1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2021 Intel Corporation
4 */
5
6 #include "xe_device.h"
7
8 #include <linux/aperture.h>
9 #include <linux/delay.h>
10 #include <linux/fault-inject.h>
11 #include <linux/units.h>
12
13 #include <drm/drm_atomic_helper.h>
14 #include <drm/drm_client.h>
15 #include <drm/drm_gem_ttm_helper.h>
16 #include <drm/drm_ioctl.h>
17 #include <drm/drm_managed.h>
18 #include <drm/drm_print.h>
19 #include <uapi/drm/xe_drm.h>
20
21 #include "display/xe_display.h"
22 #include "instructions/xe_gpu_commands.h"
23 #include "regs/xe_gt_regs.h"
24 #include "regs/xe_regs.h"
25 #include "xe_bo.h"
26 #include "xe_bo_evict.h"
27 #include "xe_debugfs.h"
28 #include "xe_devcoredump.h"
29 #include "xe_device_sysfs.h"
30 #include "xe_dma_buf.h"
31 #include "xe_drm_client.h"
32 #include "xe_drv.h"
33 #include "xe_exec.h"
34 #include "xe_exec_queue.h"
35 #include "xe_force_wake.h"
36 #include "xe_ggtt.h"
37 #include "xe_gsc_proxy.h"
38 #include "xe_gt.h"
39 #include "xe_gt_mcr.h"
40 #include "xe_gt_printk.h"
41 #include "xe_gt_sriov_vf.h"
42 #include "xe_guc.h"
43 #include "xe_guc_pc.h"
44 #include "xe_hw_engine_group.h"
45 #include "xe_hwmon.h"
46 #include "xe_irq.h"
47 #include "xe_memirq.h"
48 #include "xe_mmio.h"
49 #include "xe_module.h"
50 #include "xe_oa.h"
51 #include "xe_observation.h"
52 #include "xe_pat.h"
53 #include "xe_pcode.h"
54 #include "xe_pm.h"
55 #include "xe_pmu.h"
56 #include "xe_pxp.h"
57 #include "xe_query.h"
58 #include "xe_shrinker.h"
59 #include "xe_survivability_mode.h"
60 #include "xe_sriov.h"
61 #include "xe_tile.h"
62 #include "xe_ttm_stolen_mgr.h"
63 #include "xe_ttm_sys_mgr.h"
64 #include "xe_vm.h"
65 #include "xe_vram.h"
66 #include "xe_vsec.h"
67 #include "xe_wait_user_fence.h"
68 #include "xe_wa.h"
69
70 #include <generated/xe_wa_oob.h>
71
xe_file_open(struct drm_device * dev,struct drm_file * file)72 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
73 {
74 struct xe_device *xe = to_xe_device(dev);
75 struct xe_drm_client *client;
76 struct xe_file *xef;
77 int ret = -ENOMEM;
78 struct task_struct *task = NULL;
79
80 xef = kzalloc(sizeof(*xef), GFP_KERNEL);
81 if (!xef)
82 return ret;
83
84 client = xe_drm_client_alloc();
85 if (!client) {
86 kfree(xef);
87 return ret;
88 }
89
90 xef->drm = file;
91 xef->client = client;
92 xef->xe = xe;
93
94 mutex_init(&xef->vm.lock);
95 xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
96
97 mutex_init(&xef->exec_queue.lock);
98 xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
99
100 file->driver_priv = xef;
101 kref_init(&xef->refcount);
102
103 task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
104 if (task) {
105 xef->process_name = kstrdup(task->comm, GFP_KERNEL);
106 xef->pid = task->pid;
107 put_task_struct(task);
108 }
109
110 return 0;
111 }
112
xe_file_destroy(struct kref * ref)113 static void xe_file_destroy(struct kref *ref)
114 {
115 struct xe_file *xef = container_of(ref, struct xe_file, refcount);
116
117 xa_destroy(&xef->exec_queue.xa);
118 mutex_destroy(&xef->exec_queue.lock);
119 xa_destroy(&xef->vm.xa);
120 mutex_destroy(&xef->vm.lock);
121
122 xe_drm_client_put(xef->client);
123 kfree(xef->process_name);
124 kfree(xef);
125 }
126
127 /**
128 * xe_file_get() - Take a reference to the xe file object
129 * @xef: Pointer to the xe file
130 *
131 * Anyone with a pointer to xef must take a reference to the xe file
132 * object using this call.
