xref: /linux/fs/buffer.c (revision 7879d7aff0ffd969fcb1a59e3f87ebb353e47b7f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 #include <linux/sched/isolation.h>
53 
54 #include "internal.h"
55 
56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
58 			  enum rw_hint hint, struct writeback_control *wbc);
59 
60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61 
touch_buffer(struct buffer_head * bh)62 inline void touch_buffer(struct buffer_head *bh)
63 {
64 	trace_block_touch_buffer(bh);
65 	folio_mark_accessed(bh->b_folio);
66 }
67 EXPORT_SYMBOL(touch_buffer);
68 
__lock_buffer(struct buffer_head * bh)69 void __lock_buffer(struct buffer_head *bh)
70 {
71 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 }
73 EXPORT_SYMBOL(__lock_buffer);
74 
unlock_buffer(struct buffer_head * bh)75 void unlock_buffer(struct buffer_head *bh)
76 {
77 	clear_bit_unlock(BH_Lock, &bh->b_state);
78 	smp_mb__after_atomic();
79 	wake_up_bit(&bh->b_state, BH_Lock);
80 }
81 EXPORT_SYMBOL(unlock_buffer);
82 
83 /*
84  * Returns if the folio has dirty or writeback buffers. If all the buffers
85  * are unlocked and clean then the folio_test_dirty information is stale. If
86  * any of the buffers are locked, it is assumed they are locked for IO.
87  */
buffer_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)88 void buffer_check_dirty_writeback(struct folio *folio,
89 				     bool *dirty, bool *writeback)
90 {
91 	struct buffer_head *head, *bh;
92 	*dirty = false;
93 	*writeback = false;
94 
95 	BUG_ON(!folio_test_locked(folio));
96 
97 	head = folio_buffers(folio);
98 	if (!head)
99 		return;
100 
101 	if (folio_test_writeback(folio))
102 		*writeback = true;
103 
104 	bh = head;
105 	do {
106 		if (buffer_locked(bh))
107 			*writeback = true;
108 
109 		if (buffer_dirty(bh))
110 			*dirty = true;
111 
112 		bh = bh->b_this_page;
113 	} while (bh != head);
114 }
115 
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
__wait_on_buffer(struct buffer_head * bh)121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126 
buffer_io_error(struct buffer_head * bh,char * msg)127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129 	if (!test_bit(BH_Quiet, &bh->b_state))
130 		printk_ratelimited(KERN_ERR
131 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
132 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134 
135 /*
136  * End-of-IO handler helper function which does not touch the bh after
137  * unlocking it.
138  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139  * a race there is benign: unlock_buffer() only use the bh's address for
140  * hashing after unlocking the buffer, so it doesn't actually touch the bh
141  * itself.
142  */
__end_buffer_read_notouch(struct buffer_head * bh,int uptodate)143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145 	if (uptodate) {
146 		set_buffer_uptodate(bh);
147 	} else {
148 		/* This happens, due to failed read-ahead attempts. */
149 		clear_buffer_uptodate(bh);
150 	}
151 	unlock_buffer(bh);
152 }
153 
154 /*
155  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
156  * unlock the buffer.
157  */
end_buffer_read_sync(struct buffer_head * bh,int uptodate)158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160 	__end_buffer_read_notouch(bh, uptodate);
161 	put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164 
end_buffer_write_sync(struct buffer_head * bh,int uptodate)165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167 	if (uptodate) {
168 		set_buffer_uptodate(bh);
169 	} else {
170 		buffer_io_error(bh, ", lost sync page write");
171 		mark_buffer_write_io_error(bh);
172 		clear_buffer_uptodate(bh);
173 	}
174 	unlock_buffer(bh);
175 	put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178 
179 static struct buffer_head *
__find_get_block_slow(struct block_device * bdev,sector_t block,bool atomic)180 __find_get_block_slow(struct block_device *bdev, sector_t block, bool atomic)
181 {
182 	struct address_space *bd_mapping = bdev->bd_mapping;
183 	const int blkbits = bd_mapping->host->i_blkbits;
184 	struct buffer_head *ret = NULL;
185 	pgoff_t index;
186 	struct buffer_head *bh;
187 	struct buffer_head *head;
188 	struct folio *folio;
189 	int all_mapped = 1;
190 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
191 
192 	index = ((loff_t)block << blkbits) / PAGE_SIZE;
193 	folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
194 	if (IS_ERR(folio))
195 		goto out;
196 
197 	/*
198 	 * Folio lock protects the buffers. Callers that cannot block
199 	 * will fallback to serializing vs try_to_free_buffers() via
200 	 * the i_private_lock.
201 	 */
202 	if (atomic)
203 		spin_lock(&bd_mapping->i_private_lock);
204 	else
205 		folio_lock(folio);
206 
207 	head = folio_buffers(folio);
208 	if (!head)
209 		goto out_unlock;
210 	/*
211 	 * Upon a noref migration, the folio lock serializes here;
212 	 * otherwise bail.
213 	 */
214 	if (test_bit_acquire(BH_Migrate, &head->b_state)) {
215 		WARN_ON(!atomic);
216 		goto out_unlock;
217 	}
218 
219 	bh = head;
220 	do {
221 		if (!buffer_mapped(bh))
222 			all_mapped = 0;
223 		else if (bh->b_blocknr == block) {
224 			ret = bh;
225 			get_bh(bh);
226 			goto out_unlock;
227 		}
228 		bh = bh->b_this_page;
229 	} while (bh != head);
230 
231 	/* we might be here because some of the buffers on this page are
232 	 * not mapped.  This is due to various races between
233 	 * file io on the block device and getblk.  It gets dealt with
234 	 * elsewhere, don't buffer_error if we had some unmapped buffers
235 	 */
236 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
237 	if (all_mapped && __ratelimit(&last_warned)) {
238 		printk("__find_get_block_slow() failed. block=%llu, "
239 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
240 		       "device %pg blocksize: %d\n",
241 		       (unsigned long long)block,
242 		       (unsigned long long)bh->b_blocknr,
243 		       bh->b_state, bh->b_size, bdev,
244 		       1 << blkbits);
245 	}
246 out_unlock:
247 	if (atomic)
248 		spin_unlock(&bd_mapping->i_private_lock);
249 	else
250 		folio_unlock(folio);
251 	folio_put(folio);
252 out:
253 	return ret;
254 }
255 
end_buffer_async_read(struct buffer_head * bh,int uptodate)256 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
257 {
258 	unsigned long flags;
259 	struct buffer_head *first;
260 	struct buffer_head *tmp;
261 	struct folio *folio;
262 	int folio_uptodate = 1;
263 
264 	BUG_ON(!buffer_async_read(bh));
265 
266 	folio = bh->b_folio;
267 	if (uptodate) {
268 		set_buffer_uptodate(bh);
269 	} else {
270 		clear_buffer_uptodate(bh);
271 		buffer_io_error(bh, ", async page read");
272 	}
273 
274 	/*
275 	 * Be _very_ careful from here on. Bad things can happen if
276 	 * two buffer heads end IO at almost the same time and both
277 	 * decide that the page is now completely done.
278 	 */
279 	first = folio_buffers(folio);
280 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
281 	clear_buffer_async_read(bh);
282 	unlock_buffer(bh);
283 	tmp = bh;
284 	do {
285 		if (!buffer_uptodate(tmp))
286 			folio_uptodate = 0;
287 		if (buffer_async_read(tmp)) {
288 			BUG_ON(!buffer_locked(tmp));
289 			goto still_busy;
290 		}
291 		tmp = tmp->b_this_page;
292 	} while (tmp != bh);
293 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
294 
295 	folio_end_read(folio, folio_uptodate);
296 	return;
297 
298 still_busy:
299 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
300 }
301 
302 struct postprocess_bh_ctx {
303 	struct work_struct work;
304 	struct buffer_head *bh;
305 };
306 
verify_bh(struct work_struct * work)307 static void verify_bh(struct work_struct *work)
308 {
309 	struct postprocess_bh_ctx *ctx =
310 		container_of(work, struct postprocess_bh_ctx, work);
311 	struct buffer_head *bh = ctx->bh;
312 	bool valid;
313 
314 	valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
315 	end_buffer_async_read(bh, valid);
316 	kfree(ctx);
317 }
318 
need_fsverity(struct buffer_head * bh)319 static bool need_fsverity(struct buffer_head *bh)
320 {
321 	struct folio *folio = bh->b_folio;
322 	struct inode *inode = folio->mapping->host;
323 
324 	return fsverity_active(inode) &&
325 		/* needed by ext4 */
326 		folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
327 }
328 
decrypt_bh(struct work_struct * work)329 static void decrypt_bh(struct work_struct *work)
330 {
331 	struct postprocess_bh_ctx *ctx =
332 		container_of(work, struct postprocess_bh_ctx, work);
333 	struct buffer_head *bh = ctx->bh;
334 	int err;
335 
336 	err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
337 					       bh_offset(bh));
338 	if (err == 0 && need_fsverity(bh)) {
339 		/*
340 		 * We use different work queues for decryption and for verity
341 		 * because verity may require reading metadata pages that need
342 		 * decryption, and we shouldn't recurse to the same workqueue.
343 		 */
344 		INIT_WORK(&ctx->work, verify_bh);
345 		fsverity_enqueue_verify_work(&ctx->work);
346 		return;
347 	}
348 	end_buffer_async_read(bh, err == 0);
349 	kfree(ctx);
350 }
351 
352 /*
353  * I/O completion handler for block_read_full_folio() - pages
354  * which come unlocked at the end of I/O.
355  */
end_buffer_async_read_io(struct buffer_head * bh,int uptodate)356 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
357 {
358 	struct inode *inode = bh->b_folio->mapping->host;
359 	bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
360 	bool verify = need_fsverity(bh);
361 
362 	/* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
363 	if (uptodate && (decrypt || verify)) {
364 		struct postprocess_bh_ctx *ctx =
365 			kmalloc(sizeof(*ctx), GFP_ATOMIC);
366 
367 		if (ctx) {
368 			ctx->bh = bh;
369 			if (decrypt) {
370 				INIT_WORK(&ctx->work, decrypt_bh);
371 				fscrypt_enqueue_decrypt_work(&ctx->work);
372 			} else {
373 				INIT_WORK(&ctx->work, verify_bh);
374 				fsverity_enqueue_verify_work(&ctx->work);
375 			}
376 			return;
377 		}
378 		uptodate = 0;
379 	}
380 	end_buffer_async_read(bh, uptodate);
381 }
382 
383 /*
384  * Completion handler for block_write_full_folio() - folios which are unlocked
385  * during I/O, and which have the writeback flag cleared upon I/O completion.
386  */
end_buffer_async_write(struct buffer_head * bh,int uptodate)387 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
388 {
389 	unsigned long flags;
390 	struct buffer_head *first;
391 	struct buffer_head *tmp;
392 	struct folio *folio;
393 
394 	BUG_ON(!buffer_async_write(bh));
395 
396 	folio = bh->b_folio;
397 	if (uptodate) {
398 		set_buffer_uptodate(bh);
399 	} else {
400 		buffer_io_error(bh, ", lost async page write");
401 		mark_buffer_write_io_error(bh);
402 		clear_buffer_uptodate(bh);
403 	}
404 
405 	first = folio_buffers(folio);
406 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
407 
408 	clear_buffer_async_write(bh);
409 	unlock_buffer(bh);
410 	tmp = bh->b_this_page;
411 	while (tmp != bh) {
412 		if (buffer_async_write(tmp)) {
413 			BUG_ON(!buffer_locked(tmp));
414 			goto still_busy;
415 		}
416 		tmp = tmp->b_this_page;
417 	}
418 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
419 	folio_end_writeback(folio);
420 	return;
421 
422 still_busy:
423 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
424 }
425 
426 /*
427  * If a page's buffers are under async readin (end_buffer_async_read
428  * completion) then there is a possibility that another thread of
429  * control could lock one of the buffers after it has completed
430  * but while some of the other buffers have not completed.  This
431  * locked buffer would confuse end_buffer_async_read() into not unlocking
432  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
433  * that this buffer is not under async I/O.
434  *
435  * The page comes unlocked when it has no locked buffer_async buffers
436  * left.
437  *
438  * PageLocked prevents anyone starting new async I/O reads any of
439  * the buffers.
440  *
441  * PageWriteback is used to prevent simultaneous writeout of the same
442  * page.
443  *
444  * PageLocked prevents anyone from starting writeback of a page which is
445  * under read I/O (PageWriteback is only ever set against a locked page).
446  */
mark_buffer_async_read(struct buffer_head * bh)447 static void mark_buffer_async_read(struct buffer_head *bh)
448 {
449 	bh->b_end_io = end_buffer_async_read_io;
450 	set_buffer_async_read(bh);
451 }
452 
mark_buffer_async_write_endio(struct buffer_head * bh,bh_end_io_t * handler)453 static void mark_buffer_async_write_endio(struct buffer_head *bh,
454 					  bh_end_io_t *handler)
455 {
456 	bh->b_end_io = handler;
457 	set_buffer_async_write(bh);
458 }
459 
mark_buffer_async_write(struct buffer_head * bh)460 void mark_buffer_async_write(struct buffer_head *bh)
461 {
462 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
463 }
464 EXPORT_SYMBOL(mark_buffer_async_write);
465 
466 
467 /*
468  * fs/buffer.c contains helper functions for buffer-backed address space's
469  * fsync functions.  A common requirement for buffer-based filesystems is
470  * that certain data from the backing blockdev needs to be written out for
471  * a successful fsync().  For example, ext2 indirect blocks need to be
472  * written back and waited upon before fsync() returns.
473  *
474  * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(),
475  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
476  * management of a list of dependent buffers at ->i_mapping->i_private_list.
