xref: /linux/rust/kernel/alloc/kvec.rs (revision 352af6a011d586ff042db4b2d1f7421875eb8a14)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Implementation of [`Vec`].
4 
5 use super::{
6     allocator::{KVmalloc, Kmalloc, Vmalloc},
7     layout::ArrayLayout,
8     AllocError, Allocator, Box, Flags,
9 };
10 use core::{
11     borrow::{Borrow, BorrowMut},
12     fmt,
13     marker::PhantomData,
14     mem::{ManuallyDrop, MaybeUninit},
15     ops::Deref,
16     ops::DerefMut,
17     ops::Index,
18     ops::IndexMut,
19     ptr,
20     ptr::NonNull,
21     slice,
22     slice::SliceIndex,
23 };
24 
25 mod errors;
26 pub use self::errors::{InsertError, PushError, RemoveError};
27 
28 /// Create a [`KVec`] containing the arguments.
29 ///
30 /// New memory is allocated with `GFP_KERNEL`.
31 ///
32 /// # Examples
33 ///
34 /// ```
35 /// let mut v = kernel::kvec![];
36 /// v.push(1, GFP_KERNEL)?;
37 /// assert_eq!(v, [1]);
38 ///
39 /// let mut v = kernel::kvec![1; 3]?;
40 /// v.push(4, GFP_KERNEL)?;
41 /// assert_eq!(v, [1, 1, 1, 4]);
42 ///
43 /// let mut v = kernel::kvec![1, 2, 3]?;
44 /// v.push(4, GFP_KERNEL)?;
45 /// assert_eq!(v, [1, 2, 3, 4]);
46 ///
47 /// # Ok::<(), Error>(())
48 /// ```
49 #[macro_export]
50 macro_rules! kvec {
51     () => (
52         $crate::alloc::KVec::new()
53     );
54     ($elem:expr; $n:expr) => (
55         $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
56     );
57     ($($x:expr),+ $(,)?) => (
58         match $crate::alloc::KBox::new_uninit(GFP_KERNEL) {
59             Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))),
60             Err(e) => Err(e),
61         }
62     );
63 }
64 
65 /// The kernel's [`Vec`] type.
66 ///
67 /// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
68 /// [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]), written `Vec<T, A>`.
69 ///
70 /// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
71 /// the most common allocators the type aliases [`KVec`], [`VVec`] and [`KVVec`] exist.
72 ///
73 /// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
74 ///
75 /// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
76 /// capacity of the vector (the number of elements that currently fit into the vector), its length
77 /// (the number of elements that are currently stored in the vector) and the `Allocator` type used
78 /// to allocate (and free) the backing buffer.
79 ///
80 /// A [`Vec`] can be deconstructed into and (re-)constructed from its previously named raw parts
81 /// and manually modified.
82 ///
83 /// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
84 /// are added to the vector.
85 ///
86 /// # Invariants
87 ///
88 /// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for
89 ///   zero-sized types, is a dangling, well aligned pointer.
90 ///
91 /// - `self.len` always represents the exact number of elements stored in the vector.
92 ///
93 /// - `self.layout` represents the absolute number of elements that can be stored within the vector
94 ///   without re-allocation. For ZSTs `self.layout`'s capacity is zero. However, it is legal for the
95 ///   backing buffer to be larger than `layout`.
96 ///
97 /// - `self.len()` is always less than or equal to `self.capacity()`.
98 ///
99 /// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer
100 ///   was allocated with (and must be freed with).
101 pub struct Vec<T, A: Allocator> {
102     ptr: NonNull<T>,
103     /// Represents the actual buffer size as `cap` times `size_of::<T>` bytes.
104     ///
105     /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of
106     /// elements we can still store without reallocating.
107     layout: ArrayLayout<T>,
108     len: usize,
109     _p: PhantomData<A>,
110 }
111 
112 /// Type alias for [`Vec`] with a [`Kmalloc`] allocator.
113 ///
114 /// # Examples
115 ///
116 /// ```
117 /// let mut v = KVec::new();
118 /// v.push(1, GFP_KERNEL)?;
119 /// assert_eq!(&v, &[1]);
120 ///
121 /// # Ok::<(), Error>(())
122 /// ```
123 pub type KVec<T> = Vec<T, Kmalloc>;
124 
125 /// Type alias for [`Vec`] with a [`Vmalloc`] allocator.
126 ///
127 /// # Examples
128 ///
129 /// ```
130 /// let mut v = VVec::new();
131 /// v.push(1, GFP_KERNEL)?;
132 /// assert_eq!(&v, &[1]);
133 ///
134 /// # Ok::<(), Error>(())
135 /// ```
136 pub type VVec<T> = Vec<T, Vmalloc>;
137 
138 /// Type alias for [`Vec`] with a [`KVmalloc`] allocator.
139 ///
140 /// # Examples
141 ///
142 /// ```
143 /// let mut v = KVVec::new();
144 /// v.push(1, GFP_KERNEL)?;
145 /// assert_eq!(&v, &[1]);
146 ///
147 /// # Ok::<(), Error>(())
148 /// ```
149 pub type KVVec<T> = Vec<T, KVmalloc>;
150 
151 // SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements.
152 unsafe impl<T, A> Send for Vec<T, A>
153 where
154     T: Send,
155     A: Allocator,
156 {
157 }
158 
159 // SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements.
160 unsafe impl<T, A> Sync for Vec<T, A>
161 where
162     T: Sync,
163     A: Allocator,
164 {
165 }
166 
167 impl<T, A> Vec<T, A>
168 where
169     A: Allocator,
170 {
171     #[inline]
is_zst() -> bool172     const fn is_zst() -> bool {
173         core::mem::size_of::<T>() == 0
174     }
175 
176     /// Returns the number of elements that can be stored within the vector without allocating
177     /// additional memory.
capacity(&self) -> usize178     pub fn capacity(&self) -> usize {
179         if const { Self::is_zst() } {
180             usize::MAX
181         } else {
182             self.layout.len()
183         }
184     }
185 
186     /// Returns the number of elements stored within the vector.
