {
964 xfs_warn(mp, "Failed dir/attr init: %d", error);
965 goto out_remove_uuid;
966 }
967
968 /*
969 * Initialize the precomputed transaction reservations values.
970 */
971 xfs_trans_init(mp);
972
973 /*
974 * Allocate and initialize the per-ag data.
975 */
976 error = xfs_initialize_perag(mp, 0, sbp->sb_agcount,
977 mp->m_sb.sb_dblocks, &mp->m_maxagi);
978 if (error) {
979 xfs_warn(mp, "Failed per-ag init: %d", error);
980 goto out_free_dir;
981 }
982
983 error = xfs_initialize_rtgroups(mp, 0, sbp->sb_rgcount,
984 mp->m_sb.sb_rextents);
985 if (error) {
986 xfs_warn(mp, "Failed rtgroup init: %d", error);
987 goto out_free_perag;
988 }
989
990 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
991 xfs_warn(mp, "no log defined");
992 error = -EFSCORRUPTED;
993 goto out_free_rtgroup;
994 }
995
996 error = xfs_inodegc_register_shrinker(mp);
997 if (error)
998 goto out_fail_wait;
999
1000 /*
1001 * If we're resuming quota status, pick up the preliminary qflags from
1002 * the ondisk superblock so that we know if we should recover dquots.
1003 */
1004 if (xfs_is_resuming_quotaon(mp))
1005 xfs_qm_resume_quotaon(mp);
1006
1007 /*
1008 * Log's mount-time initialization. The first part of recovery can place
1009 * some items on the AIL, to be handled when recovery is finished or
1010 * cancelled.
1011 */
1012 error = xfs_log_mount(mp, mp->m_logdev_targp,
1013 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1014 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1015 if (error) {
1016 xfs_warn(mp, "log mount failed");
1017 goto out_inodegc_shrinker;
1018 }
1019
1020 /*
1021 * If we're resuming quota status and recovered the log, re-sample the
1022 * qflags from the ondisk superblock now that we've recovered it, just
1023 * in case someone shut down enforcement just before a crash.
1024 */
1025 if (xfs_clear_resuming_quotaon(mp) && xlog_recovery_needed(mp->m_log))
1026 xfs_qm_resume_quotaon(mp);
1027
1028 /*
1029 * If logged xattrs are still enabled after log recovery finishes, then
1030 * they'll be available until unmount. Otherwise, turn them off.
1031 */
1032 if (xfs_sb_version_haslogxattrs(&mp->m_sb))
1033 xfs_set_using_logged_xattrs(mp);
1034 else
1035 xfs_clear_using_logged_xattrs(mp);
1036
1037 /* Enable background inode inactivation workers. */
1038 xfs_inodegc_start(mp);
1039 xfs_blockgc_start(mp);
1040
1041 /*
1042 * Now that we've recovered any pending superblock feature bit
1043 * additions, we can finish setting up the attr2 behaviour for the
1044 * mount. The noattr2 option overrides the superblock flag, so only
1045 * check the superblock feature flag if the mount option is not set.
1046 */
1047 if (xfs_has_noattr2(mp)) {
1048 mp->m_features &= ~XFS_FEAT_ATTR2;
1049 } else if (!xfs_has_attr2(mp) &&
1050 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
1051 mp->m_features |= XFS_FEAT_ATTR2;
1052 }
1053
1054 if (xfs_has_metadir(mp)) {
1055 error = xfs_mount_setup_metadir(mp);
1056 if (error)
1057 goto out_free_metadir;
1058 }
1059
1060 /*
1061 * Get and sanity-check the root inode.
1062 * Save the pointer to it in the mount structure.
1063 */
1064 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
1065 XFS_ILOCK_EXCL, &rip);
1066 if (error) {
1067 xfs_warn(mp,
1068 "Failed to read root inode 0x%llx, error %d",
1069 sbp->sb_rootino, -error);
1070 goto out_free_metadir;
1071 }
1072
1073 ASSERT(rip != NULL);
1074
1075 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
1076 xfs_warn(mp, "corrupted root inode %llu: not a directory",
1077 (unsigned long long)rip->i_ino);
1078 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1079 error = -EFSCORRUPTED;
1080 goto out_rele_rip;
1081 }
1082 mp->m_rootip = rip; /* save it */
1083
1084 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1085
1086 /*
1087 * Initialize realtime inode pointers in the mount structure
1088 */
1089 error = xfs_rtmount_inodes(mp);
1090 if (error) {
1091 /*
1092 * Free up the root inode.