477  *
478  * Locking is a little subtle: try_to_free_buffers() will remove buffers
479  * from their controlling inode's queue when they are being freed.  But
480  * try_to_free_buffers() will be operating against the *blockdev* mapping
481  * at the time, not against the S_ISREG file which depends on those buffers.
482  * So the locking for i_private_list is via the i_private_lock in the address_space
483  * which backs the buffers.  Which is different from the address_space
484  * against which the buffers are listed.  So for a particular address_space,
485  * mapping->i_private_lock does *not* protect mapping->i_private_list!  In fact,
486  * mapping->i_private_list will always be protected by the backing blockdev's
487  * ->i_private_lock.
488  *
489  * Which introduces a requirement: all buffers on an address_space's
490  * ->i_private_list must be from the same address_space: the blockdev's.
491  *
492  * address_spaces which do not place buffers at ->i_private_list via these
493  * utility functions are free to use i_private_lock and i_private_list for
494  * whatever they want.  The only requirement is that list_empty(i_private_list)
495  * be true at clear_inode() time.
496  *
497  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
498  * filesystems should do that.  invalidate_inode_buffers() should just go
499  * BUG_ON(!list_empty).
500  *
501  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
502  * take an address_space, not an inode.  And it should be called
503  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
504  * queued up.
505  *
506  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
507  * list if it is already on a list.  Because if the buffer is on a list,
508  * it *must* already be on the right one.  If not, the filesystem is being
509  * silly.  This will save a ton of locking.  But first we have to ensure
510  * that buffers are taken *off* the old inode's list when they are freed
511  * (presumably in truncate).  That requires careful auditing of all
512  * filesystems (do it inside bforget()).  It could also be done by bringing
513  * b_inode back.
514  */
515 
516 /*
517  * The buffer's backing address_space's i_private_lock must be held
518  */
__remove_assoc_queue(struct buffer_head * bh)519 static void __remove_assoc_queue(struct buffer_head *bh)
520 {
521 	list_del_init(&bh->b_assoc_buffers);
522 	WARN_ON(!bh->b_assoc_map);
523 	bh->b_assoc_map = NULL;
524 }
525 
inode_has_buffers(struct inode * inode)526 int inode_has_buffers(struct inode *inode)
527 {
528 	return !list_empty(&inode->i_data.i_private_list);
529 }
530 
531 /*
532  * osync is designed to support O_SYNC io.  It waits synchronously for
533  * all already-submitted IO to complete, but does not queue any new
534  * writes to the disk.
535  *
536  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
537  * as you dirty the buffers, and then use osync_inode_buffers to wait for
538  * completion.  Any other dirty buffers which are not yet queued for
539  * write will not be flushed to disk by the osync.
540  */
osync_buffers_list(spinlock_t * lock,struct list_head * list)541 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
542 {
543 	struct buffer_head *bh;
544 	struct list_head *p;
545 	int err = 0;
546 
547 	spin_lock(lock);
548 repeat:
549 	list_for_each_prev(p, list) {
550 		bh = BH_ENTRY(p);
551 		if (buffer_locked(bh)) {
552 			get_bh(bh);
553 			spin_unlock(lock);
554 			wait_on_buffer(bh);
555 			if (!buffer_uptodate(bh))
556 				err = -EIO;
557 			brelse(bh);
558 			spin_lock(lock);
559 			goto repeat;
560 		}
561 	}
562 	spin_unlock(lock);
563 	return err;
564 }
565 
566 /**
567  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
568  * @mapping: the mapping which wants those buffers written
569  *
570  * Starts I/O against the buffers at mapping->i_private_list, and waits upon
571  * that I/O.
572  *
573  * Basically, this is a convenience function for fsync().
574  * @mapping is a file or directory which needs those buffers to be written for
575  * a successful fsync().
576  */
sync_mapping_buffers(struct address_space * mapping)577 int sync_mapping_buffers(struct address_space *mapping)
578 {
579 	struct address_space *buffer_mapping = mapping->i_private_data;
580 
581 	if (buffer_mapping == NULL || list_empty(&mapping->i_private_list))
582 		return 0;
583 
584 	return fsync_buffers_list(&buffer_mapping->i_private_lock,
585 					&mapping->i_private_list);
586 }
587 EXPORT_SYMBOL(sync_mapping_buffers);
588 
589 /**
590  * generic_buffers_fsync_noflush - generic buffer fsync implementation
591  * for simple filesystems with no inode lock
592  *
593  * @file:	file to synchronize
594  * @start:	start offset in bytes
595  * @end:	end offset in bytes (inclusive)
596  * @datasync:	only synchronize essential metadata if true
597  *
598  * This is a generic implementation of the fsync method for simple
599  * filesystems which track all non-inode metadata in the buffers list
600  * hanging off the address_space structure.
601  */
generic_buffers_fsync_noflush(struct file * file,loff_t start,loff_t end,bool datasync)602 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
603 				  bool datasync)
604 {
605 	struct inode *inode = file->f_mapping->host;
606 	int err;
607 	int ret;
608 
609 	err = file_write_and_wait_range(file, start, end);
610 	if (err)
611 		return err;
612 
613 	ret = sync_mapping_buffers(inode->i_mapping);
614 	if (!(inode->i_state & I_DIRTY_ALL))
615 		goto out;
616 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
617 		goto out;
618 
619 	err = sync_inode_metadata(inode, 1);
620 	if (ret == 0)
621 		ret = err;
622 
623 out:
624 	/* check and advance again to catch errors after syncing out buffers */
625 	err = file_check_and_advance_wb_err(file);
626 	if (ret == 0)
627 		ret = err;
628 	return ret;
629 }
630 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
631 
632 /**
633  * generic_buffers_fsync - generic buffer fsync implementation
634  * for simple filesystems with no inode lock
635  *
636  * @file:	file to synchronize
637  * @start:	start offset in bytes
638  * @end:	end offset in bytes (inclusive)
639  * @datasync:	only synchronize essential metadata if true
640  *
641  * This is a generic implementation of the fsync method for simple
642  * filesystems which track all non-inode metadata in the buffers list
643  * hanging off the address_space structure. This also makes sure that
644  * a device cache flush operation is called at the end.
645  */
generic_buffers_fsync(struct file * file,loff_t start,loff_t end,bool datasync)646 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
647 			  bool datasync)
648 {
649 	struct inode *inode = file->f_mapping->host;
650 	int ret;
651 
652 	ret = generic_buffers_fsync_noflush(file, start, end, datasync);
653 	if (!ret)
654 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
655 	return ret;
656 }
657 EXPORT_SYMBOL(generic_buffers_fsync);
658 
659 /*
660  * Called when we've recently written block `bblock', and it is known that
661  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
662  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
663  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
664  */
write_boundary_block(struct block_device * bdev,sector_t bblock,unsigned blocksize)665 void write_boundary_block(struct block_device *bdev,
666 			sector_t bblock, unsigned blocksize)
667 {
668 	struct buffer_head *bh;
669 
670 	bh = __find_get_block_nonatomic(bdev, bblock + 1, blocksize);
671 	if (bh) {
672 		if (buffer_dirty(bh))
673 			write_dirty_buffer(bh, 0);
674 		put_bh(bh);
675 	}
676 }
677 
mark_buffer_dirty_inode(struct buffer_head * bh,struct inode * inode)678 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
679 {
680 	struct address_space *mapping = inode->i_mapping;
681 	struct address_space *buffer_mapping = bh->b_folio->mapping;
682 
683 	mark_buffer_dirty(bh);
684 	if (!mapping->i_private_data) {
685 		mapping->i_private_data = buffer_mapping;
686 	} else {
687 		BUG_ON(mapping->i_private_data != buffer_mapping);
688 	}
689 	if (!bh->b_assoc_map) {
690 		spin_lock(&buffer_mapping->i_private_lock);
691 		list_move_tail(&bh->b_assoc_buffers,
692 				&mapping->i_private_list);
693 		bh->b_assoc_map = mapping;
694 		spin_unlock(&buffer_mapping->i_private_lock);
695 	}
696 }
697 EXPORT_SYMBOL(mark_buffer_dirty_inode);
698 
699 /**
700  * block_dirty_folio - Mark a folio as dirty.
701  * @mapping: The address space containing this folio.
702  * @folio: The folio to mark dirty.
703  *
704  * Filesystems which use buffer_heads can use this function as their
705  * ->dirty_folio implementation.  Some filesystems need to do a little
706  * work before calling this function.  Filesystems which do not use
707  * buffer_heads should call filemap_dirty_folio() instead.
708  *
709  * If the folio has buffers, the uptodate buffers are set dirty, to
710  * preserve dirty-state coherency between the folio and the buffers.
711  * Buffers added to a dirty folio are created dirty.
712  *
713  * The buffers are dirtied before the folio is dirtied.  There's a small
714  * race window in which writeback may see the folio cleanness but not the
715  * buffer dirtiness.  That's fine.  If this code were to set the folio
716  * dirty before the buffers, writeback could clear the folio dirty flag,
717  * see a bunch of clean buffers and we'd end up with dirty buffers/clean
718  * folio on the dirty folio list.
719  *
720  * We use i_private_lock to lock against try_to_free_buffers() while
721  * using the folio's buffer list.  This also prevents clean buffers
722  * being added to the folio after it was set dirty.
723  *
724  * Context: May only be called from process context.  Does not sleep.
725  * Caller must ensure that @folio cannot be truncated during this call,
726  * typically by holding the folio lock or having a page in the folio
727  * mapped and holding the page table lock.
728  *
729  * Return: True if the folio was dirtied; false if it was already dirtied.
730  */
block_dirty_folio(struct address_space * mapping,struct folio * folio)731 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
732 {
733 	struct buffer_head *head;
734 	bool newly_dirty;
735 
736 	spin_lock(&mapping->i_private_lock);
737 	head = folio_buffers(folio);
738 	if (head) {
739 		struct buffer_head *bh = head;
740 
741 		do {
742 			set_buffer_dirty(bh);
743 			bh = bh->b_this_page;
744 		} while (bh != head);
745 	}
746 	/*
747 	 * Lock out page's memcg migration to keep PageDirty
748 	 * synchronized with per-memcg dirty page counters.
749 	 */
750 	newly_dirty = !folio_test_set_dirty(folio);
751 	spin_unlock(&mapping->i_private_lock);
752 
753 	if (newly_dirty)
754 		__folio_mark_dirty(folio, mapping, 1);
755 
756 	if (newly_dirty)
757 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
758 
759 	return newly_dirty;
760 }
761 EXPORT_SYMBOL(block_dirty_folio);
762 
763 /*
764  * Write out and wait upon a list of buffers.
765  *
766  * We have conflicting pressures: we want to make sure that all
767  * initially dirty buffers get waited on, but that any subsequently
768  * dirtied buffers don't.  After all, we don't want fsync to last
769  * forever if somebody is actively writing to the file.
770  *
771  * Do this in two main stages: first we copy dirty buffers to a
772  * temporary inode list, queueing the writes as we go.  Then we clean
773  * up, waiting for those writes to complete.
774  *
775  * During this second stage, any subsequent updates to the file may end
776  * up refiling the buffer on the original inode's dirty list again, so
777  * there is a chance we will end up with a buffer queued for write but
778  * not yet completed on that list.  So, as a final cleanup we go through
779  * the osync code to catch these locked, dirty buffers without requeuing
780  * any newly dirty buffers for write.
781  */
fsync_buffers_list(spinlock_t * lock,struct list_head * list)782 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
783 {
784 	struct buffer_head *bh;
785 	struct address_space *mapping;
786 	int err = 0, err2;
787 	struct blk_plug plug;
788 	LIST_HEAD(tmp);
789 
790 	blk_start_plug(&plug);
791 
792 	spin_lock(lock);
793 	while (!list_empty(list)) {
794 		bh = BH_ENTRY(list->next);
795 		mapping = bh->b_assoc_map;
796 		__remove_assoc_queue(bh);
797 		/* Avoid race with mark_buffer_dirty_inode() which does
798 		 * a lockless check and we rely on seeing the dirty bit */
799 		smp_mb();
800 		if (buffer_dirty(bh) || buffer_locked(bh)) {
801 			list_add(&bh->b_assoc_buffers, &tmp);
802 			bh->b_assoc_map = mapping;
803 			if (buffer_dirty(bh)) {
804 				get_bh(bh);
805 				spin_unlock(lock);
806 				/*
807 				 * Ensure any pending I/O completes so that
808 				 * write_dirty_buffer() actually writes the
809 				 * current contents - it is a noop if I/O is
810 				 * still in flight on potentially older
811 				 * contents.
812 				 */
813 				write_dirty_buffer(bh, REQ_SYNC);
814 
815 				/*
816 				 * Kick off IO for the previous mapping. Note
817 				 * that we will not run the very last mapping,
818 				 * wait_on_buffer() will do that for us
819 				 * through sync_buffer().
820 				 */
821 				brelse(bh);
822 				spin_lock(lock);
823 			}
824 		}
825 	}
826 
827 	spin_unlock(lock);
828 	blk_finish_plug(&plug);
829 	spin_lock(lock);
830 
831 	while (!list_empty(&tmp)) {
832 		bh = BH_ENTRY(tmp.prev);
833 		get_bh(bh);
834 		mapping = bh->b_assoc_map;
835 		__remove_assoc_queue(bh);
836 		/* Avoid race with mark_buffer_dirty_inode() which does
837 		 * a lockless check and we rely on seeing the dirty bit */
838 		smp_mb();
839 		if (buffer_dirty(bh)) {
840 			list_add(&bh->b_assoc_buffers,
841 				 &mapping->i_private_list);
842 			bh->b_assoc_map = mapping;
843 		}
844 		spin_unlock(lock);
845 		wait_on_buffer(bh);
846 		if (!buffer_uptodate(bh))
847 			err = -EIO;
848 		brelse(bh);
849 		spin_lock(lock);
850 	}
851 
852 	spin_unlock(lock);
853 	err2 = osync_buffers_list(lock, list);
854 	if (err)
855 		return err;
856 	else
857 		return err2;
858 }
859 
860 /*
861  * Invalidate any and all dirty buffers on a given inode.  We are
862  * probably unmounting the fs, but that doesn't mean we have already
863  * done a sync().  Just drop the buffers from the inode list.