187     #[inline]
len(&self) -> usize188     pub fn len(&self) -> usize {
189         self.len
190     }
191 
192     /// Increments `self.len` by `additional`.
193     ///
194     /// # Safety
195     ///
196     /// - `additional` must be less than or equal to `self.capacity - self.len`.
197     /// - All elements within the interval [`self.len`,`self.len + additional`) must be initialized.
198     #[inline]
inc_len(&mut self, additional: usize)199     pub unsafe fn inc_len(&mut self, additional: usize) {
200         // Guaranteed by the type invariant to never underflow.
201         debug_assert!(additional <= self.capacity() - self.len());
202         // INVARIANT: By the safety requirements of this method this represents the exact number of
203         // elements stored within `self`.
204         self.len += additional;
205     }
206 
207     /// Decreases `self.len` by `count`.
208     ///
209     /// Returns a mutable slice to the elements forgotten by the vector. It is the caller's
210     /// responsibility to drop these elements if necessary.
211     ///
212     /// # Safety
213     ///
214     /// - `count` must be less than or equal to `self.len`.
dec_len(&mut self, count: usize) -> &mut [T]215     unsafe fn dec_len(&mut self, count: usize) -> &mut [T] {
216         debug_assert!(count <= self.len());
217         // INVARIANT: We relinquish ownership of the elements within the range `[self.len - count,
218         // self.len)`, hence the updated value of `set.len` represents the exact number of elements
219         // stored within `self`.
220         self.len -= count;
221         // SAFETY: The memory after `self.len()` is guaranteed to contain `count` initialized
222         // elements of type `T`.
223         unsafe { slice::from_raw_parts_mut(self.as_mut_ptr().add(self.len), count) }
224     }
225 
226     /// Returns a slice of the entire vector.
227     #[inline]
as_slice(&self) -> &[T]228     pub fn as_slice(&self) -> &[T] {
229         self
230     }
231 
232     /// Returns a mutable slice of the entire vector.
233     #[inline]
as_mut_slice(&mut self) -> &mut [T]234     pub fn as_mut_slice(&mut self) -> &mut [T] {
235         self
236     }
237 
238     /// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a
239     /// dangling raw pointer.
240     #[inline]
as_mut_ptr(&mut self) -> *mut T241     pub fn as_mut_ptr(&mut self) -> *mut T {
242         self.ptr.as_ptr()
243     }
244 
245     /// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw
246     /// pointer.
247     #[inline]
as_ptr(&self) -> *const T248     pub fn as_ptr(&self) -> *const T {
249         self.ptr.as_ptr()
250     }
251 
252     /// Returns `true` if the vector contains no elements, `false` otherwise.
253     ///
254     /// # Examples
255     ///
256     /// ```
257     /// let mut v = KVec::new();
258     /// assert!(v.is_empty());
259     ///
260     /// v.push(1, GFP_KERNEL);
261     /// assert!(!v.is_empty());
262     /// ```
263     #[inline]
is_empty(&self) -> bool264     pub fn is_empty(&self) -> bool {
265         self.len() == 0
266     }
267 
268     /// Creates a new, empty `Vec<T, A>`.
269     ///
270     /// This method does not allocate by itself.
271     #[inline]
new() -> Self272     pub const fn new() -> Self {
273         // INVARIANT: Since this is a new, empty `Vec` with no backing memory yet,
274         // - `ptr` is a properly aligned dangling pointer for type `T`,
275         // - `layout` is an empty `ArrayLayout` (zero capacity)
276         // - `len` is zero, since no elements can be or have been stored,
277         // - `A` is always valid.
278         Self {
279             ptr: NonNull::dangling(),
280             layout: ArrayLayout::empty(),
281             len: 0,
282             _p: PhantomData::<A>,
283         }
284     }
285 
286     /// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector.
spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>]287     pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
288         // SAFETY:
289         // - `self.len` is smaller than `self.capacity` by the type invariant and hence, the
290         //   resulting pointer is guaranteed to be part of the same allocated object.
291         // - `self.len` can not overflow `isize`.
292         let ptr = unsafe { self.as_mut_ptr().add(self.len) }.cast::<MaybeUninit<T>>();
293 
294         // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
295         // and valid, but uninitialized.
296         unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) }
297     }
298 
299     /// Appends an element to the back of the [`Vec`] instance.
300     ///
301     /// # Examples
302     ///
303     /// ```
304     /// let mut v = KVec::new();
305     /// v.push(1, GFP_KERNEL)?;
306     /// assert_eq!(&v, &[1]);
307     ///
308     /// v.push(2, GFP_KERNEL)?;
309     /// assert_eq!(&v, &[1, 2]);
310     /// # Ok::<(), Error>(())
311     /// ```
push(&mut self, v: T, flags: Flags) -> Result<(), AllocError>312     pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
313         self.reserve(1, flags)?;
314         // SAFETY: The call to `reserve` was successful, so the capacity is at least one greater
315         // than the length.
316         unsafe { self.push_within_capacity_unchecked(v) };
317         Ok(())
318     }
319 
320     /// Appends an element to the back of the [`Vec`] instance without reallocating.
321     ///
322     /// Fails if the vector does not have capacity for the new element.
323     ///
324     /// # Examples
325     ///
326     /// ```
327     /// let mut v = KVec::with_capacity(10, GFP_KERNEL)?;
328     /// for i in 0..10 {
329     ///     v.push_within_capacity(i)?;
330     /// }
331     ///
332     /// assert!(v.push_within_capacity(10).is_err());
333     /// # Ok::<(), Error>(())
334     /// ```
push_within_capacity(&mut self, v: T) -> Result<(), PushError<T>>335     pub fn push_within_capacity(&mut self, v: T) -> Result<(), PushError<T>> {
336         if self.len() < self.capacity() {
337             // SAFETY: The length is less than the capacity.
338             unsafe { self.push_within_capacity_unchecked(v) };
339             Ok(())
340         } else {
341             Err(PushError(v))
342         }
343     }
344 
345     /// Appends an element to the back of the [`Vec`] instance without reallocating.
