1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_MMU_INTERNAL_H
3 #define __KVM_X86_MMU_INTERNAL_H
4
5 #include <linux/types.h>
6 #include <linux/kvm_host.h>
7 #include <asm/kvm_host.h>
8
9 #include "mmu.h"
10
11 #ifdef CONFIG_KVM_PROVE_MMU
12 #define KVM_MMU_WARN_ON(x) WARN_ON_ONCE(x)
13 #else
14 #define KVM_MMU_WARN_ON(x) BUILD_BUG_ON_INVALID(x)
15 #endif
16
17 /* Page table builder macros common to shadow (host) PTEs and guest PTEs. */
18 #define __PT_BASE_ADDR_MASK GENMASK_ULL(51, 12)
19 #define __PT_LEVEL_SHIFT(level, bits_per_level) \
20 (PAGE_SHIFT + ((level) - 1) * (bits_per_level))
21 #define __PT_INDEX(address, level, bits_per_level) \
22 (((address) >> __PT_LEVEL_SHIFT(level, bits_per_level)) & ((1 << (bits_per_level)) - 1))
23
24 #define __PT_LVL_ADDR_MASK(base_addr_mask, level, bits_per_level) \
25 ((base_addr_mask) & ~((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1))
26
27 #define __PT_LVL_OFFSET_MASK(base_addr_mask, level, bits_per_level) \
28 ((base_addr_mask) & ((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1))
29
30 #define __PT_ENT_PER_PAGE(bits_per_level) (1 << (bits_per_level))
31
32 /*
33 * Unlike regular MMU roots, PAE "roots", a.k.a. PDPTEs/PDPTRs, have a PRESENT
34 * bit, and thus are guaranteed to be non-zero when valid. And, when a guest
35 * PDPTR is !PRESENT, its corresponding PAE root cannot be set to INVALID_PAGE,
36 * as the CPU would treat that as PRESENT PDPTR with reserved bits set. Use
37 * '0' instead of INVALID_PAGE to indicate an invalid PAE root.
38 */
39 #define INVALID_PAE_ROOT 0
40 #define IS_VALID_PAE_ROOT(x) (!!(x))
41
kvm_mmu_get_dummy_root(void)42 static inline hpa_t kvm_mmu_get_dummy_root(void)
43 {
44 return my_zero_pfn(0) << PAGE_SHIFT;
45 }
46
kvm_mmu_is_dummy_root(hpa_t shadow_page)47 static inline bool kvm_mmu_is_dummy_root(hpa_t shadow_page)
48 {
49 return is_zero_pfn(shadow_page >> PAGE_SHIFT);
50 }
51
52 typedef u64 __rcu *tdp_ptep_t;
53
54 struct kvm_mmu_page {
55 /*
56 * Note, "link" through "spt" fit in a single 64 byte cache line on
57 * 64-bit kernels, keep it that way unless there's a reason not to.
58 */
59 struct list_head link;
60 struct hlist_node hash_link;
61
62 bool tdp_mmu_page;
63 bool unsync;
64 union {
65 u8 mmu_valid_gen;
66
67 /* Only accessed under slots_lock. */
68 bool tdp_mmu_scheduled_root_to_zap;
69 };
70
71 /*
72 * The shadow page can't be replaced by an equivalent huge page
73 * because it is being used to map an executable page in the guest
74 * and the NX huge page mitigation is enabled.
75 */
76 bool nx_huge_page_disallowed;
77
78 /*
79 * The following two entries are used to key the shadow page in the
80 * hash table.
81 */
82 union kvm_mmu_page_role role;
83 gfn_t gfn;
84
85 u64 *spt;
86
87 /*
88 * Stores the result of the guest translation being shadowed by each
89 * SPTE. KVM shadows two types of guest translations: nGPA -> GPA
90 * (shadow EPT/NPT) and GVA -> GPA (traditional shadow paging). In both
91 * cases the result of the translation is a GPA and a set of access
92 * constraints.
93 *
94 * The GFN is stored in the upper bits (PAGE_SHIFT) and the shadowed
95 * access permissions are stored in the lower bits. Note, for
96 * convenience and uniformity across guests, the access permissions are
97 * stored in KVM format (e.g. ACC_EXEC_MASK) not the raw guest format.