864  *
865  * NOTE: we take the inode's blockdev's mapping's i_private_lock.  Which
866  * assumes that all the buffers are against the blockdev.
867  */
invalidate_inode_buffers(struct inode * inode)868 void invalidate_inode_buffers(struct inode *inode)
869 {
870 	if (inode_has_buffers(inode)) {
871 		struct address_space *mapping = &inode->i_data;
872 		struct list_head *list = &mapping->i_private_list;
873 		struct address_space *buffer_mapping = mapping->i_private_data;
874 
875 		spin_lock(&buffer_mapping->i_private_lock);
876 		while (!list_empty(list))
877 			__remove_assoc_queue(BH_ENTRY(list->next));
878 		spin_unlock(&buffer_mapping->i_private_lock);
879 	}
880 }
881 EXPORT_SYMBOL(invalidate_inode_buffers);
882 
883 /*
884  * Remove any clean buffers from the inode's buffer list.  This is called
885  * when we're trying to free the inode itself.  Those buffers can pin it.
886  *
887  * Returns true if all buffers were removed.
888  */
remove_inode_buffers(struct inode * inode)889 int remove_inode_buffers(struct inode *inode)
890 {
891 	int ret = 1;
892 
893 	if (inode_has_buffers(inode)) {
894 		struct address_space *mapping = &inode->i_data;
895 		struct list_head *list = &mapping->i_private_list;
896 		struct address_space *buffer_mapping = mapping->i_private_data;
897 
898 		spin_lock(&buffer_mapping->i_private_lock);
899 		while (!list_empty(list)) {
900 			struct buffer_head *bh = BH_ENTRY(list->next);
901 			if (buffer_dirty(bh)) {
902 				ret = 0;
903 				break;
904 			}
905 			__remove_assoc_queue(bh);
906 		}
907 		spin_unlock(&buffer_mapping->i_private_lock);
908 	}
909 	return ret;
910 }
911 
912 /*
913  * Create the appropriate buffers when given a folio for data area and
914  * the size of each buffer.. Use the bh->b_this_page linked list to
915  * follow the buffers created.  Return NULL if unable to create more
916  * buffers.
917  *
918  * The retry flag is used to differentiate async IO (paging, swapping)
919  * which may not fail from ordinary buffer allocations.
920  */
folio_alloc_buffers(struct folio * folio,unsigned long size,gfp_t gfp)921 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
922 					gfp_t gfp)
923 {
924 	struct buffer_head *bh, *head;
925 	long offset;
926 	struct mem_cgroup *memcg, *old_memcg;
927 
928 	/* The folio lock pins the memcg */
929 	memcg = folio_memcg(folio);
930 	old_memcg = set_active_memcg(memcg);
931 
932 	head = NULL;
933 	offset = folio_size(folio);
934 	while ((offset -= size) >= 0) {
935 		bh = alloc_buffer_head(gfp);
936 		if (!bh)
937 			goto no_grow;
938 
939 		bh->b_this_page = head;
940 		bh->b_blocknr = -1;
941 		head = bh;
942 
943 		bh->b_size = size;
944 
945 		/* Link the buffer to its folio */
946 		folio_set_bh(bh, folio, offset);
947 	}
948 out:
949 	set_active_memcg(old_memcg);
950 	return head;
951 /*
952  * In case anything failed, we just free everything we got.
953  */
954 no_grow:
955 	if (head) {
956 		do {
957 			bh = head;
958 			head = head->b_this_page;
959 			free_buffer_head(bh);
960 		} while (head);
961 	}
962 
963 	goto out;
964 }
965 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
966 
alloc_page_buffers(struct page * page,unsigned long size)967 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size)
968 {
969 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
970 
971 	return folio_alloc_buffers(page_folio(page), size, gfp);
972 }
973 EXPORT_SYMBOL_GPL(alloc_page_buffers);
974 
link_dev_buffers(struct folio * folio,struct buffer_head * head)975 static inline void link_dev_buffers(struct folio *folio,
976 		struct buffer_head *head)
977 {
978 	struct buffer_head *bh, *tail;
979 
980 	bh = head;
981 	do {
982 		tail = bh;
983 		bh = bh->b_this_page;
984 	} while (bh);
985 	tail->b_this_page = head;
986 	folio_attach_private(folio, head);
987 }
988 
blkdev_max_block(struct block_device * bdev,unsigned int size)989 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
990 {
991 	sector_t retval = ~((sector_t)0);
992 	loff_t sz = bdev_nr_bytes(bdev);
993 
994 	if (sz) {
995 		unsigned int sizebits = blksize_bits(size);
996 		retval = (sz >> sizebits);
997 	}
998 	return retval;
999 }
1000 
1001 /*
1002  * Initialise the state of a blockdev folio's buffers.
1003  */
folio_init_buffers(struct folio * folio,struct block_device * bdev,unsigned size)1004 static sector_t folio_init_buffers(struct folio *folio,
1005 		struct block_device *bdev, unsigned size)
1006 {
1007 	struct buffer_head *head = folio_buffers(folio);
1008 	struct buffer_head *bh = head;
1009 	bool uptodate = folio_test_uptodate(folio);
1010 	sector_t block = div_u64(folio_pos(folio), size);
1011 	sector_t end_block = blkdev_max_block(bdev, size);
1012 
1013 	do {
1014 		if (!buffer_mapped(bh)) {
1015 			bh->b_end_io = NULL;
1016 			bh->b_private = NULL;
1017 			bh->b_bdev = bdev;
1018 			bh->b_blocknr = block;
1019 			if (uptodate)
1020 				set_buffer_uptodate(bh);
1021 			if (block < end_block)
1022 				set_buffer_mapped(bh);
1023 		}
1024 		block++;
1025 		bh = bh->b_this_page;
1026 	} while (bh != head);
1027 
1028 	/*
1029 	 * Caller needs to validate requested block against end of device.
1030 	 */
1031 	return end_block;
1032 }
1033 
1034 /*
1035  * Create the page-cache folio that contains the requested block.
1036  *
1037  * This is used purely for blockdev mappings.
1038  *
1039  * Returns false if we have a failure which cannot be cured by retrying
1040  * without sleeping.  Returns true if we succeeded, or the caller should retry.
1041  */
grow_dev_folio(struct block_device * bdev,sector_t block,pgoff_t index,unsigned size,gfp_t gfp)1042 static bool grow_dev_folio(struct block_device *bdev, sector_t block,
1043 		pgoff_t index, unsigned size, gfp_t gfp)
1044 {
1045 	struct address_space *mapping = bdev->bd_mapping;
1046 	struct folio *folio;
1047 	struct buffer_head *bh;
1048 	sector_t end_block = 0;
1049 
1050 	folio = __filemap_get_folio(mapping, index,
1051 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1052 	if (IS_ERR(folio))
1053 		return false;
1054 
1055 	bh = folio_buffers(folio);
1056 	if (bh) {
1057 		if (bh->b_size == size) {
1058 			end_block = folio_init_buffers(folio, bdev, size);
1059 			goto unlock;
1060 		}
1061 
1062 		/*
1063 		 * Retrying may succeed; for example the folio may finish
1064 		 * writeback, or buffers may be cleaned.  This should not
1065 		 * happen very often; maybe we have old buffers attached to
1066 		 * this blockdev's page cache and we're trying to change
1067 		 * the block size?
1068 		 */
1069 		if (!try_to_free_buffers(folio)) {
1070 			end_block = ~0ULL;
1071 			goto unlock;
1072 		}
1073 	}
1074 
1075 	bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1076 	if (!bh)
1077 		goto unlock;
1078 
1079 	/*
1080 	 * Link the folio to the buffers and initialise them.  Take the
1081 	 * lock to be atomic wrt __find_get_block(), which does not
1082 	 * run under the folio lock.
1083 	 */
1084 	spin_lock(&mapping->i_private_lock);
1085 	link_dev_buffers(folio, bh);
1086 	end_block = folio_init_buffers(folio, bdev, size);
1087 	spin_unlock(&mapping->i_private_lock);
1088 unlock:
1089 	folio_unlock(folio);
1090 	folio_put(folio);
1091 	return block < end_block;
1092 }
1093 
1094 /*
1095  * Create buffers for the specified block device block's folio.  If
1096  * that folio was dirty, the buffers are set dirty also.  Returns false
1097  * if we've hit a permanent error.
1098  */
grow_buffers(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1099 static bool grow_buffers(struct block_device *bdev, sector_t block,
1100 		unsigned size, gfp_t gfp)
1101 {
1102 	loff_t pos;
1103 
1104 	/*
1105 	 * Check for a block which lies outside our maximum possible
1106 	 * pagecache index.
1107 	 */
1108 	if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) {
1109 		printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n",
1110 			__func__, (unsigned long long)block,
1111 			bdev);
1112 		return false;
1113 	}
1114 
1115 	/* Create a folio with the proper size buffers */
1116 	return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp);
1117 }
1118 
1119 static struct buffer_head *
__getblk_slow(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1120 __getblk_slow(struct block_device *bdev, sector_t block,
1121 	     unsigned size, gfp_t gfp)
1122 {
1123 	bool blocking = gfpflags_allow_blocking(gfp);
1124 
1125 	if (WARN_ON_ONCE(!IS_ALIGNED(size, bdev_logical_block_size(bdev)))) {
1126 		printk(KERN_ERR "getblk(): block size %d not aligned to logical block size %d\n",
1127 		       size, bdev_logical_block_size(bdev));
1128 		return NULL;
1129 	}
1130 
1131 	for (;;) {
1132 		struct buffer_head *bh;
1133 
1134 		if (!grow_buffers(bdev, block, size, gfp))
1135 			return NULL;
1136 
1137 		if (blocking)
1138 			bh = __find_get_block_nonatomic(bdev, block, size);
1139 		else
1140 			bh = __find_get_block(bdev, block, size);
1141 		if (bh)
1142 			return bh;
1143 	}
1144 }
1145 
1146 /*
1147  * The relationship between dirty buffers and dirty pages:
1148  *
1149  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1150  * the page is tagged dirty in the page cache.
1151  *
1152  * At all times, the dirtiness of the buffers represents the dirtiness of
1153  * subsections of the page.  If the page has buffers, the page dirty bit is
1154  * merely a hint about the true dirty state.
1155  *
1156  * When a page is set dirty in its entirety, all its buffers are marked dirty
1157  * (if the page has buffers).
1158  *
1159  * When a buffer is marked dirty, its page is dirtied, but the page's other
1160  * buffers are not.
1161  *
1162  * Also.  When blockdev buffers are explicitly read with bread(), they
1163  * individually become uptodate.  But their backing page remains not
1164  * uptodate - even if all of its buffers are uptodate.  A subsequent
1165  * block_read_full_folio() against that folio will discover all the uptodate
1166  * buffers, will set the folio uptodate and will perform no I/O.
1167  */
1168 
1169 /**
1170  * mark_buffer_dirty - mark a buffer_head as needing writeout
1171  * @bh: the buffer_head to mark dirty
1172  *
1173  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1174  * its backing page dirty, then tag the page as dirty in the page cache
1175  * and then attach the address_space's inode to its superblock's dirty
1176  * inode list.
1177  *
1178  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->i_private_lock,
1179  * i_pages lock and mapping->host->i_lock.
1180  */
mark_buffer_dirty(struct buffer_head * bh)1181 void mark_buffer_dirty(struct buffer_head *bh)
1182 {
1183 	WARN_ON_ONCE(!buffer_uptodate(bh));
1184 
1185 	trace_block_dirty_buffer(bh);
1186 
1187 	/*
1188 	 * Very *carefully* optimize the it-is-already-dirty case.
1189 	 *
1190 	 * Don't let the final "is it dirty" escape to before we
1191 	 * perhaps modified the buffer.
1192 	 */
1193 	if (buffer_dirty(bh)) {
1194 		smp_mb();
1195 		if (buffer_dirty(bh))
1196 			return;
1197 	}
1198 
1199 	if (!test_set_buffer_dirty(bh)) {
1200 		struct folio *folio = bh->b_folio;
1201 		struct address_space *mapping = NULL;
1202 
1203 		if (!folio_test_set_dirty(folio)) {
1204 			mapping = folio->mapping;
1205 			if (mapping)
1206 				__folio_mark_dirty(folio, mapping, 0);
1207 		}
1208 		if (mapping)
1209 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1210 	}
1211 }
1212 EXPORT_SYMBOL(mark_buffer_dirty);
1213 
mark_buffer_write_io_error(struct buffer_head * bh)1214 void mark_buffer_write_io_error(struct buffer_head *bh)
1215 {
1216 	set_buffer_write_io_error(bh);
1217 	/* FIXME: do we need to set this in both places? */
1218 	if (bh->b_folio && bh->b_folio->mapping)
1219 		mapping_set_error(bh->b_folio->mapping, -EIO);
1220 	if (bh->b_assoc_map)
1221 		mapping_set_error(bh->b_assoc_map, -EIO);
1222 }
1223 EXPORT_SYMBOL(mark_buffer_write_io_error);
1224 
1225 /**
1226  * __brelse - Release a buffer.
1227  * @bh: The buffer to release.
1228  *
1229  * This variant of brelse() can be called if @bh is guaranteed to not be NULL.
1230  */
__brelse(struct buffer_head * bh)1231 void __brelse(struct buffer_head *bh)
1232 {
1233 	if (atomic_read(&bh->b_count)) {
1234 		put_bh(bh);
1235 		return;
1236 	}
1237 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1238 }
1239 EXPORT_SYMBOL(__brelse);
1240 
1241 /**
1242  * __bforget - Discard any dirty data in a buffer.