1093 */
1094 xfs_warn(mp, "failed to read RT inodes");
1095 goto out_rele_rip;
1096 }
1097
1098 /* Make sure the summary counts are ok. */
1099 error = xfs_check_summary_counts(mp);
1100 if (error)
1101 goto out_rtunmount;
1102
1103 /*
1104 * If this is a read-only mount defer the superblock updates until
1105 * the next remount into writeable mode. Otherwise we would never
1106 * perform the update e.g. for the root filesystem.
1107 */
1108 if (mp->m_update_sb && !xfs_is_readonly(mp)) {
1109 error = xfs_sync_sb(mp, false);
1110 if (error) {
1111 xfs_warn(mp, "failed to write sb changes");
1112 goto out_rtunmount;
1113 }
1114 }
1115
1116 /*
1117 * Initialise the XFS quota management subsystem for this mount
1118 */
1119 if (XFS_IS_QUOTA_ON(mp)) {
1120 error = xfs_qm_newmount(mp, "amount, "aflags);
1121 if (error)
1122 goto out_rtunmount;
1123 } else {
1124 /*
1125 * If a file system had quotas running earlier, but decided to
1126 * mount without -o uquota/pquota/gquota options, revoke the
1127 * quotachecked license.
1128 */
1129 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1130 xfs_notice(mp, "resetting quota flags");
1131 error = xfs_mount_reset_sbqflags(mp);
1132 if (error)
1133 goto out_rtunmount;
1134 }
1135 }
1136
1137 /*
1138 * Finish recovering the file system. This part needed to be delayed
1139 * until after the root and real-time bitmap inodes were consistently
1140 * read in. Temporarily create per-AG space reservations for metadata
1141 * btree shape changes because space freeing transactions (for inode
1142 * inactivation) require the per-AG reservation in lieu of reserving
1143 * blocks.
1144 */
1145 error = xfs_fs_reserve_ag_blocks(mp);
1146 if (error && error == -ENOSPC)
1147 xfs_warn(mp,
1148 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
1149 error = xfs_log_mount_finish(mp);
1150 xfs_fs_unreserve_ag_blocks(mp);
1151 if (error) {
1152 xfs_warn(mp, "log mount finish failed");
1153 goto out_rtunmount;
1154 }
1155
1156 /*
1157 * Now the log is fully replayed, we can transition to full read-only
1158 * mode for read-only mounts. This will sync all the metadata and clean
1159 * the log so that the recovery we just performed does not have to be
1160 * replayed again on the next mount.
1161 *
1162 * We use the same quiesce mechanism as the rw->ro remount, as they are
1163 * semantically identical operations.
1164 */
1165 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
1166 xfs_log_clean(mp);
1167
1168 if (xfs_has_zoned(mp)) {
1169 error = xfs_mount_zones(mp);
1170 if (error)
1171 goto out_rtunmount;
1172 }
1173
1174 /*
1175 * Complete the quota initialisation, post-log-replay component.
1176 */
1177 if (quotamount) {
1178 ASSERT(mp->m_qflags == 0);
1179 mp->m_qflags = quotaflags;
1180
1181 xfs_qm_mount_quotas(mp);
1182 }
1183
1184 /*
1185 * Now we are mounted, reserve a small amount of unused space for
1186 * privileged transactions. This is needed so that transaction
1187 * space required for critical operations can dip into this pool
1188 * when at ENOSPC. This is needed for operations like create with
1189 * attr, unwritten extent conversion at ENOSPC, garbage collection
1190 * etc. Data allocations are not allowed to use this reserved space.
1191 *
1192 * This may drive us straight to ENOSPC on mount, but that implies
1193 * we were already there on the last unmount. Warn if this occurs.
1194 */
1195 if (!xfs_is_readonly(mp)) {
1196 for (i = 0; i < XC_FREE_NR; i++) {
1197 error = xfs_reserve_blocks(mp, i,
1198 xfs_default_resblks(mp, i));
1199 if (error)
1200 xfs_warn(mp,
1201 "Unable to allocate reserve blocks. Continuing without reserve pool for %s.",
1202 xfs_free_pool_name[i]);
1203 }
1204
1205 /* Reserve AG blocks for future btree expansion. */
1206 error = xfs_fs_reserve_ag_blocks(mp);
1207 if (error && error != -ENOSPC)
1208 goto out_agresv;
1209
1210 xfs_zone_gc_start(mp);
1211 }
1212
1213 /*
1214 * Pre-calculate atomic write unit max. This involves computations
1215 * derived from transaction reservations, so we must do this after the
1216 * log is fully initialized.