98 */
99 u64 *shadowed_translation;
100
101 /* Currently serving as active root */
102 union {
103 int root_count;
104 refcount_t tdp_mmu_root_count;
105 };
106
107 bool has_mapped_host_mmio;
108
109 union {
110 /* These two members aren't used for TDP MMU */
111 struct {
112 unsigned int unsync_children;
113 /*
114 * Number of writes since the last time traversal
115 * visited this page.
116 */
117 atomic_t write_flooding_count;
118 };
119 /*
120 * Page table page of external PT.
121 * Passed to TDX module, not accessed by KVM.
122 */
123 void *external_spt;
124 };
125 union {
126 struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */
127 tdp_ptep_t ptep;
128 };
129 DECLARE_BITMAP(unsync_child_bitmap, 512);
130
131 /*
132 * Tracks shadow pages that, if zapped, would allow KVM to create an NX
133 * huge page. A shadow page will have nx_huge_page_disallowed set but
134 * not be on the list if a huge page is disallowed for other reasons,
135 * e.g. because KVM is shadowing a PTE at the same gfn, the memslot
136 * isn't properly aligned, etc...
137 */
138 struct list_head possible_nx_huge_page_link;
139 #ifdef CONFIG_X86_32
140 /*
141 * Used out of the mmu-lock to avoid reading spte values while an
142 * update is in progress; see the comments in __get_spte_lockless().
143 */
144 int clear_spte_count;
145 #endif
146
147 #ifdef CONFIG_X86_64
148 /* Used for freeing the page asynchronously if it is a TDP MMU page. */
149 struct rcu_head rcu_head;
150 #endif
151 };
152
153 extern struct kmem_cache *mmu_page_header_cache;
154
kvm_mmu_role_as_id(union kvm_mmu_page_role role)155 static inline int kvm_mmu_role_as_id(union kvm_mmu_page_role role)
156 {
157 return role.smm ? 1 : 0;
158 }
159
kvm_mmu_page_as_id(struct kvm_mmu_page * sp)160 static inline int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
161 {
162 return kvm_mmu_role_as_id(sp->role);
163 }
164
is_mirror_sp(const struct kvm_mmu_page * sp)165 static inline bool is_mirror_sp(const struct kvm_mmu_page *sp)
166 {
167 return sp->role.is_mirror;
168 }
169
kvm_mmu_alloc_external_spt(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)170 static inline void kvm_mmu_alloc_external_spt(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
171 {
172 /*
173 * external_spt is allocated for TDX module to hold private EPT mappings,
174 * TDX module will initialize the page by itself.
175 * Therefore, KVM does not need to initialize or access external_spt.
176 * KVM only interacts with sp->spt for private EPT operations.
177 */
178 sp->external_spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_external_spt_cache);
179 }
180
kvm_gfn_root_bits(const struct kvm * kvm,const struct kvm_mmu_page * root)181 static inline gfn_t kvm_gfn_root_bits(const struct kvm *kvm, const struct kvm_mmu_page *root)
182 {
183 /*
184 * Since mirror SPs are used only for TDX, which maps private memory
185 * at its "natural" GFN, no mask needs to be applied to them - and, dually,
186 * we expect that the bits is only used for the shared PT.
187 */
188 if (is_mirror_sp(root))
189 return 0;
190 return kvm_gfn_direct_bits(kvm);
191 }
192
kvm_mmu_page_ad_need_write_protect(struct kvm * kvm,struct kvm_mmu_page * sp)193 static inline bool kvm_mmu_page_ad_need_write_protect(struct kvm *kvm,
194 struct kvm_mmu_page *sp)
195 {
196 /*
197 * When using the EPT page-modification log, the GPAs in the CPU dirty
198 * log would come from L2 rather than L1. Therefore, we need to rely
199 * on write protection to record dirty pages, which bypasses PML, since
200 * writes now result in a vmexit. Note, the check on CPU dirty logging
201 * being enabled is mandatory as the bits used to denote WP-only SPTEs
202 * are reserved for PAE paging (32-bit KVM).