133 *
134 * Return: xe file pointer
135 */
xe_file_get(struct xe_file * xef)136 struct xe_file *xe_file_get(struct xe_file *xef)
137 {
138 kref_get(&xef->refcount);
139 return xef;
140 }
141
142 /**
143 * xe_file_put() - Drop a reference to the xe file object
144 * @xef: Pointer to the xe file
145 *
146 * Used to drop reference to the xef object
147 */
xe_file_put(struct xe_file * xef)148 void xe_file_put(struct xe_file *xef)
149 {
150 kref_put(&xef->refcount, xe_file_destroy);
151 }
152
xe_file_close(struct drm_device * dev,struct drm_file * file)153 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
154 {
155 struct xe_device *xe = to_xe_device(dev);
156 struct xe_file *xef = file->driver_priv;
157 struct xe_vm *vm;
158 struct xe_exec_queue *q;
159 unsigned long idx;
160
161 xe_pm_runtime_get(xe);
162
163 /*
164 * No need for exec_queue.lock here as there is no contention for it
165 * when FD is closing as IOCTLs presumably can't be modifying the
166 * xarray. Taking exec_queue.lock here causes undue dependency on
167 * vm->lock taken during xe_exec_queue_kill().
168 */
169 xa_for_each(&xef->exec_queue.xa, idx, q) {
170 if (q->vm && q->hwe->hw_engine_group)
171 xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
172 xe_exec_queue_kill(q);
173 xe_exec_queue_put(q);
174 }
175 xa_for_each(&xef->vm.xa, idx, vm)
176 xe_vm_close_and_put(vm);
177
178 xe_file_put(xef);
179
180 xe_pm_runtime_put(xe);
181 }
182
183 static const struct drm_ioctl_desc xe_ioctls[] = {
184 DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
185 DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
186 DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
187 DRM_RENDER_ALLOW),
188 DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
189 DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
190 DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
191 DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
192 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
193 DRM_RENDER_ALLOW),
194 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
195 DRM_RENDER_ALLOW),
196 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
197 DRM_RENDER_ALLOW),
198 DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
199 DRM_RENDER_ALLOW),
200 DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
201 };
202
xe_drm_ioctl(struct file * file,unsigned int cmd,unsigned long arg)203 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
204 {
205 struct drm_file *file_priv = file->private_data;
206 struct xe_device *xe = to_xe_device(file_priv->minor->dev);
207 long ret;
208
209 if (xe_device_wedged(xe))
210 return -ECANCELED;
211
212 ret = xe_pm_runtime_get_ioctl(xe);
213 if (ret >= 0)
214 ret = drm_ioctl(file, cmd, arg);
215 xe_pm_runtime_put(xe);
216
217 return ret;
218 }
219
220 #ifdef CONFIG_COMPAT
xe_drm_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)221 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
222 {
223 struct drm_file *file_priv = file->private_data;
224 struct xe_device *xe = to_xe_device(file_priv->minor->dev);
225 long ret;
226
227 if (xe_device_wedged(xe))
228 return -ECANCELED;
229
230 ret = xe_pm_runtime_get_ioctl(xe);
231 if (ret >= 0)
232 ret = drm_compat_ioctl(file, cmd, arg);
233 xe_pm_runtime_put(xe);
234
235 return ret;
236 }
237 #else
238 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
239 #define xe_drm_compat_ioctl NULL
240 #endif
241
barrier_open(struct vm_area_struct * vma)242 static void barrier_open(struct vm_area_struct *vma)
243 {
244 drm_dev_get(vma->vm_private_data);
245 }
246
barrier_close(struct vm_area_struct * vma)247 static void barrier_close(struct vm_area_struct *vma)
248 {
249 drm_dev_put(vma->vm_private_data);
250 }
251
barrier_release_dummy_page(struct drm_device * dev,void * res)252 static void barrier_release_dummy_page(struct drm_device *dev, void *res)
253 {
254 struct page *dummy_page = (struct page *)res;
255
256 __free_page(dummy_page);
257 }
258
barrier_fault(struct vm_fault * vmf)259 static vm_fault_t barrier_fault(struct vm_fault *vmf)
260 {
261 struct drm_device *dev = vmf->vma->vm_private_data;
262 struct vm_area_struct *vma = vmf->vma;
263 vm_fault_t ret = VM_FAULT_NOPAGE;
264 pgprot_t prot;
265 int idx;
266