346     ///
347     /// # Safety
348     ///
349     /// The length must be less than the capacity.
push_within_capacity_unchecked(&mut self, v: T)350     unsafe fn push_within_capacity_unchecked(&mut self, v: T) {
351         let spare = self.spare_capacity_mut();
352 
353         // SAFETY: By the safety requirements, `spare` is non-empty.
354         unsafe { spare.get_unchecked_mut(0) }.write(v);
355 
356         // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
357         // by 1. We also know that the new length is <= capacity because the caller guarantees that
358         // the length is less than the capacity at the beginning of this function.
359         unsafe { self.inc_len(1) };
360     }
361 
362     /// Inserts an element at the given index in the [`Vec`] instance.
363     ///
364     /// Fails if the vector does not have capacity for the new element. Panics if the index is out
365     /// of bounds.
366     ///
367     /// # Examples
368     ///
369     /// ```
370     /// use kernel::alloc::kvec::InsertError;
371     ///
372     /// let mut v = KVec::with_capacity(5, GFP_KERNEL)?;
373     /// for i in 0..5 {
374     ///     v.insert_within_capacity(0, i)?;
375     /// }
376     ///
377     /// assert!(matches!(v.insert_within_capacity(0, 5), Err(InsertError::OutOfCapacity(_))));
378     /// assert!(matches!(v.insert_within_capacity(1000, 5), Err(InsertError::IndexOutOfBounds(_))));
379     /// assert_eq!(v, [4, 3, 2, 1, 0]);
380     /// # Ok::<(), Error>(())
381     /// ```
insert_within_capacity( &mut self, index: usize, element: T, ) -> Result<(), InsertError<T>>382     pub fn insert_within_capacity(
383         &mut self,
384         index: usize,
385         element: T,
386     ) -> Result<(), InsertError<T>> {
387         let len = self.len();
388         if index > len {
389             return Err(InsertError::IndexOutOfBounds(element));
390         }
391 
392         if len >= self.capacity() {
393             return Err(InsertError::OutOfCapacity(element));
394         }
395 
396         // SAFETY: This is in bounds since `index <= len < capacity`.
397         let p = unsafe { self.as_mut_ptr().add(index) };
398         // INVARIANT: This breaks the Vec invariants by making `index` contain an invalid element,
399         // but we restore the invariants below.
400         // SAFETY: Both the src and dst ranges end no later than one element after the length.
401         // Since the length is less than the capacity, both ranges are in bounds of the allocation.
402         unsafe { ptr::copy(p, p.add(1), len - index) };
403         // INVARIANT: This restores the Vec invariants.
404         // SAFETY: The pointer is in-bounds of the allocation.
405         unsafe { ptr::write(p, element) };
406         // SAFETY: Index `len` contains a valid element due to the above copy and write.
407         unsafe { self.inc_len(1) };
408         Ok(())
409     }
410 
411     /// Removes the last element from a vector and returns it, or `None` if it is empty.
412     ///
413     /// # Examples
414     ///
415     /// ```
416     /// let mut v = KVec::new();
417     /// v.push(1, GFP_KERNEL)?;
418     /// v.push(2, GFP_KERNEL)?;
419     /// assert_eq!(&v, &[1, 2]);
420     ///
421     /// assert_eq!(v.pop(), Some(2));
422     /// assert_eq!(v.pop(), Some(1));
423     /// assert_eq!(v.pop(), None);
424     /// # Ok::<(), Error>(())
425     /// ```
pop(&mut self) -> Option<T>426     pub fn pop(&mut self) -> Option<T> {
427         if self.is_empty() {
428             return None;
429         }
430 
431         let removed: *mut T = {
432             // SAFETY: We just checked that the length is at least one.
433             let slice = unsafe { self.dec_len(1) };
434             // SAFETY: The argument to `dec_len` was 1 so this returns a slice of length 1.
435             unsafe { slice.get_unchecked_mut(0) }
436         };
437 
438         // SAFETY: The guarantees of `dec_len` allow us to take ownership of this value.
439         Some(unsafe { removed.read() })
440     }
441 
442     /// Removes the element at the given index.
443     ///
444     /// # Examples
445     ///
446     /// ```
447     /// let mut v = kernel::kvec![1, 2, 3]?;
448     /// assert_eq!(v.remove(1)?, 2);
449     /// assert_eq!(v, [1, 3]);
450     /// # Ok::<(), Error>(())
451     /// ```
remove(&mut self, i: usize) -> Result<T, RemoveError>452     pub fn remove(&mut self, i: usize) -> Result<T, RemoveError> {
453         let value = {
454             let value_ref = self.get(i).ok_or(RemoveError)?;
455             // INVARIANT: This breaks the invariants by invalidating the value at index `i`, but we
456             // restore the invariants below.
457             // SAFETY: The value at index `i` is valid, because otherwise we would have already
458             // failed with `RemoveError`.
459             unsafe { ptr::read(value_ref) }
460         };
461 
462         // SAFETY: We checked that `i` is in-bounds.
463         let p = unsafe { self.as_mut_ptr().add(i) };
464 
465         // INVARIANT: After this call, the invalid value is at the last slot, so the Vec invariants
466         // are restored after the below call to `dec_len(1)`.
467         // SAFETY: `p.add(1).add(self.len - i - 1)` is `i+1+len-i-1 == len` elements after the
468         // beginning of the vector, so this is in-bounds of the vector's allocation.
469         unsafe { ptr::copy(p.add(1), p, self.len - i - 1) };
470 
471         // SAFETY: Since the check at the beginning of this call did not fail with `RemoveError`,
472         // the length is at least one.
473         unsafe { self.dec_len(1) };
474 
475         Ok(value)
476     }
477 
478     /// Creates a new [`Vec`] instance with at least the given capacity.
479     ///
480     /// # Examples
481     ///
482     /// ```
483     /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
484     ///
485     /// assert!(v.capacity() >= 20);
486     /// # Ok::<(), Error>(())
487     /// ```
with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError>488     pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
489         let mut v = Vec::new();
490 
491         v.reserve(capacity, flags)?;
492 
493         Ok(v)
494     }
495 
496     /// Creates a `Vec<T, A>` from a pointer, a length and a capacity using the allocator `A`.