1243  * @bh: The buffer to forget.
1244  *
1245  * This variant of bforget() can be called if @bh is guaranteed to not
1246  * be NULL.
1247  */
__bforget(struct buffer_head * bh)1248 void __bforget(struct buffer_head *bh)
1249 {
1250 	clear_buffer_dirty(bh);
1251 	if (bh->b_assoc_map) {
1252 		struct address_space *buffer_mapping = bh->b_folio->mapping;
1253 
1254 		spin_lock(&buffer_mapping->i_private_lock);
1255 		list_del_init(&bh->b_assoc_buffers);
1256 		bh->b_assoc_map = NULL;
1257 		spin_unlock(&buffer_mapping->i_private_lock);
1258 	}
1259 	__brelse(bh);
1260 }
1261 EXPORT_SYMBOL(__bforget);
1262 
__bread_slow(struct buffer_head * bh)1263 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1264 {
1265 	lock_buffer(bh);
1266 	if (buffer_uptodate(bh)) {
1267 		unlock_buffer(bh);
1268 		return bh;
1269 	} else {
1270 		get_bh(bh);
1271 		bh->b_end_io = end_buffer_read_sync;
1272 		submit_bh(REQ_OP_READ, bh);
1273 		wait_on_buffer(bh);
1274 		if (buffer_uptodate(bh))
1275 			return bh;
1276 	}
1277 	brelse(bh);
1278 	return NULL;
1279 }
1280 
1281 /*
1282  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1283  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1284  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1285  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1286  * CPU's LRUs at the same time.
1287  *
1288  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1289  * sb_find_get_block().
1290  *
1291  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1292  * a local interrupt disable for that.
1293  */
1294 
1295 #define BH_LRU_SIZE	16
1296 
1297 struct bh_lru {
1298 	struct buffer_head *bhs[BH_LRU_SIZE];
1299 };
1300 
1301 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1302 
1303 #ifdef CONFIG_SMP
1304 #define bh_lru_lock()	local_irq_disable()
1305 #define bh_lru_unlock()	local_irq_enable()
1306 #else
1307 #define bh_lru_lock()	preempt_disable()
1308 #define bh_lru_unlock()	preempt_enable()
1309 #endif
1310 
check_irqs_on(void)1311 static inline void check_irqs_on(void)
1312 {
1313 #ifdef irqs_disabled
1314 	BUG_ON(irqs_disabled());
1315 #endif
1316 }
1317 
1318 /*
1319  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1320  * inserted at the front, and the buffer_head at the back if any is evicted.
1321  * Or, if already in the LRU it is moved to the front.
1322  */
bh_lru_install(struct buffer_head * bh)1323 static void bh_lru_install(struct buffer_head *bh)
1324 {
1325 	struct buffer_head *evictee = bh;
1326 	struct bh_lru *b;
1327 	int i;
1328 
1329 	check_irqs_on();
1330 	bh_lru_lock();
1331 
1332 	/*
1333 	 * the refcount of buffer_head in bh_lru prevents dropping the
1334 	 * attached page(i.e., try_to_free_buffers) so it could cause
1335 	 * failing page migration.
1336 	 * Skip putting upcoming bh into bh_lru until migration is done.
1337 	 */
1338 	if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1339 		bh_lru_unlock();
1340 		return;
1341 	}
1342 
1343 	b = this_cpu_ptr(&bh_lrus);
1344 	for (i = 0; i < BH_LRU_SIZE; i++) {
1345 		swap(evictee, b->bhs[i]);
1346 		if (evictee == bh) {
1347 			bh_lru_unlock();
1348 			return;
1349 		}
1350 	}
1351 
1352 	get_bh(bh);
1353 	bh_lru_unlock();
1354 	brelse(evictee);
1355 }
1356 
1357 /*
1358  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1359  */
1360 static struct buffer_head *
lookup_bh_lru(struct block_device * bdev,sector_t block,unsigned size)1361 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1362 {
1363 	struct buffer_head *ret = NULL;
1364 	unsigned int i;
1365 
1366 	check_irqs_on();
1367 	bh_lru_lock();
1368 	if (cpu_is_isolated(smp_processor_id())) {
1369 		bh_lru_unlock();
1370 		return NULL;
1371 	}
1372 	for (i = 0; i < BH_LRU_SIZE; i++) {
1373 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1374 
1375 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1376 		    bh->b_size == size) {
1377 			if (i) {
1378 				while (i) {
1379 					__this_cpu_write(bh_lrus.bhs[i],
1380 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1381 					i--;
1382 				}
1383 				__this_cpu_write(bh_lrus.bhs[0], bh);
1384 			}
1385 			get_bh(bh);
1386 			ret = bh;
1387 			break;
1388 		}
1389 	}
1390 	bh_lru_unlock();
1391 	return ret;
1392 }
1393 
1394 /*
1395  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1396  * it in the LRU and mark it as accessed.  If it is not present then return
1397  * NULL. Atomic context callers may also return NULL if the buffer is being
1398  * migrated; similarly the page is not marked accessed either.
1399  */
1400 static struct buffer_head *
find_get_block_common(struct block_device * bdev,sector_t block,unsigned size,bool atomic)1401 find_get_block_common(struct block_device *bdev, sector_t block,
1402 			unsigned size, bool atomic)
1403 {
1404 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1405 
1406 	if (bh == NULL) {
1407 		/* __find_get_block_slow will mark the page accessed */
1408 		bh = __find_get_block_slow(bdev, block, atomic);
1409 		if (bh)
1410 			bh_lru_install(bh);
1411 	} else
1412 		touch_buffer(bh);
1413 
1414 	return bh;
1415 }
1416 
1417 struct buffer_head *
__find_get_block(struct block_device * bdev,sector_t block,unsigned size)1418 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1419 {
1420 	return find_get_block_common(bdev, block, size, true);
1421 }
1422 EXPORT_SYMBOL(__find_get_block);
1423 
1424 /* same as __find_get_block() but allows sleeping contexts */
1425 struct buffer_head *
__find_get_block_nonatomic(struct block_device * bdev,sector_t block,unsigned size)1426 __find_get_block_nonatomic(struct block_device *bdev, sector_t block,
1427 			   unsigned size)
1428 {
1429 	return find_get_block_common(bdev, block, size, false);
1430 }
1431 EXPORT_SYMBOL(__find_get_block_nonatomic);
1432 
1433 /**
1434  * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1435  * @bdev: The block device.
1436  * @block: The block number.
1437  * @size: The size of buffer_heads for this @bdev.
1438  * @gfp: The memory allocation flags to use.
1439  *
1440  * The returned buffer head has its reference count incremented, but is
1441  * not locked.  The caller should call brelse() when it has finished
1442  * with the buffer.  The buffer may not be uptodate.  If needed, the
1443  * caller can bring it uptodate either by reading it or overwriting it.
1444  *
1445  * Return: The buffer head, or NULL if memory could not be allocated.
1446  */
bdev_getblk(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1447 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1448 		unsigned size, gfp_t gfp)
1449 {
1450 	struct buffer_head *bh;
1451 
1452 	if (gfpflags_allow_blocking(gfp))
1453 		bh = __find_get_block_nonatomic(bdev, block, size);
1454 	else
1455 		bh = __find_get_block(bdev, block, size);
1456 
1457 	might_alloc(gfp);
1458 	if (bh)
1459 		return bh;
1460 
1461 	return __getblk_slow(bdev, block, size, gfp);
1462 }
1463 EXPORT_SYMBOL(bdev_getblk);
1464 
1465 /*
1466  * Do async read-ahead on a buffer..
1467  */
__breadahead(struct block_device * bdev,sector_t block,unsigned size)1468 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1469 {
1470 	struct buffer_head *bh = bdev_getblk(bdev, block, size,
1471 			GFP_NOWAIT | __GFP_MOVABLE);
1472 
1473 	if (likely(bh)) {
1474 		bh_readahead(bh, REQ_RAHEAD);
1475 		brelse(bh);
1476 	}
1477 }
1478 EXPORT_SYMBOL(__breadahead);
1479 
1480 /**
1481  * __bread_gfp() - Read a block.
1482  * @bdev: The block device to read from.
1483  * @block: Block number in units of block size.
1484  * @size: The block size of this device in bytes.
1485  * @gfp: Not page allocation flags; see below.
1486  *
1487  * You are not expected to call this function.  You should use one of
1488  * sb_bread(), sb_bread_unmovable() or __bread().
1489  *
1490  * Read a specified block, and return the buffer head that refers to it.
1491  * If @gfp is 0, the memory will be allocated using the block device's
1492  * default GFP flags.  If @gfp is __GFP_MOVABLE, the memory may be
1493  * allocated from a movable area.  Do not pass in a complete set of
1494  * GFP flags.
1495  *
1496  * The returned buffer head has its refcount increased.  The caller should
1497  * call brelse() when it has finished with the buffer.
1498  *
1499  * Context: May sleep waiting for I/O.
1500  * Return: NULL if the block was unreadable.
1501  */
__bread_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1502 struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block,
1503 		unsigned size, gfp_t gfp)
1504 {
1505 	struct buffer_head *bh;
1506 
1507 	gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS);
1508 
1509 	/*
1510 	 * Prefer looping in the allocator rather than here, at least that
1511 	 * code knows what it's doing.
1512 	 */
1513 	gfp |= __GFP_NOFAIL;
1514 
1515 	bh = bdev_getblk(bdev, block, size, gfp);
1516 
1517 	if (likely(bh) && !buffer_uptodate(bh))
1518 		bh = __bread_slow(bh);
1519 	return bh;
1520 }
1521 EXPORT_SYMBOL(__bread_gfp);
1522 
__invalidate_bh_lrus(struct bh_lru * b)1523 static void __invalidate_bh_lrus(struct bh_lru *b)
1524 {
1525 	int i;
1526 
1527 	for (i = 0; i < BH_LRU_SIZE; i++) {
1528 		brelse(b->bhs[i]);
1529 		b->bhs[i] = NULL;
1530 	}
1531 }
1532 /*
1533  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1534  * This doesn't race because it runs in each cpu either in irq
1535  * or with preempt disabled.
1536  */
invalidate_bh_lru(void * arg)1537 static void invalidate_bh_lru(void *arg)
1538 {
1539 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1540 
1541 	__invalidate_bh_lrus(b);
1542 	put_cpu_var(bh_lrus);
1543 }
1544 
has_bh_in_lru(int cpu,void * dummy)1545 bool has_bh_in_lru(int cpu, void *dummy)
1546 {
1547 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1548 	int i;
1549 
1550 	for (i = 0; i < BH_LRU_SIZE; i++) {
1551 		if (b->bhs[i])
1552 			return true;
1553 	}
1554 
1555 	return false;
1556 }
1557 
invalidate_bh_lrus(void)1558 void invalidate_bh_lrus(void)
1559 {
1560 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1561 }
1562 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1563 
1564 /*
1565  * It's called from workqueue context so we need a bh_lru_lock to close
1566  * the race with preemption/irq.
1567  */
invalidate_bh_lrus_cpu(void)1568 void invalidate_bh_lrus_cpu(void)
1569 {
1570 	struct bh_lru *b;
1571 
1572 	bh_lru_lock();
1573 	b = this_cpu_ptr(&bh_lrus);
1574 	__invalidate_bh_lrus(b);
1575 	bh_lru_unlock();
1576 }
1577 
folio_set_bh(struct buffer_head * bh,struct folio * folio,unsigned long offset)1578 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1579 		  unsigned long offset)
1580 {
1581 	bh->b_folio = folio;
1582 	BUG_ON(offset >= folio_size(folio));
1583 	if (folio_test_highmem(folio))
1584 		/*
1585 		 * This catches illegal uses and preserves the offset:
1586 		 */
1587 		bh->b_data = (char *)(0 + offset);
1588 	else
1589 		bh->b_data = folio_address(folio) + offset;
1590 }
1591 EXPORT_SYMBOL(folio_set_bh);
1592 
1593 /*
1594  * Called when truncating a buffer on a page completely.
1595  */
1596 
1597 /* Bits that are cleared during an invalidate */
1598 #define BUFFER_FLAGS_DISCARD \
1599 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1600 	 1 << BH_Delay | 1 << BH_Unwritten)
1601 
discard_buffer(struct buffer_head * bh)1602 static void discard_buffer(struct buffer_head * bh)
1603 {
1604 	unsigned long b_state;
1605 
1606 	lock_buffer(bh);
1607 	clear_buffer_dirty(bh);
1608 	bh->b_bdev = NULL;
1609 	b_state = READ_ONCE(bh->b_state);
1610 	do {
1611 	} while (!try_cmpxchg_relaxed(&bh->b_state, &b_state,
1612 				      b_state & ~BUFFER_FLAGS_DISCARD));
1613 	unlock_buffer(bh);
1614 }
1615 
1616 /**
1617  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1618  * @folio: The folio which is affected.
1619  * @offset: start of the range to invalidate
1620  * @length: length of the range to invalidate
1621  *
1622  * block_invalidate_folio() is called when all or part of the folio has been
1623  * invalidated by a truncate operation.
1624  *
1625  * block_invalidate_folio() does not have to release all buffers, but it must
1626  * ensure that no dirty buffer is left outside @offset and that no I/O
1627  * is underway against any of the blocks which are outside the truncation
1628  * point.  Because the caller is about to free (and possibly reuse) those
1629  * blocks on-disk.