267 prot = vm_get_page_prot(vma->vm_flags);
268
269 if (drm_dev_enter(dev, &idx)) {
270 unsigned long pfn;
271
272 #define LAST_DB_PAGE_OFFSET 0x7ff001
273 pfn = PHYS_PFN(pci_resource_start(to_pci_dev(dev->dev), 0) +
274 LAST_DB_PAGE_OFFSET);
275 ret = vmf_insert_pfn_prot(vma, vma->vm_start, pfn,
276 pgprot_noncached(prot));
277 drm_dev_exit(idx);
278 } else {
279 struct page *page;
280
281 /* Allocate new dummy page to map all the VA range in this VMA to it*/
282 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
283 if (!page)
284 return VM_FAULT_OOM;
285
286 /* Set the page to be freed using drmm release action */
287 if (drmm_add_action_or_reset(dev, barrier_release_dummy_page, page))
288 return VM_FAULT_OOM;
289
290 ret = vmf_insert_pfn_prot(vma, vma->vm_start, page_to_pfn(page),
291 prot);
292 }
293
294 return ret;
295 }
296
297 static const struct vm_operations_struct vm_ops_barrier = {
298 .open = barrier_open,
299 .close = barrier_close,
300 .fault = barrier_fault,
301 };
302
xe_pci_barrier_mmap(struct file * filp,struct vm_area_struct * vma)303 static int xe_pci_barrier_mmap(struct file *filp,
304 struct vm_area_struct *vma)
305 {
306 struct drm_file *priv = filp->private_data;
307 struct drm_device *dev = priv->minor->dev;
308 struct xe_device *xe = to_xe_device(dev);
309
310 if (!IS_DGFX(xe))
311 return -EINVAL;
312
313 if (vma->vm_end - vma->vm_start > SZ_4K)
314 return -EINVAL;
315
316 if (is_cow_mapping(vma->vm_flags))
317 return -EINVAL;
318
319 if (vma->vm_flags & (VM_READ | VM_EXEC))
320 return -EINVAL;
321
322 vm_flags_clear(vma, VM_MAYREAD | VM_MAYEXEC);
323 vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO);
324 vma->vm_ops = &vm_ops_barrier;
325 vma->vm_private_data = dev;
326 drm_dev_get(vma->vm_private_data);
327
328 return 0;
329 }
330
xe_mmap(struct file * filp,struct vm_area_struct * vma)331 static int xe_mmap(struct file *filp, struct vm_area_struct *vma)
332 {
333 struct drm_file *priv = filp->private_data;
334 struct drm_device *dev = priv->minor->dev;
335
336 if (drm_dev_is_unplugged(dev))
337 return -ENODEV;
338
339 switch (vma->vm_pgoff) {
340 case XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT:
341 return xe_pci_barrier_mmap(filp, vma);
342 }
343
344 return drm_gem_mmap(filp, vma);
345 }
346
347 static const struct file_operations xe_driver_fops = {
348 .owner = THIS_MODULE,
349 .open = drm_open,
350 .release = drm_release_noglobal,
351 .unlocked_ioctl = xe_drm_ioctl,
352 .mmap = xe_mmap,
353 .poll = drm_poll,
354 .read = drm_read,
355 .compat_ioctl = xe_drm_compat_ioctl,
356 .llseek = noop_llseek,
357 #ifdef CONFIG_PROC_FS
358 .show_fdinfo = drm_show_fdinfo,
359 #endif
360 .fop_flags = FOP_UNSIGNED_OFFSET,
361 };
362
363 static struct drm_driver driver = {
364 /* Don't use MTRRs here; the Xserver or userspace app should
365 * deal with them for Intel hardware.
366 */
367 .driver_features =
368 DRIVER_GEM |
369 DRIVER_RENDER | DRIVER_SYNCOBJ |
370 DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
371 .open = xe_file_open,
372 .postclose = xe_file_close,
373
374 .gem_prime_import = xe_gem_prime_import,
375
376 .dumb_create = xe_bo_dumb_create,
377 .dumb_map_offset = drm_gem_ttm_dumb_map_offset,
378 #ifdef CONFIG_PROC_FS
379 .show_fdinfo = xe_drm_client_fdinfo,
380 #endif
381 .ioctls = xe_ioctls,
382 .num_ioctls = ARRAY_SIZE(xe_ioctls),
383 .fops = &xe_driver_fops,
384 .name = DRIVER_NAME,
385 .desc = DRIVER_DESC,
386 .major = DRIVER_MAJOR,
387 .minor = DRIVER_MINOR,
388 .patchlevel = DRIVER_PATCHLEVEL,
389 };
390
xe_device_destroy(struct drm_device * dev,void * dummy)391 static void xe_device_destroy(struct drm_device *dev, void *dummy)
392 {
393 struct xe_device *xe = to_xe_device(dev);
394
395 xe_bo_dev_fini(&xe->bo_device);
396
397 if (xe->preempt_fence_wq)
398 destroy_workqueue(xe->preempt_fence_wq);
399
400 if (xe->ordered_wq)
401 destroy_workqueue(xe->ordered_wq);
402
403 if (xe->unordered_wq)
404 destroy_workqueue(xe->unordered_wq);
405
406 if (!IS_ERR_OR_NULL(xe->mem.shrinker))
407 xe_shrinker_destroy(xe->mem.shrinker);
408
409 if (xe->destroy_wq)
410 destroy_workqueue(xe->destroy_wq);
411
412 ttm_device_fini(&xe->ttm);
413 }
414