203 */
204 return kvm->arch.cpu_dirty_log_size && sp->role.guest_mode;
205 }
206
gfn_round_for_level(gfn_t gfn,int level)207 static inline gfn_t gfn_round_for_level(gfn_t gfn, int level)
208 {
209 return gfn & -KVM_PAGES_PER_HPAGE(level);
210 }
211
212 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
213 gfn_t gfn, bool synchronizing, bool prefetch);
214
215 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn);
216 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn);
217 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
218 struct kvm_memory_slot *slot, u64 gfn,
219 int min_level);
220
221 /* Flush the given page (huge or not) of guest memory. */
kvm_flush_remote_tlbs_gfn(struct kvm * kvm,gfn_t gfn,int level)222 static inline void kvm_flush_remote_tlbs_gfn(struct kvm *kvm, gfn_t gfn, int level)
223 {
224 kvm_flush_remote_tlbs_range(kvm, gfn_round_for_level(gfn, level),
225 KVM_PAGES_PER_HPAGE(level));
226 }
227
228 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head);
229
230 extern int nx_huge_pages;
is_nx_huge_page_enabled(struct kvm * kvm)231 static inline bool is_nx_huge_page_enabled(struct kvm *kvm)
232 {
233 return READ_ONCE(nx_huge_pages) && !kvm->arch.disable_nx_huge_pages;
234 }
235
236 struct kvm_page_fault {
237 /* arguments to kvm_mmu_do_page_fault. */
238 const gpa_t addr;
239 const u64 error_code;
240 const bool prefetch;
241
242 /* Derived from error_code. */
243 const bool exec;
244 const bool write;
245 const bool present;
246 const bool rsvd;
247 const bool user;
248
249 /* Derived from mmu and global state. */
250 const bool is_tdp;
251 const bool is_private;
252 const bool nx_huge_page_workaround_enabled;
253
254 /*
255 * Whether a >4KB mapping can be created or is forbidden due to NX
256 * hugepages.
257 */
258 bool huge_page_disallowed;
259
260 /*
261 * Maximum page size that can be created for this fault; input to
262 * FNAME(fetch), direct_map() and kvm_tdp_mmu_map().
263 */
264 u8 max_level;
265
266 /*
267 * Page size that can be created based on the max_level and the
268 * page size used by the host mapping.
269 */
270 u8 req_level;
271
272 /*
273 * Page size that will be created based on the req_level and
274 * huge_page_disallowed.
275 */
276 u8 goal_level;
277
278 /*
279 * Shifted addr, or result of guest page table walk if addr is a gva. In
280 * the case of VM where memslot's can be mapped at multiple GPA aliases
281 * (i.e. TDX), the gfn field does not contain the bit that selects between
282 * the aliases (i.e. the shared bit for TDX).
283 */
284 gfn_t gfn;
285
286 /* The memslot containing gfn. May be NULL. */
287 struct kvm_memory_slot *slot;
288
289 /* Outputs of kvm_mmu_faultin_pfn(). */
290 unsigned long mmu_seq;
291 kvm_pfn_t pfn;
292 struct page *refcounted_page;
293 bool map_writable;
294
295 /*
296 * Indicates the guest is trying to write a gfn that contains one or
297 * more of the PTEs used to translate the write itself, i.e. the access
298 * is changing its own translation in the guest page tables.
299 */
300 bool write_fault_to_shadow_pgtable;
301 };
302
303 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
304
305 /*
306 * Return values of handle_mmio_page_fault(), mmu.page_fault(), fast_page_fault(),
307 * and of course kvm_mmu_do_page_fault().
308 *
309 * RET_PF_CONTINUE: So far, so good, keep handling the page fault.
310 * RET_PF_RETRY: let CPU fault again on the address.
311 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
312 * RET_PF_WRITE_PROTECTED: the gfn is write-protected, either unprotected the
313 * gfn and retry, or emulate the instruction directly.
314 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
315 * RET_PF_FIXED: The faulting entry has been fixed.
316 * RET_PF_SPURIOUS: The faulting entry was already fixed, e.g. by another vCPU.
