xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision 42bb9b630c4c6c0964cddca98d9d30aa992826de)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/aperture.h>
9 #include <linux/delay.h>
10 #include <linux/fault-inject.h>
11 #include <linux/units.h>
12 
13 #include <drm/drm_atomic_helper.h>
14 #include <drm/drm_client.h>
15 #include <drm/drm_gem_ttm_helper.h>
16 #include <drm/drm_ioctl.h>
17 #include <drm/drm_managed.h>
18 #include <drm/drm_print.h>
19 #include <uapi/drm/xe_drm.h>
20 
21 #include "display/xe_display.h"
22 #include "instructions/xe_gpu_commands.h"
23 #include "regs/xe_gt_regs.h"
24 #include "regs/xe_regs.h"
25 #include "xe_bo.h"
26 #include "xe_bo_evict.h"
27 #include "xe_debugfs.h"
28 #include "xe_devcoredump.h"
29 #include "xe_device_sysfs.h"
30 #include "xe_dma_buf.h"
31 #include "xe_drm_client.h"
32 #include "xe_drv.h"
33 #include "xe_exec.h"
34 #include "xe_exec_queue.h"
35 #include "xe_force_wake.h"
36 #include "xe_ggtt.h"
37 #include "xe_gsc_proxy.h"
38 #include "xe_gt.h"
39 #include "xe_gt_mcr.h"
40 #include "xe_gt_printk.h"
41 #include "xe_gt_sriov_vf.h"
42 #include "xe_guc.h"
43 #include "xe_guc_pc.h"
44 #include "xe_hw_engine_group.h"
45 #include "xe_hwmon.h"
46 #include "xe_irq.h"
47 #include "xe_memirq.h"
48 #include "xe_mmio.h"
49 #include "xe_module.h"
50 #include "xe_oa.h"
51 #include "xe_observation.h"
52 #include "xe_pat.h"
53 #include "xe_pcode.h"
54 #include "xe_pm.h"
55 #include "xe_pmu.h"
56 #include "xe_pxp.h"
57 #include "xe_query.h"
58 #include "xe_shrinker.h"
59 #include "xe_survivability_mode.h"
60 #include "xe_sriov.h"
61 #include "xe_tile.h"
62 #include "xe_ttm_stolen_mgr.h"
63 #include "xe_ttm_sys_mgr.h"
64 #include "xe_vm.h"
65 #include "xe_vram.h"
66 #include "xe_vsec.h"
67 #include "xe_wait_user_fence.h"
68 #include "xe_wa.h"
69 
70 #include <generated/xe_wa_oob.h>
71 
xe_file_open(struct drm_device * dev,struct drm_file * file)72 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
73 {
74 	struct xe_device *xe = to_xe_device(dev);
75 	struct xe_drm_client *client;
76 	struct xe_file *xef;
77 	int ret = -ENOMEM;
78 	struct task_struct *task = NULL;
79 
80 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
81 	if (!xef)
82 		return ret;
83 
84 	client = xe_drm_client_alloc();
85 	if (!client) {
86 		kfree(xef);
87 		return ret;
88 	}
89 
90 	xef->drm = file;
91 	xef->client = client;
92 	xef->xe = xe;
93 
94 	mutex_init(&xef->vm.lock);
95 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
96 
97 	mutex_init(&xef->exec_queue.lock);
98 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
99 
100 	file->driver_priv = xef;
101 	kref_init(&xef->refcount);
102 
103 	task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
104 	if (task) {
105 		xef->process_name = kstrdup(task->comm, GFP_KERNEL);
106 		xef->pid = task->pid;
107 		put_task_struct(task);
108 	}
109 
110 	return 0;
111 }
112 
xe_file_destroy(struct kref * ref)113 static void xe_file_destroy(struct kref *ref)
114 {
115 	struct xe_file *xef = container_of(ref, struct xe_file, refcount);
116 
117 	xa_destroy(&xef->exec_queue.xa);
118 	mutex_destroy(&xef->exec_queue.lock);
119 	xa_destroy(&xef->vm.xa);
120 	mutex_destroy(&xef->vm.lock);
121 
122 	xe_drm_client_put(xef->client);
123 	kfree(xef->process_name);
124 	kfree(xef);
125 }
126 
127 /**
128  * xe_file_get() - Take a reference to the xe file object
129  * @xef: Pointer to the xe file
130  *
131  * Anyone with a pointer to xef must take a reference to the xe file
132  * object using this call.