xe_device_create(struct pci_dev * pdev,const struct pci_device_id * ent)415 struct xe_device *xe_device_create(struct pci_dev *pdev,
416 const struct pci_device_id *ent)
417 {
418 struct xe_device *xe;
419 int err;
420
421 xe_display_driver_set_hooks(&driver);
422
423 err = aperture_remove_conflicting_pci_devices(pdev, driver.name);
424 if (err)
425 return ERR_PTR(err);
426
427 xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
428 if (IS_ERR(xe))
429 return xe;
430
431 err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
432 xe->drm.anon_inode->i_mapping,
433 xe->drm.vma_offset_manager, false, false);
434 if (WARN_ON(err))
435 goto err;
436
437 xe_bo_dev_init(&xe->bo_device);
438 err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
439 if (err)
440 goto err;
441
442 xe->mem.shrinker = xe_shrinker_create(xe);
443 if (IS_ERR(xe->mem.shrinker))
444 return ERR_CAST(xe->mem.shrinker);
445
446 xe->info.devid = pdev->device;
447 xe->info.revid = pdev->revision;
448 xe->info.force_execlist = xe_modparam.force_execlist;
449
450 err = xe_irq_init(xe);
451 if (err)
452 goto err;
453
454 init_waitqueue_head(&xe->ufence_wq);
455
456 init_rwsem(&xe->usm.lock);
457
458 xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
459
460 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
461 /* Trigger a large asid and an early asid wrap. */
462 u32 asid;
463
464 BUILD_BUG_ON(XE_MAX_ASID < 2);
465 err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
466 XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
467 &xe->usm.next_asid, GFP_KERNEL);
468 drm_WARN_ON(&xe->drm, err);
469 if (err >= 0)
470 xa_erase(&xe->usm.asid_to_vm, asid);
471 }
472
473 err = xe_bo_pinned_init(xe);
474 if (err)
475 goto err;
476
477 xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq",
478 WQ_MEM_RECLAIM);
479 xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
480 xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
481 xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0);
482 if (!xe->ordered_wq || !xe->unordered_wq ||
483 !xe->preempt_fence_wq || !xe->destroy_wq) {
484 /*
485 * Cleanup done in xe_device_destroy via
486 * drmm_add_action_or_reset register above
487 */
488 drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
489 err = -ENOMEM;
490 goto err;
491 }
492
493 err = drmm_mutex_init(&xe->drm, &xe->pmt.lock);
494 if (err)
495 goto err;
496
497 err = xe_display_create(xe);
498 if (WARN_ON(err))
499 goto err;
500
501 return xe;
502
503 err:
504 return ERR_PTR(err);
505 }
506 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */
507
xe_driver_flr_disabled(struct xe_device * xe)508 static bool xe_driver_flr_disabled(struct xe_device *xe)
509 {
510 if (IS_SRIOV_VF(xe))
511 return true;
512
513 if (xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) {
514 drm_info(&xe->drm, "Driver-FLR disabled by BIOS\n");
515 return true;
516 }
517
518 return false;
519 }
520
521 /*
522 * The driver-initiated FLR is the highest level of reset that we can trigger
523 * from within the driver. It is different from the PCI FLR in that it doesn't
524 * fully reset the SGUnit and doesn't modify the PCI config space and therefore
525 * it doesn't require a re-enumeration of the PCI BARs. However, the
526 * driver-initiated FLR does still cause a reset of both GT and display and a
527 * memory wipe of local and stolen memory, so recovery would require a full HW
528 * re-init and saving/restoring (or re-populating) the wiped memory. Since we
529 * perform the FLR as the very last action before releasing access to the HW
530 * during the driver release flow, we don't attempt recovery at all, because
531 * if/when a new instance of i915 is bound to the device it will do a full
532 * re-init anyway.
533 */
__xe_driver_flr(struct xe_device * xe)534 static void __xe_driver_flr(struct xe_device *xe)
535 {
536 const unsigned int flr_timeout = 3 * USEC_PER_SEC; /* specs recommend a 3s wait */
537 struct xe_mmio *mmio = xe_root_tile_mmio(xe);
538 int ret;
539
540 drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
541
542 /*
543 * Make sure any pending FLR requests have cleared by waiting for the
544 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
545 * to make sure it's not still set from a prior attempt (it's a write to
546 * clear bit).