1217 */
1218 error = xfs_set_max_atomic_write_opt(mp, mp->m_awu_max_bytes);
1219 if (error)
1220 goto out_agresv;
1221
1222 return 0;
1223
1224 out_agresv:
1225 xfs_fs_unreserve_ag_blocks(mp);
1226 xfs_qm_unmount_quotas(mp);
1227 if (xfs_has_zoned(mp))
1228 xfs_unmount_zones(mp);
1229 out_rtunmount:
1230 xfs_rtunmount_inodes(mp);
1231 out_rele_rip:
1232 xfs_irele(rip);
1233 /* Clean out dquots that might be in memory after quotacheck. */
1234 xfs_qm_unmount(mp);
1235 out_free_metadir:
1236 if (mp->m_metadirip)
1237 xfs_irele(mp->m_metadirip);
1238
1239 /*
1240 * Inactivate all inodes that might still be in memory after a log
1241 * intent recovery failure so that reclaim can free them. Metadata
1242 * inodes and the root directory shouldn't need inactivation, but the
1243 * mount failed for some reason, so pull down all the state and flee.
1244 */
1245 xfs_inodegc_flush(mp);
1246
1247 /*
1248 * Flush all inode reclamation work and flush the log.
1249 * We have to do this /after/ rtunmount and qm_unmount because those
1250 * two will have scheduled delayed reclaim for the rt/quota inodes.
1251 *
1252 * This is slightly different from the unmountfs call sequence
1253 * because we could be tearing down a partially set up mount. In
1254 * particular, if log_mount_finish fails we bail out without calling
1255 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1256 * quota inodes.
1257 */
1258 xfs_unmount_flush_inodes(mp);
1259 xfs_log_mount_cancel(mp);
1260 out_inodegc_shrinker:
1261 shrinker_free(mp->m_inodegc_shrinker);
1262 out_fail_wait:
1263 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1264 xfs_buftarg_drain(mp->m_logdev_targp);
1265 xfs_buftarg_drain(mp->m_ddev_targp);
1266 out_free_rtgroup:
1267 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1268 out_free_perag:
1269 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1270 out_free_dir:
1271 xfs_da_unmount(mp);
1272 out_remove_uuid:
1273 xfs_uuid_unmount(mp);
1274 out_remove_errortag:
1275 xfs_errortag_del(mp);
1276 out_remove_sysfs:
1277 xfs_mount_sysfs_del(mp);
1278 out_remove_scrub_stats:
1279 xchk_stats_unregister(mp->m_scrub_stats);
1280 out:
1281 return error;
1282 }
1283
1284 /*
1285 * This flushes out the inodes,dquots and the superblock, unmounts the
1286 * log and makes sure that incore structures are freed.
1287 */
1288 void
xfs_unmountfs(struct xfs_mount * mp)1289 xfs_unmountfs(
1290 struct xfs_mount *mp)
1291 {
1292 int error;
1293
1294 /*
1295 * Perform all on-disk metadata updates required to inactivate inodes
1296 * that the VFS evicted earlier in the unmount process. Freeing inodes
1297 * and discarding CoW fork preallocations can cause shape changes to
1298 * the free inode and refcount btrees, respectively, so we must finish
1299 * this before we discard the metadata space reservations. Metadata
1300 * inodes and the root directory do not require inactivation.
1301 */
1302 xfs_inodegc_flush(mp);
1303
1304 xfs_blockgc_stop(mp);
1305 if (!test_bit(XFS_OPSTATE_READONLY, &mp->m_opstate))
1306 xfs_zone_gc_stop(mp);
1307 xfs_fs_unreserve_ag_blocks(mp);
1308 xfs_qm_unmount_quotas(mp);
1309 if (xfs_has_zoned(mp))
1310 xfs_unmount_zones(mp);
1311 xfs_rtunmount_inodes(mp);
1312 xfs_irele(mp->m_rootip);
1313 if (mp->m_metadirip)
1314 xfs_irele(mp->m_metadirip);
1315
1316 xfs_unmount_flush_inodes(mp);
1317
1318 xfs_qm_unmount(mp);
1319
1320 /*
1321 * Unreserve any blocks we have so that when we unmount we don't account
1322 * the reserved free space as used. This is really only necessary for
1323 * lazy superblock counting because it trusts the incore superblock
1324 * counters to be absolutely correct on clean unmount.