133  *
134  * Return: xe file pointer
135  */
xe_file_get(struct xe_file * xef)136 struct xe_file *xe_file_get(struct xe_file *xef)
137 {
138 	kref_get(&xef->refcount);
139 	return xef;
140 }
141 
142 /**
143  * xe_file_put() - Drop a reference to the xe file object
144  * @xef: Pointer to the xe file
145  *
146  * Used to drop reference to the xef object
147  */
xe_file_put(struct xe_file * xef)148 void xe_file_put(struct xe_file *xef)
149 {
150 	kref_put(&xef->refcount, xe_file_destroy);
151 }
152 
xe_file_close(struct drm_device * dev,struct drm_file * file)153 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
154 {
155 	struct xe_device *xe = to_xe_device(dev);
156 	struct xe_file *xef = file->driver_priv;
157 	struct xe_vm *vm;
158 	struct xe_exec_queue *q;
159 	unsigned long idx;
160 
161 	xe_pm_runtime_get(xe);
162 
163 	/*
164 	 * No need for exec_queue.lock here as there is no contention for it
165 	 * when FD is closing as IOCTLs presumably can't be modifying the
166 	 * xarray. Taking exec_queue.lock here causes undue dependency on
167 	 * vm->lock taken during xe_exec_queue_kill().
168 	 */
169 	xa_for_each(&xef->exec_queue.xa, idx, q) {
170 		if (q->vm && q->hwe->hw_engine_group)
171 			xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
172 		xe_exec_queue_kill(q);
173 		xe_exec_queue_put(q);
174 	}
175 	xa_for_each(&xef->vm.xa, idx, vm)
176 		xe_vm_close_and_put(vm);
177 
178 	xe_file_put(xef);
179 
180 	xe_pm_runtime_put(xe);
181 }
182 
183 static const struct drm_ioctl_desc xe_ioctls[] = {
184 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
185 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
186 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
187 			  DRM_RENDER_ALLOW),
188 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
189 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
190 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
191 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
192 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
193 			  DRM_RENDER_ALLOW),
194 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
195 			  DRM_RENDER_ALLOW),
196 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
197 			  DRM_RENDER_ALLOW),
198 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
199 			  DRM_RENDER_ALLOW),
200 	DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
201 };
202 
xe_drm_ioctl(struct file * file,unsigned int cmd,unsigned long arg)203 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
204 {
205 	struct drm_file *file_priv = file->private_data;
206 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
207 	long ret;
208 
209 	if (xe_device_wedged(xe))
210 		return -ECANCELED;
211 
212 	ret = xe_pm_runtime_get_ioctl(xe);
213 	if (ret >= 0)
214 		ret = drm_ioctl(file, cmd, arg);
215 	xe_pm_runtime_put(xe);
216 
217 	return ret;
218 }
219 
220 #ifdef CONFIG_COMPAT
xe_drm_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)221 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
222 {
223 	struct drm_file *file_priv = file->private_data;
224 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
225 	long ret;
226 
227 	if (xe_device_wedged(xe))
228 		return -ECANCELED;
229 
230 	ret = xe_pm_runtime_get_ioctl(xe);
231 	if (ret >= 0)
232 		ret = drm_compat_ioctl(file, cmd, arg);
233 	xe_pm_runtime_put(xe);
234 
235 	return ret;
236 }
237 #else
238 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
239 #define xe_drm_compat_ioctl NULL
240 #endif
241 
barrier_open(struct vm_area_struct * vma)242 static void barrier_open(struct vm_area_struct *vma)
243 {
244 	drm_dev_get(vma->vm_private_data);
245 }
246 
barrier_close(struct vm_area_struct * vma)247 static void barrier_close(struct vm_area_struct *vma)
248 {
249 	drm_dev_put(vma->vm_private_data);
250 }
251 
barrier_release_dummy_page(struct drm_device * dev,void * res)252 static void barrier_release_dummy_page(struct drm_device *dev, void *res)
253 {
254 	struct page *dummy_page = (struct page *)res;
255 
256 	__free_page(dummy_page);
257 }
258 
barrier_fault(struct vm_fault * vmf)259 static vm_fault_t barrier_fault(struct vm_fault *vmf)
260 {
261 	struct drm_device *dev = vmf->vma->vm_private_data;
262 	struct vm_area_struct *vma = vmf->vma;
263 	vm_fault_t ret = VM_FAULT_NOPAGE;
264 	pgprot_t prot;
265 	int idx;
266 
267 	prot = vm_get_page_prot(vma->vm_flags);
268 