547 * Note that we should never be in a situation where a previous attempt
548 * is still pending (unless the HW is totally dead), but better to be
549 * safe in case something unexpected happens
550 */
551 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
552 if (ret) {
553 drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
554 return;
555 }
556 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
557
558 /* Trigger the actual Driver-FLR */
559 xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR);
560
561 /* Wait for hardware teardown to complete */
562 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
563 if (ret) {
564 drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
565 return;
566 }
567
568 /* Wait for hardware/firmware re-init to complete */
569 ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
570 flr_timeout, NULL, false);
571 if (ret) {
572 drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
573 return;
574 }
575
576 /* Clear sticky completion status */
577 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
578 }
579
xe_driver_flr(struct xe_device * xe)580 static void xe_driver_flr(struct xe_device *xe)
581 {
582 if (xe_driver_flr_disabled(xe))
583 return;
584
585 __xe_driver_flr(xe);
586 }
587
xe_driver_flr_fini(void * arg)588 static void xe_driver_flr_fini(void *arg)
589 {
590 struct xe_device *xe = arg;
591
592 if (xe->needs_flr_on_fini)
593 xe_driver_flr(xe);
594 }
595
xe_device_sanitize(void * arg)596 static void xe_device_sanitize(void *arg)
597 {
598 struct xe_device *xe = arg;
599 struct xe_gt *gt;
600 u8 id;
601
602 for_each_gt(gt, xe, id)
603 xe_gt_sanitize(gt);
604 }
605
xe_set_dma_info(struct xe_device * xe)606 static int xe_set_dma_info(struct xe_device *xe)
607 {
608 unsigned int mask_size = xe->info.dma_mask_size;
609 int err;
610
611 dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
612
613 err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
614 if (err)
615 goto mask_err;
616
617 err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
618 if (err)
619 goto mask_err;
620
621 return 0;
622
623 mask_err:
624 drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
625 return err;
626 }
627
verify_lmem_ready(struct xe_device * xe)628 static bool verify_lmem_ready(struct xe_device *xe)
629 {
630 u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT;
631
632 return !!val;
633 }
634
wait_for_lmem_ready(struct xe_device * xe)635 static int wait_for_lmem_ready(struct xe_device *xe)
636 {
637 unsigned long timeout, start;
638
639 if (!IS_DGFX(xe))
640 return 0;
641
642 if (IS_SRIOV_VF(xe))
643 return 0;
644
645 if (verify_lmem_ready(xe))
646 return 0;
647
648 drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
649
650 start = jiffies;
651 timeout = start + secs_to_jiffies(60); /* 60 sec! */
652
653 do {
654 if (signal_pending(current))
655 return -EINTR;
656
657 /*
658 * The boot firmware initializes local memory and
659 * assesses its health. If memory training fails,
660 * the punit will have been instructed to keep the GT powered
661 * down.we won't be able to communicate with it
662 *
663 * If the status check is done before punit updates the register,
664 * it can lead to the system being unusable.
665 * use a timeout and defer the probe to prevent this.
666 */
667 if (time_after(jiffies, timeout)) {
668 drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
669 return -EPROBE_DEFER;
670 }
671
672 msleep(20);
673
674 } while (!verify_lmem_ready(xe));
675
676 drm_dbg(&xe->drm, "lmem ready after %ums",
677 jiffies_to_msecs(jiffies - start));
678
679 return 0;
680 }
681 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */
682
sriov_update_device_info(struct xe_device * xe)683 static void sriov_update_device_info(struct xe_device *xe)
684 {
685 /* disable features that are not available/applicable to VFs */
686 if (IS_SRIOV_VF(xe)) {
687 xe->info.probe_display = 0;
688 xe->info.has_heci_gscfi = 0;
689 xe->info.skip_guc_pc = 1;
690 xe->info.skip_pcode = 1;
691 }
692 }
693
694 /**
695 * xe_device_probe_early: Device early probe
696 * @xe: xe device instance
697 *
698 * Initialize MMIO resources that don't require any
699 * knowledge about tile count. Also initialize pcode and
700 * check vram initialization on root tile.