1630  */
block_invalidate_folio(struct folio * folio,size_t offset,size_t length)1631 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1632 {
1633 	struct buffer_head *head, *bh, *next;
1634 	size_t curr_off = 0;
1635 	size_t stop = length + offset;
1636 
1637 	BUG_ON(!folio_test_locked(folio));
1638 
1639 	/*
1640 	 * Check for overflow
1641 	 */
1642 	BUG_ON(stop > folio_size(folio) || stop < length);
1643 
1644 	head = folio_buffers(folio);
1645 	if (!head)
1646 		return;
1647 
1648 	bh = head;
1649 	do {
1650 		size_t next_off = curr_off + bh->b_size;
1651 		next = bh->b_this_page;
1652 
1653 		/*
1654 		 * Are we still fully in range ?
1655 		 */
1656 		if (next_off > stop)
1657 			goto out;
1658 
1659 		/*
1660 		 * is this block fully invalidated?
1661 		 */
1662 		if (offset <= curr_off)
1663 			discard_buffer(bh);
1664 		curr_off = next_off;
1665 		bh = next;
1666 	} while (bh != head);
1667 
1668 	/*
1669 	 * We release buffers only if the entire folio is being invalidated.
1670 	 * The get_block cached value has been unconditionally invalidated,
1671 	 * so real IO is not possible anymore.
1672 	 */
1673 	if (length == folio_size(folio))
1674 		filemap_release_folio(folio, 0);
1675 out:
1676 	folio_clear_mappedtodisk(folio);
1677 }
1678 EXPORT_SYMBOL(block_invalidate_folio);
1679 
1680 /*
1681  * We attach and possibly dirty the buffers atomically wrt
1682  * block_dirty_folio() via i_private_lock.  try_to_free_buffers
1683  * is already excluded via the folio lock.
1684  */
create_empty_buffers(struct folio * folio,unsigned long blocksize,unsigned long b_state)1685 struct buffer_head *create_empty_buffers(struct folio *folio,
1686 		unsigned long blocksize, unsigned long b_state)
1687 {
1688 	struct buffer_head *bh, *head, *tail;
1689 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1690 
1691 	head = folio_alloc_buffers(folio, blocksize, gfp);
1692 	bh = head;
1693 	do {
1694 		bh->b_state |= b_state;
1695 		tail = bh;
1696 		bh = bh->b_this_page;
1697 	} while (bh);
1698 	tail->b_this_page = head;
1699 
1700 	spin_lock(&folio->mapping->i_private_lock);
1701 	if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1702 		bh = head;
1703 		do {
1704 			if (folio_test_dirty(folio))
1705 				set_buffer_dirty(bh);
1706 			if (folio_test_uptodate(folio))
1707 				set_buffer_uptodate(bh);
1708 			bh = bh->b_this_page;
1709 		} while (bh != head);
1710 	}
1711 	folio_attach_private(folio, head);
1712 	spin_unlock(&folio->mapping->i_private_lock);
1713 
1714 	return head;
1715 }
1716 EXPORT_SYMBOL(create_empty_buffers);
1717 
1718 /**
1719  * clean_bdev_aliases: clean a range of buffers in block device
1720  * @bdev: Block device to clean buffers in
1721  * @block: Start of a range of blocks to clean
1722  * @len: Number of blocks to clean
1723  *
1724  * We are taking a range of blocks for data and we don't want writeback of any
1725  * buffer-cache aliases starting from return from this function and until the
1726  * moment when something will explicitly mark the buffer dirty (hopefully that
1727  * will not happen until we will free that block ;-) We don't even need to mark
1728  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1729  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1730  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1731  * would confuse anyone who might pick it with bread() afterwards...
1732  *
1733  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1734  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1735  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1736  * need to.  That happens here.
1737  */
clean_bdev_aliases(struct block_device * bdev,sector_t block,sector_t len)1738 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1739 {
1740 	struct address_space *bd_mapping = bdev->bd_mapping;
1741 	const int blkbits = bd_mapping->host->i_blkbits;
1742 	struct folio_batch fbatch;
1743 	pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE;
1744 	pgoff_t end;
1745 	int i, count;
1746 	struct buffer_head *bh;
1747 	struct buffer_head *head;
1748 
1749 	end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE;
1750 	folio_batch_init(&fbatch);
1751 	while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1752 		count = folio_batch_count(&fbatch);
1753 		for (i = 0; i < count; i++) {
1754 			struct folio *folio = fbatch.folios[i];
1755 
1756 			if (!folio_buffers(folio))
1757 				continue;
1758 			/*
1759 			 * We use folio lock instead of bd_mapping->i_private_lock
1760 			 * to pin buffers here since we can afford to sleep and
1761 			 * it scales better than a global spinlock lock.
1762 			 */
1763 			folio_lock(folio);
1764 			/* Recheck when the folio is locked which pins bhs */
1765 			head = folio_buffers(folio);
1766 			if (!head)
1767 				goto unlock_page;
1768 			bh = head;
1769 			do {
1770 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1771 					goto next;
1772 				if (bh->b_blocknr >= block + len)
1773 					break;
1774 				clear_buffer_dirty(bh);
1775 				wait_on_buffer(bh);
1776 				clear_buffer_req(bh);
1777 next:
1778 				bh = bh->b_this_page;
1779 			} while (bh != head);
1780 unlock_page:
1781 			folio_unlock(folio);
1782 		}
1783 		folio_batch_release(&fbatch);
1784 		cond_resched();
1785 		/* End of range already reached? */
1786 		if (index > end || !index)
1787 			break;
1788 	}
1789 }
1790 EXPORT_SYMBOL(clean_bdev_aliases);
1791 
folio_create_buffers(struct folio * folio,struct inode * inode,unsigned int b_state)1792 static struct buffer_head *folio_create_buffers(struct folio *folio,
1793 						struct inode *inode,
1794 						unsigned int b_state)
1795 {
1796 	struct buffer_head *bh;
1797 
1798 	BUG_ON(!folio_test_locked(folio));
1799 
1800 	bh = folio_buffers(folio);
1801 	if (!bh)
1802 		bh = create_empty_buffers(folio,
1803 				1 << READ_ONCE(inode->i_blkbits), b_state);
1804 	return bh;
1805 }
1806 
1807 /*
1808  * NOTE! All mapped/uptodate combinations are valid:
1809  *
1810  *	Mapped	Uptodate	Meaning
1811  *
1812  *	No	No		"unknown" - must do get_block()
1813  *	No	Yes		"hole" - zero-filled
1814  *	Yes	No		"allocated" - allocated on disk, not read in
1815  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1816  *
1817  * "Dirty" is valid only with the last case (mapped+uptodate).
1818  */
1819 
1820 /*
1821  * While block_write_full_folio is writing back the dirty buffers under
1822  * the page lock, whoever dirtied the buffers may decide to clean them
1823  * again at any time.  We handle that by only looking at the buffer
1824  * state inside lock_buffer().
1825  *
1826  * If block_write_full_folio() is called for regular writeback
1827  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1828  * locked buffer.   This only can happen if someone has written the buffer
1829  * directly, with submit_bh().  At the address_space level PageWriteback
1830  * prevents this contention from occurring.
1831  *
1832  * If block_write_full_folio() is called with wbc->sync_mode ==
1833  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1834  * causes the writes to be flagged as synchronous writes.
1835  */
__block_write_full_folio(struct inode * inode,struct folio * folio,get_block_t * get_block,struct writeback_control * wbc)1836 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1837 			get_block_t *get_block, struct writeback_control *wbc)
1838 {
1839 	int err;
1840 	sector_t block;
1841 	sector_t last_block;
1842 	struct buffer_head *bh, *head;
1843 	size_t blocksize;
1844 	int nr_underway = 0;
1845 	blk_opf_t write_flags = wbc_to_write_flags(wbc);
1846 
1847 	head = folio_create_buffers(folio, inode,
1848 				    (1 << BH_Dirty) | (1 << BH_Uptodate));
1849 
1850 	/*
1851 	 * Be very careful.  We have no exclusion from block_dirty_folio
1852 	 * here, and the (potentially unmapped) buffers may become dirty at
1853 	 * any time.  If a buffer becomes dirty here after we've inspected it
1854 	 * then we just miss that fact, and the folio stays dirty.
1855 	 *
1856 	 * Buffers outside i_size may be dirtied by block_dirty_folio;
1857 	 * handle that here by just cleaning them.
1858 	 */
1859 
1860 	bh = head;
1861 	blocksize = bh->b_size;
1862 
1863 	block = div_u64(folio_pos(folio), blocksize);
1864 	last_block = div_u64(i_size_read(inode) - 1, blocksize);
1865 
1866 	/*
1867 	 * Get all the dirty buffers mapped to disk addresses and
1868 	 * handle any aliases from the underlying blockdev's mapping.
1869 	 */
1870 	do {
1871 		if (block > last_block) {
1872 			/*
1873 			 * mapped buffers outside i_size will occur, because
1874 			 * this folio can be outside i_size when there is a
1875 			 * truncate in progress.
1876 			 */
1877 			/*
1878 			 * The buffer was zeroed by block_write_full_folio()
1879 			 */
1880 			clear_buffer_dirty(bh);
1881 			set_buffer_uptodate(bh);
1882 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1883 			   buffer_dirty(bh)) {
1884 			WARN_ON(bh->b_size != blocksize);
1885 			err = get_block(inode, block, bh, 1);
1886 			if (err)
1887 				goto recover;
1888 			clear_buffer_delay(bh);
1889 			if (buffer_new(bh)) {
1890 				/* blockdev mappings never come here */
1891 				clear_buffer_new(bh);
1892 				clean_bdev_bh_alias(bh);
1893 			}
1894 		}
1895 		bh = bh->b_this_page;
1896 		block++;
1897 	} while (bh != head);
1898 
1899 	do {
1900 		if (!buffer_mapped(bh))
1901 			continue;
1902 		/*
1903 		 * If it's a fully non-blocking write attempt and we cannot
1904 		 * lock the buffer then redirty the folio.  Note that this can
1905 		 * potentially cause a busy-wait loop from writeback threads
1906 		 * and kswapd activity, but those code paths have their own
1907 		 * higher-level throttling.
1908 		 */
1909 		if (wbc->sync_mode != WB_SYNC_NONE) {
1910 			lock_buffer(bh);
1911 		} else if (!trylock_buffer(bh)) {
1912 			folio_redirty_for_writepage(wbc, folio);
1913 			continue;
1914 		}
1915 		if (test_clear_buffer_dirty(bh)) {
1916 			mark_buffer_async_write_endio(bh,
1917 				end_buffer_async_write);
1918 		} else {
1919 			unlock_buffer(bh);
1920 		}
1921 	} while ((bh = bh->b_this_page) != head);
1922 
1923 	/*
1924 	 * The folio and its buffers are protected by the writeback flag,
1925 	 * so we can drop the bh refcounts early.
1926 	 */
1927 	BUG_ON(folio_test_writeback(folio));
1928 	folio_start_writeback(folio);
1929 
1930 	do {
1931 		struct buffer_head *next = bh->b_this_page;
1932 		if (buffer_async_write(bh)) {
1933 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1934 				      inode->i_write_hint, wbc);
1935 			nr_underway++;
1936 		}
1937 		bh = next;
1938 	} while (bh != head);
1939 	folio_unlock(folio);
1940 
1941 	err = 0;
1942 done:
1943 	if (nr_underway == 0) {
1944 		/*
1945 		 * The folio was marked dirty, but the buffers were
1946 		 * clean.  Someone wrote them back by hand with
1947 		 * write_dirty_buffer/submit_bh.  A rare case.
1948 		 */
1949 		folio_end_writeback(folio);
1950 
1951 		/*
1952 		 * The folio and buffer_heads can be released at any time from
1953 		 * here on.
1954 		 */
1955 	}
1956 	return err;
1957 
1958 recover:
1959 	/*
1960 	 * ENOSPC, or some other error.  We may already have added some
1961 	 * blocks to the file, so we need to write these out to avoid
1962 	 * exposing stale data.
1963 	 * The folio is currently locked and not marked for writeback
1964 	 */
1965 	bh = head;
1966 	/* Recovery: lock and submit the mapped buffers */
1967 	do {
1968 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1969 		    !buffer_delay(bh)) {
1970 			lock_buffer(bh);
1971 			mark_buffer_async_write_endio(bh,
1972 				end_buffer_async_write);
1973 		} else {
1974 			/*
1975 			 * The buffer may have been set dirty during
1976 			 * attachment to a dirty folio.
1977 			 */
1978 			clear_buffer_dirty(bh);
1979 		}
1980 	} while ((bh = bh->b_this_page) != head);
1981 	BUG_ON(folio_test_writeback(folio));
1982 	mapping_set_error(folio->mapping, err);
1983 	folio_start_writeback(folio);
1984 	do {
1985 		struct buffer_head *next = bh->b_this_page;
1986 		if (buffer_async_write(bh)) {
1987 			clear_buffer_dirty(bh);
1988 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1989 				      inode->i_write_hint, wbc);
1990 			nr_underway++;
1991 		}
1992 		bh = next;
1993 	} while (bh != head);
1994 	folio_unlock(folio);
1995 	goto done;
1996 }
1997 EXPORT_SYMBOL(__block_write_full_folio);
1998 
1999 /*
2000  * If a folio has any new buffers, zero them out here, and mark them uptodate
2001  * and dirty so they'll be written out (in order to prevent uninitialised
2002  * block data from leaking). And clear the new bit.