269 	if (drm_dev_enter(dev, &idx)) {
270 		unsigned long pfn;
271 
272 #define LAST_DB_PAGE_OFFSET 0x7ff001
273 		pfn = PHYS_PFN(pci_resource_start(to_pci_dev(dev->dev), 0) +
274 				LAST_DB_PAGE_OFFSET);
275 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, pfn,
276 					  pgprot_noncached(prot));
277 		drm_dev_exit(idx);
278 	} else {
279 		struct page *page;
280 
281 		/* Allocate new dummy page to map all the VA range in this VMA to it*/
282 		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
283 		if (!page)
284 			return VM_FAULT_OOM;
285 
286 		/* Set the page to be freed using drmm release action */
287 		if (drmm_add_action_or_reset(dev, barrier_release_dummy_page, page))
288 			return VM_FAULT_OOM;
289 
290 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, page_to_pfn(page),
291 					  prot);
292 	}
293 
294 	return ret;
295 }
296 
297 static const struct vm_operations_struct vm_ops_barrier = {
298 	.open = barrier_open,
299 	.close = barrier_close,
300 	.fault = barrier_fault,
301 };
302 
xe_pci_barrier_mmap(struct file * filp,struct vm_area_struct * vma)303 static int xe_pci_barrier_mmap(struct file *filp,
304 			       struct vm_area_struct *vma)
305 {
306 	struct drm_file *priv = filp->private_data;
307 	struct drm_device *dev = priv->minor->dev;
308 	struct xe_device *xe = to_xe_device(dev);
309 
310 	if (!IS_DGFX(xe))
311 		return -EINVAL;
312 
313 	if (vma->vm_end - vma->vm_start > SZ_4K)
314 		return -EINVAL;
315 
316 	if (is_cow_mapping(vma->vm_flags))
317 		return -EINVAL;
318 
319 	if (vma->vm_flags & (VM_READ | VM_EXEC))
320 		return -EINVAL;
321 
322 	vm_flags_clear(vma, VM_MAYREAD | VM_MAYEXEC);
323 	vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO);
324 	vma->vm_ops = &vm_ops_barrier;
325 	vma->vm_private_data = dev;
326 	drm_dev_get(vma->vm_private_data);
327 
328 	return 0;
329 }
330 
xe_mmap(struct file * filp,struct vm_area_struct * vma)331 static int xe_mmap(struct file *filp, struct vm_area_struct *vma)
332 {
333 	struct drm_file *priv = filp->private_data;
334 	struct drm_device *dev = priv->minor->dev;
335 
336 	if (drm_dev_is_unplugged(dev))
337 		return -ENODEV;
338 
339 	switch (vma->vm_pgoff) {
340 	case XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT:
341 		return xe_pci_barrier_mmap(filp, vma);
342 	}
343 
344 	return drm_gem_mmap(filp, vma);
345 }
346 
347 static const struct file_operations xe_driver_fops = {
348 	.owner = THIS_MODULE,
349 	.open = drm_open,
350 	.release = drm_release_noglobal,
351 	.unlocked_ioctl = xe_drm_ioctl,
352 	.mmap = xe_mmap,
353 	.poll = drm_poll,
354 	.read = drm_read,
355 	.compat_ioctl = xe_drm_compat_ioctl,
356 	.llseek = noop_llseek,
357 #ifdef CONFIG_PROC_FS
358 	.show_fdinfo = drm_show_fdinfo,
359 #endif
360 	.fop_flags = FOP_UNSIGNED_OFFSET,
361 };
362 
363 static struct drm_driver driver = {
364 	/* Don't use MTRRs here; the Xserver or userspace app should
365 	 * deal with them for Intel hardware.
366 	 */
367 	.driver_features =
368 	    DRIVER_GEM |
369 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
370 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
371 	.open = xe_file_open,
372 	.postclose = xe_file_close,
373 
374 	.gem_prime_import = xe_gem_prime_import,
375 
376 	.dumb_create = xe_bo_dumb_create,
377 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
378 #ifdef CONFIG_PROC_FS
379 	.show_fdinfo = xe_drm_client_fdinfo,
380 #endif
381 	.ioctls = xe_ioctls,
382 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
383 	.fops = &xe_driver_fops,
384 	.name = DRIVER_NAME,
385 	.desc = DRIVER_DESC,
386 	.major = DRIVER_MAJOR,
387 	.minor = DRIVER_MINOR,
388 	.patchlevel = DRIVER_PATCHLEVEL,
389 };
390 
xe_device_destroy(struct drm_device * dev,void * dummy)391 static void xe_device_destroy(struct drm_device *dev, void *dummy)
392 {
393 	struct xe_device *xe = to_xe_device(dev);
394 
395 	xe_bo_dev_fini(&xe->bo_device);
396 
397 	if (xe->preempt_fence_wq)
398 		destroy_workqueue(xe->preempt_fence_wq);
399 
400 	if (xe->ordered_wq)
401 		destroy_workqueue(xe->ordered_wq);
402 
403 	if (xe->unordered_wq)
404 		destroy_workqueue(xe->unordered_wq);
405 
406 	if (!IS_ERR_OR_NULL(xe->mem.shrinker))
407 		xe_shrinker_destroy(xe->mem.shrinker);
408 
409 	if (xe->destroy_wq)
410 		destroy_workqueue(xe->destroy_wq);
411 
412 	ttm_device_fini(&xe->ttm);
413 }
414 