701 *
702 * Return: 0 on success, error code on failure
703 */
xe_device_probe_early(struct xe_device * xe)704 int xe_device_probe_early(struct xe_device *xe)
705 {
706 int err;
707
708 err = xe_mmio_probe_early(xe);
709 if (err)
710 return err;
711
712 xe_sriov_probe_early(xe);
713
714 sriov_update_device_info(xe);
715
716 err = xe_pcode_probe_early(xe);
717 if (err || xe_survivability_mode_is_requested(xe)) {
718 int save_err = err;
719
720 /*
721 * Try to leave device in survivability mode if device is
722 * possible, but still return the previous error for error
723 * propagation
724 */
725 err = xe_survivability_mode_enable(xe);
726 if (err)
727 return err;
728
729 return save_err;
730 }
731
732 err = wait_for_lmem_ready(xe);
733 if (err)
734 return err;
735
736 xe->wedged.mode = xe_modparam.wedged_mode;
737
738 return 0;
739 }
740 ALLOW_ERROR_INJECTION(xe_device_probe_early, ERRNO); /* See xe_pci_probe() */
741
probe_has_flat_ccs(struct xe_device * xe)742 static int probe_has_flat_ccs(struct xe_device *xe)
743 {
744 struct xe_gt *gt;
745 unsigned int fw_ref;
746 u32 reg;
747
748 /* Always enabled/disabled, no runtime check to do */
749 if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe))
750 return 0;
751
752 gt = xe_root_mmio_gt(xe);
753
754 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
755 if (!fw_ref)
756 return -ETIMEDOUT;
757
758 reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
759 xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
760
761 if (!xe->info.has_flat_ccs)
762 drm_dbg(&xe->drm,
763 "Flat CCS has been disabled in bios, May lead to performance impact");
764
765 xe_force_wake_put(gt_to_fw(gt), fw_ref);
766
767 return 0;
768 }
769
xe_device_probe(struct xe_device * xe)770 int xe_device_probe(struct xe_device *xe)
771 {
772 struct xe_tile *tile;
773 struct xe_gt *gt;
774 int err;
775 u8 id;
776
777 xe_pat_init_early(xe);
778
779 err = xe_sriov_init(xe);
780 if (err)
781 return err;
782
783 xe->info.mem_region_mask = 1;
784
785 err = xe_set_dma_info(xe);
786 if (err)
787 return err;
788
789 err = xe_mmio_probe_tiles(xe);
790 if (err)
791 return err;
792
793 err = xe_ttm_sys_mgr_init(xe);
794 if (err)
795 return err;
796
797 for_each_gt(gt, xe, id) {
798 err = xe_gt_init_early(gt);
799 if (err)
800 return err;
801
802 /*
803 * Only after this point can GT-specific MMIO operations
804 * (including things like communication with the GuC)
805 * be performed.
806 */
807 xe_gt_mmio_init(gt);
808 }
809
810 for_each_tile(tile, xe, id) {
811 if (IS_SRIOV_VF(xe)) {
812 xe_guc_comm_init_early(&tile->primary_gt->uc.guc);
813 err = xe_gt_sriov_vf_bootstrap(tile->primary_gt);
814 if (err)
815 return err;
816 err = xe_gt_sriov_vf_query_config(tile->primary_gt);
817 if (err)
818 return err;
819 }
820 err = xe_ggtt_init_early(tile->mem.ggtt);
821 if (err)
822 return err;
823 err = xe_memirq_init(&tile->memirq);
824 if (err)
825 return err;
826 }
827
828 for_each_gt(gt, xe, id) {
829 err = xe_gt_init_hwconfig(gt);
830 if (err)
831 return err;
832 }
833
834 err = xe_devcoredump_init(xe);
835 if (err)
836 return err;
837
838 /*
839 * From here on, if a step fails, make sure a Driver-FLR is triggereed
840 */
841 err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
842 if (err)
843 return err;
844
845 err = probe_has_flat_ccs(xe);
846 if (err)
847 return err;
848
849 err = xe_vram_probe(xe);
850 if (err)
851 return err;
852
853 for_each_tile(tile, xe, id) {
854 err = xe_tile_init_noalloc(tile);
855 if (err)
856 return err;
857 }
858
859 /* Allocate and map stolen after potential VRAM resize */
860 err = xe_ttm_stolen_mgr_init(xe);
861 if (err)
862 return err;
863
864 /*
865 * Now that GT is initialized (TTM in particular),
866 * we can try to init display, and inherit the initial fb.
867 * This is the reason the first allocation needs to be done
868 * inside display.