497     ///
498     /// # Examples
499     ///
500     /// ```
501     /// let mut v = kernel::kvec![1, 2, 3]?;
502     /// v.reserve(1, GFP_KERNEL)?;
503     ///
504     /// let (mut ptr, mut len, cap) = v.into_raw_parts();
505     ///
506     /// // SAFETY: We've just reserved memory for another element.
507     /// unsafe { ptr.add(len).write(4) };
508     /// len += 1;
509     ///
510     /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
511     /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
512     /// // from the exact same raw parts.
513     /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
514     ///
515     /// assert_eq!(v, [1, 2, 3, 4]);
516     ///
517     /// # Ok::<(), Error>(())
518     /// ```
519     ///
520     /// # Safety
521     ///
522     /// If `T` is a ZST:
523     ///
524     /// - `ptr` must be a dangling, well aligned pointer.
525     ///
526     /// Otherwise:
527     ///
528     /// - `ptr` must have been allocated with the allocator `A`.
529     /// - `ptr` must satisfy or exceed the alignment requirements of `T`.
530     /// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity` bytes.
531     /// - The allocated size in bytes must not be larger than `isize::MAX`.
532     /// - `length` must be less than or equal to `capacity`.
533     /// - The first `length` elements must be initialized values of type `T`.
534     ///
535     /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
536     /// `cap` and `len`.
from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self537     pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
538         let layout = if Self::is_zst() {
539             ArrayLayout::empty()
540         } else {
541             // SAFETY: By the safety requirements of this function, `capacity * size_of::<T>()` is
542             // smaller than `isize::MAX`.
543             unsafe { ArrayLayout::new_unchecked(capacity) }
544         };
545 
546         // INVARIANT: For ZSTs, we store an empty `ArrayLayout`, all other type invariants are
547         // covered by the safety requirements of this function.
548         Self {
549             // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
550             // memory allocation, allocated with `A`.
551             ptr: unsafe { NonNull::new_unchecked(ptr) },
552             layout,
553             len: length,
554             _p: PhantomData::<A>,
555         }
556     }
557 
558     /// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`.
559     ///
560     /// This will not run the destructor of the contained elements and for non-ZSTs the allocation
561     /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the
562     /// elements and free the allocation, if any.
into_raw_parts(self) -> (*mut T, usize, usize)563     pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
564         let mut me = ManuallyDrop::new(self);
565         let len = me.len();
566         let capacity = me.capacity();
567         let ptr = me.as_mut_ptr();
568         (ptr, len, capacity)
569     }
570 
571     /// Clears the vector, removing all values.
572     ///
573     /// Note that this method has no effect on the allocated capacity
574     /// of the vector.
575     ///
576     /// # Examples
577     ///
578     /// ```
579     /// let mut v = kernel::kvec![1, 2, 3]?;
580     ///
581     /// v.clear();
582     ///
583     /// assert!(v.is_empty());
584     /// # Ok::<(), Error>(())
585     /// ```
586     #[inline]
clear(&mut self)587     pub fn clear(&mut self) {
588         self.truncate(0);
589     }
590 
591     /// Ensures that the capacity exceeds the length by at least `additional` elements.
592     ///
593     /// # Examples
594     ///
595     /// ```
596     /// let mut v = KVec::new();
597     /// v.push(1, GFP_KERNEL)?;
598     ///
599     /// v.reserve(10, GFP_KERNEL)?;
600     /// let cap = v.capacity();
601     /// assert!(cap >= 10);
602     ///
603     /// v.reserve(10, GFP_KERNEL)?;
604     /// let new_cap = v.capacity();
605     /// assert_eq!(new_cap, cap);
606     ///
607     /// # Ok::<(), Error>(())
608     /// ```
reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError>609     pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
610         let len = self.len();
611         let cap = self.capacity();
612 
613         if cap - len >= additional {
614             return Ok(());
615         }
616 
617         if Self::is_zst() {
618             // The capacity is already `usize::MAX` for ZSTs, we can't go higher.
619             return Err(AllocError);
620         }
621 
622         // We know that `cap <= isize::MAX` because of the type invariants of `Self`. So the
623         // multiplication by two won't overflow.
624         let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
625         let layout = ArrayLayout::new(new_cap).map_err(|_| AllocError)?;
626 
627         // SAFETY:
628         // - `ptr` is valid because it's either `None` or comes from a previous call to
629         //   `A::realloc`.
630         // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
631         let ptr = unsafe {
632             A::realloc(
633                 Some(self.ptr.cast()),
634                 layout.into(),
635                 self.layout.into(),
636                 flags,
637             )?
638         };
639 
640         // INVARIANT:
641         // - `layout` is some `ArrayLayout::<T>`,
642         // - `ptr` has been created by `A::realloc` from `layout`.
643         self.ptr = ptr.cast();
644         self.layout = layout;
645 
646         Ok(())
647     }
648 
649     /// Shortens the vector, setting the length to `len` and drops the removed values.
650     /// If `len` is greater than or equal to the current length, this does nothing.
651     ///
652     /// This has no effect on the capacity and will not allocate.
653     ///
654     /// # Examples
655     ///
656     /// ```
657     /// let mut v = kernel::kvec![1, 2, 3]?;
658     /// v.truncate(1);
659     /// assert_eq!(v.len(), 1);
660     /// assert_eq!(&v, &[1]);
661     ///
662     /// # Ok::<(), Error>(())
663     /// ```
truncate(&mut self, len: usize)664     pub fn truncate(&mut self, len: usize) {
665         if let Some(count) = self.len().checked_sub(len) {
666             // SAFETY: `count` is `self.len() - len` so it is guaranteed to be less than or
667             // equal to `self.len()`.
668             let ptr: *mut [T] = unsafe { self.dec_len(count) };
669 
670             // SAFETY: the contract of `dec_len` guarantees that the elements in `ptr` are
671             // valid elements whose ownership has been transferred to the caller.
672             unsafe { ptr::drop_in_place(ptr) };
673         }
674     }
675 
676     /// Takes ownership of all items in this vector without consuming the allocation.