xe_device_create(struct pci_dev * pdev,const struct pci_device_id * ent)415 struct xe_device *xe_device_create(struct pci_dev *pdev,
416 				   const struct pci_device_id *ent)
417 {
418 	struct xe_device *xe;
419 	int err;
420 
421 	xe_display_driver_set_hooks(&driver);
422 
423 	err = aperture_remove_conflicting_pci_devices(pdev, driver.name);
424 	if (err)
425 		return ERR_PTR(err);
426 
427 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
428 	if (IS_ERR(xe))
429 		return xe;
430 
431 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
432 			      xe->drm.anon_inode->i_mapping,
433 			      xe->drm.vma_offset_manager, false, false);
434 	if (WARN_ON(err))
435 		goto err;
436 
437 	xe_bo_dev_init(&xe->bo_device);
438 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
439 	if (err)
440 		goto err;
441 
442 	xe->mem.shrinker = xe_shrinker_create(xe);
443 	if (IS_ERR(xe->mem.shrinker))
444 		return ERR_CAST(xe->mem.shrinker);
445 
446 	xe->info.devid = pdev->device;
447 	xe->info.revid = pdev->revision;
448 	xe->info.force_execlist = xe_modparam.force_execlist;
449 
450 	err = xe_irq_init(xe);
451 	if (err)
452 		goto err;
453 
454 	init_waitqueue_head(&xe->ufence_wq);
455 
456 	init_rwsem(&xe->usm.lock);
457 
458 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
459 
460 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
461 		/* Trigger a large asid and an early asid wrap. */
462 		u32 asid;
463 
464 		BUILD_BUG_ON(XE_MAX_ASID < 2);
465 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
466 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
467 				      &xe->usm.next_asid, GFP_KERNEL);
468 		drm_WARN_ON(&xe->drm, err);
469 		if (err >= 0)
470 			xa_erase(&xe->usm.asid_to_vm, asid);
471 	}
472 
473 	err = xe_bo_pinned_init(xe);
474 	if (err)
475 		goto err;
476 
477 	xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq",
478 						       WQ_MEM_RECLAIM);
479 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
480 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
481 	xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0);
482 	if (!xe->ordered_wq || !xe->unordered_wq ||
483 	    !xe->preempt_fence_wq || !xe->destroy_wq) {
484 		/*
485 		 * Cleanup done in xe_device_destroy via
486 		 * drmm_add_action_or_reset register above
487 		 */
488 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
489 		err = -ENOMEM;
490 		goto err;
491 	}
492 
493 	err = drmm_mutex_init(&xe->drm, &xe->pmt.lock);
494 	if (err)
495 		goto err;
496 
497 	err = xe_display_create(xe);
498 	if (WARN_ON(err))
499 		goto err;
500 
501 	return xe;
502 
503 err:
504 	return ERR_PTR(err);
505 }
506 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */
507 
xe_driver_flr_disabled(struct xe_device * xe)508 static bool xe_driver_flr_disabled(struct xe_device *xe)
509 {
510 	if (IS_SRIOV_VF(xe))
511 		return true;
512 
513 	if (xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) {
514 		drm_info(&xe->drm, "Driver-FLR disabled by BIOS\n");
515 		return true;
516 	}
517 
518 	return false;
519 }
520 
521 /*
522  * The driver-initiated FLR is the highest level of reset that we can trigger
523  * from within the driver. It is different from the PCI FLR in that it doesn't
524  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
525  * it doesn't require a re-enumeration of the PCI BARs. However, the
526  * driver-initiated FLR does still cause a reset of both GT and display and a
527  * memory wipe of local and stolen memory, so recovery would require a full HW
528  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
529  * perform the FLR as the very last action before releasing access to the HW
530  * during the driver release flow, we don't attempt recovery at all, because
531  * if/when a new instance of i915 is bound to the device it will do a full
532  * re-init anyway.
533  */
__xe_driver_flr(struct xe_device * xe)534 static void __xe_driver_flr(struct xe_device *xe)
535 {
536 	const unsigned int flr_timeout = 3 * USEC_PER_SEC; /* specs recommend a 3s wait */
537 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
538 	int ret;
539 
540 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
541 
542 	/*
543 	 * Make sure any pending FLR requests have cleared by waiting for the
544 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
545 	 * to make sure it's not still set from a prior attempt (it's a write to
546 	 * clear bit).