869 */
870 err = xe_display_init_early(xe);
871 if (err)
872 return err;
873
874 for_each_tile(tile, xe, id) {
875 err = xe_tile_init(tile);
876 if (err)
877 return err;
878 }
879
880 err = xe_irq_install(xe);
881 if (err)
882 return err;
883
884 for_each_gt(gt, xe, id) {
885 err = xe_gt_init(gt);
886 if (err)
887 return err;
888 }
889
890 err = xe_heci_gsc_init(xe);
891 if (err)
892 return err;
893
894 err = xe_oa_init(xe);
895 if (err)
896 return err;
897
898 err = xe_display_init(xe);
899 if (err)
900 return err;
901
902 err = xe_pxp_init(xe);
903 if (err)
904 return err;
905
906 err = drm_dev_register(&xe->drm, 0);
907 if (err)
908 return err;
909
910 xe_display_register(xe);
911
912 err = xe_oa_register(xe);
913 if (err)
914 goto err_unregister_display;
915
916 err = xe_pmu_register(&xe->pmu);
917 if (err)
918 goto err_unregister_display;
919
920 err = xe_device_sysfs_init(xe);
921 if (err)
922 goto err_unregister_display;
923
924 xe_debugfs_register(xe);
925
926 err = xe_hwmon_register(xe);
927 if (err)
928 goto err_unregister_display;
929
930 for_each_gt(gt, xe, id)
931 xe_gt_sanitize_freq(gt);
932
933 xe_vsec_init(xe);
934
935 return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
936
937 err_unregister_display:
938 xe_display_unregister(xe);
939
940 return err;
941 }
942
xe_device_remove(struct xe_device * xe)943 void xe_device_remove(struct xe_device *xe)
944 {
945 xe_display_unregister(xe);
946
947 drm_dev_unplug(&xe->drm);
948
949 xe_bo_pci_dev_remove_all(xe);
950 }
951
xe_device_shutdown(struct xe_device * xe)952 void xe_device_shutdown(struct xe_device *xe)
953 {
954 struct xe_gt *gt;
955 u8 id;
956
957 drm_dbg(&xe->drm, "Shutting down device\n");
958
959 if (xe_driver_flr_disabled(xe)) {
960 xe_display_pm_shutdown(xe);
961
962 xe_irq_suspend(xe);
963
964 for_each_gt(gt, xe, id)
965 xe_gt_shutdown(gt);
966
967 xe_display_pm_shutdown_late(xe);
968 } else {
969 /* BOOM! */
970 __xe_driver_flr(xe);
971 }
972 }
973
974 /**
975 * xe_device_wmb() - Device specific write memory barrier
976 * @xe: the &xe_device
977 *
978 * While wmb() is sufficient for a barrier if we use system memory, on discrete
979 * platforms with device memory we additionally need to issue a register write.
980 * Since it doesn't matter which register we write to, use the read-only VF_CAP
981 * register that is also marked as accessible by the VFs.
982 */
xe_device_wmb(struct xe_device * xe)983 void xe_device_wmb(struct xe_device *xe)
984 {
985 wmb();
986 if (IS_DGFX(xe))
987 xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0);
988 }
989
990 /*
991 * Issue a TRANSIENT_FLUSH_REQUEST and wait for completion on each gt.
992 */
tdf_request_sync(struct xe_device * xe)993 static void tdf_request_sync(struct xe_device *xe)
994 {
995 unsigned int fw_ref;
996 struct xe_gt *gt;
997 u8 id;
998
999 for_each_gt(gt, xe, id) {
1000 if (xe_gt_is_media_type(gt))
1001 continue;
1002
1003 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1004 if (!fw_ref)
1005 return;
1006
1007 xe_mmio_write32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
1008
1009 /*
1010 * FIXME: We can likely do better here with our choice of
1011 * timeout. Currently we just assume the worst case, i.e. 150us,
1012 * which is believed to be sufficient to cover the worst case
1013 * scenario on current platforms if all cache entries are
1014 * transient and need to be flushed..
1015 */
1016 if (xe_mmio_wait32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
1017 150, NULL, false))
1018 xe_gt_err_once(gt, "TD flush timeout\n");
1019
1020 xe_force_wake_put(gt_to_fw(gt), fw_ref);
1021 }
1022 }
1023
xe_device_l2_flush(struct xe_device * xe)1024 void xe_device_l2_flush(struct xe_device *xe)
1025 {
1026 struct xe_gt *gt;
1027 unsigned int fw_ref;
1028
1029 gt = xe_root_mmio_gt(xe);
1030
1031 if (!XE_WA(gt, 16023588340))
1032 return;
1033
1034 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1035 if (!fw_ref)
1036 return;
1037
1038 spin_lock(>->global_invl_lock);
1039
1040 xe_mmio_write32(>->mmio, XE2_GLOBAL_INVAL, 0x1);
1041 if (xe_mmio_wait32(>->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true))
1042 xe_gt_err_once(gt, "Global invalidation timeout\n");
1043
1044 spin_unlock(>->global_invl_lock);
1045
1046 xe_force_wake_put(gt_to_fw(gt), fw_ref);
1047 }
1048
1049 /**
1050 * xe_device_td_flush() - Flush transient L3 cache entries
1051 * @xe: The device
1052 *
1053 * Display engine has direct access to memory and is never coherent with L3/L4
1054 * caches (or CPU caches), however KMD is responsible for specifically flushing
1055 * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
1056 * can happen from such a surface without seeing corruption.
1057 *
1058 * Display surfaces can be tagged as transient by mapping it using one of the
1059 * various L3:XD PAT index modes on Xe2.
1060 *
1061 * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
1062 * at the end of each submission via PIPE_CONTROL for compute/render, since SA
1063 * Media is not coherent with L3 and we want to support render-vs-media
1064 * usescases. For other engines like copy/blt the HW internally forces uncached
1065 * behaviour, hence why we can skip the TDF on such platforms.