2003  */
folio_zero_new_buffers(struct folio * folio,size_t from,size_t to)2004 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
2005 {
2006 	size_t block_start, block_end;
2007 	struct buffer_head *head, *bh;
2008 
2009 	BUG_ON(!folio_test_locked(folio));
2010 	head = folio_buffers(folio);
2011 	if (!head)
2012 		return;
2013 
2014 	bh = head;
2015 	block_start = 0;
2016 	do {
2017 		block_end = block_start + bh->b_size;
2018 
2019 		if (buffer_new(bh)) {
2020 			if (block_end > from && block_start < to) {
2021 				if (!folio_test_uptodate(folio)) {
2022 					size_t start, xend;
2023 
2024 					start = max(from, block_start);
2025 					xend = min(to, block_end);
2026 
2027 					folio_zero_segment(folio, start, xend);
2028 					set_buffer_uptodate(bh);
2029 				}
2030 
2031 				clear_buffer_new(bh);
2032 				mark_buffer_dirty(bh);
2033 			}
2034 		}
2035 
2036 		block_start = block_end;
2037 		bh = bh->b_this_page;
2038 	} while (bh != head);
2039 }
2040 EXPORT_SYMBOL(folio_zero_new_buffers);
2041 
2042 static int
iomap_to_bh(struct inode * inode,sector_t block,struct buffer_head * bh,const struct iomap * iomap)2043 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2044 		const struct iomap *iomap)
2045 {
2046 	loff_t offset = (loff_t)block << inode->i_blkbits;
2047 
2048 	bh->b_bdev = iomap->bdev;
2049 
2050 	/*
2051 	 * Block points to offset in file we need to map, iomap contains
2052 	 * the offset at which the map starts. If the map ends before the
2053 	 * current block, then do not map the buffer and let the caller
2054 	 * handle it.
2055 	 */
2056 	if (offset >= iomap->offset + iomap->length)
2057 		return -EIO;
2058 
2059 	switch (iomap->type) {
2060 	case IOMAP_HOLE:
2061 		/*
2062 		 * If the buffer is not up to date or beyond the current EOF,
2063 		 * we need to mark it as new to ensure sub-block zeroing is
2064 		 * executed if necessary.
2065 		 */
2066 		if (!buffer_uptodate(bh) ||
2067 		    (offset >= i_size_read(inode)))
2068 			set_buffer_new(bh);
2069 		return 0;
2070 	case IOMAP_DELALLOC:
2071 		if (!buffer_uptodate(bh) ||
2072 		    (offset >= i_size_read(inode)))
2073 			set_buffer_new(bh);
2074 		set_buffer_uptodate(bh);
2075 		set_buffer_mapped(bh);
2076 		set_buffer_delay(bh);
2077 		return 0;
2078 	case IOMAP_UNWRITTEN:
2079 		/*
2080 		 * For unwritten regions, we always need to ensure that regions
2081 		 * in the block we are not writing to are zeroed. Mark the
2082 		 * buffer as new to ensure this.
2083 		 */
2084 		set_buffer_new(bh);
2085 		set_buffer_unwritten(bh);
2086 		fallthrough;
2087 	case IOMAP_MAPPED:
2088 		if ((iomap->flags & IOMAP_F_NEW) ||
2089 		    offset >= i_size_read(inode)) {
2090 			/*
2091 			 * This can happen if truncating the block device races
2092 			 * with the check in the caller as i_size updates on
2093 			 * block devices aren't synchronized by i_rwsem for
2094 			 * block devices.
2095 			 */
2096 			if (S_ISBLK(inode->i_mode))
2097 				return -EIO;
2098 			set_buffer_new(bh);
2099 		}
2100 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2101 				inode->i_blkbits;
2102 		set_buffer_mapped(bh);
2103 		return 0;
2104 	default:
2105 		WARN_ON_ONCE(1);
2106 		return -EIO;
2107 	}
2108 }
2109 
__block_write_begin_int(struct folio * folio,loff_t pos,unsigned len,get_block_t * get_block,const struct iomap * iomap)2110 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2111 		get_block_t *get_block, const struct iomap *iomap)
2112 {
2113 	size_t from = offset_in_folio(folio, pos);
2114 	size_t to = from + len;
2115 	struct inode *inode = folio->mapping->host;
2116 	size_t block_start, block_end;
2117 	sector_t block;
2118 	int err = 0;
2119 	size_t blocksize;
2120 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2121 
2122 	BUG_ON(!folio_test_locked(folio));
2123 	BUG_ON(to > folio_size(folio));
2124 	BUG_ON(from > to);
2125 
2126 	head = folio_create_buffers(folio, inode, 0);
2127 	blocksize = head->b_size;
2128 	block = div_u64(folio_pos(folio), blocksize);
2129 
2130 	for (bh = head, block_start = 0; bh != head || !block_start;
2131 	    block++, block_start=block_end, bh = bh->b_this_page) {
2132 		block_end = block_start + blocksize;
2133 		if (block_end <= from || block_start >= to) {
2134 			if (folio_test_uptodate(folio)) {
2135 				if (!buffer_uptodate(bh))
2136 					set_buffer_uptodate(bh);
2137 			}
2138 			continue;
2139 		}
2140 		if (buffer_new(bh))
2141 			clear_buffer_new(bh);
2142 		if (!buffer_mapped(bh)) {
2143 			WARN_ON(bh->b_size != blocksize);
2144 			if (get_block)
2145 				err = get_block(inode, block, bh, 1);
2146 			else
2147 				err = iomap_to_bh(inode, block, bh, iomap);
2148 			if (err)
2149 				break;
2150 
2151 			if (buffer_new(bh)) {
2152 				clean_bdev_bh_alias(bh);
2153 				if (folio_test_uptodate(folio)) {
2154 					clear_buffer_new(bh);
2155 					set_buffer_uptodate(bh);
2156 					mark_buffer_dirty(bh);
2157 					continue;
2158 				}
2159 				if (block_end > to || block_start < from)
2160 					folio_zero_segments(folio,
2161 						to, block_end,
2162 						block_start, from);
2163 				continue;
2164 			}
2165 		}
2166 		if (folio_test_uptodate(folio)) {
2167 			if (!buffer_uptodate(bh))
2168 				set_buffer_uptodate(bh);
2169 			continue;
2170 		}
2171 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2172 		    !buffer_unwritten(bh) &&
2173 		     (block_start < from || block_end > to)) {
2174 			bh_read_nowait(bh, 0);
2175 			*wait_bh++=bh;
2176 		}
2177 	}
2178 	/*
2179 	 * If we issued read requests - let them complete.
2180 	 */
2181 	while(wait_bh > wait) {
2182 		wait_on_buffer(*--wait_bh);
2183 		if (!buffer_uptodate(*wait_bh))
2184 			err = -EIO;
2185 	}
2186 	if (unlikely(err))
2187 		folio_zero_new_buffers(folio, from, to);
2188 	return err;
2189 }
2190 
__block_write_begin(struct folio * folio,loff_t pos,unsigned len,get_block_t * get_block)2191 int __block_write_begin(struct folio *folio, loff_t pos, unsigned len,
2192 		get_block_t *get_block)
2193 {
2194 	return __block_write_begin_int(folio, pos, len, get_block, NULL);
2195 }
2196 EXPORT_SYMBOL(__block_write_begin);
2197 
block_commit_write(struct folio * folio,size_t from,size_t to)2198 void block_commit_write(struct folio *folio, size_t from, size_t to)
2199 {
2200 	size_t block_start, block_end;
2201 	bool partial = false;
2202 	unsigned blocksize;
2203 	struct buffer_head *bh, *head;
2204 
2205 	bh = head = folio_buffers(folio);
2206 	if (!bh)
2207 		return;
2208 	blocksize = bh->b_size;
2209 
2210 	block_start = 0;
2211 	do {
2212 		block_end = block_start + blocksize;
2213 		if (block_end <= from || block_start >= to) {
2214 			if (!buffer_uptodate(bh))
2215 				partial = true;
2216 		} else {
2217 			set_buffer_uptodate(bh);
2218 			mark_buffer_dirty(bh);
2219 		}
2220 		if (buffer_new(bh))
2221 			clear_buffer_new(bh);
2222 
2223 		block_start = block_end;
2224 		bh = bh->b_this_page;
2225 	} while (bh != head);
2226 
2227 	/*
2228 	 * If this is a partial write which happened to make all buffers
2229 	 * uptodate then we can optimize away a bogus read_folio() for
2230 	 * the next read(). Here we 'discover' whether the folio went
2231 	 * uptodate as a result of this (potentially partial) write.
2232 	 */
2233 	if (!partial)
2234 		folio_mark_uptodate(folio);
2235 }
2236 EXPORT_SYMBOL(block_commit_write);
2237 
2238 /*
2239  * block_write_begin takes care of the basic task of block allocation and
2240  * bringing partial write blocks uptodate first.
2241  *
2242  * The filesystem needs to handle block truncation upon failure.
2243  */
block_write_begin(struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,get_block_t * get_block)2244 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2245 		struct folio **foliop, get_block_t *get_block)
2246 {
2247 	pgoff_t index = pos >> PAGE_SHIFT;
2248 	struct folio *folio;
2249 	int status;
2250 
2251 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2252 			mapping_gfp_mask(mapping));
2253 	if (IS_ERR(folio))
2254 		return PTR_ERR(folio);
2255 
2256 	status = __block_write_begin_int(folio, pos, len, get_block, NULL);
2257 	if (unlikely(status)) {
2258 		folio_unlock(folio);
2259 		folio_put(folio);
2260 		folio = NULL;
2261 	}
2262 
2263 	*foliop = folio;
2264 	return status;
2265 }
2266 EXPORT_SYMBOL(block_write_begin);
2267 
block_write_end(loff_t pos,unsigned len,unsigned copied,struct folio * folio)2268 int block_write_end(loff_t pos, unsigned len, unsigned copied,
2269 		struct folio *folio)
2270 {
2271 	size_t start = pos - folio_pos(folio);
2272 
2273 	if (unlikely(copied < len)) {
2274 		/*
2275 		 * The buffers that were written will now be uptodate, so
2276 		 * we don't have to worry about a read_folio reading them
2277 		 * and overwriting a partial write. However if we have
2278 		 * encountered a short write and only partially written
2279 		 * into a buffer, it will not be marked uptodate, so a
2280 		 * read_folio might come in and destroy our partial write.
2281 		 *
2282 		 * Do the simplest thing, and just treat any short write to a
2283 		 * non uptodate folio as a zero-length write, and force the
2284 		 * caller to redo the whole thing.
2285 		 */
2286 		if (!folio_test_uptodate(folio))
2287 			copied = 0;
2288 
2289 		folio_zero_new_buffers(folio, start+copied, start+len);
2290 	}
2291 	flush_dcache_folio(folio);
2292 
2293 	/* This could be a short (even 0-length) commit */
2294 	block_commit_write(folio, start, start + copied);
2295 
2296 	return copied;
2297 }
2298 EXPORT_SYMBOL(block_write_end);
2299 
generic_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)2300 int generic_write_end(const struct kiocb *iocb, struct address_space *mapping,
2301 		      loff_t pos, unsigned len, unsigned copied,
2302 		      struct folio *folio, void *fsdata)
2303 {
2304 	struct inode *inode = mapping->host;
2305 	loff_t old_size = inode->i_size;
2306 	bool i_size_changed = false;
2307 
2308 	copied = block_write_end(pos, len, copied, folio);
2309 
2310 	/*
2311 	 * No need to use i_size_read() here, the i_size cannot change under us
2312 	 * because we hold i_rwsem.
2313 	 *
2314 	 * But it's important to update i_size while still holding folio lock:
2315 	 * page writeout could otherwise come in and zero beyond i_size.
2316 	 */
2317 	if (pos + copied > inode->i_size) {
2318 		i_size_write(inode, pos + copied);
2319 		i_size_changed = true;
2320 	}
2321 
2322 	folio_unlock(folio);
2323 	folio_put(folio);
2324 
2325 	if (old_size < pos)
2326 		pagecache_isize_extended(inode, old_size, pos);
2327 	/*
2328 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2329 	 * makes the holding time of page lock longer. Second, it forces lock
2330 	 * ordering of page lock and transaction start for journaling
2331 	 * filesystems.
2332 	 */
2333 	if (i_size_changed)
2334 		mark_inode_dirty(inode);
2335 	return copied;
2336 }
2337 EXPORT_SYMBOL(generic_write_end);
2338 
2339 /*
2340  * block_is_partially_uptodate checks whether buffers within a folio are
2341  * uptodate or not.
2342  *
2343  * Returns true if all buffers which correspond to the specified part
2344  * of the folio are uptodate.
2345  */
block_is_partially_uptodate(struct folio * folio,size_t from,size_t count)2346 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2347 {
2348 	unsigned block_start, block_end, blocksize;
2349 	unsigned to;
2350 	struct buffer_head *bh, *head;
2351 	bool ret = true;
2352 
2353 	head = folio_buffers(folio);
2354 	if (!head)
2355 		return false;
2356 	blocksize = head->b_size;
2357 	to = min_t(unsigned, folio_size(folio) - from, count);
2358 	to = from + to;
2359 	if (from < blocksize && to > folio_size(folio) - blocksize)
2360 		return false;
2361 
2362 	bh = head;
2363 	block_start = 0;
2364 	do {
2365 		block_end = block_start + blocksize;
2366 		if (block_end > from && block_start < to) {
2367 			if (!buffer_uptodate(bh)) {
2368 				ret = false;
2369 				break;
2370 			}
2371 			if (block_end >= to)
2372 				break;
2373 		}
2374 		block_start = block_end;
2375 		bh = bh->b_this_page;
2376 	} while (bh != head);
2377 
2378 	return ret;
2379 }
2380 EXPORT_SYMBOL(block_is_partially_uptodate);
2381 
2382 /*
2383  * Generic "read_folio" function for block devices that have the normal
2384  * get_block functionality. This is most of the block device filesystems.
2385  * Reads the folio asynchronously --- the unlock_buffer() and
2386  * set/clear_buffer_uptodate() functions propagate buffer state into the
2387  * folio once IO has completed.