547 	 * Note that we should never be in a situation where a previous attempt
548 	 * is still pending (unless the HW is totally dead), but better to be
549 	 * safe in case something unexpected happens
550 	 */
551 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
552 	if (ret) {
553 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
554 		return;
555 	}
556 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
557 
558 	/* Trigger the actual Driver-FLR */
559 	xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR);
560 
561 	/* Wait for hardware teardown to complete */
562 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
563 	if (ret) {
564 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
565 		return;
566 	}
567 
568 	/* Wait for hardware/firmware re-init to complete */
569 	ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
570 			     flr_timeout, NULL, false);
571 	if (ret) {
572 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
573 		return;
574 	}
575 
576 	/* Clear sticky completion status */
577 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
578 }
579 
xe_driver_flr(struct xe_device * xe)580 static void xe_driver_flr(struct xe_device *xe)
581 {
582 	if (xe_driver_flr_disabled(xe))
583 		return;
584 
585 	__xe_driver_flr(xe);
586 }
587 
xe_driver_flr_fini(void * arg)588 static void xe_driver_flr_fini(void *arg)
589 {
590 	struct xe_device *xe = arg;
591 
592 	if (xe->needs_flr_on_fini)
593 		xe_driver_flr(xe);
594 }
595 
xe_device_sanitize(void * arg)596 static void xe_device_sanitize(void *arg)
597 {
598 	struct xe_device *xe = arg;
599 	struct xe_gt *gt;
600 	u8 id;
601 
602 	for_each_gt(gt, xe, id)
603 		xe_gt_sanitize(gt);
604 }
605 
xe_set_dma_info(struct xe_device * xe)606 static int xe_set_dma_info(struct xe_device *xe)
607 {
608 	unsigned int mask_size = xe->info.dma_mask_size;
609 	int err;
610 
611 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
612 
613 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
614 	if (err)
615 		goto mask_err;
616 
617 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
618 	if (err)
619 		goto mask_err;
620 
621 	return 0;
622 
623 mask_err:
624 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
625 	return err;
626 }
627 
verify_lmem_ready(struct xe_device * xe)628 static bool verify_lmem_ready(struct xe_device *xe)
629 {
630 	u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT;
631 
632 	return !!val;
633 }
634 
wait_for_lmem_ready(struct xe_device * xe)635 static int wait_for_lmem_ready(struct xe_device *xe)
636 {
637 	unsigned long timeout, start;
638 
639 	if (!IS_DGFX(xe))
640 		return 0;
641 
642 	if (IS_SRIOV_VF(xe))
643 		return 0;
644 
645 	if (verify_lmem_ready(xe))
646 		return 0;
647 
648 	drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
649 
650 	start = jiffies;
651 	timeout = start + secs_to_jiffies(60); /* 60 sec! */
652 
653 	do {
654 		if (signal_pending(current))
655 			return -EINTR;
656 
657 		/*
658 		 * The boot firmware initializes local memory and
659 		 * assesses its health. If memory training fails,
660 		 * the punit will have been instructed to keep the GT powered
661 		 * down.we won't be able to communicate with it
662 		 *
663 		 * If the status check is done before punit updates the register,
664 		 * it can lead to the system being unusable.
665 		 * use a timeout and defer the probe to prevent this.
666 		 */
667 		if (time_after(jiffies, timeout)) {
668 			drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
669 			return -EPROBE_DEFER;
670 		}
671 
672 		msleep(20);
673 
674 	} while (!verify_lmem_ready(xe));
675 
676 	drm_dbg(&xe->drm, "lmem ready after %ums",
677 		jiffies_to_msecs(jiffies - start));
678 
679 	return 0;
680 }
681 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */
682 
sriov_update_device_info(struct xe_device * xe)683 static void sriov_update_device_info(struct xe_device *xe)
684 {
685 	/* disable features that are not available/applicable to VFs */
686 	if (IS_SRIOV_VF(xe)) {
687 		xe->info.probe_display = 0;
688 		xe->info.has_heci_gscfi = 0;
689 		xe->info.skip_guc_pc = 1;
690 		xe->info.skip_pcode = 1;
691 	}
692 }
693 
694 /**
695  * xe_device_probe_early: Device early probe
696  * @xe: xe device instance
697  *
698  * Initialize MMIO resources that don't require any
699  * knowledge about tile count. Also initialize pcode and
700  * check vram initialization on root tile.