677     ///
678     /// # Examples
679     ///
680     /// ```
681     /// let mut v = kernel::kvec![0, 1, 2, 3]?;
682     ///
683     /// for (i, j) in v.drain_all().enumerate() {
684     ///     assert_eq!(i, j);
685     /// }
686     ///
687     /// assert!(v.capacity() >= 4);
688     /// # Ok::<(), Error>(())
689     /// ```
drain_all(&mut self) -> DrainAll<'_, T>690     pub fn drain_all(&mut self) -> DrainAll<'_, T> {
691         // SAFETY: This does not underflow the length.
692         let elems = unsafe { self.dec_len(self.len()) };
693         // INVARIANT: The first `len` elements of the spare capacity are valid values, and as we
694         // just set the length to zero, we may transfer ownership to the `DrainAll` object.
695         DrainAll {
696             elements: elems.iter_mut(),
697         }
698     }
699 
700     /// Removes all elements that don't match the provided closure.
701     ///
702     /// # Examples
703     ///
704     /// ```
705     /// let mut v = kernel::kvec![1, 2, 3, 4]?;
706     /// v.retain(|i| *i % 2 == 0);
707     /// assert_eq!(v, [2, 4]);
708     /// # Ok::<(), Error>(())
709     /// ```
retain(&mut self, mut f: impl FnMut(&mut T) -> bool)710     pub fn retain(&mut self, mut f: impl FnMut(&mut T) -> bool) {
711         let mut num_kept = 0;
712         let mut next_to_check = 0;
713         while let Some(to_check) = self.get_mut(next_to_check) {
714             if f(to_check) {
715                 self.swap(num_kept, next_to_check);
716                 num_kept += 1;
717             }
718             next_to_check += 1;
719         }
720         self.truncate(num_kept);
721     }
722 }
723 
724 impl<T: Clone, A: Allocator> Vec<T, A> {
725     /// Extend the vector by `n` clones of `value`.
extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError>726     pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
727         if n == 0 {
728             return Ok(());
729         }
730 
731         self.reserve(n, flags)?;
732 
733         let spare = self.spare_capacity_mut();
734 
735         for item in spare.iter_mut().take(n - 1) {
736             item.write(value.clone());
737         }
738 
739         // We can write the last element directly without cloning needlessly.
740         spare[n - 1].write(value);
741 
742         // SAFETY:
743         // - `self.len() + n < self.capacity()` due to the call to reserve above,
744         // - the loop and the line above initialized the next `n` elements.
745         unsafe { self.inc_len(n) };
746 
747         Ok(())
748     }
749 
750     /// Pushes clones of the elements of slice into the [`Vec`] instance.
751     ///
752     /// # Examples
753     ///
754     /// ```
755     /// let mut v = KVec::new();
756     /// v.push(1, GFP_KERNEL)?;
757     ///
758     /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
759     /// assert_eq!(&v, &[1, 20, 30, 40]);
760     ///
761     /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
762     /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
763     /// # Ok::<(), Error>(())
764     /// ```
extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError>765     pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> {
766         self.reserve(other.len(), flags)?;
767         for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
768             slot.write(item.clone());
769         }
770 
771         // SAFETY:
772         // - `other.len()` spare entries have just been initialized, so it is safe to increase
773         //   the length by the same number.
774         // - `self.len() + other.len() <= self.capacity()` is guaranteed by the preceding `reserve`
775         //   call.
776         unsafe { self.inc_len(other.len()) };
777         Ok(())
778     }
779 
780     /// Create a new `Vec<T, A>` and extend it by `n` clones of `value`.
from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError>781     pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
782         let mut v = Self::with_capacity(n, flags)?;
783 
784         v.extend_with(n, value, flags)?;
785 
786         Ok(v)
787     }
788 
789     /// Resizes the [`Vec`] so that `len` is equal to `new_len`.
790     ///
791     /// If `new_len` is smaller than `len`, the `Vec` is [`Vec::truncate`]d.
792     /// If `new_len` is larger, each new slot is filled with clones of `value`.
793     ///
794     /// # Examples
795     ///
796     /// ```
797     /// let mut v = kernel::kvec![1, 2, 3]?;
798     /// v.resize(1, 42, GFP_KERNEL)?;
799     /// assert_eq!(&v, &[1]);
800     ///
801     /// v.resize(3, 42, GFP_KERNEL)?;
802     /// assert_eq!(&v, &[1, 42, 42]);
803     ///
804     /// # Ok::<(), Error>(())
805     /// ```
resize(&mut self, new_len: usize, value: T, flags: Flags) -> Result<(), AllocError>806     pub fn resize(&mut self, new_len: usize, value: T, flags: Flags) -> Result<(), AllocError> {
807         match new_len.checked_sub(self.len()) {
808             Some(n) => self.extend_with(n, value, flags),
809             None => {
810                 self.truncate(new_len);
811                 Ok(())
812             }
813         }
814     }
815 }
816 
817 impl<T, A> Drop for Vec<T, A>
818 where
819     A: Allocator,
820 {
drop(&mut self)821     fn drop(&mut self) {
822         // SAFETY: `self.as_mut_ptr` is guaranteed to be valid by the type invariant.
823         unsafe {
824             ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
825                 self.as_mut_ptr(),
826                 self.len,
827             ))
828         };
829 
830         // SAFETY:
831         // - `self.ptr` was previously allocated with `A`.
832         // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
833         unsafe { A::free(self.ptr.cast(), self.layout.into()) };
834     }
835 }
836 
837 impl<T, A, const N: usize> From<Box<[T; N], A>> for Vec<T, A>
838 where
839     A: Allocator,
840 {
from(b: Box<[T; N], A>) -> Vec<T, A>841     fn from(b: Box<[T; N], A>) -> Vec<T, A> {
842         let len = b.len();
843         let ptr = Box::into_raw(b);
844 
845         // SAFETY:
846         // - `b` has been allocated with `A`,
847         // - `ptr` fulfills the alignment requirements for `T`,
848         // - `ptr` points to memory with at least a size of `size_of::<T>() * len`,
849         // - all elements within `b` are initialized values of `T`,
850         // - `len` does not exceed `isize::MAX`.