1325 *
1326 * We don't bother correcting this elsewhere for lazy superblock
1327 * counting because on mount of an unclean filesystem we reconstruct the
1328 * correct counter value and this is irrelevant.
1329 *
1330 * For non-lazy counter filesystems, this doesn't matter at all because
1331 * we only every apply deltas to the superblock and hence the incore
1332 * value does not matter....
1333 */
1334 error = xfs_reserve_blocks(mp, XC_FREE_BLOCKS, 0);
1335 if (error)
1336 xfs_warn(mp, "Unable to free reserved block pool. "
1337 "Freespace may not be correct on next mount.");
1338 xfs_unmount_check(mp);
1339
1340 /*
1341 * Indicate that it's ok to clear log incompat bits before cleaning
1342 * the log and writing the unmount record.
1343 */
1344 xfs_set_done_with_log_incompat(mp);
1345 xfs_log_unmount(mp);
1346 xfs_da_unmount(mp);
1347 xfs_uuid_unmount(mp);
1348
1349 #if defined(DEBUG)
1350 xfs_errortag_clearall(mp);
1351 #endif
1352 shrinker_free(mp->m_inodegc_shrinker);
1353 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1354 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1355 xfs_errortag_del(mp);
1356 xchk_stats_unregister(mp->m_scrub_stats);
1357 xfs_mount_sysfs_del(mp);
1358 }
1359
1360 /*
1361 * Determine whether modifications can proceed. The caller specifies the minimum
1362 * freeze level for which modifications should not be allowed. This allows
1363 * certain operations to proceed while the freeze sequence is in progress, if
1364 * necessary.
1365 */
1366 bool
xfs_fs_writable(struct xfs_mount * mp,int level)1367 xfs_fs_writable(
1368 struct xfs_mount *mp,
1369 int level)
1370 {
1371 ASSERT(level > SB_UNFROZEN);
1372 if ((mp->m_super->s_writers.frozen >= level) ||
1373 xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1374 return false;
1375
1376 return true;
1377 }
1378
1379 /*
1380 * Estimate the amount of free space that is not available to userspace and is
1381 * not explicitly reserved from the incore fdblocks. This includes:
1382 *
1383 * - The minimum number of blocks needed to support splitting a bmap btree
1384 * - The blocks currently in use by the freespace btrees because they record
1385 * the actual blocks that will fill per-AG metadata space reservations
1386 */
1387 uint64_t
xfs_freecounter_unavailable(struct xfs_mount * mp,enum xfs_free_counter ctr)1388 xfs_freecounter_unavailable(
1389 struct xfs_mount *mp,
1390 enum xfs_free_counter ctr)
1391 {
1392 if (ctr != XC_FREE_BLOCKS)
1393 return 0;
1394 return mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks);
1395 }
1396
1397 void
xfs_add_freecounter(struct xfs_mount * mp,enum xfs_free_counter ctr,uint64_t delta)1398 xfs_add_freecounter(
1399 struct xfs_mount *mp,
1400 enum xfs_free_counter ctr,
1401 uint64_t delta)
1402 {
1403 struct xfs_freecounter *counter = &mp->m_free[ctr];
1404 uint64_t res_used;
1405
1406 /*
1407 * If the reserve pool is depleted, put blocks back into it first.
1408 * Most of the time the pool is full.
1409 */
1410 if (likely(counter->res_avail == counter->res_total)) {
1411 percpu_counter_add(&counter->count, delta);
1412 return;
1413 }
1414
1415 spin_lock(&mp->m_sb_lock);
1416 res_used = counter->res_total - counter->res_avail;
1417 if (res_used > delta) {
1418 counter->res_avail += delta;
1419 } else {
1420 delta -= res_used;
1421 counter->res_avail = counter->res_total;
1422 percpu_counter_add(&counter->count, delta);
1423 }
1424 spin_unlock(&mp->m_sb_lock);
1425 }
1426
1427
1428 /* Adjust in-core free blocks or RT extents. */
1429 int
xfs_dec_freecounter(struct xfs_mount * mp,enum xfs_free_counter ctr,uint64_t delta,bool rsvd)1430 xfs_dec_freecounter(
1431 struct xfs_mount *mp,
1432 enum xfs_free_counter ctr,
1433 uint64_t delta,
1434 bool rsvd)
1435 {
1436 struct xfs_freecounter *counter = &mp->m_free[ctr];
1437 s32 batch;
1438
1439 ASSERT(ctr < XC_FREE_NR);
1440
1441 /*
1442 * Taking blocks away, need to be more accurate the closer we
1443 * are to zero.