701  *
702  * Return: 0 on success, error code on failure
703  */
xe_device_probe_early(struct xe_device * xe)704 int xe_device_probe_early(struct xe_device *xe)
705 {
706 	int err;
707 
708 	err = xe_mmio_probe_early(xe);
709 	if (err)
710 		return err;
711 
712 	xe_sriov_probe_early(xe);
713 
714 	sriov_update_device_info(xe);
715 
716 	err = xe_pcode_probe_early(xe);
717 	if (err || xe_survivability_mode_is_requested(xe)) {
718 		int save_err = err;
719 
720 		/*
721 		 * Try to leave device in survivability mode if device is
722 		 * possible, but still return the previous error for error
723 		 * propagation
724 		 */
725 		err = xe_survivability_mode_enable(xe);
726 		if (err)
727 			return err;
728 
729 		return save_err;
730 	}
731 
732 	err = wait_for_lmem_ready(xe);
733 	if (err)
734 		return err;
735 
736 	xe->wedged.mode = xe_modparam.wedged_mode;
737 
738 	return 0;
739 }
740 ALLOW_ERROR_INJECTION(xe_device_probe_early, ERRNO); /* See xe_pci_probe() */
741 
probe_has_flat_ccs(struct xe_device * xe)742 static int probe_has_flat_ccs(struct xe_device *xe)
743 {
744 	struct xe_gt *gt;
745 	unsigned int fw_ref;
746 	u32 reg;
747 
748 	/* Always enabled/disabled, no runtime check to do */
749 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe))
750 		return 0;
751 
752 	gt = xe_root_mmio_gt(xe);
753 
754 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
755 	if (!fw_ref)
756 		return -ETIMEDOUT;
757 
758 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
759 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
760 
761 	if (!xe->info.has_flat_ccs)
762 		drm_dbg(&xe->drm,
763 			"Flat CCS has been disabled in bios, May lead to performance impact");
764 
765 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
766 
767 	return 0;
768 }
769 
xe_device_probe(struct xe_device * xe)770 int xe_device_probe(struct xe_device *xe)
771 {
772 	struct xe_tile *tile;
773 	struct xe_gt *gt;
774 	int err;
775 	u8 id;
776 
777 	xe_pat_init_early(xe);
778 
779 	err = xe_sriov_init(xe);
780 	if (err)
781 		return err;
782 
783 	xe->info.mem_region_mask = 1;
784 
785 	err = xe_set_dma_info(xe);
786 	if (err)
787 		return err;
788 
789 	err = xe_mmio_probe_tiles(xe);
790 	if (err)
791 		return err;
792 
793 	err = xe_ttm_sys_mgr_init(xe);
794 	if (err)
795 		return err;
796 
797 	for_each_gt(gt, xe, id) {
798 		err = xe_gt_init_early(gt);
799 		if (err)
800 			return err;
801 
802 		/*
803 		 * Only after this point can GT-specific MMIO operations
804 		 * (including things like communication with the GuC)
805 		 * be performed.
806 		 */
807 		xe_gt_mmio_init(gt);
808 	}
809 
810 	for_each_tile(tile, xe, id) {
811 		if (IS_SRIOV_VF(xe)) {
812 			xe_guc_comm_init_early(&tile->primary_gt->uc.guc);
813 			err = xe_gt_sriov_vf_bootstrap(tile->primary_gt);
814 			if (err)
815 				return err;
816 			err = xe_gt_sriov_vf_query_config(tile->primary_gt);
817 			if (err)
818 				return err;
819 		}
820 		err = xe_ggtt_init_early(tile->mem.ggtt);
821 		if (err)
822 			return err;
823 		err = xe_memirq_init(&tile->memirq);
824 		if (err)
825 			return err;
826 	}
827 
828 	for_each_gt(gt, xe, id) {
829 		err = xe_gt_init_hwconfig(gt);
830 		if (err)
831 			return err;
832 	}
833 
834 	err = xe_devcoredump_init(xe);
835 	if (err)
836 		return err;
837 
838 	/*
839 	 * From here on, if a step fails, make sure a Driver-FLR is triggereed
840 	 */
841 	err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
842 	if (err)
843 		return err;
844 
845 	err = probe_has_flat_ccs(xe);
846 	if (err)
847 		return err;
848 
849 	err = xe_vram_probe(xe);
850 	if (err)
851 		return err;
852 
853 	for_each_tile(tile, xe, id) {
854 		err = xe_tile_init_noalloc(tile);
855 		if (err)
856 			return err;
857 	}
858 
859 	/* Allocate and map stolen after potential VRAM resize */
860 	err = xe_ttm_stolen_mgr_init(xe);
861 	if (err)
862 		return err;
863 
864 	/*
865 	 * Now that GT is initialized (TTM in particular),
866 	 * we can try to init display, and inherit the initial fb.
867 	 * This is the reason the first allocation needs to be done
868 	 * inside display.