851         unsafe { Vec::from_raw_parts(ptr.cast(), len, len) }
852     }
853 }
854 
855 impl<T, A: Allocator> Default for Vec<T, A> {
856     #[inline]
default() -> Self857     fn default() -> Self {
858         Self::new()
859     }
860 }
861 
862 impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result863     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
864         fmt::Debug::fmt(&**self, f)
865     }
866 }
867 
868 impl<T, A> Deref for Vec<T, A>
869 where
870     A: Allocator,
871 {
872     type Target = [T];
873 
874     #[inline]
deref(&self) -> &[T]875     fn deref(&self) -> &[T] {
876         // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
877         // initialized elements of type `T`.
878         unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
879     }
880 }
881 
882 impl<T, A> DerefMut for Vec<T, A>
883 where
884     A: Allocator,
885 {
886     #[inline]
deref_mut(&mut self) -> &mut [T]887     fn deref_mut(&mut self) -> &mut [T] {
888         // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
889         // initialized elements of type `T`.
890         unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
891     }
892 }
893 
894 /// # Examples
895 ///
896 /// ```
897 /// # use core::borrow::Borrow;
898 /// struct Foo<B: Borrow<[u32]>>(B);
899 ///
900 /// // Owned array.
901 /// let owned_array = Foo([1, 2, 3]);
902 ///
903 /// // Owned vector.
904 /// let owned_vec = Foo(KVec::from_elem(0, 3, GFP_KERNEL)?);
905 ///
906 /// let arr = [1, 2, 3];
907 /// // Borrowed slice from `arr`.
908 /// let borrowed_slice = Foo(&arr[..]);
909 /// # Ok::<(), Error>(())
910 /// ```
911 impl<T, A> Borrow<[T]> for Vec<T, A>
912 where
913     A: Allocator,
914 {
borrow(&self) -> &[T]915     fn borrow(&self) -> &[T] {
916         self.as_slice()
917     }
918 }
919 
920 /// # Examples
921 ///
922 /// ```
923 /// # use core::borrow::BorrowMut;
924 /// struct Foo<B: BorrowMut<[u32]>>(B);
925 ///
926 /// // Owned array.
927 /// let owned_array = Foo([1, 2, 3]);
928 ///
929 /// // Owned vector.
930 /// let owned_vec = Foo(KVec::from_elem(0, 3, GFP_KERNEL)?);
931 ///
932 /// let mut arr = [1, 2, 3];
933 /// // Borrowed slice from `arr`.
934 /// let borrowed_slice = Foo(&mut arr[..]);
935 /// # Ok::<(), Error>(())
936 /// ```
937 impl<T, A> BorrowMut<[T]> for Vec<T, A>
938 where
939     A: Allocator,
940 {
borrow_mut(&mut self) -> &mut [T]941     fn borrow_mut(&mut self) -> &mut [T] {
942         self.as_mut_slice()
943     }
944 }
945 
946 impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
947 
948 impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
949 where
950     A: Allocator,
951 {
952     type Output = I::Output;
953 
954     #[inline]
index(&self, index: I) -> &Self::Output955     fn index(&self, index: I) -> &Self::Output {
956         Index::index(&**self, index)
957     }
958 }
959 
960 impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
961 where
962     A: Allocator,
963 {
964     #[inline]
index_mut(&mut self, index: I) -> &mut Self::Output965     fn index_mut(&mut self, index: I) -> &mut Self::Output {
966         IndexMut::index_mut(&mut **self, index)
967     }
968 }
969 
970 macro_rules! impl_slice_eq {
971     ($([$($vars:tt)*] $lhs:ty, $rhs:ty,)*) => {
972         $(
973             impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
974             where
975                 T: PartialEq<U>,
976             {
977                 #[inline]
978                 fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
979             }
980         )*
981     }
982 }
983 
984 impl_slice_eq! {
985     [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2>,
986     [A: Allocator] Vec<T, A>, &[U],
987     [A: Allocator] Vec<T, A>, &mut [U],
988     [A: Allocator] &[T], Vec<U, A>,
989     [A: Allocator] &mut [T], Vec<U, A>,
990     [A: Allocator] Vec<T, A>, [U],
991     [A: Allocator] [T], Vec<U, A>,
992     [A: Allocator, const N: usize] Vec<T, A>, [U; N],
993     [A: Allocator, const N: usize] Vec<T, A>, &[U; N],
994 }
995 
996 impl<'a, T, A> IntoIterator for &'a Vec<T, A>
997 where
998     A: Allocator,
999 {
1000     type Item = &'a T;
1001     type IntoIter = slice::Iter<'a, T>;
1002 
into_iter(self) -> Self::IntoIter1003     fn into_iter(self) -> Self::IntoIter {
1004         self.iter()
1005     }
1006 }
1007 
1008 impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A>
1009 where
1010     A: Allocator,
1011 {
1012     type Item = &'a mut T;
1013     type IntoIter = slice::IterMut<'a, T>;
1014 
into_iter(self) -> Self::IntoIter1015     fn into_iter(self) -> Self::IntoIter {
1016         self.iter_mut()
1017     }
1018 }
1019 
1020 /// An [`Iterator`] implementation for [`Vec`] that moves elements out of a vector.
1021 ///
1022 /// This structure is created by the [`Vec::into_iter`] method on [`Vec`] (provided by the
1023 /// [`IntoIterator`] trait).
1024 ///
1025 /// # Examples
1026 ///
1027 /// ```
1028 /// let v = kernel::kvec![0, 1, 2]?;
1029 /// let iter = v.into_iter();
1030 ///
1031 /// # Ok::<(), Error>(())
1032 /// ```
1033 pub struct IntoIter<T, A: Allocator> {
1034     ptr: *mut T,
1035     buf: NonNull<T>,
1036     len: usize,
1037     layout: ArrayLayout<T>,
1038     _p: PhantomData<A>,
1039 }
1040 
1041 impl<T, A> IntoIter<T, A>
1042 where
1043     A: Allocator,
1044 {
into_raw_parts(self) -> (*mut T, NonNull<T>, usize, usize)1045     fn into_raw_parts(self) -> (*mut T, NonNull<T>, usize, usize) {
1046         let me = ManuallyDrop::new(self);
1047         let ptr = me.ptr;
1048         let buf = me.buf;
1049         let len = me.len;
1050         let cap = me.layout.len();
1051         (ptr, buf, len, cap)
1052     }
1053 
1054     /// Same as `Iterator::collect` but specialized for `Vec`'s `IntoIter`.