1444 *
1445 * If the counter has a value of less than 2 * max batch size,
1446 * then make everything serialise as we are real close to
1447 * ENOSPC.
1448 */
1449 if (__percpu_counter_compare(&counter->count, 2 * XFS_FDBLOCKS_BATCH,
1450 XFS_FDBLOCKS_BATCH) < 0)
1451 batch = 1;
1452 else
1453 batch = XFS_FDBLOCKS_BATCH;
1454
1455 /*
1456 * Set aside allocbt blocks because these blocks are tracked as free
1457 * space but not available for allocation. Technically this means that a
1458 * single reservation cannot consume all remaining free space, but the
1459 * ratio of allocbt blocks to usable free blocks should be rather small.
1460 * The tradeoff without this is that filesystems that maintain high
1461 * perag block reservations can over reserve physical block availability
1462 * and fail physical allocation, which leads to much more serious
1463 * problems (i.e. transaction abort, pagecache discards, etc.) than
1464 * slightly premature -ENOSPC.
1465 */
1466 percpu_counter_add_batch(&counter->count, -((int64_t)delta), batch);
1467 if (__percpu_counter_compare(&counter->count,
1468 xfs_freecounter_unavailable(mp, ctr),
1469 XFS_FDBLOCKS_BATCH) < 0) {
1470 /*
1471 * Lock up the sb for dipping into reserves before releasing the
1472 * space that took us to ENOSPC.
1473 */
1474 spin_lock(&mp->m_sb_lock);
1475 percpu_counter_add(&counter->count, delta);
1476 if (!rsvd)
1477 goto fdblocks_enospc;
1478 if (delta > counter->res_avail) {
1479 if (ctr == XC_FREE_BLOCKS)
1480 xfs_warn_once(mp,
1481 "Reserve blocks depleted! Consider increasing reserve pool size.");
1482 goto fdblocks_enospc;
1483 }
1484 counter->res_avail -= delta;
1485 trace_xfs_freecounter_reserved(mp, ctr, delta, _RET_IP_);
1486 spin_unlock(&mp->m_sb_lock);
1487 }
1488
1489 /* we had space! */
1490 return 0;
1491
1492 fdblocks_enospc:
1493 trace_xfs_freecounter_enospc(mp, ctr, delta, _RET_IP_);
1494 spin_unlock(&mp->m_sb_lock);
1495 return -ENOSPC;
1496 }
1497
1498 /*
1499 * Used to free the superblock along various error paths.
1500 */
1501 void
xfs_freesb(struct xfs_mount * mp)1502 xfs_freesb(
1503 struct xfs_mount *mp)
1504 {
1505 struct xfs_buf *bp = mp->m_sb_bp;
1506
1507 xfs_buf_lock(bp);
1508 mp->m_sb_bp = NULL;
1509 xfs_buf_relse(bp);
1510 }
1511
1512 /*
1513 * If the underlying (data/log/rt) device is readonly, there are some
1514 * operations that cannot proceed.
1515 */
1516 int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)1517 xfs_dev_is_read_only(
1518 struct xfs_mount *mp,
1519 char *message)
1520 {
1521 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1522 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1523 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1524 xfs_notice(mp, "%s required on read-only device.", message);
1525 xfs_notice(mp, "write access unavailable, cannot proceed.");
1526 return -EROFS;
1527 }
1528 return 0;
1529 }
1530
1531 /* Force the summary counters to be recalculated at next mount. */
1532 void
xfs_force_summary_recalc(struct xfs_mount * mp)1533 xfs_force_summary_recalc(
1534 struct xfs_mount *mp)
1535 {
1536 if (!xfs_has_lazysbcount(mp))
1537 return;
1538
1539 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1540 }
1541
1542 /*
1543 * Enable a log incompat feature flag in the primary superblock. The caller
1544 * cannot have any other transactions in progress.
1545 */
1546 int
xfs_add_incompat_log_feature(struct xfs_mount * mp,uint32_t feature)1547 xfs_add_incompat_log_feature(
1548 struct xfs_mount *mp,
1549 uint32_t feature)
1550 {
1551 struct xfs_dsb *dsb;
1552 int error;
1553
1554 ASSERT(hweight32(feature) == 1);
1555 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1556
1557 /*
1558 * Force the log to disk and kick the background AIL thread to reduce
1559 * the chances that the bwrite will stall waiting for the AIL to unpin
1560 * the primary superblock buffer. This isn't a data integrity
1561 * operation, so we don't need a synchronous push.