869 	 */
870 	err = xe_display_init_early(xe);
871 	if (err)
872 		return err;
873 
874 	for_each_tile(tile, xe, id) {
875 		err = xe_tile_init(tile);
876 		if (err)
877 			return err;
878 	}
879 
880 	err = xe_irq_install(xe);
881 	if (err)
882 		return err;
883 
884 	for_each_gt(gt, xe, id) {
885 		err = xe_gt_init(gt);
886 		if (err)
887 			return err;
888 	}
889 
890 	err = xe_heci_gsc_init(xe);
891 	if (err)
892 		return err;
893 
894 	err = xe_oa_init(xe);
895 	if (err)
896 		return err;
897 
898 	err = xe_display_init(xe);
899 	if (err)
900 		return err;
901 
902 	err = xe_pxp_init(xe);
903 	if (err)
904 		return err;
905 
906 	err = drm_dev_register(&xe->drm, 0);
907 	if (err)
908 		return err;
909 
910 	xe_display_register(xe);
911 
912 	err = xe_oa_register(xe);
913 	if (err)
914 		goto err_unregister_display;
915 
916 	err = xe_pmu_register(&xe->pmu);
917 	if (err)
918 		goto err_unregister_display;
919 
920 	err = xe_device_sysfs_init(xe);
921 	if (err)
922 		goto err_unregister_display;
923 
924 	xe_debugfs_register(xe);
925 
926 	err = xe_hwmon_register(xe);
927 	if (err)
928 		goto err_unregister_display;
929 
930 	for_each_gt(gt, xe, id)
931 		xe_gt_sanitize_freq(gt);
932 
933 	xe_vsec_init(xe);
934 
935 	return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
936 
937 err_unregister_display:
938 	xe_display_unregister(xe);
939 
940 	return err;
941 }
942 
xe_device_remove(struct xe_device * xe)943 void xe_device_remove(struct xe_device *xe)
944 {
945 	xe_display_unregister(xe);
946 
947 	drm_dev_unplug(&xe->drm);
948 
949 	xe_bo_pci_dev_remove_all(xe);
950 }
951 
xe_device_shutdown(struct xe_device * xe)952 void xe_device_shutdown(struct xe_device *xe)
953 {
954 	struct xe_gt *gt;
955 	u8 id;
956 
957 	drm_dbg(&xe->drm, "Shutting down device\n");
958 
959 	if (xe_driver_flr_disabled(xe)) {
960 		xe_display_pm_shutdown(xe);
961 
962 		xe_irq_suspend(xe);
963 
964 		for_each_gt(gt, xe, id)
965 			xe_gt_shutdown(gt);
966 
967 		xe_display_pm_shutdown_late(xe);
968 	} else {
969 		/* BOOM! */
970 		__xe_driver_flr(xe);
971 	}
972 }
973 
974 /**
975  * xe_device_wmb() - Device specific write memory barrier
976  * @xe: the &xe_device
977  *
978  * While wmb() is sufficient for a barrier if we use system memory, on discrete
979  * platforms with device memory we additionally need to issue a register write.
980  * Since it doesn't matter which register we write to, use the read-only VF_CAP
981  * register that is also marked as accessible by the VFs.
982  */
xe_device_wmb(struct xe_device * xe)983 void xe_device_wmb(struct xe_device *xe)
984 {
985 	wmb();
986 	if (IS_DGFX(xe))
987 		xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0);
988 }
989 
990 /*
991  * Issue a TRANSIENT_FLUSH_REQUEST and wait for completion on each gt.
992  */
tdf_request_sync(struct xe_device * xe)993 static void tdf_request_sync(struct xe_device *xe)
994 {
995 	unsigned int fw_ref;
996 	struct xe_gt *gt;
997 	u8 id;
998 
999 	for_each_gt(gt, xe, id) {
1000 		if (xe_gt_is_media_type(gt))
1001 			continue;
1002 
1003 		fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1004 		if (!fw_ref)
1005 			return;
1006 
1007 		xe_mmio_write32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
1008 
1009 		/*
1010 		 * FIXME: We can likely do better here with our choice of
1011 		 * timeout. Currently we just assume the worst case, i.e. 150us,
1012 		 * which is believed to be sufficient to cover the worst case
1013 		 * scenario on current platforms if all cache entries are
1014 		 * transient and need to be flushed..
1015 		 */
1016 		if (xe_mmio_wait32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
1017 				   150, NULL, false))
1018 			xe_gt_err_once(gt, "TD flush timeout\n");
1019 
1020 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
1021 	}
1022 }
1023 
xe_device_l2_flush(struct xe_device * xe)1024 void xe_device_l2_flush(struct xe_device *xe)
1025 {
1026 	struct xe_gt *gt;
1027 	unsigned int fw_ref;
1028 
1029 	gt = xe_root_mmio_gt(xe);
1030 
1031 	if (!XE_WA(gt, 16023588340))
1032 		return;
1033 
1034 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1035 	if (!fw_ref)
1036 		return;
1037 
1038 	spin_lock(&gt->global_invl_lock);
1039 
1040 	xe_mmio_write32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1);
1041 	if (xe_mmio_wait32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true))
1042 		xe_gt_err_once(gt, "Global invalidation timeout\n");
1043 
1044 	spin_unlock(&gt->global_invl_lock);
1045 
1046 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
1047 }
1048 
1049 /**
1050  * xe_device_td_flush() - Flush transient L3 cache entries
1051  * @xe: The device
1052  *
1053  * Display engine has direct access to memory and is never coherent with L3/L4
1054  * caches (or CPU caches), however KMD is responsible for specifically flushing
1055  * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
1056  * can happen from such a surface without seeing corruption.
1057  *
1058  * Display surfaces can be tagged as transient by mapping it using one of the
1059  * various L3:XD PAT index modes on Xe2.
1060  *
1061  * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
1062  * at the end of each submission via PIPE_CONTROL for compute/render, since SA
1063  * Media is not coherent with L3 and we want to support render-vs-media
1064  * usescases. For other engines like copy/blt the HW internally forces uncached
1065  * behaviour, hence why we can skip the TDF on such platforms.