2388  */
block_read_full_folio(struct folio * folio,get_block_t * get_block)2389 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2390 {
2391 	struct inode *inode = folio->mapping->host;
2392 	sector_t iblock, lblock;
2393 	struct buffer_head *bh, *head, *prev = NULL;
2394 	size_t blocksize;
2395 	int fully_mapped = 1;
2396 	bool page_error = false;
2397 	loff_t limit = i_size_read(inode);
2398 
2399 	/* This is needed for ext4. */
2400 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2401 		limit = inode->i_sb->s_maxbytes;
2402 
2403 	head = folio_create_buffers(folio, inode, 0);
2404 	blocksize = head->b_size;
2405 
2406 	iblock = div_u64(folio_pos(folio), blocksize);
2407 	lblock = div_u64(limit + blocksize - 1, blocksize);
2408 	bh = head;
2409 
2410 	do {
2411 		if (buffer_uptodate(bh))
2412 			continue;
2413 
2414 		if (!buffer_mapped(bh)) {
2415 			int err = 0;
2416 
2417 			fully_mapped = 0;
2418 			if (iblock < lblock) {
2419 				WARN_ON(bh->b_size != blocksize);
2420 				err = get_block(inode, iblock, bh, 0);
2421 				if (err)
2422 					page_error = true;
2423 			}
2424 			if (!buffer_mapped(bh)) {
2425 				folio_zero_range(folio, bh_offset(bh),
2426 						blocksize);
2427 				if (!err)
2428 					set_buffer_uptodate(bh);
2429 				continue;
2430 			}
2431 			/*
2432 			 * get_block() might have updated the buffer
2433 			 * synchronously
2434 			 */
2435 			if (buffer_uptodate(bh))
2436 				continue;
2437 		}
2438 
2439 		lock_buffer(bh);
2440 		if (buffer_uptodate(bh)) {
2441 			unlock_buffer(bh);
2442 			continue;
2443 		}
2444 
2445 		mark_buffer_async_read(bh);
2446 		if (prev)
2447 			submit_bh(REQ_OP_READ, prev);
2448 		prev = bh;
2449 	} while (iblock++, (bh = bh->b_this_page) != head);
2450 
2451 	if (fully_mapped)
2452 		folio_set_mappedtodisk(folio);
2453 
2454 	/*
2455 	 * All buffers are uptodate or get_block() returned an error
2456 	 * when trying to map them - we must finish the read because
2457 	 * end_buffer_async_read() will never be called on any buffer
2458 	 * in this folio.
2459 	 */
2460 	if (prev)
2461 		submit_bh(REQ_OP_READ, prev);
2462 	else
2463 		folio_end_read(folio, !page_error);
2464 
2465 	return 0;
2466 }
2467 EXPORT_SYMBOL(block_read_full_folio);
2468 
2469 /* utility function for filesystems that need to do work on expanding
2470  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2471  * deal with the hole.
2472  */
generic_cont_expand_simple(struct inode * inode,loff_t size)2473 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2474 {
2475 	struct address_space *mapping = inode->i_mapping;
2476 	const struct address_space_operations *aops = mapping->a_ops;
2477 	struct folio *folio;
2478 	void *fsdata = NULL;
2479 	int err;
2480 
2481 	err = inode_newsize_ok(inode, size);
2482 	if (err)
2483 		goto out;
2484 
2485 	err = aops->write_begin(NULL, mapping, size, 0, &folio, &fsdata);
2486 	if (err)
2487 		goto out;
2488 
2489 	err = aops->write_end(NULL, mapping, size, 0, 0, folio, fsdata);
2490 	BUG_ON(err > 0);
2491 
2492 out:
2493 	return err;
2494 }
2495 EXPORT_SYMBOL(generic_cont_expand_simple);
2496 
cont_expand_zero(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,loff_t * bytes)2497 static int cont_expand_zero(const struct kiocb *iocb,
2498 			    struct address_space *mapping,
2499 			    loff_t pos, loff_t *bytes)
2500 {
2501 	struct inode *inode = mapping->host;
2502 	const struct address_space_operations *aops = mapping->a_ops;
2503 	unsigned int blocksize = i_blocksize(inode);
2504 	struct folio *folio;
2505 	void *fsdata = NULL;
2506 	pgoff_t index, curidx;
2507 	loff_t curpos;
2508 	unsigned zerofrom, offset, len;
2509 	int err = 0;
2510 
2511 	index = pos >> PAGE_SHIFT;
2512 	offset = pos & ~PAGE_MASK;
2513 
2514 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2515 		zerofrom = curpos & ~PAGE_MASK;
2516 		if (zerofrom & (blocksize-1)) {
2517 			*bytes |= (blocksize-1);
2518 			(*bytes)++;
2519 		}
2520 		len = PAGE_SIZE - zerofrom;
2521 
2522 		err = aops->write_begin(iocb, mapping, curpos, len,
2523 					    &folio, &fsdata);
2524 		if (err)
2525 			goto out;
2526 		folio_zero_range(folio, offset_in_folio(folio, curpos), len);
2527 		err = aops->write_end(iocb, mapping, curpos, len, len,
2528 						folio, fsdata);
2529 		if (err < 0)
2530 			goto out;
2531 		BUG_ON(err != len);
2532 		err = 0;
2533 
2534 		balance_dirty_pages_ratelimited(mapping);
2535 
2536 		if (fatal_signal_pending(current)) {
2537 			err = -EINTR;
2538 			goto out;
2539 		}
2540 	}
2541 
2542 	/* page covers the boundary, find the boundary offset */
2543 	if (index == curidx) {
2544 		zerofrom = curpos & ~PAGE_MASK;
2545 		/* if we will expand the thing last block will be filled */
2546 		if (offset <= zerofrom) {
2547 			goto out;
2548 		}
2549 		if (zerofrom & (blocksize-1)) {
2550 			*bytes |= (blocksize-1);
2551 			(*bytes)++;
2552 		}
2553 		len = offset - zerofrom;
2554 
2555 		err = aops->write_begin(iocb, mapping, curpos, len,
2556 					    &folio, &fsdata);
2557 		if (err)
2558 			goto out;
2559 		folio_zero_range(folio, offset_in_folio(folio, curpos), len);
2560 		err = aops->write_end(iocb, mapping, curpos, len, len,
2561 						folio, fsdata);
2562 		if (err < 0)
2563 			goto out;
2564 		BUG_ON(err != len);
2565 		err = 0;
2566 	}
2567 out:
2568 	return err;
2569 }
2570 
2571 /*
2572  * For moronic filesystems that do not allow holes in file.
2573  * We may have to extend the file.
2574  */
cont_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata,get_block_t * get_block,loff_t * bytes)2575 int cont_write_begin(const struct kiocb *iocb, struct address_space *mapping,
2576 		     loff_t pos, unsigned len, struct folio **foliop,
2577 		     void **fsdata, get_block_t *get_block, loff_t *bytes)
2578 {
2579 	struct inode *inode = mapping->host;
2580 	unsigned int blocksize = i_blocksize(inode);
2581 	unsigned int zerofrom;
2582 	int err;
2583 
2584 	err = cont_expand_zero(iocb, mapping, pos, bytes);
2585 	if (err)
2586 		return err;
2587 
2588 	zerofrom = *bytes & ~PAGE_MASK;
2589 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2590 		*bytes |= (blocksize-1);
2591 		(*bytes)++;
2592 	}
2593 
2594 	return block_write_begin(mapping, pos, len, foliop, get_block);
2595 }
2596 EXPORT_SYMBOL(cont_write_begin);
2597 
2598 /*
2599  * block_page_mkwrite() is not allowed to change the file size as it gets
2600  * called from a page fault handler when a page is first dirtied. Hence we must
2601  * be careful to check for EOF conditions here. We set the page up correctly
2602  * for a written page which means we get ENOSPC checking when writing into
2603  * holes and correct delalloc and unwritten extent mapping on filesystems that
2604  * support these features.
2605  *
2606  * We are not allowed to take the i_rwsem here so we have to play games to
2607  * protect against truncate races as the page could now be beyond EOF.  Because
2608  * truncate writes the inode size before removing pages, once we have the
2609  * page lock we can determine safely if the page is beyond EOF. If it is not
2610  * beyond EOF, then the page is guaranteed safe against truncation until we
2611  * unlock the page.
2612  *
2613  * Direct callers of this function should protect against filesystem freezing
2614  * using sb_start_pagefault() - sb_end_pagefault() functions.
2615  */
block_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf,get_block_t get_block)2616 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2617 			 get_block_t get_block)
2618 {
2619 	struct folio *folio = page_folio(vmf->page);
2620 	struct inode *inode = file_inode(vma->vm_file);
2621 	unsigned long end;
2622 	loff_t size;
2623 	int ret;
2624 
2625 	folio_lock(folio);
2626 	size = i_size_read(inode);
2627 	if ((folio->mapping != inode->i_mapping) ||
2628 	    (folio_pos(folio) >= size)) {
2629 		/* We overload EFAULT to mean page got truncated */
2630 		ret = -EFAULT;
2631 		goto out_unlock;
2632 	}
2633 
2634 	end = folio_size(folio);
2635 	/* folio is wholly or partially inside EOF */
2636 	if (folio_pos(folio) + end > size)
2637 		end = size - folio_pos(folio);
2638 
2639 	ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2640 	if (unlikely(ret))
2641 		goto out_unlock;
2642 
2643 	block_commit_write(folio, 0, end);
2644 
2645 	folio_mark_dirty(folio);
2646 	folio_wait_stable(folio);
2647 	return 0;
2648 out_unlock:
2649 	folio_unlock(folio);
2650 	return ret;
2651 }
2652 EXPORT_SYMBOL(block_page_mkwrite);
2653 
block_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2654 int block_truncate_page(struct address_space *mapping,
2655 			loff_t from, get_block_t *get_block)
2656 {
2657 	pgoff_t index = from >> PAGE_SHIFT;
2658 	unsigned blocksize;
2659 	sector_t iblock;
2660 	size_t offset, length, pos;
2661 	struct inode *inode = mapping->host;
2662 	struct folio *folio;
2663 	struct buffer_head *bh;
2664 	int err = 0;
2665 
2666 	blocksize = i_blocksize(inode);
2667 	length = from & (blocksize - 1);
2668 
2669 	/* Block boundary? Nothing to do */
2670 	if (!length)
2671 		return 0;
2672 
2673 	length = blocksize - length;
2674 	iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits;
2675 
2676 	folio = filemap_grab_folio(mapping, index);
2677 	if (IS_ERR(folio))
2678 		return PTR_ERR(folio);
2679 
2680 	bh = folio_buffers(folio);
2681 	if (!bh)
2682 		bh = create_empty_buffers(folio, blocksize, 0);
2683 
2684 	/* Find the buffer that contains "offset" */
2685 	offset = offset_in_folio(folio, from);
2686 	pos = blocksize;
2687 	while (offset >= pos) {
2688 		bh = bh->b_this_page;
2689 		iblock++;
2690 		pos += blocksize;
2691 	}
2692 
2693 	if (!buffer_mapped(bh)) {
2694 		WARN_ON(bh->b_size != blocksize);
2695 		err = get_block(inode, iblock, bh, 0);
2696 		if (err)
2697 			goto unlock;
2698 		/* unmapped? It's a hole - nothing to do */
2699 		if (!buffer_mapped(bh))
2700 			goto unlock;
2701 	}
2702 
2703 	/* Ok, it's mapped. Make sure it's up-to-date */
2704 	if (folio_test_uptodate(folio))
2705 		set_buffer_uptodate(bh);
2706 
2707 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2708 		err = bh_read(bh, 0);
2709 		/* Uhhuh. Read error. Complain and punt. */
2710 		if (err < 0)
2711 			goto unlock;
2712 	}
2713 
2714 	folio_zero_range(folio, offset, length);
2715 	mark_buffer_dirty(bh);
2716 
2717 unlock:
2718 	folio_unlock(folio);
2719 	folio_put(folio);
2720 
2721 	return err;
2722 }
2723 EXPORT_SYMBOL(block_truncate_page);
2724 
2725 /*
2726  * The generic write folio function for buffer-backed address_spaces
2727  */
block_write_full_folio(struct folio * folio,struct writeback_control * wbc,void * get_block)2728 int block_write_full_folio(struct folio *folio, struct writeback_control *wbc,
2729 		void *get_block)
2730 {
2731 	struct inode * const inode = folio->mapping->host;
2732 	loff_t i_size = i_size_read(inode);
2733 
2734 	/* Is the folio fully inside i_size? */
2735 	if (folio_pos(folio) + folio_size(folio) <= i_size)
2736 		return __block_write_full_folio(inode, folio, get_block, wbc);
2737 
2738 	/* Is the folio fully outside i_size? (truncate in progress) */
2739 	if (folio_pos(folio) >= i_size) {
2740 		folio_unlock(folio);
2741 		return 0; /* don't care */
2742 	}
2743 
2744 	/*
2745 	 * The folio straddles i_size.  It must be zeroed out on each and every
2746 	 * writeback invocation because it may be mmapped.  "A file is mapped
2747 	 * in multiples of the page size.  For a file that is not a multiple of
2748 	 * the page size, the remaining memory is zeroed when mapped, and
2749 	 * writes to that region are not written out to the file."