1562 */
1563 error = xfs_log_force(mp, XFS_LOG_SYNC);
1564 if (error)
1565 return error;
1566 xfs_ail_push_all(mp->m_ail);
1567
1568 /*
1569 * Lock the primary superblock buffer to serialize all callers that
1570 * are trying to set feature bits.
1571 */
1572 xfs_buf_lock(mp->m_sb_bp);
1573 xfs_buf_hold(mp->m_sb_bp);
1574
1575 if (xfs_is_shutdown(mp)) {
1576 error = -EIO;
1577 goto rele;
1578 }
1579
1580 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1581 goto rele;
1582
1583 /*
1584 * Write the primary superblock to disk immediately, because we need
1585 * the log_incompat bit to be set in the primary super now to protect
1586 * the log items that we're going to commit later.
1587 */
1588 dsb = mp->m_sb_bp->b_addr;
1589 xfs_sb_to_disk(dsb, &mp->m_sb);
1590 dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1591 error = xfs_bwrite(mp->m_sb_bp);
1592 if (error)
1593 goto shutdown;
1594
1595 /*
1596 * Add the feature bits to the incore superblock before we unlock the
1597 * buffer.
1598 */
1599 xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1600 xfs_buf_relse(mp->m_sb_bp);
1601
1602 /* Log the superblock to disk. */
1603 return xfs_sync_sb(mp, false);
1604 shutdown:
1605 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1606 rele:
1607 xfs_buf_relse(mp->m_sb_bp);
1608 return error;
1609 }
1610
1611 /*
1612 * Clear all the log incompat flags from the superblock.
1613 *
1614 * The caller cannot be in a transaction, must ensure that the log does not
1615 * contain any log items protected by any log incompat bit, and must ensure
1616 * that there are no other threads that depend on the state of the log incompat
1617 * feature flags in the primary super.
1618 *
1619 * Returns true if the superblock is dirty.
1620 */
1621 bool
xfs_clear_incompat_log_features(struct xfs_mount * mp)1622 xfs_clear_incompat_log_features(
1623 struct xfs_mount *mp)
1624 {
1625 bool ret = false;
1626
1627 if (!xfs_has_crc(mp) ||
1628 !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1629 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1630 xfs_is_shutdown(mp) ||
1631 !xfs_is_done_with_log_incompat(mp))
1632 return false;
1633
1634 /*
1635 * Update the incore superblock. We synchronize on the primary super
1636 * buffer lock to be consistent with the add function, though at least
1637 * in theory this shouldn't be necessary.
1638 */
1639 xfs_buf_lock(mp->m_sb_bp);
1640 xfs_buf_hold(mp->m_sb_bp);
1641
1642 if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1643 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1644 xfs_sb_remove_incompat_log_features(&mp->m_sb);
1645 ret = true;
1646 }
1647
1648 xfs_buf_relse(mp->m_sb_bp);
1649 return ret;
1650 }
1651
1652 /*
1653 * Update the in-core delayed block counter.
1654 *
1655 * We prefer to update the counter without having to take a spinlock for every
1656 * counter update (i.e. batching). Each change to delayed allocation
1657 * reservations can change can easily exceed the default percpu counter
1658 * batching, so we use a larger batch factor here.
1659 *
1660 * Note that we don't currently have any callers requiring fast summation
1661 * (e.g. percpu_counter_read) so we can use a big batch value here.
1662 */
1663 #define XFS_DELALLOC_BATCH (4096)
1664 void
xfs_mod_delalloc(struct xfs_inode * ip,int64_t data_delta,int64_t ind_delta)1665 xfs_mod_delalloc(
1666 struct xfs_inode *ip,
1667 int64_t data_delta,
1668 int64_t ind_delta)
1669 {
1670 struct xfs_mount *mp = ip->i_mount;
1671
1672 if (XFS_IS_REALTIME_INODE(ip)) {
1673 percpu_counter_add_batch(&mp->m_delalloc_rtextents,
1674 xfs_blen_to_rtbxlen(mp, data_delta),
1675 XFS_DELALLOC_BATCH);
1676 if (!ind_delta)
1677 return;
1678 data_delta = 0;
1679 }
1680 percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta,
1681 XFS_DELALLOC_BATCH);
1682 }
1683