1066  */
xe_device_td_flush(struct xe_device * xe)1067 void xe_device_td_flush(struct xe_device *xe)
1068 {
1069 	struct xe_gt *root_gt;
1070 
1071 	if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
1072 		return;
1073 
1074 	root_gt = xe_root_mmio_gt(xe);
1075 	if (XE_WA(root_gt, 16023588340)) {
1076 		/* A transient flush is not sufficient: flush the L2 */
1077 		xe_device_l2_flush(xe);
1078 	} else {
1079 		xe_guc_pc_apply_flush_freq_limit(&root_gt->uc.guc.pc);
1080 		tdf_request_sync(xe);
1081 		xe_guc_pc_remove_flush_freq_limit(&root_gt->uc.guc.pc);
1082 	}
1083 }
1084 
xe_device_ccs_bytes(struct xe_device * xe,u64 size)1085 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
1086 {
1087 	return xe_device_has_flat_ccs(xe) ?
1088 		DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
1089 }
1090 
1091 /**
1092  * xe_device_assert_mem_access - Inspect the current runtime_pm state.
1093  * @xe: xe device instance
1094  *
1095  * To be used before any kind of memory access. It will splat a debug warning
1096  * if the device is currently sleeping. But it doesn't guarantee in any way
1097  * that the device is going to remain awake. Xe PM runtime get and put
1098  * functions might be added to the outer bound of the memory access, while
1099  * this check is intended for inner usage to splat some warning if the worst
1100  * case has just happened.
1101  */
xe_device_assert_mem_access(struct xe_device * xe)1102 void xe_device_assert_mem_access(struct xe_device *xe)
1103 {
1104 	xe_assert(xe, !xe_pm_runtime_suspended(xe));
1105 }
1106 
xe_device_snapshot_print(struct xe_device * xe,struct drm_printer * p)1107 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
1108 {
1109 	struct xe_gt *gt;
1110 	u8 id;
1111 
1112 	drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
1113 	drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
1114 
1115 	for_each_gt(gt, xe, id) {
1116 		drm_printf(p, "GT id: %u\n", id);
1117 		drm_printf(p, "\tTile: %u\n", gt->tile->id);
1118 		drm_printf(p, "\tType: %s\n",
1119 			   gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
1120 		drm_printf(p, "\tIP ver: %u.%u.%u\n",
1121 			   REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
1122 			   REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
1123 			   REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
1124 		drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
1125 	}
1126 }
1127 
xe_device_canonicalize_addr(struct xe_device * xe,u64 address)1128 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
1129 {
1130 	return sign_extend64(address, xe->info.va_bits - 1);
1131 }
1132 
xe_device_uncanonicalize_addr(struct xe_device * xe,u64 address)1133 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
1134 {
1135 	return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
1136 }
1137 
xe_device_wedged_fini(struct drm_device * drm,void * arg)1138 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
1139 {
1140 	struct xe_device *xe = arg;
1141 
1142 	xe_pm_runtime_put(xe);
1143 }
1144 
1145 /**
1146  * xe_device_declare_wedged - Declare device wedged
1147  * @xe: xe device instance
1148  *
1149  * This is a final state that can only be cleared with a module
1150  * re-probe (unbind + bind).
1151  * In this state every IOCTL will be blocked so the GT cannot be used.
1152  * In general it will be called upon any critical error such as gt reset
1153  * failure or guc loading failure. Userspace will be notified of this state
1154  * through device wedged uevent.
1155  * If xe.wedged module parameter is set to 2, this function will be called
1156  * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
1157  * snapshot capture. In this mode, GT reset won't be attempted so the state of
1158  * the issue is preserved for further debugging.
1159  */
xe_device_declare_wedged(struct xe_device * xe)1160 void xe_device_declare_wedged(struct xe_device *xe)
1161 {
1162 	struct xe_gt *gt;
1163 	u8 id;
1164 
1165 	if (xe->wedged.mode == 0) {
1166 		drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
1167 		return;
1168 	}
1169 
1170 	xe_pm_runtime_get_noresume(xe);
1171 
1172 	if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
1173 		drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
1174 		return;
1175 	}
1176 
1177 	if (!atomic_xchg(&xe->wedged.flag, 1)) {
1178 		xe->needs_flr_on_fini = true;
1179 		drm_err(&xe->drm,
1180 			"CRITICAL: Xe has declared device %s as wedged.\n"
1181 			"IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
1182 			"Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
1183 			dev_name(xe->drm.dev));
1184 
1185 		/* Notify userspace of wedged device */
1186 		drm_dev_wedged_event(&xe->drm,
1187 				     DRM_WEDGE_RECOVERY_REBIND | DRM_WEDGE_RECOVERY_BUS_RESET);
1188 	}
1189 
1190 	for_each_gt(gt, xe, id)
1191 		xe_gt_declare_wedged(gt);
1192 }
1193