1055     ///
1056     /// # Examples
1057     ///
1058     /// ```
1059     /// let v = kernel::kvec![1, 2, 3]?;
1060     /// let mut it = v.into_iter();
1061     ///
1062     /// assert_eq!(it.next(), Some(1));
1063     ///
1064     /// let v = it.collect(GFP_KERNEL);
1065     /// assert_eq!(v, [2, 3]);
1066     ///
1067     /// # Ok::<(), Error>(())
1068     /// ```
1069     ///
1070     /// # Implementation details
1071     ///
1072     /// Currently, we can't implement `FromIterator`. There are a couple of issues with this trait
1073     /// in the kernel, namely:
1074     ///
1075     /// - Rust's specialization feature is unstable. This prevents us to optimize for the special
1076     ///   case where `I::IntoIter` equals `Vec`'s `IntoIter` type.
1077     /// - We also can't use `I::IntoIter`'s type ID either to work around this, since `FromIterator`
1078     ///   doesn't require this type to be `'static`.
1079     /// - `FromIterator::from_iter` does return `Self` instead of `Result<Self, AllocError>`, hence
1080     ///   we can't properly handle allocation failures.
1081     /// - Neither `Iterator::collect` nor `FromIterator::from_iter` can handle additional allocation
1082     ///   flags.
1083     ///
1084     /// Instead, provide `IntoIter::collect`, such that we can at least convert a `IntoIter` into a
1085     /// `Vec` again.
1086     ///
1087     /// Note that `IntoIter::collect` doesn't require `Flags`, since it re-uses the existing backing
1088     /// buffer. However, this backing buffer may be shrunk to the actual count of elements.
collect(self, flags: Flags) -> Vec<T, A>1089     pub fn collect(self, flags: Flags) -> Vec<T, A> {
1090         let old_layout = self.layout;
1091         let (mut ptr, buf, len, mut cap) = self.into_raw_parts();
1092         let has_advanced = ptr != buf.as_ptr();
1093 
1094         if has_advanced {
1095             // Copy the contents we have advanced to at the beginning of the buffer.
1096             //
1097             // SAFETY:
1098             // - `ptr` is valid for reads of `len * size_of::<T>()` bytes,
1099             // - `buf.as_ptr()` is valid for writes of `len * size_of::<T>()` bytes,
1100             // - `ptr` and `buf.as_ptr()` are not be subject to aliasing restrictions relative to
1101             //   each other,
1102             // - both `ptr` and `buf.ptr()` are properly aligned.
1103             unsafe { ptr::copy(ptr, buf.as_ptr(), len) };
1104             ptr = buf.as_ptr();
1105 
1106             // SAFETY: `len` is guaranteed to be smaller than `self.layout.len()` by the type
1107             // invariant.
1108             let layout = unsafe { ArrayLayout::<T>::new_unchecked(len) };
1109 
1110             // SAFETY: `buf` points to the start of the backing buffer and `len` is guaranteed by
1111             // the type invariant to be smaller than `cap`. Depending on `realloc` this operation
1112             // may shrink the buffer or leave it as it is.
1113             ptr = match unsafe {
1114                 A::realloc(Some(buf.cast()), layout.into(), old_layout.into(), flags)
1115             } {
1116                 // If we fail to shrink, which likely can't even happen, continue with the existing
1117                 // buffer.
1118                 Err(_) => ptr,
1119                 Ok(ptr) => {
1120                     cap = len;
1121                     ptr.as_ptr().cast()
1122                 }
1123             };
1124         }
1125 
1126         // SAFETY: If the iterator has been advanced, the advanced elements have been copied to
1127         // the beginning of the buffer and `len` has been adjusted accordingly.
1128         //
1129         // - `ptr` is guaranteed to point to the start of the backing buffer.
1130         // - `cap` is either the original capacity or, after shrinking the buffer, equal to `len`.
1131         // - `alloc` is guaranteed to be unchanged since `into_iter` has been called on the original
1132         //   `Vec`.
1133         unsafe { Vec::from_raw_parts(ptr, len, cap) }
1134     }
1135 }
1136 
1137 impl<T, A> Iterator for IntoIter<T, A>
1138 where
1139     A: Allocator,
1140 {
1141     type Item = T;
1142 
1143     /// # Examples
1144     ///
1145     /// ```
1146     /// let v = kernel::kvec![1, 2, 3]?;
1147     /// let mut it = v.into_iter();
1148     ///
1149     /// assert_eq!(it.next(), Some(1));
1150     /// assert_eq!(it.next(), Some(2));
1151     /// assert_eq!(it.next(), Some(3));
1152     /// assert_eq!(it.next(), None);
1153     ///
1154     /// # Ok::<(), Error>(())
1155     /// ```
next(&mut self) -> Option<T>1156     fn next(&mut self) -> Option<T> {
1157         if self.len == 0 {
1158             return None;
1159         }
1160 
1161         let current = self.ptr;
1162 
1163         // SAFETY: We can't overflow; decreasing `self.len` by one every time we advance `self.ptr`
1164         // by one guarantees that.
1165         unsafe { self.ptr = self.ptr.add(1) };
1166 
1167         self.len -= 1;
1168 
1169         // SAFETY: `current` is guaranteed to point at a valid element within the buffer.