317 *
318 * Any names added to this enum should be exported to userspace for use in
319 * tracepoints via TRACE_DEFINE_ENUM() in mmutrace.h
320 *
321 * Note, all values must be greater than or equal to zero so as not to encroach
322 * on -errno return values.
323 */
324 enum {
325 RET_PF_CONTINUE = 0,
326 RET_PF_RETRY,
327 RET_PF_EMULATE,
328 RET_PF_WRITE_PROTECTED,
329 RET_PF_INVALID,
330 RET_PF_FIXED,
331 RET_PF_SPURIOUS,
332 };
333
334 /*
335 * Define RET_PF_CONTINUE as 0 to allow for
336 * - efficient machine code when checking for CONTINUE, e.g.
337 * "TEST %rax, %rax, JNZ", as all "stop!" values are non-zero,
338 * - kvm_mmu_do_page_fault() to return other RET_PF_* as a positive value.
339 */
340 static_assert(RET_PF_CONTINUE == 0);
341
kvm_mmu_prepare_memory_fault_exit(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)342 static inline void kvm_mmu_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
343 struct kvm_page_fault *fault)
344 {
345 kvm_prepare_memory_fault_exit(vcpu, fault->gfn << PAGE_SHIFT,
346 PAGE_SIZE, fault->write, fault->exec,
347 fault->is_private);
348 }
349
kvm_mmu_do_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u64 err,bool prefetch,int * emulation_type,u8 * level)350 static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
351 u64 err, bool prefetch,
352 int *emulation_type, u8 *level)
353 {
354 struct kvm_page_fault fault = {
355 .addr = cr2_or_gpa,
356 .error_code = err,
357 .exec = err & PFERR_FETCH_MASK,
358 .write = err & PFERR_WRITE_MASK,
359 .present = err & PFERR_PRESENT_MASK,
360 .rsvd = err & PFERR_RSVD_MASK,
361 .user = err & PFERR_USER_MASK,
362 .prefetch = prefetch,
363 .is_tdp = likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault),
364 .nx_huge_page_workaround_enabled =
365 is_nx_huge_page_enabled(vcpu->kvm),
366
367 .max_level = KVM_MAX_HUGEPAGE_LEVEL,
368 .req_level = PG_LEVEL_4K,
369 .goal_level = PG_LEVEL_4K,
370 .is_private = err & PFERR_PRIVATE_ACCESS,
371
372 .pfn = KVM_PFN_ERR_FAULT,
373 };
374 int r;
375
376 if (vcpu->arch.mmu->root_role.direct) {
377 /*
378 * Things like memslots don't understand the concept of a shared
379 * bit. Strip it so that the GFN can be used like normal, and the
380 * fault.addr can be used when the shared bit is needed.
381 */
382 fault.gfn = gpa_to_gfn(fault.addr) & ~kvm_gfn_direct_bits(vcpu->kvm);
383 fault.slot = kvm_vcpu_gfn_to_memslot(vcpu, fault.gfn);
384 }
385
386 /*
387 * With retpoline being active an indirect call is rather expensive,
388 * so do a direct call in the most common case.
389 */
390 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && fault.is_tdp)
391 r = kvm_tdp_page_fault(vcpu, &fault);
392 else
393 r = vcpu->arch.mmu->page_fault(vcpu, &fault);
394
395 /*
396 * Not sure what's happening, but punt to userspace and hope that
397 * they can fix it by changing memory to shared, or they can
398 * provide a better error.
399 */
400 if (r == RET_PF_EMULATE && fault.is_private) {
401 pr_warn_ratelimited("kvm: unexpected emulation request on private memory\n");
402 kvm_mmu_prepare_memory_fault_exit(vcpu, &fault);
403 return -EFAULT;
404 }
405
406 if (fault.write_fault_to_shadow_pgtable && emulation_type)
407 *emulation_type |= EMULTYPE_WRITE_PF_TO_SP;
408 if (level)
409 *level = fault.goal_level;
410
411 return r;
412 }
413
414 int kvm_mmu_max_mapping_level(struct kvm *kvm,
415 const struct kvm_memory_slot *slot, gfn_t gfn);
416 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
417 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level);
418
419 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp);
420 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp);
421
422 #endif /* __KVM_X86_MMU_INTERNAL_H */
423