2750 	 */
2751 	folio_zero_segment(folio, offset_in_folio(folio, i_size),
2752 			folio_size(folio));
2753 	return __block_write_full_folio(inode, folio, get_block, wbc);
2754 }
2755 
generic_block_bmap(struct address_space * mapping,sector_t block,get_block_t * get_block)2756 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2757 			    get_block_t *get_block)
2758 {
2759 	struct inode *inode = mapping->host;
2760 	struct buffer_head tmp = {
2761 		.b_size = i_blocksize(inode),
2762 	};
2763 
2764 	get_block(inode, block, &tmp, 0);
2765 	return tmp.b_blocknr;
2766 }
2767 EXPORT_SYMBOL(generic_block_bmap);
2768 
end_bio_bh_io_sync(struct bio * bio)2769 static void end_bio_bh_io_sync(struct bio *bio)
2770 {
2771 	struct buffer_head *bh = bio->bi_private;
2772 
2773 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2774 		set_bit(BH_Quiet, &bh->b_state);
2775 
2776 	bh->b_end_io(bh, !bio->bi_status);
2777 	bio_put(bio);
2778 }
2779 
submit_bh_wbc(blk_opf_t opf,struct buffer_head * bh,enum rw_hint write_hint,struct writeback_control * wbc)2780 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2781 			  enum rw_hint write_hint,
2782 			  struct writeback_control *wbc)
2783 {
2784 	const enum req_op op = opf & REQ_OP_MASK;
2785 	struct bio *bio;
2786 
2787 	BUG_ON(!buffer_locked(bh));
2788 	BUG_ON(!buffer_mapped(bh));
2789 	BUG_ON(!bh->b_end_io);
2790 	BUG_ON(buffer_delay(bh));
2791 	BUG_ON(buffer_unwritten(bh));
2792 
2793 	/*
2794 	 * Only clear out a write error when rewriting
2795 	 */
2796 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2797 		clear_buffer_write_io_error(bh);
2798 
2799 	if (buffer_meta(bh))
2800 		opf |= REQ_META;
2801 	if (buffer_prio(bh))
2802 		opf |= REQ_PRIO;
2803 
2804 	bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2805 
2806 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2807 
2808 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2809 	bio->bi_write_hint = write_hint;
2810 
2811 	bio_add_folio_nofail(bio, bh->b_folio, bh->b_size, bh_offset(bh));
2812 
2813 	bio->bi_end_io = end_bio_bh_io_sync;
2814 	bio->bi_private = bh;
2815 
2816 	/* Take care of bh's that straddle the end of the device */
2817 	guard_bio_eod(bio);
2818 
2819 	if (wbc) {
2820 		wbc_init_bio(wbc, bio);
2821 		wbc_account_cgroup_owner(wbc, bh->b_folio, bh->b_size);
2822 	}
2823 
2824 	submit_bio(bio);
2825 }
2826 
submit_bh(blk_opf_t opf,struct buffer_head * bh)2827 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2828 {
2829 	submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL);
2830 }
2831 EXPORT_SYMBOL(submit_bh);
2832 
write_dirty_buffer(struct buffer_head * bh,blk_opf_t op_flags)2833 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2834 {
2835 	lock_buffer(bh);
2836 	if (!test_clear_buffer_dirty(bh)) {
2837 		unlock_buffer(bh);
2838 		return;
2839 	}
2840 	bh->b_end_io = end_buffer_write_sync;
2841 	get_bh(bh);
2842 	submit_bh(REQ_OP_WRITE | op_flags, bh);
2843 }
2844 EXPORT_SYMBOL(write_dirty_buffer);
2845 
2846 /*
2847  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2848  * and then start new I/O and then wait upon it.  The caller must have a ref on
2849  * the buffer_head.
2850  */
__sync_dirty_buffer(struct buffer_head * bh,blk_opf_t op_flags)2851 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2852 {
2853 	WARN_ON(atomic_read(&bh->b_count) < 1);
2854 	lock_buffer(bh);
2855 	if (test_clear_buffer_dirty(bh)) {
2856 		/*
2857 		 * The bh should be mapped, but it might not be if the
2858 		 * device was hot-removed. Not much we can do but fail the I/O.
2859 		 */
2860 		if (!buffer_mapped(bh)) {
2861 			unlock_buffer(bh);
2862 			return -EIO;
2863 		}
2864 
2865 		get_bh(bh);
2866 		bh->b_end_io = end_buffer_write_sync;
2867 		submit_bh(REQ_OP_WRITE | op_flags, bh);
2868 		wait_on_buffer(bh);
2869 		if (!buffer_uptodate(bh))
2870 			return -EIO;
2871 	} else {
2872 		unlock_buffer(bh);
2873 	}
2874 	return 0;
2875 }
2876 EXPORT_SYMBOL(__sync_dirty_buffer);
2877 
sync_dirty_buffer(struct buffer_head * bh)2878 int sync_dirty_buffer(struct buffer_head *bh)
2879 {
2880 	return __sync_dirty_buffer(bh, REQ_SYNC);
2881 }
2882 EXPORT_SYMBOL(sync_dirty_buffer);
2883 
buffer_busy(struct buffer_head * bh)2884 static inline int buffer_busy(struct buffer_head *bh)
2885 {
2886 	return atomic_read(&bh->b_count) |
2887 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2888 }
2889 
2890 static bool
drop_buffers(struct folio * folio,struct buffer_head ** buffers_to_free)2891 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2892 {
2893 	struct buffer_head *head = folio_buffers(folio);
2894 	struct buffer_head *bh;
2895 
2896 	bh = head;
2897 	do {
2898 		if (buffer_busy(bh))
2899 			goto failed;
2900 		bh = bh->b_this_page;
2901 	} while (bh != head);
2902 
2903 	do {
2904 		struct buffer_head *next = bh->b_this_page;
2905 
2906 		if (bh->b_assoc_map)
2907 			__remove_assoc_queue(bh);
2908 		bh = next;
2909 	} while (bh != head);
2910 	*buffers_to_free = head;
2911 	folio_detach_private(folio);
2912 	return true;
2913 failed:
2914 	return false;
2915 }
2916 
2917 /**
2918  * try_to_free_buffers - Release buffers attached to this folio.
2919  * @folio: The folio.
2920  *
2921  * If any buffers are in use (dirty, under writeback, elevated refcount),
2922  * no buffers will be freed.
2923  *
2924  * If the folio is dirty but all the buffers are clean then we need to
2925  * be sure to mark the folio clean as well.  This is because the folio
2926  * may be against a block device, and a later reattachment of buffers
2927  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2928  * filesystem data on the same device.
2929  *
2930  * The same applies to regular filesystem folios: if all the buffers are
2931  * clean then we set the folio clean and proceed.  To do that, we require
2932  * total exclusion from block_dirty_folio().  That is obtained with
2933  * i_private_lock.
2934  *
2935  * Exclusion against try_to_free_buffers may be obtained by either
2936  * locking the folio or by holding its mapping's i_private_lock.
2937  *
2938  * Context: Process context.  @folio must be locked.  Will not sleep.
2939  * Return: true if all buffers attached to this folio were freed.
2940  */
try_to_free_buffers(struct folio * folio)2941 bool try_to_free_buffers(struct folio *folio)
2942 {
2943 	struct address_space * const mapping = folio->mapping;
2944 	struct buffer_head *buffers_to_free = NULL;
2945 	bool ret = 0;
2946 
2947 	BUG_ON(!folio_test_locked(folio));
2948 	if (folio_test_writeback(folio))
2949 		return false;
2950 
2951 	if (mapping == NULL) {		/* can this still happen? */
2952 		ret = drop_buffers(folio, &buffers_to_free);
2953 		goto out;
2954 	}
2955 
2956 	spin_lock(&mapping->i_private_lock);
2957 	ret = drop_buffers(folio, &buffers_to_free);
2958 
2959 	/*
2960 	 * If the filesystem writes its buffers by hand (eg ext3)
2961 	 * then we can have clean buffers against a dirty folio.  We
2962 	 * clean the folio here; otherwise the VM will never notice
2963 	 * that the filesystem did any IO at all.
2964 	 *
2965 	 * Also, during truncate, discard_buffer will have marked all
2966 	 * the folio's buffers clean.  We discover that here and clean
2967 	 * the folio also.
2968 	 *
2969 	 * i_private_lock must be held over this entire operation in order
2970 	 * to synchronise against block_dirty_folio and prevent the
2971 	 * dirty bit from being lost.
2972 	 */
2973 	if (ret)
2974 		folio_cancel_dirty(folio);
2975 	spin_unlock(&mapping->i_private_lock);
2976 out:
2977 	if (buffers_to_free) {
2978 		struct buffer_head *bh = buffers_to_free;
2979 
2980 		do {
2981 			struct buffer_head *next = bh->b_this_page;
2982 			free_buffer_head(bh);
2983 			bh = next;
2984 		} while (bh != buffers_to_free);
2985 	}
2986 	return ret;
2987 }
2988 EXPORT_SYMBOL(try_to_free_buffers);
2989 
2990 /*
2991  * Buffer-head allocation
2992  */
2993 static struct kmem_cache *bh_cachep __ro_after_init;
2994 
2995 /*
2996  * Once the number of bh's in the machine exceeds this level, we start
2997  * stripping them in writeback.
2998  */
2999 static unsigned long max_buffer_heads __ro_after_init;
3000 
3001 int buffer_heads_over_limit;
3002 
3003 struct bh_accounting {
3004 	int nr;			/* Number of live bh's */
3005 	int ratelimit;		/* Limit cacheline bouncing */
3006 };
3007 
3008 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3009 
recalc_bh_state(void)3010 static void recalc_bh_state(void)
3011 {
3012 	int i;
3013 	int tot = 0;
3014 
3015 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3016 		return;
3017 	__this_cpu_write(bh_accounting.ratelimit, 0);
3018 	for_each_online_cpu(i)
3019 		tot += per_cpu(bh_accounting, i).nr;
3020 	buffer_heads_over_limit = (tot > max_buffer_heads);
3021 }
3022 
alloc_buffer_head(gfp_t gfp_flags)3023 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3024 {
3025 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3026 	if (ret) {
3027 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3028 		spin_lock_init(&ret->b_uptodate_lock);
3029 		preempt_disable();
3030 		__this_cpu_inc(bh_accounting.nr);
3031 		recalc_bh_state();
3032 		preempt_enable();
3033 	}
3034 	return ret;
3035 }
3036 EXPORT_SYMBOL(alloc_buffer_head);
3037 
free_buffer_head(struct buffer_head * bh)3038 void free_buffer_head(struct buffer_head *bh)
3039 {
3040 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3041 	kmem_cache_free(bh_cachep, bh);
3042 	preempt_disable();
3043 	__this_cpu_dec(bh_accounting.nr);
3044 	recalc_bh_state();
3045 	preempt_enable();
3046 }
3047 EXPORT_SYMBOL(free_buffer_head);
3048 
buffer_exit_cpu_dead(unsigned int cpu)3049 static int buffer_exit_cpu_dead(unsigned int cpu)
3050 {
3051 	int i;
3052 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3053 
3054 	for (i = 0; i < BH_LRU_SIZE; i++) {
3055 		brelse(b->bhs[i]);
3056 		b->bhs[i] = NULL;
3057 	}
3058 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3059 	per_cpu(bh_accounting, cpu).nr = 0;
3060 	return 0;
3061 }
3062 
3063 /**
3064  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3065  * @bh: struct buffer_head
3066  *
3067  * Return true if the buffer is up-to-date and false,
3068  * with the buffer locked, if not.
3069  */
bh_uptodate_or_lock(struct buffer_head * bh)3070 int bh_uptodate_or_lock(struct buffer_head *bh)
3071 {
3072 	if (!buffer_uptodate(bh)) {
3073 		lock_buffer(bh);
3074 		if (!buffer_uptodate(bh))
3075 			return 0;
3076 		unlock_buffer(bh);
3077 	}
3078 	return 1;
3079 }
3080 EXPORT_SYMBOL(bh_uptodate_or_lock);
3081 
3082 /**
3083  * __bh_read - Submit read for a locked buffer
3084  * @bh: struct buffer_head
3085  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3086  * @wait: wait until reading finish
3087  *
3088  * Returns zero on success or don't wait, and -EIO on error.
3089  */
__bh_read(struct buffer_head * bh,blk_opf_t op_flags,bool wait)3090 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3091 {
3092 	int ret = 0;
3093 
3094 	BUG_ON(!buffer_locked(bh));
3095 
3096 	get_bh(bh);
3097 	bh->b_end_io = end_buffer_read_sync;
3098 	submit_bh(REQ_OP_READ | op_flags, bh);
3099 	if (wait) {
3100 		wait_on_buffer(bh);
3101 		if (!buffer_uptodate(bh))
3102 			ret = -EIO;
3103 	}
3104 	return ret;
3105 }
3106 EXPORT_SYMBOL(__bh_read);
3107 
3108 /**
3109  * __bh_read_batch - Submit read for a batch of unlocked buffers
3110  * @nr: entry number of the buffer batch
3111  * @bhs: a batch of struct buffer_head
3112  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3113  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3114  *              buffer that cannot lock.
3115  *
3116  * Returns zero on success or don't wait, and -EIO on error.
3117  */
__bh_read_batch(int nr,struct buffer_head * bhs[],blk_opf_t op_flags,bool force_lock)3118 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3119 		     blk_opf_t op_flags, bool force_lock)
3120 {
3121 	int i;
3122 
3123 	for (i = 0; i < nr; i++) {
3124 		struct buffer_head *bh = bhs[i];
3125 
3126 		if (buffer_uptodate(bh))
3127 			continue;
3128 
3129 		if (force_lock)
3130 			lock_buffer(bh);
3131 		else
3132 			if (!trylock_buffer(bh))
3133 				continue;
3134 
3135 		if (buffer_uptodate(bh)) {
3136 			unlock_buffer(bh);
3137 			continue;
3138 		}
3139 
3140 		bh->b_end_io = end_buffer_read_sync;
3141 		get_bh(bh);
3142 		submit_bh(REQ_OP_READ | op_flags, bh);
3143 	}
3144 }
3145 EXPORT_SYMBOL(__bh_read_batch);
3146 
buffer_init(void)3147 void __init buffer_init(void)
3148 {
3149 	unsigned long nrpages;
3150 	int ret;
3151 
3152 	bh_cachep = KMEM_CACHE(buffer_head,
3153 				SLAB_RECLAIM_ACCOUNT|SLAB_PANIC);
3154 	/*
3155 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3156 	 */
3157 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3158 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3159 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3160 					NULL, buffer_exit_cpu_dead);
3161 	WARN_ON(ret < 0);
3162 }
3163