1170         Some(unsafe { current.read() })
1171     }
1172 
1173     /// # Examples
1174     ///
1175     /// ```
1176     /// let v: KVec<u32> = kernel::kvec![1, 2, 3]?;
1177     /// let mut iter = v.into_iter();
1178     /// let size = iter.size_hint().0;
1179     ///
1180     /// iter.next();
1181     /// assert_eq!(iter.size_hint().0, size - 1);
1182     ///
1183     /// iter.next();
1184     /// assert_eq!(iter.size_hint().0, size - 2);
1185     ///
1186     /// iter.next();
1187     /// assert_eq!(iter.size_hint().0, size - 3);
1188     ///
1189     /// # Ok::<(), Error>(())
1190     /// ```
size_hint(&self) -> (usize, Option<usize>)1191     fn size_hint(&self) -> (usize, Option<usize>) {
1192         (self.len, Some(self.len))
1193     }
1194 }
1195 
1196 impl<T, A> Drop for IntoIter<T, A>
1197 where
1198     A: Allocator,
1199 {
drop(&mut self)1200     fn drop(&mut self) {
1201         // SAFETY: `self.ptr` is guaranteed to be valid by the type invariant.
1202         unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.ptr, self.len)) };
1203 
1204         // SAFETY:
1205         // - `self.buf` was previously allocated with `A`.
1206         // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
1207         unsafe { A::free(self.buf.cast(), self.layout.into()) };
1208     }
1209 }
1210 
1211 impl<T, A> IntoIterator for Vec<T, A>
1212 where
1213     A: Allocator,
1214 {
1215     type Item = T;
1216     type IntoIter = IntoIter<T, A>;
1217 
1218     /// Consumes the `Vec<T, A>` and creates an `Iterator`, which moves each value out of the
1219     /// vector (from start to end).
1220     ///
1221     /// # Examples
1222     ///
1223     /// ```
1224     /// let v = kernel::kvec![1, 2]?;
1225     /// let mut v_iter = v.into_iter();
1226     ///
1227     /// let first_element: Option<u32> = v_iter.next();
1228     ///
1229     /// assert_eq!(first_element, Some(1));
1230     /// assert_eq!(v_iter.next(), Some(2));
1231     /// assert_eq!(v_iter.next(), None);
1232     ///
1233     /// # Ok::<(), Error>(())
1234     /// ```
1235     ///
1236     /// ```
1237     /// let v = kernel::kvec![];
1238     /// let mut v_iter = v.into_iter();
1239     ///
1240     /// let first_element: Option<u32> = v_iter.next();
1241     ///
1242     /// assert_eq!(first_element, None);
1243     ///
1244     /// # Ok::<(), Error>(())
1245     /// ```
1246     #[inline]
into_iter(self) -> Self::IntoIter1247     fn into_iter(self) -> Self::IntoIter {
1248         let buf = self.ptr;
1249         let layout = self.layout;
1250         let (ptr, len, _) = self.into_raw_parts();
1251 
1252         IntoIter {
1253             ptr,
1254             buf,
1255             len,
1256             layout,
1257             _p: PhantomData::<A>,
1258         }
1259     }
1260 }
1261 
1262 /// An iterator that owns all items in a vector, but does not own its allocation.
1263 ///
1264 /// # Invariants
1265 ///
1266 /// Every `&mut T` returned by the iterator references a `T` that the iterator may take ownership
1267 /// of.
1268 pub struct DrainAll<'vec, T> {
1269     elements: slice::IterMut<'vec, T>,
1270 }
1271 
1272 impl<'vec, T> Iterator for DrainAll<'vec, T> {
1273     type Item = T;
1274 
next(&mut self) -> Option<T>1275     fn next(&mut self) -> Option<T> {
1276         let elem: *mut T = self.elements.next()?;
1277         // SAFETY: By the type invariants, we may take ownership of this value.
1278         Some(unsafe { elem.read() })
1279     }
1280 
size_hint(&self) -> (usize, Option<usize>)1281     fn size_hint(&self) -> (usize, Option<usize>) {
1282         self.elements.size_hint()
1283     }
1284 }
1285 
1286 impl<'vec, T> Drop for DrainAll<'vec, T> {
drop(&mut self)1287     fn drop(&mut self) {
1288         if core::mem::needs_drop::<T>() {
1289             let iter = core::mem::take(&mut self.elements);
1290             let ptr: *mut [T] = iter.into_slice();
1291             // SAFETY: By the type invariants, we own these values so we may destroy them.
1292             unsafe { ptr::drop_in_place(ptr) };
1293         }
1294     }
1295 }
1296 
1297 #[macros::kunit_tests(rust_kvec_kunit)]
1298 mod tests {
1299     use super::*;
1300     use crate::prelude::*;
1301 
1302     #[test]
test_kvec_retain()1303     fn test_kvec_retain() {
1304         /// Verify correctness for one specific function.
1305         #[expect(clippy::needless_range_loop)]
1306         fn verify(c: &[bool]) {
1307             let mut vec1: KVec<usize> = KVec::with_capacity(c.len(), GFP_KERNEL).unwrap();
1308             let mut vec2: KVec<usize> = KVec::with_capacity(c.len(), GFP_KERNEL).unwrap();
1309 
1310             for i in 0..c.len() {
1311                 vec1.push_within_capacity(i).unwrap();
1312                 if c[i] {
1313                     vec2.push_within_capacity(i).unwrap();
1314                 }
1315             }
1316 
1317             vec1.retain(|i| c[*i]);
1318 
1319             assert_eq!(vec1, vec2);
1320         }
1321 
1322         /// Add one to a binary integer represented as a boolean array.
1323         fn add(value: &mut [bool]) {
1324             let mut carry = true;
1325             for v in value {
1326                 let new_v = carry != *v;
1327                 carry = carry && *v;
1328                 *v = new_v;
1329             }
1330         }
1331 
1332         // This boolean array represents a function from index to boolean. We check that `retain`
1333         // behaves correctly for all possible boolean arrays of every possible length less than
1334         // ten.
1335         let mut func = KVec::with_capacity(10, GFP_KERNEL).unwrap();
1336         for len in 0..10 {
1337             for _ in 0u32..1u32 << len {
1338                 verify(&func);
1339                 add(&mut func);
1340             }
1341             func.push_within_capacity(false).unwrap();
1342         }
1343     }
1344 }
1345