1066 */
xe_device_td_flush(struct xe_device * xe)1067 void xe_device_td_flush(struct xe_device *xe)
1068 {
1069 struct xe_gt *root_gt;
1070
1071 if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
1072 return;
1073
1074 root_gt = xe_root_mmio_gt(xe);
1075 if (XE_WA(root_gt, 16023588340)) {
1076 /* A transient flush is not sufficient: flush the L2 */
1077 xe_device_l2_flush(xe);
1078 } else {
1079 xe_guc_pc_apply_flush_freq_limit(&root_gt->uc.guc.pc);
1080 tdf_request_sync(xe);
1081 xe_guc_pc_remove_flush_freq_limit(&root_gt->uc.guc.pc);
1082 }
1083 }
1084
xe_device_ccs_bytes(struct xe_device * xe,u64 size)1085 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
1086 {
1087 return xe_device_has_flat_ccs(xe) ?
1088 DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
1089 }
1090
1091 /**
1092 * xe_device_assert_mem_access - Inspect the current runtime_pm state.
1093 * @xe: xe device instance
1094 *
1095 * To be used before any kind of memory access. It will splat a debug warning
1096 * if the device is currently sleeping. But it doesn't guarantee in any way
1097 * that the device is going to remain awake. Xe PM runtime get and put
1098 * functions might be added to the outer bound of the memory access, while
1099 * this check is intended for inner usage to splat some warning if the worst
1100 * case has just happened.
1101 */
xe_device_assert_mem_access(struct xe_device * xe)1102 void xe_device_assert_mem_access(struct xe_device *xe)
1103 {
1104 xe_assert(xe, !xe_pm_runtime_suspended(xe));
1105 }
1106
xe_device_snapshot_print(struct xe_device * xe,struct drm_printer * p)1107 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
1108 {
1109 struct xe_gt *gt;
1110 u8 id;
1111
1112 drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
1113 drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
1114
1115 for_each_gt(gt, xe, id) {
1116 drm_printf(p, "GT id: %u\n", id);
1117 drm_printf(p, "\tTile: %u\n", gt->tile->id);
1118 drm_printf(p, "\tType: %s\n",
1119 gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
1120 drm_printf(p, "\tIP ver: %u.%u.%u\n",
1121 REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
1122 REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
1123 REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
1124 drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
1125 }
1126 }
1127
xe_device_canonicalize_addr(struct xe_device * xe,u64 address)1128 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
1129 {
1130 return sign_extend64(address, xe->info.va_bits - 1);
1131 }
1132
xe_device_uncanonicalize_addr(struct xe_device * xe,u64 address)1133 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
1134 {
1135 return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
1136 }
1137
xe_device_wedged_fini(struct drm_device * drm,void * arg)1138 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
1139 {
1140 struct xe_device *xe = arg;
1141
1142 xe_pm_runtime_put(xe);
1143 }
1144
1145 /**
1146 * xe_device_declare_wedged - Declare device wedged
1147 * @xe: xe device instance
1148 *
1149 * This is a final state that can only be cleared with a module
1150 * re-probe (unbind + bind).
1151 * In this state every IOCTL will be blocked so the GT cannot be used.
1152 * In general it will be called upon any critical error such as gt reset
1153 * failure or guc loading failure. Userspace will be notified of this state
1154 * through device wedged uevent.
1155 * If xe.wedged module parameter is set to 2, this function will be called
1156 * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
1157 * snapshot capture. In this mode, GT reset won't be attempted so the state of
1158 * the issue is preserved for further debugging.
1159 */
xe_device_declare_wedged(struct xe_device * xe)1160 void xe_device_declare_wedged(struct xe_device *xe)
1161 {
1162 struct xe_gt *gt;
1163 u8 id;
1164
1165 if (xe->wedged.mode == 0) {
1166 drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
1167 return;
1168 }
1169
1170 xe_pm_runtime_get_noresume(xe);
1171
1172 if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
1173 drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
1174 return;
1175 }
1176
1177 if (!atomic_xchg(&xe->wedged.flag, 1)) {
1178 xe->needs_flr_on_fini = true;
1179 drm_err(&xe->drm,
1180 "CRITICAL: Xe has declared device %s as wedged.\n"
1181 "IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
1182 "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
1183 dev_name(xe->drm.dev));
1184
1185 /* Notify userspace of wedged device */
1186 drm_dev_wedged_event(&xe->drm,
1187 DRM_WEDGE_RECOVERY_REBIND | DRM_WEDGE_RECOVERY_BUS_RESET);
1188 }
1189
1190 for_each_gt(gt, xe, id)
1191 xe_gt_declare_wedged(gt);
1192 }
1193